1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29
30 #include "physaddr.h"
31
32 /*
33 * Descriptor controlling ioremap() behavior.
34 */
35 struct ioremap_desc {
36 unsigned int flags;
37 };
38
39 /*
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
41 * conflicts.
42 */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 enum page_cache_mode pcm)
45 {
46 unsigned long nrpages = size >> PAGE_SHIFT;
47 int err;
48
49 switch (pcm) {
50 case _PAGE_CACHE_MODE_UC:
51 default:
52 err = _set_memory_uc(vaddr, nrpages);
53 break;
54 case _PAGE_CACHE_MODE_WC:
55 err = _set_memory_wc(vaddr, nrpages);
56 break;
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
59 break;
60 case _PAGE_CACHE_MODE_WB:
61 err = _set_memory_wb(vaddr, nrpages);
62 break;
63 }
64
65 return err;
66 }
67
68 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 unsigned long start_pfn, stop_pfn;
72 unsigned long i;
73
74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 return 0;
76
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
83 return IORES_MAP_SYSTEM_RAM;
84 }
85
86 return 0;
87 }
88
89 /*
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
92 */
__ioremap_check_encrypted(struct resource * res)93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 if (!sev_active())
96 return 0;
97
98 switch (res->desc) {
99 case IORES_DESC_NONE:
100 case IORES_DESC_RESERVED:
101 break;
102 default:
103 return IORES_MAP_ENCRYPTED;
104 }
105
106 return 0;
107 }
108
109 /*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 if (!sev_active())
116 return;
117
118 if (!IS_ENABLED(CONFIG_EFI))
119 return;
120
121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126
__ioremap_collect_map_flags(struct resource * res,void * arg)127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129 struct ioremap_desc *desc = arg;
130
131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 desc->flags |= __ioremap_check_ram(res);
133
134 if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 desc->flags |= __ioremap_check_encrypted(res);
136
137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140
141 /*
142 * To avoid multiple resource walks, this function walks resources marked as
143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145 *
146 * After that, deal with misc other ranges in __ioremap_check_other() which do
147 * not fall into the above category.
148 */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 struct ioremap_desc *desc)
151 {
152 u64 start, end;
153
154 start = (u64)addr;
155 end = start + size - 1;
156 memset(desc, 0, sizeof(struct ioremap_desc));
157
158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159
160 __ioremap_check_other(addr, desc);
161 }
162
163 /*
164 * Remap an arbitrary physical address space into the kernel virtual
165 * address space. It transparently creates kernel huge I/O mapping when
166 * the physical address is aligned by a huge page size (1GB or 2MB) and
167 * the requested size is at least the huge page size.
168 *
169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170 * Therefore, the mapping code falls back to use a smaller page toward 4KB
171 * when a mapping range is covered by non-WB type of MTRRs.
172 *
173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174 * have to convert them into an offset in a page-aligned mapping, but the
175 * caller shouldn't need to know that small detail.
176 */
177 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181 unsigned long offset, vaddr;
182 resource_size_t last_addr;
183 const resource_size_t unaligned_phys_addr = phys_addr;
184 const unsigned long unaligned_size = size;
185 struct ioremap_desc io_desc;
186 struct vm_struct *area;
187 enum page_cache_mode new_pcm;
188 pgprot_t prot;
189 int retval;
190 void __iomem *ret_addr;
191
192 /* Don't allow wraparound or zero size */
193 last_addr = phys_addr + size - 1;
194 if (!size || last_addr < phys_addr)
195 return NULL;
196
197 if (!phys_addr_valid(phys_addr)) {
198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 (unsigned long long)phys_addr);
200 WARN_ON_ONCE(1);
201 return NULL;
202 }
203
204 __ioremap_check_mem(phys_addr, size, &io_desc);
205
206 /*
207 * Don't allow anybody to remap normal RAM that we're using..
208 */
209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 &phys_addr, &last_addr);
212 return NULL;
213 }
214
215 /*
216 * Mappings have to be page-aligned
217 */
218 offset = phys_addr & ~PAGE_MASK;
219 phys_addr &= PAGE_MASK;
220 size = PAGE_ALIGN(last_addr+1) - phys_addr;
221
222 /*
223 * Mask out any bits not part of the actual physical
224 * address, like memory encryption bits.
225 */
226 phys_addr &= PHYSICAL_PAGE_MASK;
227
228 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
229 pcm, &new_pcm);
230 if (retval) {
231 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
232 return NULL;
233 }
234
235 if (pcm != new_pcm) {
236 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
237 printk(KERN_ERR
238 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
239 (unsigned long long)phys_addr,
240 (unsigned long long)(phys_addr + size),
241 pcm, new_pcm);
242 goto err_free_memtype;
243 }
244 pcm = new_pcm;
245 }
246
247 /*
248 * If the page being mapped is in memory and SEV is active then
249 * make sure the memory encryption attribute is enabled in the
250 * resulting mapping.
251 */
252 prot = PAGE_KERNEL_IO;
253 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
254 prot = pgprot_encrypted(prot);
255
256 switch (pcm) {
257 case _PAGE_CACHE_MODE_UC:
258 default:
259 prot = __pgprot(pgprot_val(prot) |
260 cachemode2protval(_PAGE_CACHE_MODE_UC));
261 break;
262 case _PAGE_CACHE_MODE_UC_MINUS:
263 prot = __pgprot(pgprot_val(prot) |
264 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
265 break;
266 case _PAGE_CACHE_MODE_WC:
267 prot = __pgprot(pgprot_val(prot) |
268 cachemode2protval(_PAGE_CACHE_MODE_WC));
269 break;
270 case _PAGE_CACHE_MODE_WT:
271 prot = __pgprot(pgprot_val(prot) |
272 cachemode2protval(_PAGE_CACHE_MODE_WT));
273 break;
274 case _PAGE_CACHE_MODE_WB:
275 break;
276 }
277
278 /*
279 * Ok, go for it..
280 */
281 area = get_vm_area_caller(size, VM_IOREMAP, caller);
282 if (!area)
283 goto err_free_memtype;
284 area->phys_addr = phys_addr;
285 vaddr = (unsigned long) area->addr;
286
287 if (memtype_kernel_map_sync(phys_addr, size, pcm))
288 goto err_free_area;
289
290 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
291 goto err_free_area;
292
293 ret_addr = (void __iomem *) (vaddr + offset);
294 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
295
296 /*
297 * Check if the request spans more than any BAR in the iomem resource
298 * tree.
299 */
300 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
301 pr_warn("caller %pS mapping multiple BARs\n", caller);
302
303 return ret_addr;
304 err_free_area:
305 free_vm_area(area);
306 err_free_memtype:
307 memtype_free(phys_addr, phys_addr + size);
308 return NULL;
309 }
310
311 /**
312 * ioremap - map bus memory into CPU space
313 * @phys_addr: bus address of the memory
314 * @size: size of the resource to map
315 *
316 * ioremap performs a platform specific sequence of operations to
317 * make bus memory CPU accessible via the readb/readw/readl/writeb/
318 * writew/writel functions and the other mmio helpers. The returned
319 * address is not guaranteed to be usable directly as a virtual
320 * address.
321 *
322 * This version of ioremap ensures that the memory is marked uncachable
323 * on the CPU as well as honouring existing caching rules from things like
324 * the PCI bus. Note that there are other caches and buffers on many
325 * busses. In particular driver authors should read up on PCI writes
326 *
327 * It's useful if some control registers are in such an area and
328 * write combining or read caching is not desirable:
329 *
330 * Must be freed with iounmap.
331 */
ioremap(resource_size_t phys_addr,unsigned long size)332 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
333 {
334 /*
335 * Ideally, this should be:
336 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
337 *
338 * Till we fix all X drivers to use ioremap_wc(), we will use
339 * UC MINUS. Drivers that are certain they need or can already
340 * be converted over to strong UC can use ioremap_uc().
341 */
342 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
343
344 return __ioremap_caller(phys_addr, size, pcm,
345 __builtin_return_address(0), false);
346 }
347 EXPORT_SYMBOL(ioremap);
348
349 /**
350 * ioremap_uc - map bus memory into CPU space as strongly uncachable
351 * @phys_addr: bus address of the memory
352 * @size: size of the resource to map
353 *
354 * ioremap_uc performs a platform specific sequence of operations to
355 * make bus memory CPU accessible via the readb/readw/readl/writeb/
356 * writew/writel functions and the other mmio helpers. The returned
357 * address is not guaranteed to be usable directly as a virtual
358 * address.
359 *
360 * This version of ioremap ensures that the memory is marked with a strong
361 * preference as completely uncachable on the CPU when possible. For non-PAT
362 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
363 * systems this will set the PAT entry for the pages as strong UC. This call
364 * will honor existing caching rules from things like the PCI bus. Note that
365 * there are other caches and buffers on many busses. In particular driver
366 * authors should read up on PCI writes.
367 *
368 * It's useful if some control registers are in such an area and
369 * write combining or read caching is not desirable:
370 *
371 * Must be freed with iounmap.
372 */
ioremap_uc(resource_size_t phys_addr,unsigned long size)373 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
374 {
375 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
376
377 return __ioremap_caller(phys_addr, size, pcm,
378 __builtin_return_address(0), false);
379 }
380 EXPORT_SYMBOL_GPL(ioremap_uc);
381
382 /**
383 * ioremap_wc - map memory into CPU space write combined
384 * @phys_addr: bus address of the memory
385 * @size: size of the resource to map
386 *
387 * This version of ioremap ensures that the memory is marked write combining.
388 * Write combining allows faster writes to some hardware devices.
389 *
390 * Must be freed with iounmap.
391 */
ioremap_wc(resource_size_t phys_addr,unsigned long size)392 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
393 {
394 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
395 __builtin_return_address(0), false);
396 }
397 EXPORT_SYMBOL(ioremap_wc);
398
399 /**
400 * ioremap_wt - map memory into CPU space write through
401 * @phys_addr: bus address of the memory
402 * @size: size of the resource to map
403 *
404 * This version of ioremap ensures that the memory is marked write through.
405 * Write through stores data into memory while keeping the cache up-to-date.
406 *
407 * Must be freed with iounmap.
408 */
ioremap_wt(resource_size_t phys_addr,unsigned long size)409 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
410 {
411 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
412 __builtin_return_address(0), false);
413 }
414 EXPORT_SYMBOL(ioremap_wt);
415
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)416 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
417 {
418 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
419 __builtin_return_address(0), true);
420 }
421 EXPORT_SYMBOL(ioremap_encrypted);
422
ioremap_cache(resource_size_t phys_addr,unsigned long size)423 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
424 {
425 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
426 __builtin_return_address(0), false);
427 }
428 EXPORT_SYMBOL(ioremap_cache);
429
ioremap_prot(resource_size_t phys_addr,unsigned long size,unsigned long prot_val)430 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
431 unsigned long prot_val)
432 {
433 return __ioremap_caller(phys_addr, size,
434 pgprot2cachemode(__pgprot(prot_val)),
435 __builtin_return_address(0), false);
436 }
437 EXPORT_SYMBOL(ioremap_prot);
438
439 /**
440 * iounmap - Free a IO remapping
441 * @addr: virtual address from ioremap_*
442 *
443 * Caller must ensure there is only one unmapping for the same pointer.
444 */
iounmap(volatile void __iomem * addr)445 void iounmap(volatile void __iomem *addr)
446 {
447 struct vm_struct *p, *o;
448
449 if ((void __force *)addr <= high_memory)
450 return;
451
452 /*
453 * The PCI/ISA range special-casing was removed from __ioremap()
454 * so this check, in theory, can be removed. However, there are
455 * cases where iounmap() is called for addresses not obtained via
456 * ioremap() (vga16fb for example). Add a warning so that these
457 * cases can be caught and fixed.
458 */
459 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
460 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
461 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
462 return;
463 }
464
465 mmiotrace_iounmap(addr);
466
467 addr = (volatile void __iomem *)
468 (PAGE_MASK & (unsigned long __force)addr);
469
470 /* Use the vm area unlocked, assuming the caller
471 ensures there isn't another iounmap for the same address
472 in parallel. Reuse of the virtual address is prevented by
473 leaving it in the global lists until we're done with it.
474 cpa takes care of the direct mappings. */
475 p = find_vm_area((void __force *)addr);
476
477 if (!p) {
478 printk(KERN_ERR "iounmap: bad address %p\n", addr);
479 dump_stack();
480 return;
481 }
482
483 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
484
485 /* Finally remove it */
486 o = remove_vm_area((void __force *)addr);
487 BUG_ON(p != o || o == NULL);
488 kfree(p);
489 }
490 EXPORT_SYMBOL(iounmap);
491
arch_ioremap_p4d_supported(void)492 int __init arch_ioremap_p4d_supported(void)
493 {
494 return 0;
495 }
496
arch_ioremap_pud_supported(void)497 int __init arch_ioremap_pud_supported(void)
498 {
499 #ifdef CONFIG_X86_64
500 return boot_cpu_has(X86_FEATURE_GBPAGES);
501 #else
502 return 0;
503 #endif
504 }
505
arch_ioremap_pmd_supported(void)506 int __init arch_ioremap_pmd_supported(void)
507 {
508 return boot_cpu_has(X86_FEATURE_PSE);
509 }
510
511 /*
512 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
513 * access
514 */
xlate_dev_mem_ptr(phys_addr_t phys)515 void *xlate_dev_mem_ptr(phys_addr_t phys)
516 {
517 unsigned long start = phys & PAGE_MASK;
518 unsigned long offset = phys & ~PAGE_MASK;
519 void *vaddr;
520
521 /* memremap() maps if RAM, otherwise falls back to ioremap() */
522 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
523
524 /* Only add the offset on success and return NULL if memremap() failed */
525 if (vaddr)
526 vaddr += offset;
527
528 return vaddr;
529 }
530
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)531 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
532 {
533 memunmap((void *)((unsigned long)addr & PAGE_MASK));
534 }
535
536 /*
537 * Examine the physical address to determine if it is an area of memory
538 * that should be mapped decrypted. If the memory is not part of the
539 * kernel usable area it was accessed and created decrypted, so these
540 * areas should be mapped decrypted. And since the encryption key can
541 * change across reboots, persistent memory should also be mapped
542 * decrypted.
543 *
544 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
545 * only persistent memory should be mapped decrypted.
546 */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)547 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
548 unsigned long size)
549 {
550 int is_pmem;
551
552 /*
553 * Check if the address is part of a persistent memory region.
554 * This check covers areas added by E820, EFI and ACPI.
555 */
556 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
557 IORES_DESC_PERSISTENT_MEMORY);
558 if (is_pmem != REGION_DISJOINT)
559 return true;
560
561 /*
562 * Check if the non-volatile attribute is set for an EFI
563 * reserved area.
564 */
565 if (efi_enabled(EFI_BOOT)) {
566 switch (efi_mem_type(phys_addr)) {
567 case EFI_RESERVED_TYPE:
568 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
569 return true;
570 break;
571 default:
572 break;
573 }
574 }
575
576 /* Check if the address is outside kernel usable area */
577 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
578 case E820_TYPE_RESERVED:
579 case E820_TYPE_ACPI:
580 case E820_TYPE_NVS:
581 case E820_TYPE_UNUSABLE:
582 /* For SEV, these areas are encrypted */
583 if (sev_active())
584 break;
585 fallthrough;
586
587 case E820_TYPE_PRAM:
588 return true;
589 default:
590 break;
591 }
592
593 return false;
594 }
595
596 /*
597 * Examine the physical address to determine if it is EFI data. Check
598 * it against the boot params structure and EFI tables and memory types.
599 */
memremap_is_efi_data(resource_size_t phys_addr,unsigned long size)600 static bool memremap_is_efi_data(resource_size_t phys_addr,
601 unsigned long size)
602 {
603 u64 paddr;
604
605 /* Check if the address is part of EFI boot/runtime data */
606 if (!efi_enabled(EFI_BOOT))
607 return false;
608
609 paddr = boot_params.efi_info.efi_memmap_hi;
610 paddr <<= 32;
611 paddr |= boot_params.efi_info.efi_memmap;
612 if (phys_addr == paddr)
613 return true;
614
615 paddr = boot_params.efi_info.efi_systab_hi;
616 paddr <<= 32;
617 paddr |= boot_params.efi_info.efi_systab;
618 if (phys_addr == paddr)
619 return true;
620
621 if (efi_is_table_address(phys_addr))
622 return true;
623
624 switch (efi_mem_type(phys_addr)) {
625 case EFI_BOOT_SERVICES_DATA:
626 case EFI_RUNTIME_SERVICES_DATA:
627 return true;
628 default:
629 break;
630 }
631
632 return false;
633 }
634
635 /*
636 * Examine the physical address to determine if it is boot data by checking
637 * it against the boot params setup_data chain.
638 */
memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)639 static bool memremap_is_setup_data(resource_size_t phys_addr,
640 unsigned long size)
641 {
642 struct setup_indirect *indirect;
643 struct setup_data *data;
644 u64 paddr, paddr_next;
645
646 paddr = boot_params.hdr.setup_data;
647 while (paddr) {
648 unsigned int len;
649
650 if (phys_addr == paddr)
651 return true;
652
653 data = memremap(paddr, sizeof(*data),
654 MEMREMAP_WB | MEMREMAP_DEC);
655 if (!data) {
656 pr_warn("failed to memremap setup_data entry\n");
657 return false;
658 }
659
660 paddr_next = data->next;
661 len = data->len;
662
663 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
664 memunmap(data);
665 return true;
666 }
667
668 if (data->type == SETUP_INDIRECT) {
669 memunmap(data);
670 data = memremap(paddr, sizeof(*data) + len,
671 MEMREMAP_WB | MEMREMAP_DEC);
672 if (!data) {
673 pr_warn("failed to memremap indirect setup_data\n");
674 return false;
675 }
676
677 indirect = (struct setup_indirect *)data->data;
678
679 if (indirect->type != SETUP_INDIRECT) {
680 paddr = indirect->addr;
681 len = indirect->len;
682 }
683 }
684
685 memunmap(data);
686
687 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
688 return true;
689
690 paddr = paddr_next;
691 }
692
693 return false;
694 }
695
696 /*
697 * Examine the physical address to determine if it is boot data by checking
698 * it against the boot params setup_data chain (early boot version).
699 */
early_memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)700 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
701 unsigned long size)
702 {
703 struct setup_indirect *indirect;
704 struct setup_data *data;
705 u64 paddr, paddr_next;
706
707 paddr = boot_params.hdr.setup_data;
708 while (paddr) {
709 unsigned int len, size;
710
711 if (phys_addr == paddr)
712 return true;
713
714 data = early_memremap_decrypted(paddr, sizeof(*data));
715 if (!data) {
716 pr_warn("failed to early memremap setup_data entry\n");
717 return false;
718 }
719
720 size = sizeof(*data);
721
722 paddr_next = data->next;
723 len = data->len;
724
725 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
726 early_memunmap(data, sizeof(*data));
727 return true;
728 }
729
730 if (data->type == SETUP_INDIRECT) {
731 size += len;
732 early_memunmap(data, sizeof(*data));
733 data = early_memremap_decrypted(paddr, size);
734 if (!data) {
735 pr_warn("failed to early memremap indirect setup_data\n");
736 return false;
737 }
738
739 indirect = (struct setup_indirect *)data->data;
740
741 if (indirect->type != SETUP_INDIRECT) {
742 paddr = indirect->addr;
743 len = indirect->len;
744 }
745 }
746
747 early_memunmap(data, size);
748
749 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
750 return true;
751
752 paddr = paddr_next;
753 }
754
755 return false;
756 }
757
758 /*
759 * Architecture function to determine if RAM remap is allowed. By default, a
760 * RAM remap will map the data as encrypted. Determine if a RAM remap should
761 * not be done so that the data will be mapped decrypted.
762 */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)763 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
764 unsigned long flags)
765 {
766 if (!mem_encrypt_active())
767 return true;
768
769 if (flags & MEMREMAP_ENC)
770 return true;
771
772 if (flags & MEMREMAP_DEC)
773 return false;
774
775 if (sme_active()) {
776 if (memremap_is_setup_data(phys_addr, size) ||
777 memremap_is_efi_data(phys_addr, size))
778 return false;
779 }
780
781 return !memremap_should_map_decrypted(phys_addr, size);
782 }
783
784 /*
785 * Architecture override of __weak function to adjust the protection attributes
786 * used when remapping memory. By default, early_memremap() will map the data
787 * as encrypted. Determine if an encrypted mapping should not be done and set
788 * the appropriate protection attributes.
789 */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)790 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
791 unsigned long size,
792 pgprot_t prot)
793 {
794 bool encrypted_prot;
795
796 if (!mem_encrypt_active())
797 return prot;
798
799 encrypted_prot = true;
800
801 if (sme_active()) {
802 if (early_memremap_is_setup_data(phys_addr, size) ||
803 memremap_is_efi_data(phys_addr, size))
804 encrypted_prot = false;
805 }
806
807 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
808 encrypted_prot = false;
809
810 return encrypted_prot ? pgprot_encrypted(prot)
811 : pgprot_decrypted(prot);
812 }
813
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)814 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
815 {
816 return arch_memremap_can_ram_remap(phys_addr, size, 0);
817 }
818
819 #ifdef CONFIG_AMD_MEM_ENCRYPT
820 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)821 void __init *early_memremap_encrypted(resource_size_t phys_addr,
822 unsigned long size)
823 {
824 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
825 }
826
827 /*
828 * Remap memory with encryption and write-protected - cannot be called
829 * before pat_init() is called
830 */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)831 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
832 unsigned long size)
833 {
834 if (!x86_has_pat_wp())
835 return NULL;
836 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
837 }
838
839 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)840 void __init *early_memremap_decrypted(resource_size_t phys_addr,
841 unsigned long size)
842 {
843 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
844 }
845
846 /*
847 * Remap memory without encryption and write-protected - cannot be called
848 * before pat_init() is called
849 */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)850 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
851 unsigned long size)
852 {
853 if (!x86_has_pat_wp())
854 return NULL;
855 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
856 }
857 #endif /* CONFIG_AMD_MEM_ENCRYPT */
858
859 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
860
early_ioremap_pmd(unsigned long addr)861 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
862 {
863 /* Don't assume we're using swapper_pg_dir at this point */
864 pgd_t *base = __va(read_cr3_pa());
865 pgd_t *pgd = &base[pgd_index(addr)];
866 p4d_t *p4d = p4d_offset(pgd, addr);
867 pud_t *pud = pud_offset(p4d, addr);
868 pmd_t *pmd = pmd_offset(pud, addr);
869
870 return pmd;
871 }
872
early_ioremap_pte(unsigned long addr)873 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
874 {
875 return &bm_pte[pte_index(addr)];
876 }
877
is_early_ioremap_ptep(pte_t * ptep)878 bool __init is_early_ioremap_ptep(pte_t *ptep)
879 {
880 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
881 }
882
early_ioremap_init(void)883 void __init early_ioremap_init(void)
884 {
885 pmd_t *pmd;
886
887 #ifdef CONFIG_X86_64
888 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
889 #else
890 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
891 #endif
892
893 early_ioremap_setup();
894
895 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
896 memset(bm_pte, 0, sizeof(bm_pte));
897 pmd_populate_kernel(&init_mm, pmd, bm_pte);
898
899 /*
900 * The boot-ioremap range spans multiple pmds, for which
901 * we are not prepared:
902 */
903 #define __FIXADDR_TOP (-PAGE_SIZE)
904 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
905 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
906 #undef __FIXADDR_TOP
907 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
908 WARN_ON(1);
909 printk(KERN_WARNING "pmd %p != %p\n",
910 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
911 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
912 fix_to_virt(FIX_BTMAP_BEGIN));
913 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
914 fix_to_virt(FIX_BTMAP_END));
915
916 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
917 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
918 FIX_BTMAP_BEGIN);
919 }
920 }
921
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)922 void __init __early_set_fixmap(enum fixed_addresses idx,
923 phys_addr_t phys, pgprot_t flags)
924 {
925 unsigned long addr = __fix_to_virt(idx);
926 pte_t *pte;
927
928 if (idx >= __end_of_fixed_addresses) {
929 BUG();
930 return;
931 }
932 pte = early_ioremap_pte(addr);
933
934 /* Sanitize 'prot' against any unsupported bits: */
935 pgprot_val(flags) &= __supported_pte_mask;
936
937 if (pgprot_val(flags))
938 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
939 else
940 pte_clear(&init_mm, addr, pte);
941 flush_tlb_one_kernel(addr);
942 }
943