• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 
27 #include "internal.h"
28 
29 #ifdef CONFIG_X86_INTEL_LPSS
30 
31 #include <asm/cpu_device_id.h>
32 #include <asm/intel-family.h>
33 #include <asm/iosf_mbi.h>
34 
35 #define LPSS_ADDR(desc) ((unsigned long)&desc)
36 
37 #define LPSS_CLK_SIZE	0x04
38 #define LPSS_LTR_SIZE	0x18
39 
40 /* Offsets relative to LPSS_PRIVATE_OFFSET */
41 #define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
42 #define LPSS_RESETS			0x04
43 #define LPSS_RESETS_RESET_FUNC		BIT(0)
44 #define LPSS_RESETS_RESET_APB		BIT(1)
45 #define LPSS_GENERAL			0x08
46 #define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
47 #define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
48 #define LPSS_SW_LTR			0x10
49 #define LPSS_AUTO_LTR			0x14
50 #define LPSS_LTR_SNOOP_REQ		BIT(15)
51 #define LPSS_LTR_SNOOP_MASK		0x0000FFFF
52 #define LPSS_LTR_SNOOP_LAT_1US		0x800
53 #define LPSS_LTR_SNOOP_LAT_32US		0xC00
54 #define LPSS_LTR_SNOOP_LAT_SHIFT	5
55 #define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
56 #define LPSS_LTR_MAX_VAL		0x3FF
57 #define LPSS_TX_INT			0x20
58 #define LPSS_TX_INT_MASK		BIT(1)
59 
60 #define LPSS_PRV_REG_COUNT		9
61 
62 /* LPSS Flags */
63 #define LPSS_CLK			BIT(0)
64 #define LPSS_CLK_GATE			BIT(1)
65 #define LPSS_CLK_DIVIDER		BIT(2)
66 #define LPSS_LTR			BIT(3)
67 #define LPSS_SAVE_CTX			BIT(4)
68 /*
69  * For some devices the DSDT AML code for another device turns off the device
70  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
71  * as ctx register values.
72  * Luckily these devices always use the same ctx register values, so we can
73  * work around this by saving the ctx registers once on activation.
74  */
75 #define LPSS_SAVE_CTX_ONCE		BIT(5)
76 #define LPSS_NO_D3_DELAY		BIT(6)
77 
78 struct lpss_private_data;
79 
80 struct lpss_device_desc {
81 	unsigned int flags;
82 	const char *clk_con_id;
83 	unsigned int prv_offset;
84 	size_t prv_size_override;
85 	struct property_entry *properties;
86 	void (*setup)(struct lpss_private_data *pdata);
87 	bool resume_from_noirq;
88 };
89 
90 static const struct lpss_device_desc lpss_dma_desc = {
91 	.flags = LPSS_CLK,
92 };
93 
94 struct lpss_private_data {
95 	struct acpi_device *adev;
96 	void __iomem *mmio_base;
97 	resource_size_t mmio_size;
98 	unsigned int fixed_clk_rate;
99 	struct clk *clk;
100 	const struct lpss_device_desc *dev_desc;
101 	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 };
103 
104 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
105 static u32 pmc_atom_d3_mask = 0xfe000ffe;
106 
107 /* LPSS run time quirks */
108 static unsigned int lpss_quirks;
109 
110 /*
111  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
112  *
113  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
114  * it can be powered off automatically whenever the last LPSS device goes down.
115  * In case of no power any access to the DMA controller will hang the system.
116  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
117  * well as on ASuS T100TA transformer.
118  *
119  * This quirk overrides power state of entire LPSS island to keep DMA powered
120  * on whenever we have at least one other device in use.
121  */
122 #define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
123 
124 /* UART Component Parameter Register */
125 #define LPSS_UART_CPR			0xF4
126 #define LPSS_UART_CPR_AFCE		BIT(4)
127 
lpss_uart_setup(struct lpss_private_data * pdata)128 static void lpss_uart_setup(struct lpss_private_data *pdata)
129 {
130 	unsigned int offset;
131 	u32 val;
132 
133 	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
134 	val = readl(pdata->mmio_base + offset);
135 	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
136 
137 	val = readl(pdata->mmio_base + LPSS_UART_CPR);
138 	if (!(val & LPSS_UART_CPR_AFCE)) {
139 		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
140 		val = readl(pdata->mmio_base + offset);
141 		val |= LPSS_GENERAL_UART_RTS_OVRD;
142 		writel(val, pdata->mmio_base + offset);
143 	}
144 }
145 
lpss_deassert_reset(struct lpss_private_data * pdata)146 static void lpss_deassert_reset(struct lpss_private_data *pdata)
147 {
148 	unsigned int offset;
149 	u32 val;
150 
151 	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
152 	val = readl(pdata->mmio_base + offset);
153 	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
154 	writel(val, pdata->mmio_base + offset);
155 }
156 
157 /*
158  * BYT PWM used for backlight control by the i915 driver on systems without
159  * the Crystal Cove PMIC.
160  */
161 static struct pwm_lookup byt_pwm_lookup[] = {
162 	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
163 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
164 			       "pwm-lpss-platform"),
165 };
166 
byt_pwm_setup(struct lpss_private_data * pdata)167 static void byt_pwm_setup(struct lpss_private_data *pdata)
168 {
169 	struct acpi_device *adev = pdata->adev;
170 
171 	/* Only call pwm_add_table for the first PWM controller */
172 	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
173 		return;
174 
175 	pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
176 }
177 
178 #define LPSS_I2C_ENABLE			0x6c
179 
byt_i2c_setup(struct lpss_private_data * pdata)180 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 {
182 	const char *uid_str = acpi_device_uid(pdata->adev);
183 	acpi_handle handle = pdata->adev->handle;
184 	unsigned long long shared_host = 0;
185 	acpi_status status;
186 	long uid = 0;
187 
188 	/* Expected to always be true, but better safe then sorry */
189 	if (uid_str)
190 		uid = simple_strtol(uid_str, NULL, 10);
191 
192 	/* Detect I2C bus shared with PUNIT and ignore its d3 status */
193 	status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
194 	if (ACPI_SUCCESS(status) && shared_host && uid)
195 		pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196 
197 	lpss_deassert_reset(pdata);
198 
199 	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
200 		pdata->fixed_clk_rate = 133000000;
201 
202 	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
203 }
204 
205 /* BSW PWM used for backlight control by the i915 driver */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 			       "pwm-lpss-platform"),
210 };
211 
bsw_pwm_setup(struct lpss_private_data * pdata)212 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 {
214 	struct acpi_device *adev = pdata->adev;
215 
216 	/* Only call pwm_add_table for the first PWM controller */
217 	if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
218 		return;
219 
220 	pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
221 }
222 
223 static const struct lpss_device_desc lpt_dev_desc = {
224 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
225 			| LPSS_SAVE_CTX,
226 	.prv_offset = 0x800,
227 };
228 
229 static const struct lpss_device_desc lpt_i2c_dev_desc = {
230 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
231 	.prv_offset = 0x800,
232 };
233 
234 static struct property_entry uart_properties[] = {
235 	PROPERTY_ENTRY_U32("reg-io-width", 4),
236 	PROPERTY_ENTRY_U32("reg-shift", 2),
237 	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
238 	{ },
239 };
240 
241 static const struct lpss_device_desc lpt_uart_dev_desc = {
242 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
243 			| LPSS_SAVE_CTX,
244 	.clk_con_id = "baudclk",
245 	.prv_offset = 0x800,
246 	.setup = lpss_uart_setup,
247 	.properties = uart_properties,
248 };
249 
250 static const struct lpss_device_desc lpt_sdio_dev_desc = {
251 	.flags = LPSS_LTR,
252 	.prv_offset = 0x1000,
253 	.prv_size_override = 0x1018,
254 };
255 
256 static const struct lpss_device_desc byt_pwm_dev_desc = {
257 	.flags = LPSS_SAVE_CTX,
258 	.prv_offset = 0x800,
259 	.setup = byt_pwm_setup,
260 };
261 
262 static const struct lpss_device_desc bsw_pwm_dev_desc = {
263 	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
264 	.prv_offset = 0x800,
265 	.setup = bsw_pwm_setup,
266 	.resume_from_noirq = true,
267 };
268 
269 static const struct lpss_device_desc byt_uart_dev_desc = {
270 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
271 	.clk_con_id = "baudclk",
272 	.prv_offset = 0x800,
273 	.setup = lpss_uart_setup,
274 	.properties = uart_properties,
275 };
276 
277 static const struct lpss_device_desc bsw_uart_dev_desc = {
278 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
279 			| LPSS_NO_D3_DELAY,
280 	.clk_con_id = "baudclk",
281 	.prv_offset = 0x800,
282 	.setup = lpss_uart_setup,
283 	.properties = uart_properties,
284 };
285 
286 static const struct lpss_device_desc byt_spi_dev_desc = {
287 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
288 	.prv_offset = 0x400,
289 };
290 
291 static const struct lpss_device_desc byt_sdio_dev_desc = {
292 	.flags = LPSS_CLK,
293 };
294 
295 static const struct lpss_device_desc byt_i2c_dev_desc = {
296 	.flags = LPSS_CLK | LPSS_SAVE_CTX,
297 	.prv_offset = 0x800,
298 	.setup = byt_i2c_setup,
299 	.resume_from_noirq = true,
300 };
301 
302 static const struct lpss_device_desc bsw_i2c_dev_desc = {
303 	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
304 	.prv_offset = 0x800,
305 	.setup = byt_i2c_setup,
306 	.resume_from_noirq = true,
307 };
308 
309 static const struct lpss_device_desc bsw_spi_dev_desc = {
310 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
311 			| LPSS_NO_D3_DELAY,
312 	.prv_offset = 0x400,
313 	.setup = lpss_deassert_reset,
314 };
315 
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	NULL),
318 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	NULL),
319 	{}
320 };
321 
322 #else
323 
324 #define LPSS_ADDR(desc) (0UL)
325 
326 #endif /* CONFIG_X86_INTEL_LPSS */
327 
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 	/* Generic LPSS devices */
330 	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331 
332 	/* Lynxpoint LPSS devices */
333 	{ "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 	{ "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 	{ "INT33C7", },
341 
342 	/* BayTrail LPSS devices */
343 	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 	{ "INT33B2", },
349 	{ "INT33FC", },
350 
351 	/* Braswell LPSS devices */
352 	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
353 	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358 
359 	/* Broadwell LPSS devices */
360 	{ "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 	{ "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 	{ "INT3437", },
368 
369 	/* Wildcat Point LPSS devices */
370 	{ "INT3438", LPSS_ADDR(lpt_dev_desc) },
371 
372 	{ }
373 };
374 
375 #ifdef CONFIG_X86_INTEL_LPSS
376 
is_memory(struct acpi_resource * res,void * not_used)377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379 	struct resource r;
380 	return !acpi_dev_resource_memory(res, &r);
381 }
382 
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385 
lpt_register_clock_device(void)386 static inline void lpt_register_clock_device(void)
387 {
388 	lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389 }
390 
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)391 static int register_device_clock(struct acpi_device *adev,
392 				 struct lpss_private_data *pdata)
393 {
394 	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 	const char *devname = dev_name(&adev->dev);
396 	struct clk *clk;
397 	struct lpss_clk_data *clk_data;
398 	const char *parent, *clk_name;
399 	void __iomem *prv_base;
400 
401 	if (!lpss_clk_dev)
402 		lpt_register_clock_device();
403 
404 	if (IS_ERR(lpss_clk_dev))
405 		return PTR_ERR(lpss_clk_dev);
406 
407 	clk_data = platform_get_drvdata(lpss_clk_dev);
408 	if (!clk_data)
409 		return -ENODEV;
410 	clk = clk_data->clk;
411 
412 	if (!pdata->mmio_base
413 	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
414 		return -ENODATA;
415 
416 	parent = clk_data->name;
417 	prv_base = pdata->mmio_base + dev_desc->prv_offset;
418 
419 	if (pdata->fixed_clk_rate) {
420 		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
421 					      pdata->fixed_clk_rate);
422 		goto out;
423 	}
424 
425 	if (dev_desc->flags & LPSS_CLK_GATE) {
426 		clk = clk_register_gate(NULL, devname, parent, 0,
427 					prv_base, 0, 0, NULL);
428 		parent = devname;
429 	}
430 
431 	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
432 		/* Prevent division by zero */
433 		if (!readl(prv_base))
434 			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
435 
436 		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
437 		if (!clk_name)
438 			return -ENOMEM;
439 		clk = clk_register_fractional_divider(NULL, clk_name, parent,
440 						      0, prv_base,
441 						      1, 15, 16, 15, 0, NULL);
442 		parent = clk_name;
443 
444 		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
445 		if (!clk_name) {
446 			kfree(parent);
447 			return -ENOMEM;
448 		}
449 		clk = clk_register_gate(NULL, clk_name, parent,
450 					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
451 					prv_base, 31, 0, NULL);
452 		kfree(parent);
453 		kfree(clk_name);
454 	}
455 out:
456 	if (IS_ERR(clk))
457 		return PTR_ERR(clk);
458 
459 	pdata->clk = clk;
460 	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
461 	return 0;
462 }
463 
464 struct lpss_device_links {
465 	const char *supplier_hid;
466 	const char *supplier_uid;
467 	const char *consumer_hid;
468 	const char *consumer_uid;
469 	u32 flags;
470 	const struct dmi_system_id *dep_missing_ids;
471 };
472 
473 /* Please keep this list sorted alphabetically by vendor and model */
474 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
475 	{
476 		.matches = {
477 			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
478 			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
479 		},
480 	},
481 	{}
482 };
483 
484 /*
485  * The _DEP method is used to identify dependencies but instead of creating
486  * device links for every handle in _DEP, only links in the following list are
487  * created. That is necessary because, in the general case, _DEP can refer to
488  * devices that might not have drivers, or that are on different buses, or where
489  * the supplier is not enumerated until after the consumer is probed.
490  */
491 static const struct lpss_device_links lpss_device_links[] = {
492 	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
493 	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
494 	/* CHT iGPU depends on PMIC I2C controller */
495 	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
496 	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
497 	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
498 	 i2c1_dep_missing_dmi_ids},
499 	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
500 	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
501 	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
502 	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
503 };
504 
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)505 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
506 				  const struct lpss_device_links *link)
507 {
508 	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
509 }
510 
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)511 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
512 				  const struct lpss_device_links *link)
513 {
514 	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
515 }
516 
517 struct hid_uid {
518 	const char *hid;
519 	const char *uid;
520 };
521 
match_hid_uid(struct device * dev,const void * data)522 static int match_hid_uid(struct device *dev, const void *data)
523 {
524 	struct acpi_device *adev = ACPI_COMPANION(dev);
525 	const struct hid_uid *id = data;
526 
527 	if (!adev)
528 		return 0;
529 
530 	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
531 }
532 
acpi_lpss_find_device(const char * hid,const char * uid)533 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
534 {
535 	struct device *dev;
536 
537 	struct hid_uid data = {
538 		.hid = hid,
539 		.uid = uid,
540 	};
541 
542 	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
543 	if (dev)
544 		return dev;
545 
546 	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
547 }
548 
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)549 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
550 {
551 	struct acpi_handle_list dep_devices;
552 	acpi_status status;
553 	int i;
554 
555 	if (!acpi_has_method(adev->handle, "_DEP"))
556 		return false;
557 
558 	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
559 					 &dep_devices);
560 	if (ACPI_FAILURE(status)) {
561 		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
562 		return false;
563 	}
564 
565 	for (i = 0; i < dep_devices.count; i++) {
566 		if (dep_devices.handles[i] == handle)
567 			return true;
568 	}
569 
570 	return false;
571 }
572 
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)573 static void acpi_lpss_link_consumer(struct device *dev1,
574 				    const struct lpss_device_links *link)
575 {
576 	struct device *dev2;
577 
578 	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
579 	if (!dev2)
580 		return;
581 
582 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
583 	    || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
584 		device_link_add(dev2, dev1, link->flags);
585 
586 	put_device(dev2);
587 }
588 
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)589 static void acpi_lpss_link_supplier(struct device *dev1,
590 				    const struct lpss_device_links *link)
591 {
592 	struct device *dev2;
593 
594 	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
595 	if (!dev2)
596 		return;
597 
598 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
599 	    || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
600 		device_link_add(dev1, dev2, link->flags);
601 
602 	put_device(dev2);
603 }
604 
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)605 static void acpi_lpss_create_device_links(struct acpi_device *adev,
606 					  struct platform_device *pdev)
607 {
608 	int i;
609 
610 	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
611 		const struct lpss_device_links *link = &lpss_device_links[i];
612 
613 		if (acpi_lpss_is_supplier(adev, link))
614 			acpi_lpss_link_consumer(&pdev->dev, link);
615 
616 		if (acpi_lpss_is_consumer(adev, link))
617 			acpi_lpss_link_supplier(&pdev->dev, link);
618 	}
619 }
620 
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)621 static int acpi_lpss_create_device(struct acpi_device *adev,
622 				   const struct acpi_device_id *id)
623 {
624 	const struct lpss_device_desc *dev_desc;
625 	struct lpss_private_data *pdata;
626 	struct resource_entry *rentry;
627 	struct list_head resource_list;
628 	struct platform_device *pdev;
629 	int ret;
630 
631 	dev_desc = (const struct lpss_device_desc *)id->driver_data;
632 	if (!dev_desc) {
633 		pdev = acpi_create_platform_device(adev, NULL);
634 		return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
635 	}
636 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
637 	if (!pdata)
638 		return -ENOMEM;
639 
640 	INIT_LIST_HEAD(&resource_list);
641 	ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
642 	if (ret < 0)
643 		goto err_out;
644 
645 	list_for_each_entry(rentry, &resource_list, node)
646 		if (resource_type(rentry->res) == IORESOURCE_MEM) {
647 			if (dev_desc->prv_size_override)
648 				pdata->mmio_size = dev_desc->prv_size_override;
649 			else
650 				pdata->mmio_size = resource_size(rentry->res);
651 			pdata->mmio_base = ioremap(rentry->res->start,
652 						   pdata->mmio_size);
653 			break;
654 		}
655 
656 	acpi_dev_free_resource_list(&resource_list);
657 
658 	if (!pdata->mmio_base) {
659 		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
660 		adev->pnp.type.platform_id = 0;
661 		/* Skip the device, but continue the namespace scan. */
662 		ret = 0;
663 		goto err_out;
664 	}
665 
666 	pdata->adev = adev;
667 	pdata->dev_desc = dev_desc;
668 
669 	if (dev_desc->setup)
670 		dev_desc->setup(pdata);
671 
672 	if (dev_desc->flags & LPSS_CLK) {
673 		ret = register_device_clock(adev, pdata);
674 		if (ret) {
675 			/* Skip the device, but continue the namespace scan. */
676 			ret = 0;
677 			goto err_out;
678 		}
679 	}
680 
681 	/*
682 	 * This works around a known issue in ACPI tables where LPSS devices
683 	 * have _PS0 and _PS3 without _PSC (and no power resources), so
684 	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
685 	 */
686 	acpi_device_fix_up_power(adev);
687 
688 	adev->driver_data = pdata;
689 	pdev = acpi_create_platform_device(adev, dev_desc->properties);
690 	if (!IS_ERR_OR_NULL(pdev)) {
691 		acpi_lpss_create_device_links(adev, pdev);
692 		return 1;
693 	}
694 
695 	ret = PTR_ERR(pdev);
696 	adev->driver_data = NULL;
697 
698  err_out:
699 	kfree(pdata);
700 	return ret;
701 }
702 
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)703 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
704 {
705 	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
706 }
707 
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)708 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
709 			     unsigned int reg)
710 {
711 	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
712 }
713 
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)714 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
715 {
716 	struct acpi_device *adev;
717 	struct lpss_private_data *pdata;
718 	unsigned long flags;
719 	int ret;
720 
721 	ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
722 	if (WARN_ON(ret))
723 		return ret;
724 
725 	spin_lock_irqsave(&dev->power.lock, flags);
726 	if (pm_runtime_suspended(dev)) {
727 		ret = -EAGAIN;
728 		goto out;
729 	}
730 	pdata = acpi_driver_data(adev);
731 	if (WARN_ON(!pdata || !pdata->mmio_base)) {
732 		ret = -ENODEV;
733 		goto out;
734 	}
735 	*val = __lpss_reg_read(pdata, reg);
736 
737  out:
738 	spin_unlock_irqrestore(&dev->power.lock, flags);
739 	return ret;
740 }
741 
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)742 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
743 			     char *buf)
744 {
745 	u32 ltr_value = 0;
746 	unsigned int reg;
747 	int ret;
748 
749 	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
750 	ret = lpss_reg_read(dev, reg, &ltr_value);
751 	if (ret)
752 		return ret;
753 
754 	return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
755 }
756 
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t lpss_ltr_mode_show(struct device *dev,
758 				  struct device_attribute *attr, char *buf)
759 {
760 	u32 ltr_mode = 0;
761 	char *outstr;
762 	int ret;
763 
764 	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
765 	if (ret)
766 		return ret;
767 
768 	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
769 	return sprintf(buf, "%s\n", outstr);
770 }
771 
772 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
773 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
774 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
775 
776 static struct attribute *lpss_attrs[] = {
777 	&dev_attr_auto_ltr.attr,
778 	&dev_attr_sw_ltr.attr,
779 	&dev_attr_ltr_mode.attr,
780 	NULL,
781 };
782 
783 static const struct attribute_group lpss_attr_group = {
784 	.attrs = lpss_attrs,
785 	.name = "lpss_ltr",
786 };
787 
acpi_lpss_set_ltr(struct device * dev,s32 val)788 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
789 {
790 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
791 	u32 ltr_mode, ltr_val;
792 
793 	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
794 	if (val < 0) {
795 		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
796 			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
797 			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
798 		}
799 		return;
800 	}
801 	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
802 	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
803 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
804 		val = LPSS_LTR_MAX_VAL;
805 	} else if (val > LPSS_LTR_MAX_VAL) {
806 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
807 		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
808 	} else {
809 		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
810 	}
811 	ltr_val |= val;
812 	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
813 	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
814 		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
815 		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
816 	}
817 }
818 
819 #ifdef CONFIG_PM
820 /**
821  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
822  * @dev: LPSS device
823  * @pdata: pointer to the private data of the LPSS device
824  *
825  * Most LPSS devices have private registers which may loose their context when
826  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
827  * prv_reg_ctx array.
828  */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)829 static void acpi_lpss_save_ctx(struct device *dev,
830 			       struct lpss_private_data *pdata)
831 {
832 	unsigned int i;
833 
834 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
835 		unsigned long offset = i * sizeof(u32);
836 
837 		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
838 		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
839 			pdata->prv_reg_ctx[i], offset);
840 	}
841 }
842 
843 /**
844  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
845  * @dev: LPSS device
846  * @pdata: pointer to the private data of the LPSS device
847  *
848  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
849  */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)850 static void acpi_lpss_restore_ctx(struct device *dev,
851 				  struct lpss_private_data *pdata)
852 {
853 	unsigned int i;
854 
855 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
856 		unsigned long offset = i * sizeof(u32);
857 
858 		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
859 		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
860 			pdata->prv_reg_ctx[i], offset);
861 	}
862 }
863 
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)864 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
865 {
866 	/*
867 	 * The following delay is needed or the subsequent write operations may
868 	 * fail. The LPSS devices are actually PCI devices and the PCI spec
869 	 * expects 10ms delay before the device can be accessed after D3 to D0
870 	 * transition. However some platforms like BSW does not need this delay.
871 	 */
872 	unsigned int delay = 10;	/* default 10ms delay */
873 
874 	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
875 		delay = 0;
876 
877 	msleep(delay);
878 }
879 
acpi_lpss_activate(struct device * dev)880 static int acpi_lpss_activate(struct device *dev)
881 {
882 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
883 	int ret;
884 
885 	ret = acpi_dev_resume(dev);
886 	if (ret)
887 		return ret;
888 
889 	acpi_lpss_d3_to_d0_delay(pdata);
890 
891 	/*
892 	 * This is called only on ->probe() stage where a device is either in
893 	 * known state defined by BIOS or most likely powered off. Due to this
894 	 * we have to deassert reset line to be sure that ->probe() will
895 	 * recognize the device.
896 	 */
897 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
898 		lpss_deassert_reset(pdata);
899 
900 #ifdef CONFIG_PM
901 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
902 		acpi_lpss_save_ctx(dev, pdata);
903 #endif
904 
905 	return 0;
906 }
907 
acpi_lpss_dismiss(struct device * dev)908 static void acpi_lpss_dismiss(struct device *dev)
909 {
910 	acpi_dev_suspend(dev, false);
911 }
912 
913 /* IOSF SB for LPSS island */
914 #define LPSS_IOSF_UNIT_LPIOEP		0xA0
915 #define LPSS_IOSF_UNIT_LPIO1		0xAB
916 #define LPSS_IOSF_UNIT_LPIO2		0xAC
917 
918 #define LPSS_IOSF_PMCSR			0x84
919 #define LPSS_PMCSR_D0			0
920 #define LPSS_PMCSR_D3hot		3
921 #define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
922 
923 #define LPSS_IOSF_GPIODEF0		0x154
924 #define LPSS_GPIODEF0_DMA1_D3		BIT(2)
925 #define LPSS_GPIODEF0_DMA2_D3		BIT(3)
926 #define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
927 #define LPSS_GPIODEF0_DMA_LLP		BIT(13)
928 
929 static DEFINE_MUTEX(lpss_iosf_mutex);
930 static bool lpss_iosf_d3_entered = true;
931 
lpss_iosf_enter_d3_state(void)932 static void lpss_iosf_enter_d3_state(void)
933 {
934 	u32 value1 = 0;
935 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
936 	u32 value2 = LPSS_PMCSR_D3hot;
937 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
938 	/*
939 	 * PMC provides an information about actual status of the LPSS devices.
940 	 * Here we read the values related to LPSS power island, i.e. LPSS
941 	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
942 	 */
943 	u32 func_dis, d3_sts_0, pmc_status;
944 	int ret;
945 
946 	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
947 	if (ret)
948 		return;
949 
950 	mutex_lock(&lpss_iosf_mutex);
951 
952 	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
953 	if (ret)
954 		goto exit;
955 
956 	/*
957 	 * Get the status of entire LPSS power island per device basis.
958 	 * Shutdown both LPSS DMA controllers if and only if all other devices
959 	 * are already in D3hot.
960 	 */
961 	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
962 	if (pmc_status)
963 		goto exit;
964 
965 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
966 			LPSS_IOSF_PMCSR, value2, mask2);
967 
968 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
969 			LPSS_IOSF_PMCSR, value2, mask2);
970 
971 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
972 			LPSS_IOSF_GPIODEF0, value1, mask1);
973 
974 	lpss_iosf_d3_entered = true;
975 
976 exit:
977 	mutex_unlock(&lpss_iosf_mutex);
978 }
979 
lpss_iosf_exit_d3_state(void)980 static void lpss_iosf_exit_d3_state(void)
981 {
982 	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
983 		     LPSS_GPIODEF0_DMA_LLP;
984 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
985 	u32 value2 = LPSS_PMCSR_D0;
986 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
987 
988 	mutex_lock(&lpss_iosf_mutex);
989 
990 	if (!lpss_iosf_d3_entered)
991 		goto exit;
992 
993 	lpss_iosf_d3_entered = false;
994 
995 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
996 			LPSS_IOSF_GPIODEF0, value1, mask1);
997 
998 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
999 			LPSS_IOSF_PMCSR, value2, mask2);
1000 
1001 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1002 			LPSS_IOSF_PMCSR, value2, mask2);
1003 
1004 exit:
1005 	mutex_unlock(&lpss_iosf_mutex);
1006 }
1007 
acpi_lpss_suspend(struct device * dev,bool wakeup)1008 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1009 {
1010 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1011 	int ret;
1012 
1013 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1014 		acpi_lpss_save_ctx(dev, pdata);
1015 
1016 	ret = acpi_dev_suspend(dev, wakeup);
1017 
1018 	/*
1019 	 * This call must be last in the sequence, otherwise PMC will return
1020 	 * wrong status for devices being about to be powered off. See
1021 	 * lpss_iosf_enter_d3_state() for further information.
1022 	 */
1023 	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1024 	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1025 		lpss_iosf_enter_d3_state();
1026 
1027 	return ret;
1028 }
1029 
acpi_lpss_resume(struct device * dev)1030 static int acpi_lpss_resume(struct device *dev)
1031 {
1032 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1033 	int ret;
1034 
1035 	/*
1036 	 * This call is kept first to be in symmetry with
1037 	 * acpi_lpss_runtime_suspend() one.
1038 	 */
1039 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1040 		lpss_iosf_exit_d3_state();
1041 
1042 	ret = acpi_dev_resume(dev);
1043 	if (ret)
1044 		return ret;
1045 
1046 	acpi_lpss_d3_to_d0_delay(pdata);
1047 
1048 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1049 		acpi_lpss_restore_ctx(dev, pdata);
1050 
1051 	return 0;
1052 }
1053 
1054 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1055 static int acpi_lpss_do_suspend_late(struct device *dev)
1056 {
1057 	int ret;
1058 
1059 	if (dev_pm_skip_suspend(dev))
1060 		return 0;
1061 
1062 	ret = pm_generic_suspend_late(dev);
1063 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1064 }
1065 
acpi_lpss_suspend_late(struct device * dev)1066 static int acpi_lpss_suspend_late(struct device *dev)
1067 {
1068 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1069 
1070 	if (pdata->dev_desc->resume_from_noirq)
1071 		return 0;
1072 
1073 	return acpi_lpss_do_suspend_late(dev);
1074 }
1075 
acpi_lpss_suspend_noirq(struct device * dev)1076 static int acpi_lpss_suspend_noirq(struct device *dev)
1077 {
1078 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1079 	int ret;
1080 
1081 	if (pdata->dev_desc->resume_from_noirq) {
1082 		/*
1083 		 * The driver's ->suspend_late callback will be invoked by
1084 		 * acpi_lpss_do_suspend_late(), with the assumption that the
1085 		 * driver really wanted to run that code in ->suspend_noirq, but
1086 		 * it could not run after acpi_dev_suspend() and the driver
1087 		 * expected the latter to be called in the "late" phase.
1088 		 */
1089 		ret = acpi_lpss_do_suspend_late(dev);
1090 		if (ret)
1091 			return ret;
1092 	}
1093 
1094 	return acpi_subsys_suspend_noirq(dev);
1095 }
1096 
acpi_lpss_do_resume_early(struct device * dev)1097 static int acpi_lpss_do_resume_early(struct device *dev)
1098 {
1099 	int ret = acpi_lpss_resume(dev);
1100 
1101 	return ret ? ret : pm_generic_resume_early(dev);
1102 }
1103 
acpi_lpss_resume_early(struct device * dev)1104 static int acpi_lpss_resume_early(struct device *dev)
1105 {
1106 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1107 
1108 	if (pdata->dev_desc->resume_from_noirq)
1109 		return 0;
1110 
1111 	if (dev_pm_skip_resume(dev))
1112 		return 0;
1113 
1114 	return acpi_lpss_do_resume_early(dev);
1115 }
1116 
acpi_lpss_resume_noirq(struct device * dev)1117 static int acpi_lpss_resume_noirq(struct device *dev)
1118 {
1119 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1120 	int ret;
1121 
1122 	/* Follow acpi_subsys_resume_noirq(). */
1123 	if (dev_pm_skip_resume(dev))
1124 		return 0;
1125 
1126 	ret = pm_generic_resume_noirq(dev);
1127 	if (ret)
1128 		return ret;
1129 
1130 	if (!pdata->dev_desc->resume_from_noirq)
1131 		return 0;
1132 
1133 	/*
1134 	 * The driver's ->resume_early callback will be invoked by
1135 	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1136 	 * really wanted to run that code in ->resume_noirq, but it could not
1137 	 * run before acpi_dev_resume() and the driver expected the latter to be
1138 	 * called in the "early" phase.
1139 	 */
1140 	return acpi_lpss_do_resume_early(dev);
1141 }
1142 
acpi_lpss_do_restore_early(struct device * dev)1143 static int acpi_lpss_do_restore_early(struct device *dev)
1144 {
1145 	int ret = acpi_lpss_resume(dev);
1146 
1147 	return ret ? ret : pm_generic_restore_early(dev);
1148 }
1149 
acpi_lpss_restore_early(struct device * dev)1150 static int acpi_lpss_restore_early(struct device *dev)
1151 {
1152 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1153 
1154 	if (pdata->dev_desc->resume_from_noirq)
1155 		return 0;
1156 
1157 	return acpi_lpss_do_restore_early(dev);
1158 }
1159 
acpi_lpss_restore_noirq(struct device * dev)1160 static int acpi_lpss_restore_noirq(struct device *dev)
1161 {
1162 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1163 	int ret;
1164 
1165 	ret = pm_generic_restore_noirq(dev);
1166 	if (ret)
1167 		return ret;
1168 
1169 	if (!pdata->dev_desc->resume_from_noirq)
1170 		return 0;
1171 
1172 	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1173 	return acpi_lpss_do_restore_early(dev);
1174 }
1175 
acpi_lpss_do_poweroff_late(struct device * dev)1176 static int acpi_lpss_do_poweroff_late(struct device *dev)
1177 {
1178 	int ret = pm_generic_poweroff_late(dev);
1179 
1180 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1181 }
1182 
acpi_lpss_poweroff_late(struct device * dev)1183 static int acpi_lpss_poweroff_late(struct device *dev)
1184 {
1185 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1186 
1187 	if (dev_pm_skip_suspend(dev))
1188 		return 0;
1189 
1190 	if (pdata->dev_desc->resume_from_noirq)
1191 		return 0;
1192 
1193 	return acpi_lpss_do_poweroff_late(dev);
1194 }
1195 
acpi_lpss_poweroff_noirq(struct device * dev)1196 static int acpi_lpss_poweroff_noirq(struct device *dev)
1197 {
1198 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1199 
1200 	if (dev_pm_skip_suspend(dev))
1201 		return 0;
1202 
1203 	if (pdata->dev_desc->resume_from_noirq) {
1204 		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1205 		int ret = acpi_lpss_do_poweroff_late(dev);
1206 		if (ret)
1207 			return ret;
1208 	}
1209 
1210 	return pm_generic_poweroff_noirq(dev);
1211 }
1212 #endif /* CONFIG_PM_SLEEP */
1213 
acpi_lpss_runtime_suspend(struct device * dev)1214 static int acpi_lpss_runtime_suspend(struct device *dev)
1215 {
1216 	int ret = pm_generic_runtime_suspend(dev);
1217 
1218 	return ret ? ret : acpi_lpss_suspend(dev, true);
1219 }
1220 
acpi_lpss_runtime_resume(struct device * dev)1221 static int acpi_lpss_runtime_resume(struct device *dev)
1222 {
1223 	int ret = acpi_lpss_resume(dev);
1224 
1225 	return ret ? ret : pm_generic_runtime_resume(dev);
1226 }
1227 #endif /* CONFIG_PM */
1228 
1229 static struct dev_pm_domain acpi_lpss_pm_domain = {
1230 #ifdef CONFIG_PM
1231 	.activate = acpi_lpss_activate,
1232 	.dismiss = acpi_lpss_dismiss,
1233 #endif
1234 	.ops = {
1235 #ifdef CONFIG_PM
1236 #ifdef CONFIG_PM_SLEEP
1237 		.prepare = acpi_subsys_prepare,
1238 		.complete = acpi_subsys_complete,
1239 		.suspend = acpi_subsys_suspend,
1240 		.suspend_late = acpi_lpss_suspend_late,
1241 		.suspend_noirq = acpi_lpss_suspend_noirq,
1242 		.resume_noirq = acpi_lpss_resume_noirq,
1243 		.resume_early = acpi_lpss_resume_early,
1244 		.freeze = acpi_subsys_freeze,
1245 		.poweroff = acpi_subsys_poweroff,
1246 		.poweroff_late = acpi_lpss_poweroff_late,
1247 		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1248 		.restore_noirq = acpi_lpss_restore_noirq,
1249 		.restore_early = acpi_lpss_restore_early,
1250 #endif
1251 		.runtime_suspend = acpi_lpss_runtime_suspend,
1252 		.runtime_resume = acpi_lpss_runtime_resume,
1253 #endif
1254 	},
1255 };
1256 
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1257 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1258 				     unsigned long action, void *data)
1259 {
1260 	struct platform_device *pdev = to_platform_device(data);
1261 	struct lpss_private_data *pdata;
1262 	struct acpi_device *adev;
1263 	const struct acpi_device_id *id;
1264 
1265 	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1266 	if (!id || !id->driver_data)
1267 		return 0;
1268 
1269 	if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1270 		return 0;
1271 
1272 	pdata = acpi_driver_data(adev);
1273 	if (!pdata)
1274 		return 0;
1275 
1276 	if (pdata->mmio_base &&
1277 	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1278 		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1279 		return 0;
1280 	}
1281 
1282 	switch (action) {
1283 	case BUS_NOTIFY_BIND_DRIVER:
1284 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1285 		break;
1286 	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1287 	case BUS_NOTIFY_UNBOUND_DRIVER:
1288 		dev_pm_domain_set(&pdev->dev, NULL);
1289 		break;
1290 	case BUS_NOTIFY_ADD_DEVICE:
1291 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292 		if (pdata->dev_desc->flags & LPSS_LTR)
1293 			return sysfs_create_group(&pdev->dev.kobj,
1294 						  &lpss_attr_group);
1295 		break;
1296 	case BUS_NOTIFY_DEL_DEVICE:
1297 		if (pdata->dev_desc->flags & LPSS_LTR)
1298 			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1299 		dev_pm_domain_set(&pdev->dev, NULL);
1300 		break;
1301 	default:
1302 		break;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static struct notifier_block acpi_lpss_nb = {
1309 	.notifier_call = acpi_lpss_platform_notify,
1310 };
1311 
acpi_lpss_bind(struct device * dev)1312 static void acpi_lpss_bind(struct device *dev)
1313 {
1314 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1315 
1316 	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1317 		return;
1318 
1319 	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1320 		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1321 	else
1322 		dev_err(dev, "MMIO size insufficient to access LTR\n");
1323 }
1324 
acpi_lpss_unbind(struct device * dev)1325 static void acpi_lpss_unbind(struct device *dev)
1326 {
1327 	dev->power.set_latency_tolerance = NULL;
1328 }
1329 
1330 static struct acpi_scan_handler lpss_handler = {
1331 	.ids = acpi_lpss_device_ids,
1332 	.attach = acpi_lpss_create_device,
1333 	.bind = acpi_lpss_bind,
1334 	.unbind = acpi_lpss_unbind,
1335 };
1336 
acpi_lpss_init(void)1337 void __init acpi_lpss_init(void)
1338 {
1339 	const struct x86_cpu_id *id;
1340 	int ret;
1341 
1342 	ret = lpt_clk_init();
1343 	if (ret)
1344 		return;
1345 
1346 	id = x86_match_cpu(lpss_cpu_ids);
1347 	if (id)
1348 		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1349 
1350 	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1351 	acpi_scan_add_handler(&lpss_handler);
1352 }
1353 
1354 #else
1355 
1356 static struct acpi_scan_handler lpss_handler = {
1357 	.ids = acpi_lpss_device_ids,
1358 };
1359 
acpi_lpss_init(void)1360 void __init acpi_lpss_init(void)
1361 {
1362 	acpi_scan_add_handler(&lpss_handler);
1363 }
1364 
1365 #endif /* CONFIG_X86_INTEL_LPSS */
1366