1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
3 *
4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
5 *
6 */
7
8 #include <linux/bpf.h>
9 #include <linux/filter.h>
10 #include "bpf_jit.h"
11
12 #define RV_REG_TCC RV_REG_A6
13 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
14
15 static const int regmap[] = {
16 [BPF_REG_0] = RV_REG_A5,
17 [BPF_REG_1] = RV_REG_A0,
18 [BPF_REG_2] = RV_REG_A1,
19 [BPF_REG_3] = RV_REG_A2,
20 [BPF_REG_4] = RV_REG_A3,
21 [BPF_REG_5] = RV_REG_A4,
22 [BPF_REG_6] = RV_REG_S1,
23 [BPF_REG_7] = RV_REG_S2,
24 [BPF_REG_8] = RV_REG_S3,
25 [BPF_REG_9] = RV_REG_S4,
26 [BPF_REG_FP] = RV_REG_S5,
27 [BPF_REG_AX] = RV_REG_T0,
28 };
29
30 enum {
31 RV_CTX_F_SEEN_TAIL_CALL = 0,
32 RV_CTX_F_SEEN_CALL = RV_REG_RA,
33 RV_CTX_F_SEEN_S1 = RV_REG_S1,
34 RV_CTX_F_SEEN_S2 = RV_REG_S2,
35 RV_CTX_F_SEEN_S3 = RV_REG_S3,
36 RV_CTX_F_SEEN_S4 = RV_REG_S4,
37 RV_CTX_F_SEEN_S5 = RV_REG_S5,
38 RV_CTX_F_SEEN_S6 = RV_REG_S6,
39 };
40
bpf_to_rv_reg(int bpf_reg,struct rv_jit_context * ctx)41 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
42 {
43 u8 reg = regmap[bpf_reg];
44
45 switch (reg) {
46 case RV_CTX_F_SEEN_S1:
47 case RV_CTX_F_SEEN_S2:
48 case RV_CTX_F_SEEN_S3:
49 case RV_CTX_F_SEEN_S4:
50 case RV_CTX_F_SEEN_S5:
51 case RV_CTX_F_SEEN_S6:
52 __set_bit(reg, &ctx->flags);
53 }
54 return reg;
55 };
56
seen_reg(int reg,struct rv_jit_context * ctx)57 static bool seen_reg(int reg, struct rv_jit_context *ctx)
58 {
59 switch (reg) {
60 case RV_CTX_F_SEEN_CALL:
61 case RV_CTX_F_SEEN_S1:
62 case RV_CTX_F_SEEN_S2:
63 case RV_CTX_F_SEEN_S3:
64 case RV_CTX_F_SEEN_S4:
65 case RV_CTX_F_SEEN_S5:
66 case RV_CTX_F_SEEN_S6:
67 return test_bit(reg, &ctx->flags);
68 }
69 return false;
70 }
71
mark_fp(struct rv_jit_context * ctx)72 static void mark_fp(struct rv_jit_context *ctx)
73 {
74 __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
75 }
76
mark_call(struct rv_jit_context * ctx)77 static void mark_call(struct rv_jit_context *ctx)
78 {
79 __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
80 }
81
seen_call(struct rv_jit_context * ctx)82 static bool seen_call(struct rv_jit_context *ctx)
83 {
84 return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
85 }
86
mark_tail_call(struct rv_jit_context * ctx)87 static void mark_tail_call(struct rv_jit_context *ctx)
88 {
89 __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
90 }
91
seen_tail_call(struct rv_jit_context * ctx)92 static bool seen_tail_call(struct rv_jit_context *ctx)
93 {
94 return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
95 }
96
rv_tail_call_reg(struct rv_jit_context * ctx)97 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
98 {
99 mark_tail_call(ctx);
100
101 if (seen_call(ctx)) {
102 __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
103 return RV_REG_S6;
104 }
105 return RV_REG_A6;
106 }
107
is_32b_int(s64 val)108 static bool is_32b_int(s64 val)
109 {
110 return -(1L << 31) <= val && val < (1L << 31);
111 }
112
in_auipc_jalr_range(s64 val)113 static bool in_auipc_jalr_range(s64 val)
114 {
115 /*
116 * auipc+jalr can reach any signed PC-relative offset in the range
117 * [-2^31 - 2^11, 2^31 - 2^11).
118 */
119 return (-(1L << 31) - (1L << 11)) <= val &&
120 val < ((1L << 31) - (1L << 11));
121 }
122
emit_imm(u8 rd,s64 val,struct rv_jit_context * ctx)123 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
124 {
125 /* Note that the immediate from the add is sign-extended,
126 * which means that we need to compensate this by adding 2^12,
127 * when the 12th bit is set. A simpler way of doing this, and
128 * getting rid of the check, is to just add 2**11 before the
129 * shift. The "Loading a 32-Bit constant" example from the
130 * "Computer Organization and Design, RISC-V edition" book by
131 * Patterson/Hennessy highlights this fact.
132 *
133 * This also means that we need to process LSB to MSB.
134 */
135 s64 upper = (val + (1 << 11)) >> 12;
136 /* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw,
137 * and addi are signed and RVC checks will perform signed comparisons.
138 */
139 s64 lower = ((val & 0xfff) << 52) >> 52;
140 int shift;
141
142 if (is_32b_int(val)) {
143 if (upper)
144 emit_lui(rd, upper, ctx);
145
146 if (!upper) {
147 emit_li(rd, lower, ctx);
148 return;
149 }
150
151 emit_addiw(rd, rd, lower, ctx);
152 return;
153 }
154
155 shift = __ffs(upper);
156 upper >>= shift;
157 shift += 12;
158
159 emit_imm(rd, upper, ctx);
160
161 emit_slli(rd, rd, shift, ctx);
162 if (lower)
163 emit_addi(rd, rd, lower, ctx);
164 }
165
__build_epilogue(bool is_tail_call,struct rv_jit_context * ctx)166 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
167 {
168 int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
169
170 if (seen_reg(RV_REG_RA, ctx)) {
171 emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx);
172 store_offset -= 8;
173 }
174 emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx);
175 store_offset -= 8;
176 if (seen_reg(RV_REG_S1, ctx)) {
177 emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx);
178 store_offset -= 8;
179 }
180 if (seen_reg(RV_REG_S2, ctx)) {
181 emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx);
182 store_offset -= 8;
183 }
184 if (seen_reg(RV_REG_S3, ctx)) {
185 emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx);
186 store_offset -= 8;
187 }
188 if (seen_reg(RV_REG_S4, ctx)) {
189 emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx);
190 store_offset -= 8;
191 }
192 if (seen_reg(RV_REG_S5, ctx)) {
193 emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx);
194 store_offset -= 8;
195 }
196 if (seen_reg(RV_REG_S6, ctx)) {
197 emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx);
198 store_offset -= 8;
199 }
200
201 emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx);
202 /* Set return value. */
203 if (!is_tail_call)
204 emit_mv(RV_REG_A0, RV_REG_A5, ctx);
205 emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
206 is_tail_call ? 4 : 0, /* skip TCC init */
207 ctx);
208 }
209
emit_bcc(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)210 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
211 struct rv_jit_context *ctx)
212 {
213 switch (cond) {
214 case BPF_JEQ:
215 emit(rv_beq(rd, rs, rvoff >> 1), ctx);
216 return;
217 case BPF_JGT:
218 emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
219 return;
220 case BPF_JLT:
221 emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
222 return;
223 case BPF_JGE:
224 emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
225 return;
226 case BPF_JLE:
227 emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
228 return;
229 case BPF_JNE:
230 emit(rv_bne(rd, rs, rvoff >> 1), ctx);
231 return;
232 case BPF_JSGT:
233 emit(rv_blt(rs, rd, rvoff >> 1), ctx);
234 return;
235 case BPF_JSLT:
236 emit(rv_blt(rd, rs, rvoff >> 1), ctx);
237 return;
238 case BPF_JSGE:
239 emit(rv_bge(rd, rs, rvoff >> 1), ctx);
240 return;
241 case BPF_JSLE:
242 emit(rv_bge(rs, rd, rvoff >> 1), ctx);
243 }
244 }
245
emit_branch(u8 cond,u8 rd,u8 rs,int rvoff,struct rv_jit_context * ctx)246 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
247 struct rv_jit_context *ctx)
248 {
249 s64 upper, lower;
250
251 if (is_13b_int(rvoff)) {
252 emit_bcc(cond, rd, rs, rvoff, ctx);
253 return;
254 }
255
256 /* Adjust for jal */
257 rvoff -= 4;
258
259 /* Transform, e.g.:
260 * bne rd,rs,foo
261 * to
262 * beq rd,rs,<.L1>
263 * (auipc foo)
264 * jal(r) foo
265 * .L1
266 */
267 cond = invert_bpf_cond(cond);
268 if (is_21b_int(rvoff)) {
269 emit_bcc(cond, rd, rs, 8, ctx);
270 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
271 return;
272 }
273
274 /* 32b No need for an additional rvoff adjustment, since we
275 * get that from the auipc at PC', where PC = PC' + 4.
276 */
277 upper = (rvoff + (1 << 11)) >> 12;
278 lower = rvoff & 0xfff;
279
280 emit_bcc(cond, rd, rs, 12, ctx);
281 emit(rv_auipc(RV_REG_T1, upper), ctx);
282 emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
283 }
284
emit_zext_32(u8 reg,struct rv_jit_context * ctx)285 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
286 {
287 emit_slli(reg, reg, 32, ctx);
288 emit_srli(reg, reg, 32, ctx);
289 }
290
emit_bpf_tail_call(int insn,struct rv_jit_context * ctx)291 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
292 {
293 int tc_ninsn, off, start_insn = ctx->ninsns;
294 u8 tcc = rv_tail_call_reg(ctx);
295
296 /* a0: &ctx
297 * a1: &array
298 * a2: index
299 *
300 * if (index >= array->map.max_entries)
301 * goto out;
302 */
303 tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
304 ctx->offset[0];
305 emit_zext_32(RV_REG_A2, ctx);
306
307 off = offsetof(struct bpf_array, map.max_entries);
308 if (is_12b_check(off, insn))
309 return -1;
310 emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
311 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
312 emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
313
314 /* if (TCC-- < 0)
315 * goto out;
316 */
317 emit_addi(RV_REG_T1, tcc, -1, ctx);
318 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
319 emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);
320
321 /* prog = array->ptrs[index];
322 * if (!prog)
323 * goto out;
324 */
325 emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx);
326 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx);
327 off = offsetof(struct bpf_array, ptrs);
328 if (is_12b_check(off, insn))
329 return -1;
330 emit_ld(RV_REG_T2, off, RV_REG_T2, ctx);
331 off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn));
332 emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
333
334 /* goto *(prog->bpf_func + 4); */
335 off = offsetof(struct bpf_prog, bpf_func);
336 if (is_12b_check(off, insn))
337 return -1;
338 emit_ld(RV_REG_T3, off, RV_REG_T2, ctx);
339 emit_mv(RV_REG_TCC, RV_REG_T1, ctx);
340 __build_epilogue(true, ctx);
341 return 0;
342 }
343
init_regs(u8 * rd,u8 * rs,const struct bpf_insn * insn,struct rv_jit_context * ctx)344 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
345 struct rv_jit_context *ctx)
346 {
347 u8 code = insn->code;
348
349 switch (code) {
350 case BPF_JMP | BPF_JA:
351 case BPF_JMP | BPF_CALL:
352 case BPF_JMP | BPF_EXIT:
353 case BPF_JMP | BPF_TAIL_CALL:
354 break;
355 default:
356 *rd = bpf_to_rv_reg(insn->dst_reg, ctx);
357 }
358
359 if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
360 code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
361 code & BPF_LDX || code & BPF_STX)
362 *rs = bpf_to_rv_reg(insn->src_reg, ctx);
363 }
364
emit_zext_32_rd_rs(u8 * rd,u8 * rs,struct rv_jit_context * ctx)365 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
366 {
367 emit_mv(RV_REG_T2, *rd, ctx);
368 emit_zext_32(RV_REG_T2, ctx);
369 emit_mv(RV_REG_T1, *rs, ctx);
370 emit_zext_32(RV_REG_T1, ctx);
371 *rd = RV_REG_T2;
372 *rs = RV_REG_T1;
373 }
374
emit_sext_32_rd_rs(u8 * rd,u8 * rs,struct rv_jit_context * ctx)375 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
376 {
377 emit_addiw(RV_REG_T2, *rd, 0, ctx);
378 emit_addiw(RV_REG_T1, *rs, 0, ctx);
379 *rd = RV_REG_T2;
380 *rs = RV_REG_T1;
381 }
382
emit_zext_32_rd_t1(u8 * rd,struct rv_jit_context * ctx)383 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
384 {
385 emit_mv(RV_REG_T2, *rd, ctx);
386 emit_zext_32(RV_REG_T2, ctx);
387 emit_zext_32(RV_REG_T1, ctx);
388 *rd = RV_REG_T2;
389 }
390
emit_sext_32_rd(u8 * rd,struct rv_jit_context * ctx)391 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
392 {
393 emit_addiw(RV_REG_T2, *rd, 0, ctx);
394 *rd = RV_REG_T2;
395 }
396
emit_jump_and_link(u8 rd,s64 rvoff,bool force_jalr,struct rv_jit_context * ctx)397 static int emit_jump_and_link(u8 rd, s64 rvoff, bool force_jalr,
398 struct rv_jit_context *ctx)
399 {
400 s64 upper, lower;
401
402 if (rvoff && is_21b_int(rvoff) && !force_jalr) {
403 emit(rv_jal(rd, rvoff >> 1), ctx);
404 return 0;
405 } else if (in_auipc_jalr_range(rvoff)) {
406 upper = (rvoff + (1 << 11)) >> 12;
407 lower = rvoff & 0xfff;
408 emit(rv_auipc(RV_REG_T1, upper), ctx);
409 emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
410 return 0;
411 }
412
413 pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff);
414 return -ERANGE;
415 }
416
is_signed_bpf_cond(u8 cond)417 static bool is_signed_bpf_cond(u8 cond)
418 {
419 return cond == BPF_JSGT || cond == BPF_JSLT ||
420 cond == BPF_JSGE || cond == BPF_JSLE;
421 }
422
emit_call(bool fixed,u64 addr,struct rv_jit_context * ctx)423 static int emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx)
424 {
425 s64 off = 0;
426 u64 ip;
427 u8 rd;
428 int ret;
429
430 if (addr && ctx->insns) {
431 ip = (u64)(long)(ctx->insns + ctx->ninsns);
432 off = addr - ip;
433 }
434
435 ret = emit_jump_and_link(RV_REG_RA, off, !fixed, ctx);
436 if (ret)
437 return ret;
438 rd = bpf_to_rv_reg(BPF_REG_0, ctx);
439 emit_mv(rd, RV_REG_A0, ctx);
440 return 0;
441 }
442
bpf_jit_emit_insn(const struct bpf_insn * insn,struct rv_jit_context * ctx,bool extra_pass)443 int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
444 bool extra_pass)
445 {
446 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
447 BPF_CLASS(insn->code) == BPF_JMP;
448 int s, e, rvoff, ret, i = insn - ctx->prog->insnsi;
449 struct bpf_prog_aux *aux = ctx->prog->aux;
450 u8 rd = -1, rs = -1, code = insn->code;
451 s16 off = insn->off;
452 s32 imm = insn->imm;
453
454 init_regs(&rd, &rs, insn, ctx);
455
456 switch (code) {
457 /* dst = src */
458 case BPF_ALU | BPF_MOV | BPF_X:
459 case BPF_ALU64 | BPF_MOV | BPF_X:
460 if (imm == 1) {
461 /* Special mov32 for zext */
462 emit_zext_32(rd, ctx);
463 break;
464 }
465 emit_mv(rd, rs, ctx);
466 if (!is64 && !aux->verifier_zext)
467 emit_zext_32(rd, ctx);
468 break;
469
470 /* dst = dst OP src */
471 case BPF_ALU | BPF_ADD | BPF_X:
472 case BPF_ALU64 | BPF_ADD | BPF_X:
473 emit_add(rd, rd, rs, ctx);
474 if (!is64 && !aux->verifier_zext)
475 emit_zext_32(rd, ctx);
476 break;
477 case BPF_ALU | BPF_SUB | BPF_X:
478 case BPF_ALU64 | BPF_SUB | BPF_X:
479 if (is64)
480 emit_sub(rd, rd, rs, ctx);
481 else
482 emit_subw(rd, rd, rs, ctx);
483
484 if (!is64 && !aux->verifier_zext)
485 emit_zext_32(rd, ctx);
486 break;
487 case BPF_ALU | BPF_AND | BPF_X:
488 case BPF_ALU64 | BPF_AND | BPF_X:
489 emit_and(rd, rd, rs, ctx);
490 if (!is64 && !aux->verifier_zext)
491 emit_zext_32(rd, ctx);
492 break;
493 case BPF_ALU | BPF_OR | BPF_X:
494 case BPF_ALU64 | BPF_OR | BPF_X:
495 emit_or(rd, rd, rs, ctx);
496 if (!is64 && !aux->verifier_zext)
497 emit_zext_32(rd, ctx);
498 break;
499 case BPF_ALU | BPF_XOR | BPF_X:
500 case BPF_ALU64 | BPF_XOR | BPF_X:
501 emit_xor(rd, rd, rs, ctx);
502 if (!is64 && !aux->verifier_zext)
503 emit_zext_32(rd, ctx);
504 break;
505 case BPF_ALU | BPF_MUL | BPF_X:
506 case BPF_ALU64 | BPF_MUL | BPF_X:
507 emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
508 if (!is64 && !aux->verifier_zext)
509 emit_zext_32(rd, ctx);
510 break;
511 case BPF_ALU | BPF_DIV | BPF_X:
512 case BPF_ALU64 | BPF_DIV | BPF_X:
513 emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
514 if (!is64 && !aux->verifier_zext)
515 emit_zext_32(rd, ctx);
516 break;
517 case BPF_ALU | BPF_MOD | BPF_X:
518 case BPF_ALU64 | BPF_MOD | BPF_X:
519 emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
520 if (!is64 && !aux->verifier_zext)
521 emit_zext_32(rd, ctx);
522 break;
523 case BPF_ALU | BPF_LSH | BPF_X:
524 case BPF_ALU64 | BPF_LSH | BPF_X:
525 emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
526 if (!is64 && !aux->verifier_zext)
527 emit_zext_32(rd, ctx);
528 break;
529 case BPF_ALU | BPF_RSH | BPF_X:
530 case BPF_ALU64 | BPF_RSH | BPF_X:
531 emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
532 if (!is64 && !aux->verifier_zext)
533 emit_zext_32(rd, ctx);
534 break;
535 case BPF_ALU | BPF_ARSH | BPF_X:
536 case BPF_ALU64 | BPF_ARSH | BPF_X:
537 emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
538 if (!is64 && !aux->verifier_zext)
539 emit_zext_32(rd, ctx);
540 break;
541
542 /* dst = -dst */
543 case BPF_ALU | BPF_NEG:
544 case BPF_ALU64 | BPF_NEG:
545 emit_sub(rd, RV_REG_ZERO, rd, ctx);
546 if (!is64 && !aux->verifier_zext)
547 emit_zext_32(rd, ctx);
548 break;
549
550 /* dst = BSWAP##imm(dst) */
551 case BPF_ALU | BPF_END | BPF_FROM_LE:
552 switch (imm) {
553 case 16:
554 emit_slli(rd, rd, 48, ctx);
555 emit_srli(rd, rd, 48, ctx);
556 break;
557 case 32:
558 if (!aux->verifier_zext)
559 emit_zext_32(rd, ctx);
560 break;
561 case 64:
562 /* Do nothing */
563 break;
564 }
565 break;
566
567 case BPF_ALU | BPF_END | BPF_FROM_BE:
568 emit_li(RV_REG_T2, 0, ctx);
569
570 emit_andi(RV_REG_T1, rd, 0xff, ctx);
571 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
572 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
573 emit_srli(rd, rd, 8, ctx);
574 if (imm == 16)
575 goto out_be;
576
577 emit_andi(RV_REG_T1, rd, 0xff, ctx);
578 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
579 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
580 emit_srli(rd, rd, 8, ctx);
581
582 emit_andi(RV_REG_T1, rd, 0xff, ctx);
583 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
584 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
585 emit_srli(rd, rd, 8, ctx);
586 if (imm == 32)
587 goto out_be;
588
589 emit_andi(RV_REG_T1, rd, 0xff, ctx);
590 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
591 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
592 emit_srli(rd, rd, 8, ctx);
593
594 emit_andi(RV_REG_T1, rd, 0xff, ctx);
595 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
596 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
597 emit_srli(rd, rd, 8, ctx);
598
599 emit_andi(RV_REG_T1, rd, 0xff, ctx);
600 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
601 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
602 emit_srli(rd, rd, 8, ctx);
603
604 emit_andi(RV_REG_T1, rd, 0xff, ctx);
605 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
606 emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx);
607 emit_srli(rd, rd, 8, ctx);
608 out_be:
609 emit_andi(RV_REG_T1, rd, 0xff, ctx);
610 emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx);
611
612 emit_mv(rd, RV_REG_T2, ctx);
613 break;
614
615 /* dst = imm */
616 case BPF_ALU | BPF_MOV | BPF_K:
617 case BPF_ALU64 | BPF_MOV | BPF_K:
618 emit_imm(rd, imm, ctx);
619 if (!is64 && !aux->verifier_zext)
620 emit_zext_32(rd, ctx);
621 break;
622
623 /* dst = dst OP imm */
624 case BPF_ALU | BPF_ADD | BPF_K:
625 case BPF_ALU64 | BPF_ADD | BPF_K:
626 if (is_12b_int(imm)) {
627 emit_addi(rd, rd, imm, ctx);
628 } else {
629 emit_imm(RV_REG_T1, imm, ctx);
630 emit_add(rd, rd, RV_REG_T1, ctx);
631 }
632 if (!is64 && !aux->verifier_zext)
633 emit_zext_32(rd, ctx);
634 break;
635 case BPF_ALU | BPF_SUB | BPF_K:
636 case BPF_ALU64 | BPF_SUB | BPF_K:
637 if (is_12b_int(-imm)) {
638 emit_addi(rd, rd, -imm, ctx);
639 } else {
640 emit_imm(RV_REG_T1, imm, ctx);
641 emit_sub(rd, rd, RV_REG_T1, ctx);
642 }
643 if (!is64 && !aux->verifier_zext)
644 emit_zext_32(rd, ctx);
645 break;
646 case BPF_ALU | BPF_AND | BPF_K:
647 case BPF_ALU64 | BPF_AND | BPF_K:
648 if (is_12b_int(imm)) {
649 emit_andi(rd, rd, imm, ctx);
650 } else {
651 emit_imm(RV_REG_T1, imm, ctx);
652 emit_and(rd, rd, RV_REG_T1, ctx);
653 }
654 if (!is64 && !aux->verifier_zext)
655 emit_zext_32(rd, ctx);
656 break;
657 case BPF_ALU | BPF_OR | BPF_K:
658 case BPF_ALU64 | BPF_OR | BPF_K:
659 if (is_12b_int(imm)) {
660 emit(rv_ori(rd, rd, imm), ctx);
661 } else {
662 emit_imm(RV_REG_T1, imm, ctx);
663 emit_or(rd, rd, RV_REG_T1, ctx);
664 }
665 if (!is64 && !aux->verifier_zext)
666 emit_zext_32(rd, ctx);
667 break;
668 case BPF_ALU | BPF_XOR | BPF_K:
669 case BPF_ALU64 | BPF_XOR | BPF_K:
670 if (is_12b_int(imm)) {
671 emit(rv_xori(rd, rd, imm), ctx);
672 } else {
673 emit_imm(RV_REG_T1, imm, ctx);
674 emit_xor(rd, rd, RV_REG_T1, ctx);
675 }
676 if (!is64 && !aux->verifier_zext)
677 emit_zext_32(rd, ctx);
678 break;
679 case BPF_ALU | BPF_MUL | BPF_K:
680 case BPF_ALU64 | BPF_MUL | BPF_K:
681 emit_imm(RV_REG_T1, imm, ctx);
682 emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
683 rv_mulw(rd, rd, RV_REG_T1), ctx);
684 if (!is64 && !aux->verifier_zext)
685 emit_zext_32(rd, ctx);
686 break;
687 case BPF_ALU | BPF_DIV | BPF_K:
688 case BPF_ALU64 | BPF_DIV | BPF_K:
689 emit_imm(RV_REG_T1, imm, ctx);
690 emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
691 rv_divuw(rd, rd, RV_REG_T1), ctx);
692 if (!is64 && !aux->verifier_zext)
693 emit_zext_32(rd, ctx);
694 break;
695 case BPF_ALU | BPF_MOD | BPF_K:
696 case BPF_ALU64 | BPF_MOD | BPF_K:
697 emit_imm(RV_REG_T1, imm, ctx);
698 emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
699 rv_remuw(rd, rd, RV_REG_T1), ctx);
700 if (!is64 && !aux->verifier_zext)
701 emit_zext_32(rd, ctx);
702 break;
703 case BPF_ALU | BPF_LSH | BPF_K:
704 case BPF_ALU64 | BPF_LSH | BPF_K:
705 emit_slli(rd, rd, imm, ctx);
706
707 if (!is64 && !aux->verifier_zext)
708 emit_zext_32(rd, ctx);
709 break;
710 case BPF_ALU | BPF_RSH | BPF_K:
711 case BPF_ALU64 | BPF_RSH | BPF_K:
712 if (is64)
713 emit_srli(rd, rd, imm, ctx);
714 else
715 emit(rv_srliw(rd, rd, imm), ctx);
716
717 if (!is64 && !aux->verifier_zext)
718 emit_zext_32(rd, ctx);
719 break;
720 case BPF_ALU | BPF_ARSH | BPF_K:
721 case BPF_ALU64 | BPF_ARSH | BPF_K:
722 if (is64)
723 emit_srai(rd, rd, imm, ctx);
724 else
725 emit(rv_sraiw(rd, rd, imm), ctx);
726
727 if (!is64 && !aux->verifier_zext)
728 emit_zext_32(rd, ctx);
729 break;
730
731 /* JUMP off */
732 case BPF_JMP | BPF_JA:
733 rvoff = rv_offset(i, off, ctx);
734 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
735 if (ret)
736 return ret;
737 break;
738
739 /* IF (dst COND src) JUMP off */
740 case BPF_JMP | BPF_JEQ | BPF_X:
741 case BPF_JMP32 | BPF_JEQ | BPF_X:
742 case BPF_JMP | BPF_JGT | BPF_X:
743 case BPF_JMP32 | BPF_JGT | BPF_X:
744 case BPF_JMP | BPF_JLT | BPF_X:
745 case BPF_JMP32 | BPF_JLT | BPF_X:
746 case BPF_JMP | BPF_JGE | BPF_X:
747 case BPF_JMP32 | BPF_JGE | BPF_X:
748 case BPF_JMP | BPF_JLE | BPF_X:
749 case BPF_JMP32 | BPF_JLE | BPF_X:
750 case BPF_JMP | BPF_JNE | BPF_X:
751 case BPF_JMP32 | BPF_JNE | BPF_X:
752 case BPF_JMP | BPF_JSGT | BPF_X:
753 case BPF_JMP32 | BPF_JSGT | BPF_X:
754 case BPF_JMP | BPF_JSLT | BPF_X:
755 case BPF_JMP32 | BPF_JSLT | BPF_X:
756 case BPF_JMP | BPF_JSGE | BPF_X:
757 case BPF_JMP32 | BPF_JSGE | BPF_X:
758 case BPF_JMP | BPF_JSLE | BPF_X:
759 case BPF_JMP32 | BPF_JSLE | BPF_X:
760 case BPF_JMP | BPF_JSET | BPF_X:
761 case BPF_JMP32 | BPF_JSET | BPF_X:
762 rvoff = rv_offset(i, off, ctx);
763 if (!is64) {
764 s = ctx->ninsns;
765 if (is_signed_bpf_cond(BPF_OP(code)))
766 emit_sext_32_rd_rs(&rd, &rs, ctx);
767 else
768 emit_zext_32_rd_rs(&rd, &rs, ctx);
769 e = ctx->ninsns;
770
771 /* Adjust for extra insns */
772 rvoff -= ninsns_rvoff(e - s);
773 }
774
775 if (BPF_OP(code) == BPF_JSET) {
776 /* Adjust for and */
777 rvoff -= 4;
778 emit_and(RV_REG_T1, rd, rs, ctx);
779 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
780 ctx);
781 } else {
782 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
783 }
784 break;
785
786 /* IF (dst COND imm) JUMP off */
787 case BPF_JMP | BPF_JEQ | BPF_K:
788 case BPF_JMP32 | BPF_JEQ | BPF_K:
789 case BPF_JMP | BPF_JGT | BPF_K:
790 case BPF_JMP32 | BPF_JGT | BPF_K:
791 case BPF_JMP | BPF_JLT | BPF_K:
792 case BPF_JMP32 | BPF_JLT | BPF_K:
793 case BPF_JMP | BPF_JGE | BPF_K:
794 case BPF_JMP32 | BPF_JGE | BPF_K:
795 case BPF_JMP | BPF_JLE | BPF_K:
796 case BPF_JMP32 | BPF_JLE | BPF_K:
797 case BPF_JMP | BPF_JNE | BPF_K:
798 case BPF_JMP32 | BPF_JNE | BPF_K:
799 case BPF_JMP | BPF_JSGT | BPF_K:
800 case BPF_JMP32 | BPF_JSGT | BPF_K:
801 case BPF_JMP | BPF_JSLT | BPF_K:
802 case BPF_JMP32 | BPF_JSLT | BPF_K:
803 case BPF_JMP | BPF_JSGE | BPF_K:
804 case BPF_JMP32 | BPF_JSGE | BPF_K:
805 case BPF_JMP | BPF_JSLE | BPF_K:
806 case BPF_JMP32 | BPF_JSLE | BPF_K:
807 rvoff = rv_offset(i, off, ctx);
808 s = ctx->ninsns;
809 if (imm) {
810 emit_imm(RV_REG_T1, imm, ctx);
811 rs = RV_REG_T1;
812 } else {
813 /* If imm is 0, simply use zero register. */
814 rs = RV_REG_ZERO;
815 }
816 if (!is64) {
817 if (is_signed_bpf_cond(BPF_OP(code)))
818 emit_sext_32_rd(&rd, ctx);
819 else
820 emit_zext_32_rd_t1(&rd, ctx);
821 }
822 e = ctx->ninsns;
823
824 /* Adjust for extra insns */
825 rvoff -= ninsns_rvoff(e - s);
826 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
827 break;
828
829 case BPF_JMP | BPF_JSET | BPF_K:
830 case BPF_JMP32 | BPF_JSET | BPF_K:
831 rvoff = rv_offset(i, off, ctx);
832 s = ctx->ninsns;
833 if (is_12b_int(imm)) {
834 emit_andi(RV_REG_T1, rd, imm, ctx);
835 } else {
836 emit_imm(RV_REG_T1, imm, ctx);
837 emit_and(RV_REG_T1, rd, RV_REG_T1, ctx);
838 }
839 /* For jset32, we should clear the upper 32 bits of t1, but
840 * sign-extension is sufficient here and saves one instruction,
841 * as t1 is used only in comparison against zero.
842 */
843 if (!is64 && imm < 0)
844 emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx);
845 e = ctx->ninsns;
846 rvoff -= ninsns_rvoff(e - s);
847 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx);
848 break;
849
850 /* function call */
851 case BPF_JMP | BPF_CALL:
852 {
853 bool fixed;
854 u64 addr;
855
856 mark_call(ctx);
857 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
858 &fixed);
859 if (ret < 0)
860 return ret;
861 ret = emit_call(fixed, addr, ctx);
862 if (ret)
863 return ret;
864 break;
865 }
866 /* tail call */
867 case BPF_JMP | BPF_TAIL_CALL:
868 if (emit_bpf_tail_call(i, ctx))
869 return -1;
870 break;
871
872 /* function return */
873 case BPF_JMP | BPF_EXIT:
874 if (i == ctx->prog->len - 1)
875 break;
876
877 rvoff = epilogue_offset(ctx);
878 ret = emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
879 if (ret)
880 return ret;
881 break;
882
883 /* dst = imm64 */
884 case BPF_LD | BPF_IMM | BPF_DW:
885 {
886 struct bpf_insn insn1 = insn[1];
887 u64 imm64;
888
889 imm64 = (u64)insn1.imm << 32 | (u32)imm;
890 emit_imm(rd, imm64, ctx);
891 return 1;
892 }
893
894 /* LDX: dst = *(size *)(src + off) */
895 case BPF_LDX | BPF_MEM | BPF_B:
896 if (is_12b_int(off)) {
897 emit(rv_lbu(rd, off, rs), ctx);
898 break;
899 }
900
901 emit_imm(RV_REG_T1, off, ctx);
902 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
903 emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
904 if (insn_is_zext(&insn[1]))
905 return 1;
906 break;
907 case BPF_LDX | BPF_MEM | BPF_H:
908 if (is_12b_int(off)) {
909 emit(rv_lhu(rd, off, rs), ctx);
910 break;
911 }
912
913 emit_imm(RV_REG_T1, off, ctx);
914 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
915 emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
916 if (insn_is_zext(&insn[1]))
917 return 1;
918 break;
919 case BPF_LDX | BPF_MEM | BPF_W:
920 if (is_12b_int(off)) {
921 emit(rv_lwu(rd, off, rs), ctx);
922 break;
923 }
924
925 emit_imm(RV_REG_T1, off, ctx);
926 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
927 emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
928 if (insn_is_zext(&insn[1]))
929 return 1;
930 break;
931 case BPF_LDX | BPF_MEM | BPF_DW:
932 if (is_12b_int(off)) {
933 emit_ld(rd, off, rs, ctx);
934 break;
935 }
936
937 emit_imm(RV_REG_T1, off, ctx);
938 emit_add(RV_REG_T1, RV_REG_T1, rs, ctx);
939 emit_ld(rd, 0, RV_REG_T1, ctx);
940 break;
941
942 /* speculation barrier */
943 case BPF_ST | BPF_NOSPEC:
944 break;
945
946 /* ST: *(size *)(dst + off) = imm */
947 case BPF_ST | BPF_MEM | BPF_B:
948 emit_imm(RV_REG_T1, imm, ctx);
949 if (is_12b_int(off)) {
950 emit(rv_sb(rd, off, RV_REG_T1), ctx);
951 break;
952 }
953
954 emit_imm(RV_REG_T2, off, ctx);
955 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
956 emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
957 break;
958
959 case BPF_ST | BPF_MEM | BPF_H:
960 emit_imm(RV_REG_T1, imm, ctx);
961 if (is_12b_int(off)) {
962 emit(rv_sh(rd, off, RV_REG_T1), ctx);
963 break;
964 }
965
966 emit_imm(RV_REG_T2, off, ctx);
967 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
968 emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
969 break;
970 case BPF_ST | BPF_MEM | BPF_W:
971 emit_imm(RV_REG_T1, imm, ctx);
972 if (is_12b_int(off)) {
973 emit_sw(rd, off, RV_REG_T1, ctx);
974 break;
975 }
976
977 emit_imm(RV_REG_T2, off, ctx);
978 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
979 emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx);
980 break;
981 case BPF_ST | BPF_MEM | BPF_DW:
982 emit_imm(RV_REG_T1, imm, ctx);
983 if (is_12b_int(off)) {
984 emit_sd(rd, off, RV_REG_T1, ctx);
985 break;
986 }
987
988 emit_imm(RV_REG_T2, off, ctx);
989 emit_add(RV_REG_T2, RV_REG_T2, rd, ctx);
990 emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx);
991 break;
992
993 /* STX: *(size *)(dst + off) = src */
994 case BPF_STX | BPF_MEM | BPF_B:
995 if (is_12b_int(off)) {
996 emit(rv_sb(rd, off, rs), ctx);
997 break;
998 }
999
1000 emit_imm(RV_REG_T1, off, ctx);
1001 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1002 emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1003 break;
1004 case BPF_STX | BPF_MEM | BPF_H:
1005 if (is_12b_int(off)) {
1006 emit(rv_sh(rd, off, rs), ctx);
1007 break;
1008 }
1009
1010 emit_imm(RV_REG_T1, off, ctx);
1011 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1012 emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1013 break;
1014 case BPF_STX | BPF_MEM | BPF_W:
1015 if (is_12b_int(off)) {
1016 emit_sw(rd, off, rs, ctx);
1017 break;
1018 }
1019
1020 emit_imm(RV_REG_T1, off, ctx);
1021 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1022 emit_sw(RV_REG_T1, 0, rs, ctx);
1023 break;
1024 case BPF_STX | BPF_MEM | BPF_DW:
1025 if (is_12b_int(off)) {
1026 emit_sd(rd, off, rs, ctx);
1027 break;
1028 }
1029
1030 emit_imm(RV_REG_T1, off, ctx);
1031 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1032 emit_sd(RV_REG_T1, 0, rs, ctx);
1033 break;
1034 /* STX XADD: lock *(u32 *)(dst + off) += src */
1035 case BPF_STX | BPF_XADD | BPF_W:
1036 /* STX XADD: lock *(u64 *)(dst + off) += src */
1037 case BPF_STX | BPF_XADD | BPF_DW:
1038 if (off) {
1039 if (is_12b_int(off)) {
1040 emit_addi(RV_REG_T1, rd, off, ctx);
1041 } else {
1042 emit_imm(RV_REG_T1, off, ctx);
1043 emit_add(RV_REG_T1, RV_REG_T1, rd, ctx);
1044 }
1045
1046 rd = RV_REG_T1;
1047 }
1048
1049 emit(BPF_SIZE(code) == BPF_W ?
1050 rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) :
1051 rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx);
1052 break;
1053 default:
1054 pr_err("bpf-jit: unknown opcode %02x\n", code);
1055 return -EINVAL;
1056 }
1057
1058 return 0;
1059 }
1060
bpf_jit_build_prologue(struct rv_jit_context * ctx)1061 void bpf_jit_build_prologue(struct rv_jit_context *ctx)
1062 {
1063 int stack_adjust = 0, store_offset, bpf_stack_adjust;
1064
1065 bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1066 if (bpf_stack_adjust)
1067 mark_fp(ctx);
1068
1069 if (seen_reg(RV_REG_RA, ctx))
1070 stack_adjust += 8;
1071 stack_adjust += 8; /* RV_REG_FP */
1072 if (seen_reg(RV_REG_S1, ctx))
1073 stack_adjust += 8;
1074 if (seen_reg(RV_REG_S2, ctx))
1075 stack_adjust += 8;
1076 if (seen_reg(RV_REG_S3, ctx))
1077 stack_adjust += 8;
1078 if (seen_reg(RV_REG_S4, ctx))
1079 stack_adjust += 8;
1080 if (seen_reg(RV_REG_S5, ctx))
1081 stack_adjust += 8;
1082 if (seen_reg(RV_REG_S6, ctx))
1083 stack_adjust += 8;
1084
1085 stack_adjust = round_up(stack_adjust, 16);
1086 stack_adjust += bpf_stack_adjust;
1087
1088 store_offset = stack_adjust - 8;
1089
1090 /* First instruction is always setting the tail-call-counter
1091 * (TCC) register. This instruction is skipped for tail calls.
1092 * Force using a 4-byte (non-compressed) instruction.
1093 */
1094 emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1095
1096 emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx);
1097
1098 if (seen_reg(RV_REG_RA, ctx)) {
1099 emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx);
1100 store_offset -= 8;
1101 }
1102 emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx);
1103 store_offset -= 8;
1104 if (seen_reg(RV_REG_S1, ctx)) {
1105 emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx);
1106 store_offset -= 8;
1107 }
1108 if (seen_reg(RV_REG_S2, ctx)) {
1109 emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx);
1110 store_offset -= 8;
1111 }
1112 if (seen_reg(RV_REG_S3, ctx)) {
1113 emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx);
1114 store_offset -= 8;
1115 }
1116 if (seen_reg(RV_REG_S4, ctx)) {
1117 emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx);
1118 store_offset -= 8;
1119 }
1120 if (seen_reg(RV_REG_S5, ctx)) {
1121 emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx);
1122 store_offset -= 8;
1123 }
1124 if (seen_reg(RV_REG_S6, ctx)) {
1125 emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx);
1126 store_offset -= 8;
1127 }
1128
1129 emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx);
1130
1131 if (bpf_stack_adjust)
1132 emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx);
1133
1134 /* Program contains calls and tail calls, so RV_REG_TCC need
1135 * to be saved across calls.
1136 */
1137 if (seen_tail_call(ctx) && seen_call(ctx))
1138 emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx);
1139
1140 ctx->stack_size = stack_adjust;
1141 }
1142
bpf_jit_build_epilogue(struct rv_jit_context * ctx)1143 void bpf_jit_build_epilogue(struct rv_jit_context *ctx)
1144 {
1145 __build_epilogue(false, ctx);
1146 }
1147