• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Re-map IO memory to kernel address space so that we can access it.
4  * This is needed for high PCI addresses that aren't mapped in the
5  * 640k-1MB IO memory area on PC's
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  */
9 
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20 
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29 
30 #include "physaddr.h"
31 
32 /*
33  * Descriptor controlling ioremap() behavior.
34  */
35 struct ioremap_desc {
36 	unsigned int flags;
37 };
38 
39 /*
40  * Fix up the linear direct mapping of the kernel to avoid cache attribute
41  * conflicts.
42  */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 			enum page_cache_mode pcm)
45 {
46 	unsigned long nrpages = size >> PAGE_SHIFT;
47 	int err;
48 
49 	switch (pcm) {
50 	case _PAGE_CACHE_MODE_UC:
51 	default:
52 		err = _set_memory_uc(vaddr, nrpages);
53 		break;
54 	case _PAGE_CACHE_MODE_WC:
55 		err = _set_memory_wc(vaddr, nrpages);
56 		break;
57 	case _PAGE_CACHE_MODE_WT:
58 		err = _set_memory_wt(vaddr, nrpages);
59 		break;
60 	case _PAGE_CACHE_MODE_WB:
61 		err = _set_memory_wb(vaddr, nrpages);
62 		break;
63 	}
64 
65 	return err;
66 }
67 
68 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 	unsigned long start_pfn, stop_pfn;
72 	unsigned long i;
73 
74 	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 		return 0;
76 
77 	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 	if (stop_pfn > start_pfn) {
80 		for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 			if (pfn_valid(start_pfn + i) &&
82 			    !PageReserved(pfn_to_page(start_pfn + i)))
83 				return IORES_MAP_SYSTEM_RAM;
84 	}
85 
86 	return 0;
87 }
88 
89 /*
90  * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91  * there the whole memory is already encrypted.
92  */
__ioremap_check_encrypted(struct resource * res)93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 	if (!sev_active())
96 		return 0;
97 
98 	switch (res->desc) {
99 	case IORES_DESC_NONE:
100 	case IORES_DESC_RESERVED:
101 		break;
102 	default:
103 		return IORES_MAP_ENCRYPTED;
104 	}
105 
106 	return 0;
107 }
108 
109 /*
110  * The EFI runtime services data area is not covered by walk_mem_res(), but must
111  * be mapped encrypted when SEV is active.
112  */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 	if (!sev_active())
116 		return;
117 
118 	if (!IS_ENABLED(CONFIG_EFI))
119 		return;
120 
121 	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 		desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126 
__ioremap_collect_map_flags(struct resource * res,void * arg)127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129 	struct ioremap_desc *desc = arg;
130 
131 	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 		desc->flags |= __ioremap_check_ram(res);
133 
134 	if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 		desc->flags |= __ioremap_check_encrypted(res);
136 
137 	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140 
141 /*
142  * To avoid multiple resource walks, this function walks resources marked as
143  * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144  * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145  *
146  * After that, deal with misc other ranges in __ioremap_check_other() which do
147  * not fall into the above category.
148  */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 				struct ioremap_desc *desc)
151 {
152 	u64 start, end;
153 
154 	start = (u64)addr;
155 	end = start + size - 1;
156 	memset(desc, 0, sizeof(struct ioremap_desc));
157 
158 	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159 
160 	__ioremap_check_other(addr, desc);
161 }
162 
163 /*
164  * Remap an arbitrary physical address space into the kernel virtual
165  * address space. It transparently creates kernel huge I/O mapping when
166  * the physical address is aligned by a huge page size (1GB or 2MB) and
167  * the requested size is at least the huge page size.
168  *
169  * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170  * Therefore, the mapping code falls back to use a smaller page toward 4KB
171  * when a mapping range is covered by non-WB type of MTRRs.
172  *
173  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174  * have to convert them into an offset in a page-aligned mapping, but the
175  * caller shouldn't need to know that small detail.
176  */
177 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 		 enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181 	unsigned long offset, vaddr;
182 	resource_size_t last_addr;
183 	const resource_size_t unaligned_phys_addr = phys_addr;
184 	const unsigned long unaligned_size = size;
185 	struct ioremap_desc io_desc;
186 	struct vm_struct *area;
187 	enum page_cache_mode new_pcm;
188 	pgprot_t prot;
189 	int retval;
190 	void __iomem *ret_addr;
191 
192 	/* Don't allow wraparound or zero size */
193 	last_addr = phys_addr + size - 1;
194 	if (!size || last_addr < phys_addr)
195 		return NULL;
196 
197 	if (!phys_addr_valid(phys_addr)) {
198 		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 		       (unsigned long long)phys_addr);
200 		WARN_ON_ONCE(1);
201 		return NULL;
202 	}
203 
204 	__ioremap_check_mem(phys_addr, size, &io_desc);
205 
206 	/*
207 	 * Don't allow anybody to remap normal RAM that we're using..
208 	 */
209 	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 			  &phys_addr, &last_addr);
212 		return NULL;
213 	}
214 
215 	/*
216 	 * Mappings have to be page-aligned
217 	 */
218 	offset = phys_addr & ~PAGE_MASK;
219 	phys_addr &= PAGE_MASK;
220 	size = PAGE_ALIGN(last_addr+1) - phys_addr;
221 
222 	/*
223 	 * Mask out any bits not part of the actual physical
224 	 * address, like memory encryption bits.
225 	 */
226 	phys_addr &= PHYSICAL_PAGE_MASK;
227 
228 	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
229 						pcm, &new_pcm);
230 	if (retval) {
231 		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
232 		return NULL;
233 	}
234 
235 	if (pcm != new_pcm) {
236 		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
237 			printk(KERN_ERR
238 		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
239 				(unsigned long long)phys_addr,
240 				(unsigned long long)(phys_addr + size),
241 				pcm, new_pcm);
242 			goto err_free_memtype;
243 		}
244 		pcm = new_pcm;
245 	}
246 
247 	/*
248 	 * If the page being mapped is in memory and SEV is active then
249 	 * make sure the memory encryption attribute is enabled in the
250 	 * resulting mapping.
251 	 */
252 	prot = PAGE_KERNEL_IO;
253 	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
254 		prot = pgprot_encrypted(prot);
255 
256 	switch (pcm) {
257 	case _PAGE_CACHE_MODE_UC:
258 	default:
259 		prot = __pgprot(pgprot_val(prot) |
260 				cachemode2protval(_PAGE_CACHE_MODE_UC));
261 		break;
262 	case _PAGE_CACHE_MODE_UC_MINUS:
263 		prot = __pgprot(pgprot_val(prot) |
264 				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
265 		break;
266 	case _PAGE_CACHE_MODE_WC:
267 		prot = __pgprot(pgprot_val(prot) |
268 				cachemode2protval(_PAGE_CACHE_MODE_WC));
269 		break;
270 	case _PAGE_CACHE_MODE_WT:
271 		prot = __pgprot(pgprot_val(prot) |
272 				cachemode2protval(_PAGE_CACHE_MODE_WT));
273 		break;
274 	case _PAGE_CACHE_MODE_WB:
275 		break;
276 	}
277 
278 	/*
279 	 * Ok, go for it..
280 	 */
281 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
282 	if (!area)
283 		goto err_free_memtype;
284 	area->phys_addr = phys_addr;
285 	vaddr = (unsigned long) area->addr;
286 
287 	if (memtype_kernel_map_sync(phys_addr, size, pcm))
288 		goto err_free_area;
289 
290 	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
291 		goto err_free_area;
292 
293 	ret_addr = (void __iomem *) (vaddr + offset);
294 	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
295 
296 	/*
297 	 * Check if the request spans more than any BAR in the iomem resource
298 	 * tree.
299 	 */
300 	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
301 		pr_warn("caller %pS mapping multiple BARs\n", caller);
302 
303 	return ret_addr;
304 err_free_area:
305 	free_vm_area(area);
306 err_free_memtype:
307 	memtype_free(phys_addr, phys_addr + size);
308 	return NULL;
309 }
310 
311 /**
312  * ioremap     -   map bus memory into CPU space
313  * @phys_addr:    bus address of the memory
314  * @size:      size of the resource to map
315  *
316  * ioremap performs a platform specific sequence of operations to
317  * make bus memory CPU accessible via the readb/readw/readl/writeb/
318  * writew/writel functions and the other mmio helpers. The returned
319  * address is not guaranteed to be usable directly as a virtual
320  * address.
321  *
322  * This version of ioremap ensures that the memory is marked uncachable
323  * on the CPU as well as honouring existing caching rules from things like
324  * the PCI bus. Note that there are other caches and buffers on many
325  * busses. In particular driver authors should read up on PCI writes
326  *
327  * It's useful if some control registers are in such an area and
328  * write combining or read caching is not desirable:
329  *
330  * Must be freed with iounmap.
331  */
ioremap(resource_size_t phys_addr,unsigned long size)332 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
333 {
334 	/*
335 	 * Ideally, this should be:
336 	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
337 	 *
338 	 * Till we fix all X drivers to use ioremap_wc(), we will use
339 	 * UC MINUS. Drivers that are certain they need or can already
340 	 * be converted over to strong UC can use ioremap_uc().
341 	 */
342 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
343 
344 	return __ioremap_caller(phys_addr, size, pcm,
345 				__builtin_return_address(0), false);
346 }
347 EXPORT_SYMBOL(ioremap);
348 
349 /**
350  * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
351  * @phys_addr:    bus address of the memory
352  * @size:      size of the resource to map
353  *
354  * ioremap_uc performs a platform specific sequence of operations to
355  * make bus memory CPU accessible via the readb/readw/readl/writeb/
356  * writew/writel functions and the other mmio helpers. The returned
357  * address is not guaranteed to be usable directly as a virtual
358  * address.
359  *
360  * This version of ioremap ensures that the memory is marked with a strong
361  * preference as completely uncachable on the CPU when possible. For non-PAT
362  * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
363  * systems this will set the PAT entry for the pages as strong UC.  This call
364  * will honor existing caching rules from things like the PCI bus. Note that
365  * there are other caches and buffers on many busses. In particular driver
366  * authors should read up on PCI writes.
367  *
368  * It's useful if some control registers are in such an area and
369  * write combining or read caching is not desirable:
370  *
371  * Must be freed with iounmap.
372  */
ioremap_uc(resource_size_t phys_addr,unsigned long size)373 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
374 {
375 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
376 
377 	return __ioremap_caller(phys_addr, size, pcm,
378 				__builtin_return_address(0), false);
379 }
380 EXPORT_SYMBOL_GPL(ioremap_uc);
381 
382 /**
383  * ioremap_wc	-	map memory into CPU space write combined
384  * @phys_addr:	bus address of the memory
385  * @size:	size of the resource to map
386  *
387  * This version of ioremap ensures that the memory is marked write combining.
388  * Write combining allows faster writes to some hardware devices.
389  *
390  * Must be freed with iounmap.
391  */
ioremap_wc(resource_size_t phys_addr,unsigned long size)392 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
393 {
394 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
395 					__builtin_return_address(0), false);
396 }
397 EXPORT_SYMBOL(ioremap_wc);
398 
399 /**
400  * ioremap_wt	-	map memory into CPU space write through
401  * @phys_addr:	bus address of the memory
402  * @size:	size of the resource to map
403  *
404  * This version of ioremap ensures that the memory is marked write through.
405  * Write through stores data into memory while keeping the cache up-to-date.
406  *
407  * Must be freed with iounmap.
408  */
ioremap_wt(resource_size_t phys_addr,unsigned long size)409 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
410 {
411 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
412 					__builtin_return_address(0), false);
413 }
414 EXPORT_SYMBOL(ioremap_wt);
415 
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)416 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
417 {
418 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
419 				__builtin_return_address(0), true);
420 }
421 EXPORT_SYMBOL(ioremap_encrypted);
422 
ioremap_cache(resource_size_t phys_addr,unsigned long size)423 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
424 {
425 	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
426 				__builtin_return_address(0), false);
427 }
428 EXPORT_SYMBOL(ioremap_cache);
429 
ioremap_prot(resource_size_t phys_addr,unsigned long size,unsigned long prot_val)430 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
431 				unsigned long prot_val)
432 {
433 	return __ioremap_caller(phys_addr, size,
434 				pgprot2cachemode(__pgprot(prot_val)),
435 				__builtin_return_address(0), false);
436 }
437 EXPORT_SYMBOL(ioremap_prot);
438 
439 /**
440  * iounmap - Free a IO remapping
441  * @addr: virtual address from ioremap_*
442  *
443  * Caller must ensure there is only one unmapping for the same pointer.
444  */
iounmap(volatile void __iomem * addr)445 void iounmap(volatile void __iomem *addr)
446 {
447 	struct vm_struct *p, *o;
448 
449 	if ((void __force *)addr <= high_memory)
450 		return;
451 
452 	/*
453 	 * The PCI/ISA range special-casing was removed from __ioremap()
454 	 * so this check, in theory, can be removed. However, there are
455 	 * cases where iounmap() is called for addresses not obtained via
456 	 * ioremap() (vga16fb for example). Add a warning so that these
457 	 * cases can be caught and fixed.
458 	 */
459 	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
460 	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
461 		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
462 		return;
463 	}
464 
465 	mmiotrace_iounmap(addr);
466 
467 	addr = (volatile void __iomem *)
468 		(PAGE_MASK & (unsigned long __force)addr);
469 
470 	/* Use the vm area unlocked, assuming the caller
471 	   ensures there isn't another iounmap for the same address
472 	   in parallel. Reuse of the virtual address is prevented by
473 	   leaving it in the global lists until we're done with it.
474 	   cpa takes care of the direct mappings. */
475 	p = find_vm_area((void __force *)addr);
476 
477 	if (!p) {
478 		printk(KERN_ERR "iounmap: bad address %p\n", addr);
479 		dump_stack();
480 		return;
481 	}
482 
483 	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
484 
485 	/* Finally remove it */
486 	o = remove_vm_area((void __force *)addr);
487 	BUG_ON(p != o || o == NULL);
488 	kfree(p);
489 }
490 EXPORT_SYMBOL(iounmap);
491 
arch_ioremap_p4d_supported(void)492 int __init arch_ioremap_p4d_supported(void)
493 {
494 	return 0;
495 }
496 
arch_ioremap_pud_supported(void)497 int __init arch_ioremap_pud_supported(void)
498 {
499 #ifdef CONFIG_X86_64
500 	return boot_cpu_has(X86_FEATURE_GBPAGES);
501 #else
502 	return 0;
503 #endif
504 }
505 
arch_ioremap_pmd_supported(void)506 int __init arch_ioremap_pmd_supported(void)
507 {
508 	return boot_cpu_has(X86_FEATURE_PSE);
509 }
510 
511 /*
512  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
513  * access
514  */
xlate_dev_mem_ptr(phys_addr_t phys)515 void *xlate_dev_mem_ptr(phys_addr_t phys)
516 {
517 	unsigned long start  = phys &  PAGE_MASK;
518 	unsigned long offset = phys & ~PAGE_MASK;
519 	void *vaddr;
520 
521 	/* memremap() maps if RAM, otherwise falls back to ioremap() */
522 	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
523 
524 	/* Only add the offset on success and return NULL if memremap() failed */
525 	if (vaddr)
526 		vaddr += offset;
527 
528 	return vaddr;
529 }
530 
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)531 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
532 {
533 	memunmap((void *)((unsigned long)addr & PAGE_MASK));
534 }
535 
536 /*
537  * Examine the physical address to determine if it is an area of memory
538  * that should be mapped decrypted.  If the memory is not part of the
539  * kernel usable area it was accessed and created decrypted, so these
540  * areas should be mapped decrypted. And since the encryption key can
541  * change across reboots, persistent memory should also be mapped
542  * decrypted.
543  *
544  * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
545  * only persistent memory should be mapped decrypted.
546  */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)547 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
548 					  unsigned long size)
549 {
550 	int is_pmem;
551 
552 	/*
553 	 * Check if the address is part of a persistent memory region.
554 	 * This check covers areas added by E820, EFI and ACPI.
555 	 */
556 	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
557 				    IORES_DESC_PERSISTENT_MEMORY);
558 	if (is_pmem != REGION_DISJOINT)
559 		return true;
560 
561 	/*
562 	 * Check if the non-volatile attribute is set for an EFI
563 	 * reserved area.
564 	 */
565 	if (efi_enabled(EFI_BOOT)) {
566 		switch (efi_mem_type(phys_addr)) {
567 		case EFI_RESERVED_TYPE:
568 			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
569 				return true;
570 			break;
571 		default:
572 			break;
573 		}
574 	}
575 
576 	/* Check if the address is outside kernel usable area */
577 	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
578 	case E820_TYPE_RESERVED:
579 	case E820_TYPE_ACPI:
580 	case E820_TYPE_NVS:
581 	case E820_TYPE_UNUSABLE:
582 		/* For SEV, these areas are encrypted */
583 		if (sev_active())
584 			break;
585 		fallthrough;
586 
587 	case E820_TYPE_PRAM:
588 		return true;
589 	default:
590 		break;
591 	}
592 
593 	return false;
594 }
595 
596 /*
597  * Examine the physical address to determine if it is EFI data. Check
598  * it against the boot params structure and EFI tables and memory types.
599  */
memremap_is_efi_data(resource_size_t phys_addr,unsigned long size)600 static bool memremap_is_efi_data(resource_size_t phys_addr,
601 				 unsigned long size)
602 {
603 	u64 paddr;
604 
605 	/* Check if the address is part of EFI boot/runtime data */
606 	if (!efi_enabled(EFI_BOOT))
607 		return false;
608 
609 	paddr = boot_params.efi_info.efi_memmap_hi;
610 	paddr <<= 32;
611 	paddr |= boot_params.efi_info.efi_memmap;
612 	if (phys_addr == paddr)
613 		return true;
614 
615 	paddr = boot_params.efi_info.efi_systab_hi;
616 	paddr <<= 32;
617 	paddr |= boot_params.efi_info.efi_systab;
618 	if (phys_addr == paddr)
619 		return true;
620 
621 	if (efi_is_table_address(phys_addr))
622 		return true;
623 
624 	switch (efi_mem_type(phys_addr)) {
625 	case EFI_BOOT_SERVICES_DATA:
626 	case EFI_RUNTIME_SERVICES_DATA:
627 		return true;
628 	default:
629 		break;
630 	}
631 
632 	return false;
633 }
634 
635 /*
636  * Examine the physical address to determine if it is boot data by checking
637  * it against the boot params setup_data chain.
638  */
memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)639 static bool memremap_is_setup_data(resource_size_t phys_addr,
640 				   unsigned long size)
641 {
642 	struct setup_indirect *indirect;
643 	struct setup_data *data;
644 	u64 paddr, paddr_next;
645 
646 	paddr = boot_params.hdr.setup_data;
647 	while (paddr) {
648 		unsigned int len;
649 
650 		if (phys_addr == paddr)
651 			return true;
652 
653 		data = memremap(paddr, sizeof(*data),
654 				MEMREMAP_WB | MEMREMAP_DEC);
655 		if (!data) {
656 			pr_warn("failed to memremap setup_data entry\n");
657 			return false;
658 		}
659 
660 		paddr_next = data->next;
661 		len = data->len;
662 
663 		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
664 			memunmap(data);
665 			return true;
666 		}
667 
668 		if (data->type == SETUP_INDIRECT) {
669 			memunmap(data);
670 			data = memremap(paddr, sizeof(*data) + len,
671 					MEMREMAP_WB | MEMREMAP_DEC);
672 			if (!data) {
673 				pr_warn("failed to memremap indirect setup_data\n");
674 				return false;
675 			}
676 
677 			indirect = (struct setup_indirect *)data->data;
678 
679 			if (indirect->type != SETUP_INDIRECT) {
680 				paddr = indirect->addr;
681 				len = indirect->len;
682 			}
683 		}
684 
685 		memunmap(data);
686 
687 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
688 			return true;
689 
690 		paddr = paddr_next;
691 	}
692 
693 	return false;
694 }
695 
696 /*
697  * Examine the physical address to determine if it is boot data by checking
698  * it against the boot params setup_data chain (early boot version).
699  */
early_memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)700 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
701 						unsigned long size)
702 {
703 	struct setup_indirect *indirect;
704 	struct setup_data *data;
705 	u64 paddr, paddr_next;
706 
707 	paddr = boot_params.hdr.setup_data;
708 	while (paddr) {
709 		unsigned int len, size;
710 
711 		if (phys_addr == paddr)
712 			return true;
713 
714 		data = early_memremap_decrypted(paddr, sizeof(*data));
715 		if (!data) {
716 			pr_warn("failed to early memremap setup_data entry\n");
717 			return false;
718 		}
719 
720 		size = sizeof(*data);
721 
722 		paddr_next = data->next;
723 		len = data->len;
724 
725 		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
726 			early_memunmap(data, sizeof(*data));
727 			return true;
728 		}
729 
730 		if (data->type == SETUP_INDIRECT) {
731 			size += len;
732 			early_memunmap(data, sizeof(*data));
733 			data = early_memremap_decrypted(paddr, size);
734 			if (!data) {
735 				pr_warn("failed to early memremap indirect setup_data\n");
736 				return false;
737 			}
738 
739 			indirect = (struct setup_indirect *)data->data;
740 
741 			if (indirect->type != SETUP_INDIRECT) {
742 				paddr = indirect->addr;
743 				len = indirect->len;
744 			}
745 		}
746 
747 		early_memunmap(data, size);
748 
749 		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
750 			return true;
751 
752 		paddr = paddr_next;
753 	}
754 
755 	return false;
756 }
757 
758 /*
759  * Architecture function to determine if RAM remap is allowed. By default, a
760  * RAM remap will map the data as encrypted. Determine if a RAM remap should
761  * not be done so that the data will be mapped decrypted.
762  */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)763 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
764 				 unsigned long flags)
765 {
766 	if (!mem_encrypt_active())
767 		return true;
768 
769 	if (flags & MEMREMAP_ENC)
770 		return true;
771 
772 	if (flags & MEMREMAP_DEC)
773 		return false;
774 
775 	if (sme_active()) {
776 		if (memremap_is_setup_data(phys_addr, size) ||
777 		    memremap_is_efi_data(phys_addr, size))
778 			return false;
779 	}
780 
781 	return !memremap_should_map_decrypted(phys_addr, size);
782 }
783 
784 /*
785  * Architecture override of __weak function to adjust the protection attributes
786  * used when remapping memory. By default, early_memremap() will map the data
787  * as encrypted. Determine if an encrypted mapping should not be done and set
788  * the appropriate protection attributes.
789  */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)790 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
791 					     unsigned long size,
792 					     pgprot_t prot)
793 {
794 	bool encrypted_prot;
795 
796 	if (!mem_encrypt_active())
797 		return prot;
798 
799 	encrypted_prot = true;
800 
801 	if (sme_active()) {
802 		if (early_memremap_is_setup_data(phys_addr, size) ||
803 		    memremap_is_efi_data(phys_addr, size))
804 			encrypted_prot = false;
805 	}
806 
807 	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
808 		encrypted_prot = false;
809 
810 	return encrypted_prot ? pgprot_encrypted(prot)
811 			      : pgprot_decrypted(prot);
812 }
813 
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)814 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
815 {
816 	return arch_memremap_can_ram_remap(phys_addr, size, 0);
817 }
818 
819 #ifdef CONFIG_AMD_MEM_ENCRYPT
820 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)821 void __init *early_memremap_encrypted(resource_size_t phys_addr,
822 				      unsigned long size)
823 {
824 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
825 }
826 
827 /*
828  * Remap memory with encryption and write-protected - cannot be called
829  * before pat_init() is called
830  */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)831 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
832 					 unsigned long size)
833 {
834 	if (!x86_has_pat_wp())
835 		return NULL;
836 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
837 }
838 
839 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)840 void __init *early_memremap_decrypted(resource_size_t phys_addr,
841 				      unsigned long size)
842 {
843 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
844 }
845 
846 /*
847  * Remap memory without encryption and write-protected - cannot be called
848  * before pat_init() is called
849  */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)850 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
851 					 unsigned long size)
852 {
853 	if (!x86_has_pat_wp())
854 		return NULL;
855 	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
856 }
857 #endif	/* CONFIG_AMD_MEM_ENCRYPT */
858 
859 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
860 
early_ioremap_pmd(unsigned long addr)861 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
862 {
863 	/* Don't assume we're using swapper_pg_dir at this point */
864 	pgd_t *base = __va(read_cr3_pa());
865 	pgd_t *pgd = &base[pgd_index(addr)];
866 	p4d_t *p4d = p4d_offset(pgd, addr);
867 	pud_t *pud = pud_offset(p4d, addr);
868 	pmd_t *pmd = pmd_offset(pud, addr);
869 
870 	return pmd;
871 }
872 
early_ioremap_pte(unsigned long addr)873 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
874 {
875 	return &bm_pte[pte_index(addr)];
876 }
877 
is_early_ioremap_ptep(pte_t * ptep)878 bool __init is_early_ioremap_ptep(pte_t *ptep)
879 {
880 	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
881 }
882 
early_ioremap_init(void)883 void __init early_ioremap_init(void)
884 {
885 	pmd_t *pmd;
886 
887 #ifdef CONFIG_X86_64
888 	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
889 #else
890 	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
891 #endif
892 
893 	early_ioremap_setup();
894 
895 	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
896 	memset(bm_pte, 0, sizeof(bm_pte));
897 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
898 
899 	/*
900 	 * The boot-ioremap range spans multiple pmds, for which
901 	 * we are not prepared:
902 	 */
903 #define __FIXADDR_TOP (-PAGE_SIZE)
904 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
905 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
906 #undef __FIXADDR_TOP
907 	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
908 		WARN_ON(1);
909 		printk(KERN_WARNING "pmd %p != %p\n",
910 		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
911 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
912 			fix_to_virt(FIX_BTMAP_BEGIN));
913 		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
914 			fix_to_virt(FIX_BTMAP_END));
915 
916 		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
917 		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
918 		       FIX_BTMAP_BEGIN);
919 	}
920 }
921 
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)922 void __init __early_set_fixmap(enum fixed_addresses idx,
923 			       phys_addr_t phys, pgprot_t flags)
924 {
925 	unsigned long addr = __fix_to_virt(idx);
926 	pte_t *pte;
927 
928 	if (idx >= __end_of_fixed_addresses) {
929 		BUG();
930 		return;
931 	}
932 	pte = early_ioremap_pte(addr);
933 
934 	/* Sanitize 'prot' against any unsupported bits: */
935 	pgprot_val(flags) &= __supported_pte_mask;
936 
937 	if (pgprot_val(flags))
938 		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
939 	else
940 		pte_clear(&init_mm, addr, pte);
941 	flush_tlb_one_kernel(addr);
942 }
943