1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/nospec.h>
9 #include <linux/mutex.h>
10 #include <linux/ndctl.h>
11 #include <linux/sysfs.h>
12 #include <linux/delay.h>
13 #include <linux/list.h>
14 #include <linux/acpi.h>
15 #include <linux/sort.h>
16 #include <linux/io.h>
17 #include <linux/nd.h>
18 #include <asm/cacheflush.h>
19 #include <acpi/nfit.h>
20 #include "intel.h"
21 #include "nfit.h"
22
23 /*
24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25 * irrelevant.
26 */
27 #include <linux/io-64-nonatomic-hi-lo.h>
28
29 static bool force_enable_dimms;
30 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32
33 static bool disable_vendor_specific;
34 module_param(disable_vendor_specific, bool, S_IRUGO);
35 MODULE_PARM_DESC(disable_vendor_specific,
36 "Limit commands to the publicly specified set");
37
38 static unsigned long override_dsm_mask;
39 module_param(override_dsm_mask, ulong, S_IRUGO);
40 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41
42 static int default_dsm_family = -1;
43 module_param(default_dsm_family, int, S_IRUGO);
44 MODULE_PARM_DESC(default_dsm_family,
45 "Try this DSM type first when identifying NVDIMM family");
46
47 static bool no_init_ars;
48 module_param(no_init_ars, bool, 0644);
49 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50
51 static bool force_labels;
52 module_param(force_labels, bool, 0444);
53 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54
55 LIST_HEAD(acpi_descs);
56 DEFINE_MUTEX(acpi_desc_lock);
57
58 static struct workqueue_struct *nfit_wq;
59
60 struct nfit_table_prev {
61 struct list_head spas;
62 struct list_head memdevs;
63 struct list_head dcrs;
64 struct list_head bdws;
65 struct list_head idts;
66 struct list_head flushes;
67 };
68
69 static guid_t nfit_uuid[NFIT_UUID_MAX];
70
to_nfit_uuid(enum nfit_uuids id)71 const guid_t *to_nfit_uuid(enum nfit_uuids id)
72 {
73 return &nfit_uuid[id];
74 }
75 EXPORT_SYMBOL(to_nfit_uuid);
76
to_nfit_bus_uuid(int family)77 static const guid_t *to_nfit_bus_uuid(int family)
78 {
79 if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80 "only secondary bus families can be translated\n"))
81 return NULL;
82 /*
83 * The index of bus UUIDs starts immediately following the last
84 * NVDIMM/leaf family.
85 */
86 return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87 }
88
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)89 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90 {
91 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92
93 /*
94 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95 * acpi_device.
96 */
97 if (!nd_desc->provider_name
98 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99 return NULL;
100
101 return to_acpi_device(acpi_desc->dev);
102 }
103
xlat_bus_status(void * buf,unsigned int cmd,u32 status)104 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105 {
106 struct nd_cmd_clear_error *clear_err;
107 struct nd_cmd_ars_status *ars_status;
108 u16 flags;
109
110 switch (cmd) {
111 case ND_CMD_ARS_CAP:
112 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113 return -ENOTTY;
114
115 /* Command failed */
116 if (status & 0xffff)
117 return -EIO;
118
119 /* No supported scan types for this range */
120 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121 if ((status >> 16 & flags) == 0)
122 return -ENOTTY;
123 return 0;
124 case ND_CMD_ARS_START:
125 /* ARS is in progress */
126 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127 return -EBUSY;
128
129 /* Command failed */
130 if (status & 0xffff)
131 return -EIO;
132 return 0;
133 case ND_CMD_ARS_STATUS:
134 ars_status = buf;
135 /* Command failed */
136 if (status & 0xffff)
137 return -EIO;
138 /* Check extended status (Upper two bytes) */
139 if (status == NFIT_ARS_STATUS_DONE)
140 return 0;
141
142 /* ARS is in progress */
143 if (status == NFIT_ARS_STATUS_BUSY)
144 return -EBUSY;
145
146 /* No ARS performed for the current boot */
147 if (status == NFIT_ARS_STATUS_NONE)
148 return -EAGAIN;
149
150 /*
151 * ARS interrupted, either we overflowed or some other
152 * agent wants the scan to stop. If we didn't overflow
153 * then just continue with the returned results.
154 */
155 if (status == NFIT_ARS_STATUS_INTR) {
156 if (ars_status->out_length >= 40 && (ars_status->flags
157 & NFIT_ARS_F_OVERFLOW))
158 return -ENOSPC;
159 return 0;
160 }
161
162 /* Unknown status */
163 if (status >> 16)
164 return -EIO;
165 return 0;
166 case ND_CMD_CLEAR_ERROR:
167 clear_err = buf;
168 if (status & 0xffff)
169 return -EIO;
170 if (!clear_err->cleared)
171 return -EIO;
172 if (clear_err->length > clear_err->cleared)
173 return clear_err->cleared;
174 return 0;
175 default:
176 break;
177 }
178
179 /* all other non-zero status results in an error */
180 if (status)
181 return -EIO;
182 return 0;
183 }
184
185 #define ACPI_LABELS_LOCKED 3
186
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)187 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188 u32 status)
189 {
190 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191
192 switch (cmd) {
193 case ND_CMD_GET_CONFIG_SIZE:
194 /*
195 * In the _LSI, _LSR, _LSW case the locked status is
196 * communicated via the read/write commands
197 */
198 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199 break;
200
201 if (status >> 16 & ND_CONFIG_LOCKED)
202 return -EACCES;
203 break;
204 case ND_CMD_GET_CONFIG_DATA:
205 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206 && status == ACPI_LABELS_LOCKED)
207 return -EACCES;
208 break;
209 case ND_CMD_SET_CONFIG_DATA:
210 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211 && status == ACPI_LABELS_LOCKED)
212 return -EACCES;
213 break;
214 default:
215 break;
216 }
217
218 /* all other non-zero status results in an error */
219 if (status)
220 return -EIO;
221 return 0;
222 }
223
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)224 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225 u32 status)
226 {
227 if (!nvdimm)
228 return xlat_bus_status(buf, cmd, status);
229 return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230 }
231
232 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)233 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234 {
235 int i;
236 void *dst;
237 size_t size = 0;
238 union acpi_object *buf = NULL;
239
240 if (pkg->type != ACPI_TYPE_PACKAGE) {
241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 pkg->type);
243 goto err;
244 }
245
246 for (i = 0; i < pkg->package.count; i++) {
247 union acpi_object *obj = &pkg->package.elements[i];
248
249 if (obj->type == ACPI_TYPE_INTEGER)
250 size += 4;
251 else if (obj->type == ACPI_TYPE_BUFFER)
252 size += obj->buffer.length;
253 else {
254 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255 obj->type);
256 goto err;
257 }
258 }
259
260 buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261 if (!buf)
262 goto err;
263
264 dst = buf + 1;
265 buf->type = ACPI_TYPE_BUFFER;
266 buf->buffer.length = size;
267 buf->buffer.pointer = dst;
268 for (i = 0; i < pkg->package.count; i++) {
269 union acpi_object *obj = &pkg->package.elements[i];
270
271 if (obj->type == ACPI_TYPE_INTEGER) {
272 memcpy(dst, &obj->integer.value, 4);
273 dst += 4;
274 } else if (obj->type == ACPI_TYPE_BUFFER) {
275 memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276 dst += obj->buffer.length;
277 }
278 }
279 err:
280 ACPI_FREE(pkg);
281 return buf;
282 }
283
int_to_buf(union acpi_object * integer)284 static union acpi_object *int_to_buf(union acpi_object *integer)
285 {
286 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
287 void *dst = NULL;
288
289 if (!buf)
290 goto err;
291
292 if (integer->type != ACPI_TYPE_INTEGER) {
293 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
294 integer->type);
295 goto err;
296 }
297
298 dst = buf + 1;
299 buf->type = ACPI_TYPE_BUFFER;
300 buf->buffer.length = 4;
301 buf->buffer.pointer = dst;
302 memcpy(dst, &integer->integer.value, 4);
303 err:
304 ACPI_FREE(integer);
305 return buf;
306 }
307
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)308 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
309 u32 len, void *data)
310 {
311 acpi_status rc;
312 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
313 struct acpi_object_list input = {
314 .count = 3,
315 .pointer = (union acpi_object []) {
316 [0] = {
317 .integer.type = ACPI_TYPE_INTEGER,
318 .integer.value = offset,
319 },
320 [1] = {
321 .integer.type = ACPI_TYPE_INTEGER,
322 .integer.value = len,
323 },
324 [2] = {
325 .buffer.type = ACPI_TYPE_BUFFER,
326 .buffer.pointer = data,
327 .buffer.length = len,
328 },
329 },
330 };
331
332 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
333 if (ACPI_FAILURE(rc))
334 return NULL;
335 return int_to_buf(buf.pointer);
336 }
337
acpi_label_read(acpi_handle handle,u32 offset,u32 len)338 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
339 u32 len)
340 {
341 acpi_status rc;
342 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
343 struct acpi_object_list input = {
344 .count = 2,
345 .pointer = (union acpi_object []) {
346 [0] = {
347 .integer.type = ACPI_TYPE_INTEGER,
348 .integer.value = offset,
349 },
350 [1] = {
351 .integer.type = ACPI_TYPE_INTEGER,
352 .integer.value = len,
353 },
354 },
355 };
356
357 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
358 if (ACPI_FAILURE(rc))
359 return NULL;
360 return pkg_to_buf(buf.pointer);
361 }
362
acpi_label_info(acpi_handle handle)363 static union acpi_object *acpi_label_info(acpi_handle handle)
364 {
365 acpi_status rc;
366 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
367
368 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
369 if (ACPI_FAILURE(rc))
370 return NULL;
371 return pkg_to_buf(buf.pointer);
372 }
373
nfit_dsm_revid(unsigned family,unsigned func)374 static u8 nfit_dsm_revid(unsigned family, unsigned func)
375 {
376 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
377 [NVDIMM_FAMILY_INTEL] = {
378 [NVDIMM_INTEL_GET_MODES ...
379 NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
380 },
381 };
382 u8 id;
383
384 if (family > NVDIMM_FAMILY_MAX)
385 return 0;
386 if (func > NVDIMM_CMD_MAX)
387 return 0;
388 id = revid_table[family][func];
389 if (id == 0)
390 return 1; /* default */
391 return id;
392 }
393
payload_dumpable(struct nvdimm * nvdimm,unsigned int func)394 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
395 {
396 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
397
398 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
399 && func >= NVDIMM_INTEL_GET_SECURITY_STATE
400 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
401 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
402 return true;
403 }
404
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg,int * family)405 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
406 struct nd_cmd_pkg *call_pkg, int *family)
407 {
408 if (call_pkg) {
409 int i;
410
411 if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
412 return -ENOTTY;
413
414 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
415 if (call_pkg->nd_reserved2[i])
416 return -EINVAL;
417 *family = call_pkg->nd_family;
418 return call_pkg->nd_command;
419 }
420
421 /* In the !call_pkg case, bus commands == bus functions */
422 if (!nfit_mem)
423 return cmd;
424
425 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
426 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
427 return cmd;
428
429 /*
430 * Force function number validation to fail since 0 is never
431 * published as a valid function in dsm_mask.
432 */
433 return 0;
434 }
435
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)436 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
437 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
438 {
439 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
440 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
441 union acpi_object in_obj, in_buf, *out_obj;
442 const struct nd_cmd_desc *desc = NULL;
443 struct device *dev = acpi_desc->dev;
444 struct nd_cmd_pkg *call_pkg = NULL;
445 const char *cmd_name, *dimm_name;
446 unsigned long cmd_mask, dsm_mask;
447 u32 offset, fw_status = 0;
448 acpi_handle handle;
449 const guid_t *guid;
450 int func, rc, i;
451 int family = 0;
452
453 if (cmd_rc)
454 *cmd_rc = -EINVAL;
455
456 if (cmd == ND_CMD_CALL)
457 call_pkg = buf;
458 func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
459 if (func < 0)
460 return func;
461
462 if (nvdimm) {
463 struct acpi_device *adev = nfit_mem->adev;
464
465 if (!adev)
466 return -ENOTTY;
467
468 dimm_name = nvdimm_name(nvdimm);
469 cmd_name = nvdimm_cmd_name(cmd);
470 cmd_mask = nvdimm_cmd_mask(nvdimm);
471 dsm_mask = nfit_mem->dsm_mask;
472 desc = nd_cmd_dimm_desc(cmd);
473 guid = to_nfit_uuid(nfit_mem->family);
474 handle = adev->handle;
475 } else {
476 struct acpi_device *adev = to_acpi_dev(acpi_desc);
477
478 cmd_name = nvdimm_bus_cmd_name(cmd);
479 cmd_mask = nd_desc->cmd_mask;
480 if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
481 family = call_pkg->nd_family;
482 if (family > NVDIMM_BUS_FAMILY_MAX ||
483 !test_bit(family, &nd_desc->bus_family_mask))
484 return -EINVAL;
485 family = array_index_nospec(family,
486 NVDIMM_BUS_FAMILY_MAX + 1);
487 dsm_mask = acpi_desc->family_dsm_mask[family];
488 guid = to_nfit_bus_uuid(family);
489 } else {
490 dsm_mask = acpi_desc->bus_dsm_mask;
491 guid = to_nfit_uuid(NFIT_DEV_BUS);
492 }
493 desc = nd_cmd_bus_desc(cmd);
494 handle = adev->handle;
495 dimm_name = "bus";
496 }
497
498 if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
499 return -ENOTTY;
500
501 /*
502 * Check for a valid command. For ND_CMD_CALL, we also have to
503 * make sure that the DSM function is supported.
504 */
505 if (cmd == ND_CMD_CALL &&
506 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
507 return -ENOTTY;
508 else if (!test_bit(cmd, &cmd_mask))
509 return -ENOTTY;
510
511 in_obj.type = ACPI_TYPE_PACKAGE;
512 in_obj.package.count = 1;
513 in_obj.package.elements = &in_buf;
514 in_buf.type = ACPI_TYPE_BUFFER;
515 in_buf.buffer.pointer = buf;
516 in_buf.buffer.length = 0;
517
518 /* libnvdimm has already validated the input envelope */
519 for (i = 0; i < desc->in_num; i++)
520 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
521 i, buf);
522
523 if (call_pkg) {
524 /* skip over package wrapper */
525 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
526 in_buf.buffer.length = call_pkg->nd_size_in;
527 }
528
529 dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
530 dimm_name, cmd, family, func, in_buf.buffer.length);
531 if (payload_dumpable(nvdimm, func))
532 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
533 in_buf.buffer.pointer,
534 min_t(u32, 256, in_buf.buffer.length), true);
535
536 /* call the BIOS, prefer the named methods over _DSM if available */
537 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
538 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
539 out_obj = acpi_label_info(handle);
540 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
541 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
542 struct nd_cmd_get_config_data_hdr *p = buf;
543
544 out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
545 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
546 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
547 struct nd_cmd_set_config_hdr *p = buf;
548
549 out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
550 p->in_buf);
551 } else {
552 u8 revid;
553
554 if (nvdimm)
555 revid = nfit_dsm_revid(nfit_mem->family, func);
556 else
557 revid = 1;
558 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
559 }
560
561 if (!out_obj) {
562 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
563 return -EINVAL;
564 }
565
566 if (out_obj->type != ACPI_TYPE_BUFFER) {
567 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
568 dimm_name, cmd_name, out_obj->type);
569 rc = -EINVAL;
570 goto out;
571 }
572
573 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
574 cmd_name, out_obj->buffer.length);
575 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
576 out_obj->buffer.pointer,
577 min_t(u32, 128, out_obj->buffer.length), true);
578
579 if (call_pkg) {
580 call_pkg->nd_fw_size = out_obj->buffer.length;
581 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
582 out_obj->buffer.pointer,
583 min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
584
585 ACPI_FREE(out_obj);
586 /*
587 * Need to support FW function w/o known size in advance.
588 * Caller can determine required size based upon nd_fw_size.
589 * If we return an error (like elsewhere) then caller wouldn't
590 * be able to rely upon data returned to make calculation.
591 */
592 if (cmd_rc)
593 *cmd_rc = 0;
594 return 0;
595 }
596
597 for (i = 0, offset = 0; i < desc->out_num; i++) {
598 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
599 (u32 *) out_obj->buffer.pointer,
600 out_obj->buffer.length - offset);
601
602 if (offset + out_size > out_obj->buffer.length) {
603 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
604 dimm_name, cmd_name, i);
605 break;
606 }
607
608 if (in_buf.buffer.length + offset + out_size > buf_len) {
609 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
610 dimm_name, cmd_name, i);
611 rc = -ENXIO;
612 goto out;
613 }
614 memcpy(buf + in_buf.buffer.length + offset,
615 out_obj->buffer.pointer + offset, out_size);
616 offset += out_size;
617 }
618
619 /*
620 * Set fw_status for all the commands with a known format to be
621 * later interpreted by xlat_status().
622 */
623 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
624 && cmd <= ND_CMD_CLEAR_ERROR)
625 || (nvdimm && cmd >= ND_CMD_SMART
626 && cmd <= ND_CMD_VENDOR)))
627 fw_status = *(u32 *) out_obj->buffer.pointer;
628
629 if (offset + in_buf.buffer.length < buf_len) {
630 if (i >= 1) {
631 /*
632 * status valid, return the number of bytes left
633 * unfilled in the output buffer
634 */
635 rc = buf_len - offset - in_buf.buffer.length;
636 if (cmd_rc)
637 *cmd_rc = xlat_status(nvdimm, buf, cmd,
638 fw_status);
639 } else {
640 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
641 __func__, dimm_name, cmd_name, buf_len,
642 offset);
643 rc = -ENXIO;
644 }
645 } else {
646 rc = 0;
647 if (cmd_rc)
648 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
649 }
650
651 out:
652 ACPI_FREE(out_obj);
653
654 return rc;
655 }
656 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
657
spa_type_name(u16 type)658 static const char *spa_type_name(u16 type)
659 {
660 static const char *to_name[] = {
661 [NFIT_SPA_VOLATILE] = "volatile",
662 [NFIT_SPA_PM] = "pmem",
663 [NFIT_SPA_DCR] = "dimm-control-region",
664 [NFIT_SPA_BDW] = "block-data-window",
665 [NFIT_SPA_VDISK] = "volatile-disk",
666 [NFIT_SPA_VCD] = "volatile-cd",
667 [NFIT_SPA_PDISK] = "persistent-disk",
668 [NFIT_SPA_PCD] = "persistent-cd",
669
670 };
671
672 if (type > NFIT_SPA_PCD)
673 return "unknown";
674
675 return to_name[type];
676 }
677
nfit_spa_type(struct acpi_nfit_system_address * spa)678 int nfit_spa_type(struct acpi_nfit_system_address *spa)
679 {
680 int i;
681
682 for (i = 0; i < NFIT_UUID_MAX; i++)
683 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
684 return i;
685 return -1;
686 }
687
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)688 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
689 struct nfit_table_prev *prev,
690 struct acpi_nfit_system_address *spa)
691 {
692 struct device *dev = acpi_desc->dev;
693 struct nfit_spa *nfit_spa;
694
695 if (spa->header.length != sizeof(*spa))
696 return false;
697
698 list_for_each_entry(nfit_spa, &prev->spas, list) {
699 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
700 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
701 return true;
702 }
703 }
704
705 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
706 GFP_KERNEL);
707 if (!nfit_spa)
708 return false;
709 INIT_LIST_HEAD(&nfit_spa->list);
710 memcpy(nfit_spa->spa, spa, sizeof(*spa));
711 list_add_tail(&nfit_spa->list, &acpi_desc->spas);
712 dev_dbg(dev, "spa index: %d type: %s\n",
713 spa->range_index,
714 spa_type_name(nfit_spa_type(spa)));
715 return true;
716 }
717
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)718 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
719 struct nfit_table_prev *prev,
720 struct acpi_nfit_memory_map *memdev)
721 {
722 struct device *dev = acpi_desc->dev;
723 struct nfit_memdev *nfit_memdev;
724
725 if (memdev->header.length != sizeof(*memdev))
726 return false;
727
728 list_for_each_entry(nfit_memdev, &prev->memdevs, list)
729 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
730 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
731 return true;
732 }
733
734 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
735 GFP_KERNEL);
736 if (!nfit_memdev)
737 return false;
738 INIT_LIST_HEAD(&nfit_memdev->list);
739 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
740 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
741 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
742 memdev->device_handle, memdev->range_index,
743 memdev->region_index, memdev->flags);
744 return true;
745 }
746
nfit_get_smbios_id(u32 device_handle,u16 * flags)747 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
748 {
749 struct acpi_nfit_memory_map *memdev;
750 struct acpi_nfit_desc *acpi_desc;
751 struct nfit_mem *nfit_mem;
752 u16 physical_id;
753
754 mutex_lock(&acpi_desc_lock);
755 list_for_each_entry(acpi_desc, &acpi_descs, list) {
756 mutex_lock(&acpi_desc->init_mutex);
757 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
758 memdev = __to_nfit_memdev(nfit_mem);
759 if (memdev->device_handle == device_handle) {
760 *flags = memdev->flags;
761 physical_id = memdev->physical_id;
762 mutex_unlock(&acpi_desc->init_mutex);
763 mutex_unlock(&acpi_desc_lock);
764 return physical_id;
765 }
766 }
767 mutex_unlock(&acpi_desc->init_mutex);
768 }
769 mutex_unlock(&acpi_desc_lock);
770
771 return -ENODEV;
772 }
773 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
774
775 /*
776 * An implementation may provide a truncated control region if no block windows
777 * are defined.
778 */
sizeof_dcr(struct acpi_nfit_control_region * dcr)779 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
780 {
781 if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
782 window_size))
783 return 0;
784 if (dcr->windows)
785 return sizeof(*dcr);
786 return offsetof(struct acpi_nfit_control_region, window_size);
787 }
788
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)789 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
790 struct nfit_table_prev *prev,
791 struct acpi_nfit_control_region *dcr)
792 {
793 struct device *dev = acpi_desc->dev;
794 struct nfit_dcr *nfit_dcr;
795
796 if (!sizeof_dcr(dcr))
797 return false;
798
799 list_for_each_entry(nfit_dcr, &prev->dcrs, list)
800 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
801 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
802 return true;
803 }
804
805 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
806 GFP_KERNEL);
807 if (!nfit_dcr)
808 return false;
809 INIT_LIST_HEAD(&nfit_dcr->list);
810 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
811 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
812 dev_dbg(dev, "dcr index: %d windows: %d\n",
813 dcr->region_index, dcr->windows);
814 return true;
815 }
816
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)817 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
818 struct nfit_table_prev *prev,
819 struct acpi_nfit_data_region *bdw)
820 {
821 struct device *dev = acpi_desc->dev;
822 struct nfit_bdw *nfit_bdw;
823
824 if (bdw->header.length != sizeof(*bdw))
825 return false;
826 list_for_each_entry(nfit_bdw, &prev->bdws, list)
827 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
828 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
829 return true;
830 }
831
832 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
833 GFP_KERNEL);
834 if (!nfit_bdw)
835 return false;
836 INIT_LIST_HEAD(&nfit_bdw->list);
837 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
838 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
839 dev_dbg(dev, "bdw dcr: %d windows: %d\n",
840 bdw->region_index, bdw->windows);
841 return true;
842 }
843
sizeof_idt(struct acpi_nfit_interleave * idt)844 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
845 {
846 if (idt->header.length < sizeof(*idt))
847 return 0;
848 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
849 }
850
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)851 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
852 struct nfit_table_prev *prev,
853 struct acpi_nfit_interleave *idt)
854 {
855 struct device *dev = acpi_desc->dev;
856 struct nfit_idt *nfit_idt;
857
858 if (!sizeof_idt(idt))
859 return false;
860
861 list_for_each_entry(nfit_idt, &prev->idts, list) {
862 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
863 continue;
864
865 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
866 list_move_tail(&nfit_idt->list, &acpi_desc->idts);
867 return true;
868 }
869 }
870
871 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
872 GFP_KERNEL);
873 if (!nfit_idt)
874 return false;
875 INIT_LIST_HEAD(&nfit_idt->list);
876 memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
877 list_add_tail(&nfit_idt->list, &acpi_desc->idts);
878 dev_dbg(dev, "idt index: %d num_lines: %d\n",
879 idt->interleave_index, idt->line_count);
880 return true;
881 }
882
sizeof_flush(struct acpi_nfit_flush_address * flush)883 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
884 {
885 if (flush->header.length < sizeof(*flush))
886 return 0;
887 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
888 }
889
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)890 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
891 struct nfit_table_prev *prev,
892 struct acpi_nfit_flush_address *flush)
893 {
894 struct device *dev = acpi_desc->dev;
895 struct nfit_flush *nfit_flush;
896
897 if (!sizeof_flush(flush))
898 return false;
899
900 list_for_each_entry(nfit_flush, &prev->flushes, list) {
901 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
902 continue;
903
904 if (memcmp(nfit_flush->flush, flush,
905 sizeof_flush(flush)) == 0) {
906 list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
907 return true;
908 }
909 }
910
911 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
912 + sizeof_flush(flush), GFP_KERNEL);
913 if (!nfit_flush)
914 return false;
915 INIT_LIST_HEAD(&nfit_flush->list);
916 memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
917 list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
918 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
919 flush->device_handle, flush->hint_count);
920 return true;
921 }
922
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)923 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
924 struct acpi_nfit_capabilities *pcap)
925 {
926 struct device *dev = acpi_desc->dev;
927 u32 mask;
928
929 mask = (1 << (pcap->highest_capability + 1)) - 1;
930 acpi_desc->platform_cap = pcap->capabilities & mask;
931 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
932 return true;
933 }
934
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)935 static void *add_table(struct acpi_nfit_desc *acpi_desc,
936 struct nfit_table_prev *prev, void *table, const void *end)
937 {
938 struct device *dev = acpi_desc->dev;
939 struct acpi_nfit_header *hdr;
940 void *err = ERR_PTR(-ENOMEM);
941
942 if (table >= end)
943 return NULL;
944
945 hdr = table;
946 if (!hdr->length) {
947 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
948 hdr->type);
949 return NULL;
950 }
951
952 switch (hdr->type) {
953 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
954 if (!add_spa(acpi_desc, prev, table))
955 return err;
956 break;
957 case ACPI_NFIT_TYPE_MEMORY_MAP:
958 if (!add_memdev(acpi_desc, prev, table))
959 return err;
960 break;
961 case ACPI_NFIT_TYPE_CONTROL_REGION:
962 if (!add_dcr(acpi_desc, prev, table))
963 return err;
964 break;
965 case ACPI_NFIT_TYPE_DATA_REGION:
966 if (!add_bdw(acpi_desc, prev, table))
967 return err;
968 break;
969 case ACPI_NFIT_TYPE_INTERLEAVE:
970 if (!add_idt(acpi_desc, prev, table))
971 return err;
972 break;
973 case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
974 if (!add_flush(acpi_desc, prev, table))
975 return err;
976 break;
977 case ACPI_NFIT_TYPE_SMBIOS:
978 dev_dbg(dev, "smbios\n");
979 break;
980 case ACPI_NFIT_TYPE_CAPABILITIES:
981 if (!add_platform_cap(acpi_desc, table))
982 return err;
983 break;
984 default:
985 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
986 break;
987 }
988
989 return table + hdr->length;
990 }
991
nfit_mem_find_spa_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem)992 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
993 struct nfit_mem *nfit_mem)
994 {
995 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
996 u16 dcr = nfit_mem->dcr->region_index;
997 struct nfit_spa *nfit_spa;
998
999 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1000 u16 range_index = nfit_spa->spa->range_index;
1001 int type = nfit_spa_type(nfit_spa->spa);
1002 struct nfit_memdev *nfit_memdev;
1003
1004 if (type != NFIT_SPA_BDW)
1005 continue;
1006
1007 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1008 if (nfit_memdev->memdev->range_index != range_index)
1009 continue;
1010 if (nfit_memdev->memdev->device_handle != device_handle)
1011 continue;
1012 if (nfit_memdev->memdev->region_index != dcr)
1013 continue;
1014
1015 nfit_mem->spa_bdw = nfit_spa->spa;
1016 return;
1017 }
1018 }
1019
1020 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1021 nfit_mem->spa_dcr->range_index);
1022 nfit_mem->bdw = NULL;
1023 }
1024
nfit_mem_init_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,struct acpi_nfit_system_address * spa)1025 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1026 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1027 {
1028 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1029 struct nfit_memdev *nfit_memdev;
1030 struct nfit_bdw *nfit_bdw;
1031 struct nfit_idt *nfit_idt;
1032 u16 idt_idx, range_index;
1033
1034 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1035 if (nfit_bdw->bdw->region_index != dcr)
1036 continue;
1037 nfit_mem->bdw = nfit_bdw->bdw;
1038 break;
1039 }
1040
1041 if (!nfit_mem->bdw)
1042 return;
1043
1044 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1045
1046 if (!nfit_mem->spa_bdw)
1047 return;
1048
1049 range_index = nfit_mem->spa_bdw->range_index;
1050 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1051 if (nfit_memdev->memdev->range_index != range_index ||
1052 nfit_memdev->memdev->region_index != dcr)
1053 continue;
1054 nfit_mem->memdev_bdw = nfit_memdev->memdev;
1055 idt_idx = nfit_memdev->memdev->interleave_index;
1056 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1057 if (nfit_idt->idt->interleave_index != idt_idx)
1058 continue;
1059 nfit_mem->idt_bdw = nfit_idt->idt;
1060 break;
1061 }
1062 break;
1063 }
1064 }
1065
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1066 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1067 struct acpi_nfit_system_address *spa)
1068 {
1069 struct nfit_mem *nfit_mem, *found;
1070 struct nfit_memdev *nfit_memdev;
1071 int type = spa ? nfit_spa_type(spa) : 0;
1072
1073 switch (type) {
1074 case NFIT_SPA_DCR:
1075 case NFIT_SPA_PM:
1076 break;
1077 default:
1078 if (spa)
1079 return 0;
1080 }
1081
1082 /*
1083 * This loop runs in two modes, when a dimm is mapped the loop
1084 * adds memdev associations to an existing dimm, or creates a
1085 * dimm. In the unmapped dimm case this loop sweeps for memdev
1086 * instances with an invalid / zero range_index and adds those
1087 * dimms without spa associations.
1088 */
1089 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1090 struct nfit_flush *nfit_flush;
1091 struct nfit_dcr *nfit_dcr;
1092 u32 device_handle;
1093 u16 dcr;
1094
1095 if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1096 continue;
1097 if (!spa && nfit_memdev->memdev->range_index)
1098 continue;
1099 found = NULL;
1100 dcr = nfit_memdev->memdev->region_index;
1101 device_handle = nfit_memdev->memdev->device_handle;
1102 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1103 if (__to_nfit_memdev(nfit_mem)->device_handle
1104 == device_handle) {
1105 found = nfit_mem;
1106 break;
1107 }
1108
1109 if (found)
1110 nfit_mem = found;
1111 else {
1112 nfit_mem = devm_kzalloc(acpi_desc->dev,
1113 sizeof(*nfit_mem), GFP_KERNEL);
1114 if (!nfit_mem)
1115 return -ENOMEM;
1116 INIT_LIST_HEAD(&nfit_mem->list);
1117 nfit_mem->acpi_desc = acpi_desc;
1118 list_add(&nfit_mem->list, &acpi_desc->dimms);
1119 }
1120
1121 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1122 if (nfit_dcr->dcr->region_index != dcr)
1123 continue;
1124 /*
1125 * Record the control region for the dimm. For
1126 * the ACPI 6.1 case, where there are separate
1127 * control regions for the pmem vs blk
1128 * interfaces, be sure to record the extended
1129 * blk details.
1130 */
1131 if (!nfit_mem->dcr)
1132 nfit_mem->dcr = nfit_dcr->dcr;
1133 else if (nfit_mem->dcr->windows == 0
1134 && nfit_dcr->dcr->windows)
1135 nfit_mem->dcr = nfit_dcr->dcr;
1136 break;
1137 }
1138
1139 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1140 struct acpi_nfit_flush_address *flush;
1141 u16 i;
1142
1143 if (nfit_flush->flush->device_handle != device_handle)
1144 continue;
1145 nfit_mem->nfit_flush = nfit_flush;
1146 flush = nfit_flush->flush;
1147 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1148 flush->hint_count,
1149 sizeof(struct resource),
1150 GFP_KERNEL);
1151 if (!nfit_mem->flush_wpq)
1152 return -ENOMEM;
1153 for (i = 0; i < flush->hint_count; i++) {
1154 struct resource *res = &nfit_mem->flush_wpq[i];
1155
1156 res->start = flush->hint_address[i];
1157 res->end = res->start + 8 - 1;
1158 }
1159 break;
1160 }
1161
1162 if (dcr && !nfit_mem->dcr) {
1163 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1164 spa->range_index, dcr);
1165 return -ENODEV;
1166 }
1167
1168 if (type == NFIT_SPA_DCR) {
1169 struct nfit_idt *nfit_idt;
1170 u16 idt_idx;
1171
1172 /* multiple dimms may share a SPA when interleaved */
1173 nfit_mem->spa_dcr = spa;
1174 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1175 idt_idx = nfit_memdev->memdev->interleave_index;
1176 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1177 if (nfit_idt->idt->interleave_index != idt_idx)
1178 continue;
1179 nfit_mem->idt_dcr = nfit_idt->idt;
1180 break;
1181 }
1182 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1183 } else if (type == NFIT_SPA_PM) {
1184 /*
1185 * A single dimm may belong to multiple SPA-PM
1186 * ranges, record at least one in addition to
1187 * any SPA-DCR range.
1188 */
1189 nfit_mem->memdev_pmem = nfit_memdev->memdev;
1190 } else
1191 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1192 }
1193
1194 return 0;
1195 }
1196
nfit_mem_cmp(void * priv,const struct list_head * _a,const struct list_head * _b)1197 static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1198 const struct list_head *_b)
1199 {
1200 struct nfit_mem *a = container_of(_a, typeof(*a), list);
1201 struct nfit_mem *b = container_of(_b, typeof(*b), list);
1202 u32 handleA, handleB;
1203
1204 handleA = __to_nfit_memdev(a)->device_handle;
1205 handleB = __to_nfit_memdev(b)->device_handle;
1206 if (handleA < handleB)
1207 return -1;
1208 else if (handleA > handleB)
1209 return 1;
1210 return 0;
1211 }
1212
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1213 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1214 {
1215 struct nfit_spa *nfit_spa;
1216 int rc;
1217
1218
1219 /*
1220 * For each SPA-DCR or SPA-PMEM address range find its
1221 * corresponding MEMDEV(s). From each MEMDEV find the
1222 * corresponding DCR. Then, if we're operating on a SPA-DCR,
1223 * try to find a SPA-BDW and a corresponding BDW that references
1224 * the DCR. Throw it all into an nfit_mem object. Note, that
1225 * BDWs are optional.
1226 */
1227 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1228 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1229 if (rc)
1230 return rc;
1231 }
1232
1233 /*
1234 * If a DIMM has failed to be mapped into SPA there will be no
1235 * SPA entries above. Find and register all the unmapped DIMMs
1236 * for reporting and recovery purposes.
1237 */
1238 rc = __nfit_mem_init(acpi_desc, NULL);
1239 if (rc)
1240 return rc;
1241
1242 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1243
1244 return 0;
1245 }
1246
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1247 static ssize_t bus_dsm_mask_show(struct device *dev,
1248 struct device_attribute *attr, char *buf)
1249 {
1250 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1251 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1252 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1253
1254 return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1255 }
1256 static struct device_attribute dev_attr_bus_dsm_mask =
1257 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1258
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1259 static ssize_t revision_show(struct device *dev,
1260 struct device_attribute *attr, char *buf)
1261 {
1262 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1263 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1264 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1265
1266 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1267 }
1268 static DEVICE_ATTR_RO(revision);
1269
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1270 static ssize_t hw_error_scrub_show(struct device *dev,
1271 struct device_attribute *attr, char *buf)
1272 {
1273 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1274 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1275 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1276
1277 return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1278 }
1279
1280 /*
1281 * The 'hw_error_scrub' attribute can have the following values written to it:
1282 * '0': Switch to the default mode where an exception will only insert
1283 * the address of the memory error into the poison and badblocks lists.
1284 * '1': Enable a full scrub to happen if an exception for a memory error is
1285 * received.
1286 */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1287 static ssize_t hw_error_scrub_store(struct device *dev,
1288 struct device_attribute *attr, const char *buf, size_t size)
1289 {
1290 struct nvdimm_bus_descriptor *nd_desc;
1291 ssize_t rc;
1292 long val;
1293
1294 rc = kstrtol(buf, 0, &val);
1295 if (rc)
1296 return rc;
1297
1298 nfit_device_lock(dev);
1299 nd_desc = dev_get_drvdata(dev);
1300 if (nd_desc) {
1301 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1302
1303 switch (val) {
1304 case HW_ERROR_SCRUB_ON:
1305 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1306 break;
1307 case HW_ERROR_SCRUB_OFF:
1308 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1309 break;
1310 default:
1311 rc = -EINVAL;
1312 break;
1313 }
1314 }
1315 nfit_device_unlock(dev);
1316 if (rc)
1317 return rc;
1318 return size;
1319 }
1320 static DEVICE_ATTR_RW(hw_error_scrub);
1321
1322 /*
1323 * This shows the number of full Address Range Scrubs that have been
1324 * completed since driver load time. Userspace can wait on this using
1325 * select/poll etc. A '+' at the end indicates an ARS is in progress
1326 */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1327 static ssize_t scrub_show(struct device *dev,
1328 struct device_attribute *attr, char *buf)
1329 {
1330 struct nvdimm_bus_descriptor *nd_desc;
1331 struct acpi_nfit_desc *acpi_desc;
1332 ssize_t rc = -ENXIO;
1333 bool busy;
1334
1335 nfit_device_lock(dev);
1336 nd_desc = dev_get_drvdata(dev);
1337 if (!nd_desc) {
1338 nfit_device_unlock(dev);
1339 return rc;
1340 }
1341 acpi_desc = to_acpi_desc(nd_desc);
1342
1343 mutex_lock(&acpi_desc->init_mutex);
1344 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1345 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1346 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1347 /* Allow an admin to poll the busy state at a higher rate */
1348 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1349 &acpi_desc->scrub_flags)) {
1350 acpi_desc->scrub_tmo = 1;
1351 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1352 }
1353
1354 mutex_unlock(&acpi_desc->init_mutex);
1355 nfit_device_unlock(dev);
1356 return rc;
1357 }
1358
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1359 static ssize_t scrub_store(struct device *dev,
1360 struct device_attribute *attr, const char *buf, size_t size)
1361 {
1362 struct nvdimm_bus_descriptor *nd_desc;
1363 ssize_t rc;
1364 long val;
1365
1366 rc = kstrtol(buf, 0, &val);
1367 if (rc)
1368 return rc;
1369 if (val != 1)
1370 return -EINVAL;
1371
1372 nfit_device_lock(dev);
1373 nd_desc = dev_get_drvdata(dev);
1374 if (nd_desc) {
1375 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1376
1377 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1378 }
1379 nfit_device_unlock(dev);
1380 if (rc)
1381 return rc;
1382 return size;
1383 }
1384 static DEVICE_ATTR_RW(scrub);
1385
ars_supported(struct nvdimm_bus * nvdimm_bus)1386 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1387 {
1388 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1389 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1390 | 1 << ND_CMD_ARS_STATUS;
1391
1392 return (nd_desc->cmd_mask & mask) == mask;
1393 }
1394
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1395 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1396 {
1397 struct device *dev = kobj_to_dev(kobj);
1398 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1399
1400 if (a == &dev_attr_scrub.attr)
1401 return ars_supported(nvdimm_bus) ? a->mode : 0;
1402
1403 if (a == &dev_attr_firmware_activate_noidle.attr)
1404 return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1405
1406 return a->mode;
1407 }
1408
1409 static struct attribute *acpi_nfit_attributes[] = {
1410 &dev_attr_revision.attr,
1411 &dev_attr_scrub.attr,
1412 &dev_attr_hw_error_scrub.attr,
1413 &dev_attr_bus_dsm_mask.attr,
1414 &dev_attr_firmware_activate_noidle.attr,
1415 NULL,
1416 };
1417
1418 static const struct attribute_group acpi_nfit_attribute_group = {
1419 .name = "nfit",
1420 .attrs = acpi_nfit_attributes,
1421 .is_visible = nfit_visible,
1422 };
1423
1424 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1425 &acpi_nfit_attribute_group,
1426 NULL,
1427 };
1428
to_nfit_memdev(struct device * dev)1429 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1430 {
1431 struct nvdimm *nvdimm = to_nvdimm(dev);
1432 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1433
1434 return __to_nfit_memdev(nfit_mem);
1435 }
1436
to_nfit_dcr(struct device * dev)1437 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1438 {
1439 struct nvdimm *nvdimm = to_nvdimm(dev);
1440 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1441
1442 return nfit_mem->dcr;
1443 }
1444
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1445 static ssize_t handle_show(struct device *dev,
1446 struct device_attribute *attr, char *buf)
1447 {
1448 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1449
1450 return sprintf(buf, "%#x\n", memdev->device_handle);
1451 }
1452 static DEVICE_ATTR_RO(handle);
1453
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1454 static ssize_t phys_id_show(struct device *dev,
1455 struct device_attribute *attr, char *buf)
1456 {
1457 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1458
1459 return sprintf(buf, "%#x\n", memdev->physical_id);
1460 }
1461 static DEVICE_ATTR_RO(phys_id);
1462
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1463 static ssize_t vendor_show(struct device *dev,
1464 struct device_attribute *attr, char *buf)
1465 {
1466 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467
1468 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1469 }
1470 static DEVICE_ATTR_RO(vendor);
1471
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1472 static ssize_t rev_id_show(struct device *dev,
1473 struct device_attribute *attr, char *buf)
1474 {
1475 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1476
1477 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1478 }
1479 static DEVICE_ATTR_RO(rev_id);
1480
device_show(struct device * dev,struct device_attribute * attr,char * buf)1481 static ssize_t device_show(struct device *dev,
1482 struct device_attribute *attr, char *buf)
1483 {
1484 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1485
1486 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1487 }
1488 static DEVICE_ATTR_RO(device);
1489
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1490 static ssize_t subsystem_vendor_show(struct device *dev,
1491 struct device_attribute *attr, char *buf)
1492 {
1493 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1494
1495 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1496 }
1497 static DEVICE_ATTR_RO(subsystem_vendor);
1498
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1499 static ssize_t subsystem_rev_id_show(struct device *dev,
1500 struct device_attribute *attr, char *buf)
1501 {
1502 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1503
1504 return sprintf(buf, "0x%04x\n",
1505 be16_to_cpu(dcr->subsystem_revision_id));
1506 }
1507 static DEVICE_ATTR_RO(subsystem_rev_id);
1508
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1509 static ssize_t subsystem_device_show(struct device *dev,
1510 struct device_attribute *attr, char *buf)
1511 {
1512 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1513
1514 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1515 }
1516 static DEVICE_ATTR_RO(subsystem_device);
1517
num_nvdimm_formats(struct nvdimm * nvdimm)1518 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1519 {
1520 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1521 int formats = 0;
1522
1523 if (nfit_mem->memdev_pmem)
1524 formats++;
1525 if (nfit_mem->memdev_bdw)
1526 formats++;
1527 return formats;
1528 }
1529
format_show(struct device * dev,struct device_attribute * attr,char * buf)1530 static ssize_t format_show(struct device *dev,
1531 struct device_attribute *attr, char *buf)
1532 {
1533 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1534
1535 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1536 }
1537 static DEVICE_ATTR_RO(format);
1538
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1539 static ssize_t format1_show(struct device *dev,
1540 struct device_attribute *attr, char *buf)
1541 {
1542 u32 handle;
1543 ssize_t rc = -ENXIO;
1544 struct nfit_mem *nfit_mem;
1545 struct nfit_memdev *nfit_memdev;
1546 struct acpi_nfit_desc *acpi_desc;
1547 struct nvdimm *nvdimm = to_nvdimm(dev);
1548 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1549
1550 nfit_mem = nvdimm_provider_data(nvdimm);
1551 acpi_desc = nfit_mem->acpi_desc;
1552 handle = to_nfit_memdev(dev)->device_handle;
1553
1554 /* assumes DIMMs have at most 2 published interface codes */
1555 mutex_lock(&acpi_desc->init_mutex);
1556 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1557 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1558 struct nfit_dcr *nfit_dcr;
1559
1560 if (memdev->device_handle != handle)
1561 continue;
1562
1563 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1564 if (nfit_dcr->dcr->region_index != memdev->region_index)
1565 continue;
1566 if (nfit_dcr->dcr->code == dcr->code)
1567 continue;
1568 rc = sprintf(buf, "0x%04x\n",
1569 le16_to_cpu(nfit_dcr->dcr->code));
1570 break;
1571 }
1572 if (rc != -ENXIO)
1573 break;
1574 }
1575 mutex_unlock(&acpi_desc->init_mutex);
1576 return rc;
1577 }
1578 static DEVICE_ATTR_RO(format1);
1579
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1580 static ssize_t formats_show(struct device *dev,
1581 struct device_attribute *attr, char *buf)
1582 {
1583 struct nvdimm *nvdimm = to_nvdimm(dev);
1584
1585 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1586 }
1587 static DEVICE_ATTR_RO(formats);
1588
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1589 static ssize_t serial_show(struct device *dev,
1590 struct device_attribute *attr, char *buf)
1591 {
1592 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1593
1594 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1595 }
1596 static DEVICE_ATTR_RO(serial);
1597
family_show(struct device * dev,struct device_attribute * attr,char * buf)1598 static ssize_t family_show(struct device *dev,
1599 struct device_attribute *attr, char *buf)
1600 {
1601 struct nvdimm *nvdimm = to_nvdimm(dev);
1602 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1603
1604 if (nfit_mem->family < 0)
1605 return -ENXIO;
1606 return sprintf(buf, "%d\n", nfit_mem->family);
1607 }
1608 static DEVICE_ATTR_RO(family);
1609
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1610 static ssize_t dsm_mask_show(struct device *dev,
1611 struct device_attribute *attr, char *buf)
1612 {
1613 struct nvdimm *nvdimm = to_nvdimm(dev);
1614 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1615
1616 if (nfit_mem->family < 0)
1617 return -ENXIO;
1618 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1619 }
1620 static DEVICE_ATTR_RO(dsm_mask);
1621
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1622 static ssize_t flags_show(struct device *dev,
1623 struct device_attribute *attr, char *buf)
1624 {
1625 struct nvdimm *nvdimm = to_nvdimm(dev);
1626 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1627 u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1628
1629 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1630 flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1631
1632 return sprintf(buf, "%s%s%s%s%s%s%s\n",
1633 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1634 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1635 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1636 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1637 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1638 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1639 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1640 }
1641 static DEVICE_ATTR_RO(flags);
1642
id_show(struct device * dev,struct device_attribute * attr,char * buf)1643 static ssize_t id_show(struct device *dev,
1644 struct device_attribute *attr, char *buf)
1645 {
1646 struct nvdimm *nvdimm = to_nvdimm(dev);
1647 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1648
1649 return sprintf(buf, "%s\n", nfit_mem->id);
1650 }
1651 static DEVICE_ATTR_RO(id);
1652
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)1653 static ssize_t dirty_shutdown_show(struct device *dev,
1654 struct device_attribute *attr, char *buf)
1655 {
1656 struct nvdimm *nvdimm = to_nvdimm(dev);
1657 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1658
1659 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1660 }
1661 static DEVICE_ATTR_RO(dirty_shutdown);
1662
1663 static struct attribute *acpi_nfit_dimm_attributes[] = {
1664 &dev_attr_handle.attr,
1665 &dev_attr_phys_id.attr,
1666 &dev_attr_vendor.attr,
1667 &dev_attr_device.attr,
1668 &dev_attr_rev_id.attr,
1669 &dev_attr_subsystem_vendor.attr,
1670 &dev_attr_subsystem_device.attr,
1671 &dev_attr_subsystem_rev_id.attr,
1672 &dev_attr_format.attr,
1673 &dev_attr_formats.attr,
1674 &dev_attr_format1.attr,
1675 &dev_attr_serial.attr,
1676 &dev_attr_flags.attr,
1677 &dev_attr_id.attr,
1678 &dev_attr_family.attr,
1679 &dev_attr_dsm_mask.attr,
1680 &dev_attr_dirty_shutdown.attr,
1681 NULL,
1682 };
1683
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1684 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1685 struct attribute *a, int n)
1686 {
1687 struct device *dev = kobj_to_dev(kobj);
1688 struct nvdimm *nvdimm = to_nvdimm(dev);
1689 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1690
1691 if (!to_nfit_dcr(dev)) {
1692 /* Without a dcr only the memdev attributes can be surfaced */
1693 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1694 || a == &dev_attr_flags.attr
1695 || a == &dev_attr_family.attr
1696 || a == &dev_attr_dsm_mask.attr)
1697 return a->mode;
1698 return 0;
1699 }
1700
1701 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1702 return 0;
1703
1704 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1705 && a == &dev_attr_dirty_shutdown.attr)
1706 return 0;
1707
1708 return a->mode;
1709 }
1710
1711 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1712 .name = "nfit",
1713 .attrs = acpi_nfit_dimm_attributes,
1714 .is_visible = acpi_nfit_dimm_attr_visible,
1715 };
1716
1717 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1718 &acpi_nfit_dimm_attribute_group,
1719 NULL,
1720 };
1721
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1722 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1723 u32 device_handle)
1724 {
1725 struct nfit_mem *nfit_mem;
1726
1727 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1728 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1729 return nfit_mem->nvdimm;
1730
1731 return NULL;
1732 }
1733
__acpi_nvdimm_notify(struct device * dev,u32 event)1734 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1735 {
1736 struct nfit_mem *nfit_mem;
1737 struct acpi_nfit_desc *acpi_desc;
1738
1739 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1740 event);
1741
1742 if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1743 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1744 event);
1745 return;
1746 }
1747
1748 acpi_desc = dev_get_drvdata(dev->parent);
1749 if (!acpi_desc)
1750 return;
1751
1752 /*
1753 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1754 * is still valid.
1755 */
1756 nfit_mem = dev_get_drvdata(dev);
1757 if (nfit_mem && nfit_mem->flags_attr)
1758 sysfs_notify_dirent(nfit_mem->flags_attr);
1759 }
1760 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1761
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1762 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1763 {
1764 struct acpi_device *adev = data;
1765 struct device *dev = &adev->dev;
1766
1767 nfit_device_lock(dev->parent);
1768 __acpi_nvdimm_notify(dev, event);
1769 nfit_device_unlock(dev->parent);
1770 }
1771
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1772 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1773 {
1774 acpi_handle handle;
1775 acpi_status status;
1776
1777 status = acpi_get_handle(adev->handle, method, &handle);
1778
1779 if (ACPI_SUCCESS(status))
1780 return true;
1781 return false;
1782 }
1783
nfit_intel_shutdown_status(struct nfit_mem * nfit_mem)1784 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1785 {
1786 struct device *dev = &nfit_mem->adev->dev;
1787 struct nd_intel_smart smart = { 0 };
1788 union acpi_object in_buf = {
1789 .buffer.type = ACPI_TYPE_BUFFER,
1790 .buffer.length = 0,
1791 };
1792 union acpi_object in_obj = {
1793 .package.type = ACPI_TYPE_PACKAGE,
1794 .package.count = 1,
1795 .package.elements = &in_buf,
1796 };
1797 const u8 func = ND_INTEL_SMART;
1798 const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1799 u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1800 struct acpi_device *adev = nfit_mem->adev;
1801 acpi_handle handle = adev->handle;
1802 union acpi_object *out_obj;
1803
1804 if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1805 return;
1806
1807 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1808 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1809 || out_obj->buffer.length < sizeof(smart)) {
1810 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1811 dev_name(dev));
1812 ACPI_FREE(out_obj);
1813 return;
1814 }
1815 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1816 ACPI_FREE(out_obj);
1817
1818 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1819 if (smart.shutdown_state)
1820 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1821 }
1822
1823 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1824 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1825 nfit_mem->dirty_shutdown = smart.shutdown_count;
1826 }
1827 }
1828
populate_shutdown_status(struct nfit_mem * nfit_mem)1829 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1830 {
1831 /*
1832 * For DIMMs that provide a dynamic facility to retrieve a
1833 * dirty-shutdown status and/or a dirty-shutdown count, cache
1834 * these values in nfit_mem.
1835 */
1836 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1837 nfit_intel_shutdown_status(nfit_mem);
1838 }
1839
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1840 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1841 struct nfit_mem *nfit_mem, u32 device_handle)
1842 {
1843 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1844 struct acpi_device *adev, *adev_dimm;
1845 struct device *dev = acpi_desc->dev;
1846 unsigned long dsm_mask, label_mask;
1847 const guid_t *guid;
1848 int i;
1849 int family = -1;
1850 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1851
1852 /* nfit test assumes 1:1 relationship between commands and dsms */
1853 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1854 nfit_mem->family = NVDIMM_FAMILY_INTEL;
1855 set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1856
1857 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1858 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1859 be16_to_cpu(dcr->vendor_id),
1860 dcr->manufacturing_location,
1861 be16_to_cpu(dcr->manufacturing_date),
1862 be32_to_cpu(dcr->serial_number));
1863 else
1864 sprintf(nfit_mem->id, "%04x-%08x",
1865 be16_to_cpu(dcr->vendor_id),
1866 be32_to_cpu(dcr->serial_number));
1867
1868 adev = to_acpi_dev(acpi_desc);
1869 if (!adev) {
1870 /* unit test case */
1871 populate_shutdown_status(nfit_mem);
1872 return 0;
1873 }
1874
1875 adev_dimm = acpi_find_child_device(adev, device_handle, false);
1876 nfit_mem->adev = adev_dimm;
1877 if (!adev_dimm) {
1878 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1879 device_handle);
1880 return force_enable_dimms ? 0 : -ENODEV;
1881 }
1882
1883 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1884 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1885 dev_err(dev, "%s: notification registration failed\n",
1886 dev_name(&adev_dimm->dev));
1887 return -ENXIO;
1888 }
1889 /*
1890 * Record nfit_mem for the notification path to track back to
1891 * the nfit sysfs attributes for this dimm device object.
1892 */
1893 dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1894
1895 /*
1896 * There are 4 "legacy" NVDIMM command sets
1897 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1898 * an EFI working group was established to constrain this
1899 * proliferation. The nfit driver probes for the supported command
1900 * set by GUID. Note, if you're a platform developer looking to add
1901 * a new command set to this probe, consider using an existing set,
1902 * or otherwise seek approval to publish the command set at
1903 * http://www.uefi.org/RFIC_LIST.
1904 *
1905 * Note, that checking for function0 (bit0) tells us if any commands
1906 * are reachable through this GUID.
1907 */
1908 clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1909 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1910 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1911 set_bit(i, &nd_desc->dimm_family_mask);
1912 if (family < 0 || i == default_dsm_family)
1913 family = i;
1914 }
1915
1916 /* limit the supported commands to those that are publicly documented */
1917 nfit_mem->family = family;
1918 if (override_dsm_mask && !disable_vendor_specific)
1919 dsm_mask = override_dsm_mask;
1920 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1921 dsm_mask = NVDIMM_INTEL_CMDMASK;
1922 if (disable_vendor_specific)
1923 dsm_mask &= ~(1 << ND_CMD_VENDOR);
1924 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1925 dsm_mask = 0x1c3c76;
1926 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1927 dsm_mask = 0x1fe;
1928 if (disable_vendor_specific)
1929 dsm_mask &= ~(1 << 8);
1930 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1931 dsm_mask = 0xffffffff;
1932 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1933 dsm_mask = 0x1f;
1934 } else {
1935 dev_dbg(dev, "unknown dimm command family\n");
1936 nfit_mem->family = -1;
1937 /* DSMs are optional, continue loading the driver... */
1938 return 0;
1939 }
1940
1941 /*
1942 * Function 0 is the command interrogation function, don't
1943 * export it to potential userspace use, and enable it to be
1944 * used as an error value in acpi_nfit_ctl().
1945 */
1946 dsm_mask &= ~1UL;
1947
1948 guid = to_nfit_uuid(nfit_mem->family);
1949 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1950 if (acpi_check_dsm(adev_dimm->handle, guid,
1951 nfit_dsm_revid(nfit_mem->family, i),
1952 1ULL << i))
1953 set_bit(i, &nfit_mem->dsm_mask);
1954
1955 /*
1956 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1957 * due to their better semantics handling locked capacity.
1958 */
1959 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1960 | 1 << ND_CMD_SET_CONFIG_DATA;
1961 if (family == NVDIMM_FAMILY_INTEL
1962 && (dsm_mask & label_mask) == label_mask)
1963 /* skip _LS{I,R,W} enabling */;
1964 else {
1965 if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1966 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1967 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1968 set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1969 }
1970
1971 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1972 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1973 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1974 set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1975 }
1976
1977 /*
1978 * Quirk read-only label configurations to preserve
1979 * access to label-less namespaces by default.
1980 */
1981 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1982 && !force_labels) {
1983 dev_dbg(dev, "%s: No _LSW, disable labels\n",
1984 dev_name(&adev_dimm->dev));
1985 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1986 } else
1987 dev_dbg(dev, "%s: Force enable labels\n",
1988 dev_name(&adev_dimm->dev));
1989 }
1990
1991 populate_shutdown_status(nfit_mem);
1992
1993 return 0;
1994 }
1995
shutdown_dimm_notify(void * data)1996 static void shutdown_dimm_notify(void *data)
1997 {
1998 struct acpi_nfit_desc *acpi_desc = data;
1999 struct nfit_mem *nfit_mem;
2000
2001 mutex_lock(&acpi_desc->init_mutex);
2002 /*
2003 * Clear out the nfit_mem->flags_attr and shut down dimm event
2004 * notifications.
2005 */
2006 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2007 struct acpi_device *adev_dimm = nfit_mem->adev;
2008
2009 if (nfit_mem->flags_attr) {
2010 sysfs_put(nfit_mem->flags_attr);
2011 nfit_mem->flags_attr = NULL;
2012 }
2013 if (adev_dimm) {
2014 acpi_remove_notify_handler(adev_dimm->handle,
2015 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
2016 dev_set_drvdata(&adev_dimm->dev, NULL);
2017 }
2018 }
2019 mutex_unlock(&acpi_desc->init_mutex);
2020 }
2021
acpi_nfit_get_security_ops(int family)2022 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2023 {
2024 switch (family) {
2025 case NVDIMM_FAMILY_INTEL:
2026 return intel_security_ops;
2027 default:
2028 return NULL;
2029 }
2030 }
2031
acpi_nfit_get_fw_ops(struct nfit_mem * nfit_mem)2032 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
2033 struct nfit_mem *nfit_mem)
2034 {
2035 unsigned long mask;
2036 struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
2037 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2038
2039 if (!nd_desc->fw_ops)
2040 return NULL;
2041
2042 if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
2043 return NULL;
2044
2045 mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
2046 if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
2047 return NULL;
2048
2049 return intel_fw_ops;
2050 }
2051
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)2052 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2053 {
2054 struct nfit_mem *nfit_mem;
2055 int dimm_count = 0, rc;
2056 struct nvdimm *nvdimm;
2057
2058 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2059 struct acpi_nfit_flush_address *flush;
2060 unsigned long flags = 0, cmd_mask;
2061 struct nfit_memdev *nfit_memdev;
2062 u32 device_handle;
2063 u16 mem_flags;
2064
2065 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2066 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2067 if (nvdimm) {
2068 dimm_count++;
2069 continue;
2070 }
2071
2072 if (nfit_mem->bdw && nfit_mem->memdev_pmem) {
2073 set_bit(NDD_ALIASING, &flags);
2074 set_bit(NDD_LABELING, &flags);
2075 }
2076
2077 /* collate flags across all memdevs for this dimm */
2078 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2079 struct acpi_nfit_memory_map *dimm_memdev;
2080
2081 dimm_memdev = __to_nfit_memdev(nfit_mem);
2082 if (dimm_memdev->device_handle
2083 != nfit_memdev->memdev->device_handle)
2084 continue;
2085 dimm_memdev->flags |= nfit_memdev->memdev->flags;
2086 }
2087
2088 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2089 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2090 set_bit(NDD_UNARMED, &flags);
2091
2092 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2093 if (rc)
2094 continue;
2095
2096 /*
2097 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2098 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2099 * userspace interface.
2100 */
2101 cmd_mask = 1UL << ND_CMD_CALL;
2102 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2103 /*
2104 * These commands have a 1:1 correspondence
2105 * between DSM payload and libnvdimm ioctl
2106 * payload format.
2107 */
2108 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2109 }
2110
2111 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2112 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2113 set_bit(NDD_NOBLK, &flags);
2114
2115 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2116 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2117 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2118 }
2119 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2120 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2121
2122 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2123 : NULL;
2124 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2125 acpi_nfit_dimm_attribute_groups,
2126 flags, cmd_mask, flush ? flush->hint_count : 0,
2127 nfit_mem->flush_wpq, &nfit_mem->id[0],
2128 acpi_nfit_get_security_ops(nfit_mem->family),
2129 acpi_nfit_get_fw_ops(nfit_mem));
2130 if (!nvdimm)
2131 return -ENOMEM;
2132
2133 nfit_mem->nvdimm = nvdimm;
2134 dimm_count++;
2135
2136 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2137 continue;
2138
2139 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2140 nvdimm_name(nvdimm),
2141 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2142 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2143 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2144 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2145 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2146
2147 }
2148
2149 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2150 if (rc)
2151 return rc;
2152
2153 /*
2154 * Now that dimms are successfully registered, and async registration
2155 * is flushed, attempt to enable event notification.
2156 */
2157 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2158 struct kernfs_node *nfit_kernfs;
2159
2160 nvdimm = nfit_mem->nvdimm;
2161 if (!nvdimm)
2162 continue;
2163
2164 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2165 if (nfit_kernfs)
2166 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2167 "flags");
2168 sysfs_put(nfit_kernfs);
2169 if (!nfit_mem->flags_attr)
2170 dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2171 nvdimm_name(nvdimm));
2172 }
2173
2174 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2175 acpi_desc);
2176 }
2177
2178 /*
2179 * These constants are private because there are no kernel consumers of
2180 * these commands.
2181 */
2182 enum nfit_aux_cmds {
2183 NFIT_CMD_TRANSLATE_SPA = 5,
2184 NFIT_CMD_ARS_INJECT_SET = 7,
2185 NFIT_CMD_ARS_INJECT_CLEAR = 8,
2186 NFIT_CMD_ARS_INJECT_GET = 9,
2187 };
2188
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2189 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2190 {
2191 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2192 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2193 unsigned long dsm_mask, *mask;
2194 struct acpi_device *adev;
2195 int i;
2196
2197 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2198 set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2199
2200 /* enable nfit_test to inject bus command emulation */
2201 if (acpi_desc->bus_cmd_force_en) {
2202 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2203 mask = &nd_desc->bus_family_mask;
2204 if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2205 set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2206 nd_desc->fw_ops = intel_bus_fw_ops;
2207 }
2208 }
2209
2210 adev = to_acpi_dev(acpi_desc);
2211 if (!adev)
2212 return;
2213
2214 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2215 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2216 set_bit(i, &nd_desc->cmd_mask);
2217
2218 dsm_mask =
2219 (1 << ND_CMD_ARS_CAP) |
2220 (1 << ND_CMD_ARS_START) |
2221 (1 << ND_CMD_ARS_STATUS) |
2222 (1 << ND_CMD_CLEAR_ERROR) |
2223 (1 << NFIT_CMD_TRANSLATE_SPA) |
2224 (1 << NFIT_CMD_ARS_INJECT_SET) |
2225 (1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2226 (1 << NFIT_CMD_ARS_INJECT_GET);
2227 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2228 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2229 set_bit(i, &acpi_desc->bus_dsm_mask);
2230
2231 /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2232 dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2233 guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2234 mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2235 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2236 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2237 set_bit(i, mask);
2238
2239 if (*mask == dsm_mask) {
2240 set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2241 nd_desc->fw_ops = intel_bus_fw_ops;
2242 }
2243 }
2244
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2245 static ssize_t range_index_show(struct device *dev,
2246 struct device_attribute *attr, char *buf)
2247 {
2248 struct nd_region *nd_region = to_nd_region(dev);
2249 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2250
2251 return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2252 }
2253 static DEVICE_ATTR_RO(range_index);
2254
2255 static struct attribute *acpi_nfit_region_attributes[] = {
2256 &dev_attr_range_index.attr,
2257 NULL,
2258 };
2259
2260 static const struct attribute_group acpi_nfit_region_attribute_group = {
2261 .name = "nfit",
2262 .attrs = acpi_nfit_region_attributes,
2263 };
2264
2265 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2266 &acpi_nfit_region_attribute_group,
2267 NULL,
2268 };
2269
2270 /* enough info to uniquely specify an interleave set */
2271 struct nfit_set_info {
2272 struct nfit_set_info_map {
2273 u64 region_offset;
2274 u32 serial_number;
2275 u32 pad;
2276 } mapping[0];
2277 };
2278
2279 struct nfit_set_info2 {
2280 struct nfit_set_info_map2 {
2281 u64 region_offset;
2282 u32 serial_number;
2283 u16 vendor_id;
2284 u16 manufacturing_date;
2285 u8 manufacturing_location;
2286 u8 reserved[31];
2287 } mapping[0];
2288 };
2289
sizeof_nfit_set_info(int num_mappings)2290 static size_t sizeof_nfit_set_info(int num_mappings)
2291 {
2292 return sizeof(struct nfit_set_info)
2293 + num_mappings * sizeof(struct nfit_set_info_map);
2294 }
2295
sizeof_nfit_set_info2(int num_mappings)2296 static size_t sizeof_nfit_set_info2(int num_mappings)
2297 {
2298 return sizeof(struct nfit_set_info2)
2299 + num_mappings * sizeof(struct nfit_set_info_map2);
2300 }
2301
cmp_map_compat(const void * m0,const void * m1)2302 static int cmp_map_compat(const void *m0, const void *m1)
2303 {
2304 const struct nfit_set_info_map *map0 = m0;
2305 const struct nfit_set_info_map *map1 = m1;
2306
2307 return memcmp(&map0->region_offset, &map1->region_offset,
2308 sizeof(u64));
2309 }
2310
cmp_map(const void * m0,const void * m1)2311 static int cmp_map(const void *m0, const void *m1)
2312 {
2313 const struct nfit_set_info_map *map0 = m0;
2314 const struct nfit_set_info_map *map1 = m1;
2315
2316 if (map0->region_offset < map1->region_offset)
2317 return -1;
2318 else if (map0->region_offset > map1->region_offset)
2319 return 1;
2320 return 0;
2321 }
2322
cmp_map2(const void * m0,const void * m1)2323 static int cmp_map2(const void *m0, const void *m1)
2324 {
2325 const struct nfit_set_info_map2 *map0 = m0;
2326 const struct nfit_set_info_map2 *map1 = m1;
2327
2328 if (map0->region_offset < map1->region_offset)
2329 return -1;
2330 else if (map0->region_offset > map1->region_offset)
2331 return 1;
2332 return 0;
2333 }
2334
2335 /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2336 static struct acpi_nfit_memory_map *memdev_from_spa(
2337 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2338 {
2339 struct nfit_memdev *nfit_memdev;
2340
2341 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2342 if (nfit_memdev->memdev->range_index == range_index)
2343 if (n-- == 0)
2344 return nfit_memdev->memdev;
2345 return NULL;
2346 }
2347
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2348 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2349 struct nd_region_desc *ndr_desc,
2350 struct acpi_nfit_system_address *spa)
2351 {
2352 struct device *dev = acpi_desc->dev;
2353 struct nd_interleave_set *nd_set;
2354 u16 nr = ndr_desc->num_mappings;
2355 struct nfit_set_info2 *info2;
2356 struct nfit_set_info *info;
2357 int i;
2358
2359 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2360 if (!nd_set)
2361 return -ENOMEM;
2362 import_guid(&nd_set->type_guid, spa->range_guid);
2363
2364 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2365 if (!info)
2366 return -ENOMEM;
2367
2368 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2369 if (!info2)
2370 return -ENOMEM;
2371
2372 for (i = 0; i < nr; i++) {
2373 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2374 struct nfit_set_info_map *map = &info->mapping[i];
2375 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2376 struct nvdimm *nvdimm = mapping->nvdimm;
2377 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2378 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2379 spa->range_index, i);
2380 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2381
2382 if (!memdev || !nfit_mem->dcr) {
2383 dev_err(dev, "%s: failed to find DCR\n", __func__);
2384 return -ENODEV;
2385 }
2386
2387 map->region_offset = memdev->region_offset;
2388 map->serial_number = dcr->serial_number;
2389
2390 map2->region_offset = memdev->region_offset;
2391 map2->serial_number = dcr->serial_number;
2392 map2->vendor_id = dcr->vendor_id;
2393 map2->manufacturing_date = dcr->manufacturing_date;
2394 map2->manufacturing_location = dcr->manufacturing_location;
2395 }
2396
2397 /* v1.1 namespaces */
2398 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2399 cmp_map, NULL);
2400 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2401
2402 /* v1.2 namespaces */
2403 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2404 cmp_map2, NULL);
2405 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2406
2407 /* support v1.1 namespaces created with the wrong sort order */
2408 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2409 cmp_map_compat, NULL);
2410 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2411
2412 /* record the result of the sort for the mapping position */
2413 for (i = 0; i < nr; i++) {
2414 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2415 int j;
2416
2417 for (j = 0; j < nr; j++) {
2418 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2419 struct nvdimm *nvdimm = mapping->nvdimm;
2420 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2421 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2422
2423 if (map2->serial_number == dcr->serial_number &&
2424 map2->vendor_id == dcr->vendor_id &&
2425 map2->manufacturing_date == dcr->manufacturing_date &&
2426 map2->manufacturing_location
2427 == dcr->manufacturing_location) {
2428 mapping->position = i;
2429 break;
2430 }
2431 }
2432 }
2433
2434 ndr_desc->nd_set = nd_set;
2435 devm_kfree(dev, info);
2436 devm_kfree(dev, info2);
2437
2438 return 0;
2439 }
2440
to_interleave_offset(u64 offset,struct nfit_blk_mmio * mmio)2441 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2442 {
2443 struct acpi_nfit_interleave *idt = mmio->idt;
2444 u32 sub_line_offset, line_index, line_offset;
2445 u64 line_no, table_skip_count, table_offset;
2446
2447 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2448 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2449 line_offset = idt->line_offset[line_index]
2450 * mmio->line_size;
2451 table_offset = table_skip_count * mmio->table_size;
2452
2453 return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2454 }
2455
read_blk_stat(struct nfit_blk * nfit_blk,unsigned int bw)2456 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2457 {
2458 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2459 u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2460 const u32 STATUS_MASK = 0x80000037;
2461
2462 if (mmio->num_lines)
2463 offset = to_interleave_offset(offset, mmio);
2464
2465 return readl(mmio->addr.base + offset) & STATUS_MASK;
2466 }
2467
write_blk_ctl(struct nfit_blk * nfit_blk,unsigned int bw,resource_size_t dpa,unsigned int len,unsigned int write)2468 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2469 resource_size_t dpa, unsigned int len, unsigned int write)
2470 {
2471 u64 cmd, offset;
2472 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2473
2474 enum {
2475 BCW_OFFSET_MASK = (1ULL << 48)-1,
2476 BCW_LEN_SHIFT = 48,
2477 BCW_LEN_MASK = (1ULL << 8) - 1,
2478 BCW_CMD_SHIFT = 56,
2479 };
2480
2481 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2482 len = len >> L1_CACHE_SHIFT;
2483 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2484 cmd |= ((u64) write) << BCW_CMD_SHIFT;
2485
2486 offset = nfit_blk->cmd_offset + mmio->size * bw;
2487 if (mmio->num_lines)
2488 offset = to_interleave_offset(offset, mmio);
2489
2490 writeq(cmd, mmio->addr.base + offset);
2491 nvdimm_flush(nfit_blk->nd_region, NULL);
2492
2493 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2494 readq(mmio->addr.base + offset);
2495 }
2496
acpi_nfit_blk_single_io(struct nfit_blk * nfit_blk,resource_size_t dpa,void * iobuf,size_t len,int rw,unsigned int lane)2497 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2498 resource_size_t dpa, void *iobuf, size_t len, int rw,
2499 unsigned int lane)
2500 {
2501 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2502 unsigned int copied = 0;
2503 u64 base_offset;
2504 int rc;
2505
2506 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2507 + lane * mmio->size;
2508 write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2509 while (len) {
2510 unsigned int c;
2511 u64 offset;
2512
2513 if (mmio->num_lines) {
2514 u32 line_offset;
2515
2516 offset = to_interleave_offset(base_offset + copied,
2517 mmio);
2518 div_u64_rem(offset, mmio->line_size, &line_offset);
2519 c = min_t(size_t, len, mmio->line_size - line_offset);
2520 } else {
2521 offset = base_offset + nfit_blk->bdw_offset;
2522 c = len;
2523 }
2524
2525 if (rw)
2526 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2527 else {
2528 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2529 arch_invalidate_pmem((void __force *)
2530 mmio->addr.aperture + offset, c);
2531
2532 memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2533 }
2534
2535 copied += c;
2536 len -= c;
2537 }
2538
2539 if (rw)
2540 nvdimm_flush(nfit_blk->nd_region, NULL);
2541
2542 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2543 return rc;
2544 }
2545
acpi_nfit_blk_region_do_io(struct nd_blk_region * ndbr,resource_size_t dpa,void * iobuf,u64 len,int rw)2546 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2547 resource_size_t dpa, void *iobuf, u64 len, int rw)
2548 {
2549 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2550 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2551 struct nd_region *nd_region = nfit_blk->nd_region;
2552 unsigned int lane, copied = 0;
2553 int rc = 0;
2554
2555 lane = nd_region_acquire_lane(nd_region);
2556 while (len) {
2557 u64 c = min(len, mmio->size);
2558
2559 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2560 iobuf + copied, c, rw, lane);
2561 if (rc)
2562 break;
2563
2564 copied += c;
2565 len -= c;
2566 }
2567 nd_region_release_lane(nd_region, lane);
2568
2569 return rc;
2570 }
2571
nfit_blk_init_interleave(struct nfit_blk_mmio * mmio,struct acpi_nfit_interleave * idt,u16 interleave_ways)2572 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2573 struct acpi_nfit_interleave *idt, u16 interleave_ways)
2574 {
2575 if (idt) {
2576 mmio->num_lines = idt->line_count;
2577 mmio->line_size = idt->line_size;
2578 if (interleave_ways == 0)
2579 return -ENXIO;
2580 mmio->table_size = mmio->num_lines * interleave_ways
2581 * mmio->line_size;
2582 }
2583
2584 return 0;
2585 }
2586
acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,struct nfit_blk * nfit_blk)2587 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2588 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2589 {
2590 struct nd_cmd_dimm_flags flags;
2591 int rc;
2592
2593 memset(&flags, 0, sizeof(flags));
2594 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2595 sizeof(flags), NULL);
2596
2597 if (rc >= 0 && flags.status == 0)
2598 nfit_blk->dimm_flags = flags.flags;
2599 else if (rc == -ENOTTY) {
2600 /* fall back to a conservative default */
2601 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2602 rc = 0;
2603 } else
2604 rc = -ENXIO;
2605
2606 return rc;
2607 }
2608
acpi_nfit_blk_region_enable(struct nvdimm_bus * nvdimm_bus,struct device * dev)2609 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2610 struct device *dev)
2611 {
2612 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2613 struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2614 struct nfit_blk_mmio *mmio;
2615 struct nfit_blk *nfit_blk;
2616 struct nfit_mem *nfit_mem;
2617 struct nvdimm *nvdimm;
2618 int rc;
2619
2620 nvdimm = nd_blk_region_to_dimm(ndbr);
2621 nfit_mem = nvdimm_provider_data(nvdimm);
2622 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2623 dev_dbg(dev, "missing%s%s%s\n",
2624 nfit_mem ? "" : " nfit_mem",
2625 (nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2626 (nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2627 return -ENXIO;
2628 }
2629
2630 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2631 if (!nfit_blk)
2632 return -ENOMEM;
2633 nd_blk_region_set_provider_data(ndbr, nfit_blk);
2634 nfit_blk->nd_region = to_nd_region(dev);
2635
2636 /* map block aperture memory */
2637 nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2638 mmio = &nfit_blk->mmio[BDW];
2639 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2640 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2641 if (!mmio->addr.base) {
2642 dev_dbg(dev, "%s failed to map bdw\n",
2643 nvdimm_name(nvdimm));
2644 return -ENOMEM;
2645 }
2646 mmio->size = nfit_mem->bdw->size;
2647 mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2648 mmio->idt = nfit_mem->idt_bdw;
2649 mmio->spa = nfit_mem->spa_bdw;
2650 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2651 nfit_mem->memdev_bdw->interleave_ways);
2652 if (rc) {
2653 dev_dbg(dev, "%s failed to init bdw interleave\n",
2654 nvdimm_name(nvdimm));
2655 return rc;
2656 }
2657
2658 /* map block control memory */
2659 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2660 nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2661 mmio = &nfit_blk->mmio[DCR];
2662 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2663 nfit_mem->spa_dcr->length);
2664 if (!mmio->addr.base) {
2665 dev_dbg(dev, "%s failed to map dcr\n",
2666 nvdimm_name(nvdimm));
2667 return -ENOMEM;
2668 }
2669 mmio->size = nfit_mem->dcr->window_size;
2670 mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2671 mmio->idt = nfit_mem->idt_dcr;
2672 mmio->spa = nfit_mem->spa_dcr;
2673 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2674 nfit_mem->memdev_dcr->interleave_ways);
2675 if (rc) {
2676 dev_dbg(dev, "%s failed to init dcr interleave\n",
2677 nvdimm_name(nvdimm));
2678 return rc;
2679 }
2680
2681 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2682 if (rc < 0) {
2683 dev_dbg(dev, "%s failed get DIMM flags\n",
2684 nvdimm_name(nvdimm));
2685 return rc;
2686 }
2687
2688 if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2689 dev_warn(dev, "unable to guarantee persistence of writes\n");
2690
2691 if (mmio->line_size == 0)
2692 return 0;
2693
2694 if ((u32) nfit_blk->cmd_offset % mmio->line_size
2695 + 8 > mmio->line_size) {
2696 dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2697 return -ENXIO;
2698 } else if ((u32) nfit_blk->stat_offset % mmio->line_size
2699 + 8 > mmio->line_size) {
2700 dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2701 return -ENXIO;
2702 }
2703
2704 return 0;
2705 }
2706
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2707 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2708 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2709 {
2710 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2711 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2712 int cmd_rc, rc;
2713
2714 cmd->address = spa->address;
2715 cmd->length = spa->length;
2716 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2717 sizeof(*cmd), &cmd_rc);
2718 if (rc < 0)
2719 return rc;
2720 return cmd_rc;
2721 }
2722
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2723 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2724 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2725 {
2726 int rc;
2727 int cmd_rc;
2728 struct nd_cmd_ars_start ars_start;
2729 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2730 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2731
2732 memset(&ars_start, 0, sizeof(ars_start));
2733 ars_start.address = spa->address;
2734 ars_start.length = spa->length;
2735 if (req_type == ARS_REQ_SHORT)
2736 ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2737 if (nfit_spa_type(spa) == NFIT_SPA_PM)
2738 ars_start.type = ND_ARS_PERSISTENT;
2739 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2740 ars_start.type = ND_ARS_VOLATILE;
2741 else
2742 return -ENOTTY;
2743
2744 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2745 sizeof(ars_start), &cmd_rc);
2746
2747 if (rc < 0)
2748 return rc;
2749 if (cmd_rc < 0)
2750 return cmd_rc;
2751 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2752 return 0;
2753 }
2754
ars_continue(struct acpi_nfit_desc * acpi_desc)2755 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2756 {
2757 int rc, cmd_rc;
2758 struct nd_cmd_ars_start ars_start;
2759 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2760 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2761
2762 ars_start = (struct nd_cmd_ars_start) {
2763 .address = ars_status->restart_address,
2764 .length = ars_status->restart_length,
2765 .type = ars_status->type,
2766 };
2767 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2768 sizeof(ars_start), &cmd_rc);
2769 if (rc < 0)
2770 return rc;
2771 return cmd_rc;
2772 }
2773
ars_get_status(struct acpi_nfit_desc * acpi_desc)2774 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2775 {
2776 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2777 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2778 int rc, cmd_rc;
2779
2780 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2781 acpi_desc->max_ars, &cmd_rc);
2782 if (rc < 0)
2783 return rc;
2784 return cmd_rc;
2785 }
2786
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2787 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2788 struct nfit_spa *nfit_spa)
2789 {
2790 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2791 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2792 struct nd_region *nd_region = nfit_spa->nd_region;
2793 struct device *dev;
2794
2795 lockdep_assert_held(&acpi_desc->init_mutex);
2796 /*
2797 * Only advance the ARS state for ARS runs initiated by the
2798 * kernel, ignore ARS results from BIOS initiated runs for scrub
2799 * completion tracking.
2800 */
2801 if (acpi_desc->scrub_spa != nfit_spa)
2802 return;
2803
2804 if ((ars_status->address >= spa->address && ars_status->address
2805 < spa->address + spa->length)
2806 || (ars_status->address < spa->address)) {
2807 /*
2808 * Assume that if a scrub starts at an offset from the
2809 * start of nfit_spa that we are in the continuation
2810 * case.
2811 *
2812 * Otherwise, if the scrub covers the spa range, mark
2813 * any pending request complete.
2814 */
2815 if (ars_status->address + ars_status->length
2816 >= spa->address + spa->length)
2817 /* complete */;
2818 else
2819 return;
2820 } else
2821 return;
2822
2823 acpi_desc->scrub_spa = NULL;
2824 if (nd_region) {
2825 dev = nd_region_dev(nd_region);
2826 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2827 } else
2828 dev = acpi_desc->dev;
2829 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2830 }
2831
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2832 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2833 {
2834 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2835 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2836 int rc;
2837 u32 i;
2838
2839 /*
2840 * First record starts at 44 byte offset from the start of the
2841 * payload.
2842 */
2843 if (ars_status->out_length < 44)
2844 return 0;
2845
2846 /*
2847 * Ignore potentially stale results that are only refreshed
2848 * after a start-ARS event.
2849 */
2850 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2851 dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2852 ars_status->num_records);
2853 return 0;
2854 }
2855
2856 for (i = 0; i < ars_status->num_records; i++) {
2857 /* only process full records */
2858 if (ars_status->out_length
2859 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2860 break;
2861 rc = nvdimm_bus_add_badrange(nvdimm_bus,
2862 ars_status->records[i].err_address,
2863 ars_status->records[i].length);
2864 if (rc)
2865 return rc;
2866 }
2867 if (i < ars_status->num_records)
2868 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2869
2870 return 0;
2871 }
2872
acpi_nfit_remove_resource(void * data)2873 static void acpi_nfit_remove_resource(void *data)
2874 {
2875 struct resource *res = data;
2876
2877 remove_resource(res);
2878 }
2879
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2880 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2881 struct nd_region_desc *ndr_desc)
2882 {
2883 struct resource *res, *nd_res = ndr_desc->res;
2884 int is_pmem, ret;
2885
2886 /* No operation if the region is already registered as PMEM */
2887 is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2888 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2889 if (is_pmem == REGION_INTERSECTS)
2890 return 0;
2891
2892 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2893 if (!res)
2894 return -ENOMEM;
2895
2896 res->name = "Persistent Memory";
2897 res->start = nd_res->start;
2898 res->end = nd_res->end;
2899 res->flags = IORESOURCE_MEM;
2900 res->desc = IORES_DESC_PERSISTENT_MEMORY;
2901
2902 ret = insert_resource(&iomem_resource, res);
2903 if (ret)
2904 return ret;
2905
2906 ret = devm_add_action_or_reset(acpi_desc->dev,
2907 acpi_nfit_remove_resource,
2908 res);
2909 if (ret)
2910 return ret;
2911
2912 return 0;
2913 }
2914
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2915 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2916 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2917 struct acpi_nfit_memory_map *memdev,
2918 struct nfit_spa *nfit_spa)
2919 {
2920 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2921 memdev->device_handle);
2922 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2923 struct nd_blk_region_desc *ndbr_desc;
2924 struct nfit_mem *nfit_mem;
2925 int rc;
2926
2927 if (!nvdimm) {
2928 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2929 spa->range_index, memdev->device_handle);
2930 return -ENODEV;
2931 }
2932
2933 mapping->nvdimm = nvdimm;
2934 switch (nfit_spa_type(spa)) {
2935 case NFIT_SPA_PM:
2936 case NFIT_SPA_VOLATILE:
2937 mapping->start = memdev->address;
2938 mapping->size = memdev->region_size;
2939 break;
2940 case NFIT_SPA_DCR:
2941 nfit_mem = nvdimm_provider_data(nvdimm);
2942 if (!nfit_mem || !nfit_mem->bdw) {
2943 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2944 spa->range_index, nvdimm_name(nvdimm));
2945 break;
2946 }
2947
2948 mapping->size = nfit_mem->bdw->capacity;
2949 mapping->start = nfit_mem->bdw->start_address;
2950 ndr_desc->num_lanes = nfit_mem->bdw->windows;
2951 ndr_desc->mapping = mapping;
2952 ndr_desc->num_mappings = 1;
2953 ndbr_desc = to_blk_region_desc(ndr_desc);
2954 ndbr_desc->enable = acpi_nfit_blk_region_enable;
2955 ndbr_desc->do_io = acpi_desc->blk_do_io;
2956 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2957 if (rc)
2958 return rc;
2959 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2960 ndr_desc);
2961 if (!nfit_spa->nd_region)
2962 return -ENOMEM;
2963 break;
2964 }
2965
2966 return 0;
2967 }
2968
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2969 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2970 {
2971 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2972 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2973 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2974 nfit_spa_type(spa) == NFIT_SPA_PCD);
2975 }
2976
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2977 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2978 {
2979 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2980 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2981 nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2982 }
2983
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2984 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2985 struct nfit_spa *nfit_spa)
2986 {
2987 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2988 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2989 struct nd_blk_region_desc ndbr_desc;
2990 struct nd_region_desc *ndr_desc;
2991 struct nfit_memdev *nfit_memdev;
2992 struct nvdimm_bus *nvdimm_bus;
2993 struct resource res;
2994 int count = 0, rc;
2995
2996 if (nfit_spa->nd_region)
2997 return 0;
2998
2999 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
3000 dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
3001 return 0;
3002 }
3003
3004 memset(&res, 0, sizeof(res));
3005 memset(&mappings, 0, sizeof(mappings));
3006 memset(&ndbr_desc, 0, sizeof(ndbr_desc));
3007 res.start = spa->address;
3008 res.end = res.start + spa->length - 1;
3009 ndr_desc = &ndbr_desc.ndr_desc;
3010 ndr_desc->res = &res;
3011 ndr_desc->provider_data = nfit_spa;
3012 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
3013 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
3014 ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
3015 ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
3016 } else {
3017 ndr_desc->numa_node = NUMA_NO_NODE;
3018 ndr_desc->target_node = NUMA_NO_NODE;
3019 }
3020
3021 /* Fallback to address based numa information if node lookup failed */
3022 if (ndr_desc->numa_node == NUMA_NO_NODE) {
3023 ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
3024 dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
3025 NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
3026 }
3027 if (ndr_desc->target_node == NUMA_NO_NODE) {
3028 ndr_desc->target_node = phys_to_target_node(spa->address);
3029 dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
3030 NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
3031 }
3032
3033 /*
3034 * Persistence domain bits are hierarchical, if
3035 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
3036 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
3037 */
3038 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
3039 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
3040 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
3041 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
3042
3043 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
3044 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
3045 struct nd_mapping_desc *mapping;
3046
3047 /* range index 0 == unmapped in SPA or invalid-SPA */
3048 if (memdev->range_index == 0 || spa->range_index == 0)
3049 continue;
3050 if (memdev->range_index != spa->range_index)
3051 continue;
3052 if (count >= ND_MAX_MAPPINGS) {
3053 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
3054 spa->range_index, ND_MAX_MAPPINGS);
3055 return -ENXIO;
3056 }
3057 mapping = &mappings[count++];
3058 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
3059 memdev, nfit_spa);
3060 if (rc)
3061 goto out;
3062 }
3063
3064 ndr_desc->mapping = mappings;
3065 ndr_desc->num_mappings = count;
3066 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
3067 if (rc)
3068 goto out;
3069
3070 nvdimm_bus = acpi_desc->nvdimm_bus;
3071 if (nfit_spa_type(spa) == NFIT_SPA_PM) {
3072 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
3073 if (rc) {
3074 dev_warn(acpi_desc->dev,
3075 "failed to insert pmem resource to iomem: %d\n",
3076 rc);
3077 goto out;
3078 }
3079
3080 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3081 ndr_desc);
3082 if (!nfit_spa->nd_region)
3083 rc = -ENOMEM;
3084 } else if (nfit_spa_is_volatile(spa)) {
3085 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3086 ndr_desc);
3087 if (!nfit_spa->nd_region)
3088 rc = -ENOMEM;
3089 } else if (nfit_spa_is_virtual(spa)) {
3090 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3091 ndr_desc);
3092 if (!nfit_spa->nd_region)
3093 rc = -ENOMEM;
3094 }
3095
3096 out:
3097 if (rc)
3098 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3099 nfit_spa->spa->range_index);
3100 return rc;
3101 }
3102
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)3103 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3104 {
3105 struct device *dev = acpi_desc->dev;
3106 struct nd_cmd_ars_status *ars_status;
3107
3108 if (acpi_desc->ars_status) {
3109 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3110 return 0;
3111 }
3112
3113 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3114 if (!ars_status)
3115 return -ENOMEM;
3116 acpi_desc->ars_status = ars_status;
3117 return 0;
3118 }
3119
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)3120 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3121 {
3122 int rc;
3123
3124 if (ars_status_alloc(acpi_desc))
3125 return -ENOMEM;
3126
3127 rc = ars_get_status(acpi_desc);
3128
3129 if (rc < 0 && rc != -ENOSPC)
3130 return rc;
3131
3132 if (ars_status_process_records(acpi_desc))
3133 dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3134
3135 return rc;
3136 }
3137
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3138 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3139 struct nfit_spa *nfit_spa)
3140 {
3141 int rc;
3142
3143 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3144 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3145
3146 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3147 if (!no_init_ars)
3148 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3149
3150 switch (acpi_nfit_query_poison(acpi_desc)) {
3151 case 0:
3152 case -ENOSPC:
3153 case -EAGAIN:
3154 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3155 /* shouldn't happen, try again later */
3156 if (rc == -EBUSY)
3157 break;
3158 if (rc) {
3159 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3160 break;
3161 }
3162 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3163 rc = acpi_nfit_query_poison(acpi_desc);
3164 if (rc)
3165 break;
3166 acpi_desc->scrub_spa = nfit_spa;
3167 ars_complete(acpi_desc, nfit_spa);
3168 /*
3169 * If ars_complete() says we didn't complete the
3170 * short scrub, we'll try again with a long
3171 * request.
3172 */
3173 acpi_desc->scrub_spa = NULL;
3174 break;
3175 case -EBUSY:
3176 case -ENOMEM:
3177 /*
3178 * BIOS was using ARS, wait for it to complete (or
3179 * resources to become available) and then perform our
3180 * own scrubs.
3181 */
3182 break;
3183 default:
3184 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3185 break;
3186 }
3187
3188 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3189 }
3190
ars_complete_all(struct acpi_nfit_desc * acpi_desc)3191 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3192 {
3193 struct nfit_spa *nfit_spa;
3194
3195 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3196 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3197 continue;
3198 ars_complete(acpi_desc, nfit_spa);
3199 }
3200 }
3201
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)3202 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3203 int query_rc)
3204 {
3205 unsigned int tmo = acpi_desc->scrub_tmo;
3206 struct device *dev = acpi_desc->dev;
3207 struct nfit_spa *nfit_spa;
3208
3209 lockdep_assert_held(&acpi_desc->init_mutex);
3210
3211 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3212 return 0;
3213
3214 if (query_rc == -EBUSY) {
3215 dev_dbg(dev, "ARS: ARS busy\n");
3216 return min(30U * 60U, tmo * 2);
3217 }
3218 if (query_rc == -ENOSPC) {
3219 dev_dbg(dev, "ARS: ARS continue\n");
3220 ars_continue(acpi_desc);
3221 return 1;
3222 }
3223 if (query_rc && query_rc != -EAGAIN) {
3224 unsigned long long addr, end;
3225
3226 addr = acpi_desc->ars_status->address;
3227 end = addr + acpi_desc->ars_status->length;
3228 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3229 query_rc);
3230 }
3231
3232 ars_complete_all(acpi_desc);
3233 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3234 enum nfit_ars_state req_type;
3235 int rc;
3236
3237 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3238 continue;
3239
3240 /* prefer short ARS requests first */
3241 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3242 req_type = ARS_REQ_SHORT;
3243 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3244 req_type = ARS_REQ_LONG;
3245 else
3246 continue;
3247 rc = ars_start(acpi_desc, nfit_spa, req_type);
3248
3249 dev = nd_region_dev(nfit_spa->nd_region);
3250 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3251 nfit_spa->spa->range_index,
3252 req_type == ARS_REQ_SHORT ? "short" : "long",
3253 rc);
3254 /*
3255 * Hmm, we raced someone else starting ARS? Try again in
3256 * a bit.
3257 */
3258 if (rc == -EBUSY)
3259 return 1;
3260 if (rc == 0) {
3261 dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3262 "scrub start while range %d active\n",
3263 acpi_desc->scrub_spa->spa->range_index);
3264 clear_bit(req_type, &nfit_spa->ars_state);
3265 acpi_desc->scrub_spa = nfit_spa;
3266 /*
3267 * Consider this spa last for future scrub
3268 * requests
3269 */
3270 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3271 return 1;
3272 }
3273
3274 dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3275 nfit_spa->spa->range_index, rc);
3276 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3277 }
3278 return 0;
3279 }
3280
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)3281 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3282 {
3283 lockdep_assert_held(&acpi_desc->init_mutex);
3284
3285 set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3286 /* note this should only be set from within the workqueue */
3287 if (tmo)
3288 acpi_desc->scrub_tmo = tmo;
3289 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3290 }
3291
sched_ars(struct acpi_nfit_desc * acpi_desc)3292 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3293 {
3294 __sched_ars(acpi_desc, 0);
3295 }
3296
notify_ars_done(struct acpi_nfit_desc * acpi_desc)3297 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3298 {
3299 lockdep_assert_held(&acpi_desc->init_mutex);
3300
3301 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3302 acpi_desc->scrub_count++;
3303 if (acpi_desc->scrub_count_state)
3304 sysfs_notify_dirent(acpi_desc->scrub_count_state);
3305 }
3306
acpi_nfit_scrub(struct work_struct * work)3307 static void acpi_nfit_scrub(struct work_struct *work)
3308 {
3309 struct acpi_nfit_desc *acpi_desc;
3310 unsigned int tmo;
3311 int query_rc;
3312
3313 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3314 mutex_lock(&acpi_desc->init_mutex);
3315 query_rc = acpi_nfit_query_poison(acpi_desc);
3316 tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3317 if (tmo)
3318 __sched_ars(acpi_desc, tmo);
3319 else
3320 notify_ars_done(acpi_desc);
3321 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3322 clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3323 mutex_unlock(&acpi_desc->init_mutex);
3324 }
3325
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3326 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3327 struct nfit_spa *nfit_spa)
3328 {
3329 int type = nfit_spa_type(nfit_spa->spa);
3330 struct nd_cmd_ars_cap ars_cap;
3331 int rc;
3332
3333 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3334 memset(&ars_cap, 0, sizeof(ars_cap));
3335 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3336 if (rc < 0)
3337 return;
3338 /* check that the supported scrub types match the spa type */
3339 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3340 & ND_ARS_VOLATILE) == 0)
3341 return;
3342 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3343 & ND_ARS_PERSISTENT) == 0)
3344 return;
3345
3346 nfit_spa->max_ars = ars_cap.max_ars_out;
3347 nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3348 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3349 clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3350 }
3351
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)3352 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3353 {
3354 struct nfit_spa *nfit_spa;
3355 int rc, do_sched_ars = 0;
3356
3357 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3358 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3359 switch (nfit_spa_type(nfit_spa->spa)) {
3360 case NFIT_SPA_VOLATILE:
3361 case NFIT_SPA_PM:
3362 acpi_nfit_init_ars(acpi_desc, nfit_spa);
3363 break;
3364 }
3365 }
3366
3367 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3368 switch (nfit_spa_type(nfit_spa->spa)) {
3369 case NFIT_SPA_VOLATILE:
3370 case NFIT_SPA_PM:
3371 /* register regions and kick off initial ARS run */
3372 rc = ars_register(acpi_desc, nfit_spa);
3373 if (rc)
3374 return rc;
3375
3376 /*
3377 * Kick off background ARS if at least one
3378 * region successfully registered ARS
3379 */
3380 if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
3381 do_sched_ars++;
3382 break;
3383 case NFIT_SPA_BDW:
3384 /* nothing to register */
3385 break;
3386 case NFIT_SPA_DCR:
3387 case NFIT_SPA_VDISK:
3388 case NFIT_SPA_VCD:
3389 case NFIT_SPA_PDISK:
3390 case NFIT_SPA_PCD:
3391 /* register known regions that don't support ARS */
3392 rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3393 if (rc)
3394 return rc;
3395 break;
3396 default:
3397 /* don't register unknown regions */
3398 break;
3399 }
3400 }
3401
3402 if (do_sched_ars)
3403 sched_ars(acpi_desc);
3404 return 0;
3405 }
3406
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3407 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3408 struct nfit_table_prev *prev)
3409 {
3410 struct device *dev = acpi_desc->dev;
3411
3412 if (!list_empty(&prev->spas) ||
3413 !list_empty(&prev->memdevs) ||
3414 !list_empty(&prev->dcrs) ||
3415 !list_empty(&prev->bdws) ||
3416 !list_empty(&prev->idts) ||
3417 !list_empty(&prev->flushes)) {
3418 dev_err(dev, "new nfit deletes entries (unsupported)\n");
3419 return -ENXIO;
3420 }
3421 return 0;
3422 }
3423
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3424 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3425 {
3426 struct device *dev = acpi_desc->dev;
3427 struct kernfs_node *nfit;
3428 struct device *bus_dev;
3429
3430 if (!ars_supported(acpi_desc->nvdimm_bus))
3431 return 0;
3432
3433 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3434 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3435 if (!nfit) {
3436 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3437 return -ENODEV;
3438 }
3439 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3440 sysfs_put(nfit);
3441 if (!acpi_desc->scrub_count_state) {
3442 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3443 return -ENODEV;
3444 }
3445
3446 return 0;
3447 }
3448
acpi_nfit_unregister(void * data)3449 static void acpi_nfit_unregister(void *data)
3450 {
3451 struct acpi_nfit_desc *acpi_desc = data;
3452
3453 nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3454 }
3455
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3456 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3457 {
3458 struct device *dev = acpi_desc->dev;
3459 struct nfit_table_prev prev;
3460 const void *end;
3461 int rc;
3462
3463 if (!acpi_desc->nvdimm_bus) {
3464 acpi_nfit_init_dsms(acpi_desc);
3465
3466 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3467 &acpi_desc->nd_desc);
3468 if (!acpi_desc->nvdimm_bus)
3469 return -ENOMEM;
3470
3471 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3472 acpi_desc);
3473 if (rc)
3474 return rc;
3475
3476 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3477 if (rc)
3478 return rc;
3479
3480 /* register this acpi_desc for mce notifications */
3481 mutex_lock(&acpi_desc_lock);
3482 list_add_tail(&acpi_desc->list, &acpi_descs);
3483 mutex_unlock(&acpi_desc_lock);
3484 }
3485
3486 mutex_lock(&acpi_desc->init_mutex);
3487
3488 INIT_LIST_HEAD(&prev.spas);
3489 INIT_LIST_HEAD(&prev.memdevs);
3490 INIT_LIST_HEAD(&prev.dcrs);
3491 INIT_LIST_HEAD(&prev.bdws);
3492 INIT_LIST_HEAD(&prev.idts);
3493 INIT_LIST_HEAD(&prev.flushes);
3494
3495 list_cut_position(&prev.spas, &acpi_desc->spas,
3496 acpi_desc->spas.prev);
3497 list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3498 acpi_desc->memdevs.prev);
3499 list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3500 acpi_desc->dcrs.prev);
3501 list_cut_position(&prev.bdws, &acpi_desc->bdws,
3502 acpi_desc->bdws.prev);
3503 list_cut_position(&prev.idts, &acpi_desc->idts,
3504 acpi_desc->idts.prev);
3505 list_cut_position(&prev.flushes, &acpi_desc->flushes,
3506 acpi_desc->flushes.prev);
3507
3508 end = data + sz;
3509 while (!IS_ERR_OR_NULL(data))
3510 data = add_table(acpi_desc, &prev, data, end);
3511
3512 if (IS_ERR(data)) {
3513 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data));
3514 rc = PTR_ERR(data);
3515 goto out_unlock;
3516 }
3517
3518 rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3519 if (rc)
3520 goto out_unlock;
3521
3522 rc = nfit_mem_init(acpi_desc);
3523 if (rc)
3524 goto out_unlock;
3525
3526 rc = acpi_nfit_register_dimms(acpi_desc);
3527 if (rc)
3528 goto out_unlock;
3529
3530 rc = acpi_nfit_register_regions(acpi_desc);
3531
3532 out_unlock:
3533 mutex_unlock(&acpi_desc->init_mutex);
3534 return rc;
3535 }
3536 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3537
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3538 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3539 {
3540 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3541 struct device *dev = acpi_desc->dev;
3542
3543 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3544 nfit_device_lock(dev);
3545 nfit_device_unlock(dev);
3546
3547 /* Bounce the init_mutex to complete initial registration */
3548 mutex_lock(&acpi_desc->init_mutex);
3549 mutex_unlock(&acpi_desc->init_mutex);
3550
3551 return 0;
3552 }
3553
__acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3554 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3555 struct nvdimm *nvdimm, unsigned int cmd)
3556 {
3557 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3558
3559 if (nvdimm)
3560 return 0;
3561 if (cmd != ND_CMD_ARS_START)
3562 return 0;
3563
3564 /*
3565 * The kernel and userspace may race to initiate a scrub, but
3566 * the scrub thread is prepared to lose that initial race. It
3567 * just needs guarantees that any ARS it initiates are not
3568 * interrupted by any intervening start requests from userspace.
3569 */
3570 if (work_busy(&acpi_desc->dwork.work))
3571 return -EBUSY;
3572
3573 return 0;
3574 }
3575
3576 /*
3577 * Prevent security and firmware activate commands from being issued via
3578 * ioctl.
3579 */
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf)3580 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3581 struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3582 {
3583 struct nd_cmd_pkg *call_pkg = buf;
3584 unsigned int func;
3585
3586 if (nvdimm && cmd == ND_CMD_CALL &&
3587 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3588 func = call_pkg->nd_command;
3589 if (func > NVDIMM_CMD_MAX ||
3590 (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3591 return -EOPNOTSUPP;
3592 }
3593
3594 /* block all non-nfit bus commands */
3595 if (!nvdimm && cmd == ND_CMD_CALL &&
3596 call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3597 return -EOPNOTSUPP;
3598
3599 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3600 }
3601
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3602 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3603 enum nfit_ars_state req_type)
3604 {
3605 struct device *dev = acpi_desc->dev;
3606 int scheduled = 0, busy = 0;
3607 struct nfit_spa *nfit_spa;
3608
3609 mutex_lock(&acpi_desc->init_mutex);
3610 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3611 mutex_unlock(&acpi_desc->init_mutex);
3612 return 0;
3613 }
3614
3615 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3616 int type = nfit_spa_type(nfit_spa->spa);
3617
3618 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3619 continue;
3620 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3621 continue;
3622
3623 if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3624 busy++;
3625 else
3626 scheduled++;
3627 }
3628 if (scheduled) {
3629 sched_ars(acpi_desc);
3630 dev_dbg(dev, "ars_scan triggered\n");
3631 }
3632 mutex_unlock(&acpi_desc->init_mutex);
3633
3634 if (scheduled)
3635 return 0;
3636 if (busy)
3637 return -EBUSY;
3638 return -ENOTTY;
3639 }
3640
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3641 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3642 {
3643 struct nvdimm_bus_descriptor *nd_desc;
3644
3645 dev_set_drvdata(dev, acpi_desc);
3646 acpi_desc->dev = dev;
3647 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3648 nd_desc = &acpi_desc->nd_desc;
3649 nd_desc->provider_name = "ACPI.NFIT";
3650 nd_desc->module = THIS_MODULE;
3651 nd_desc->ndctl = acpi_nfit_ctl;
3652 nd_desc->flush_probe = acpi_nfit_flush_probe;
3653 nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3654 nd_desc->attr_groups = acpi_nfit_attribute_groups;
3655
3656 INIT_LIST_HEAD(&acpi_desc->spas);
3657 INIT_LIST_HEAD(&acpi_desc->dcrs);
3658 INIT_LIST_HEAD(&acpi_desc->bdws);
3659 INIT_LIST_HEAD(&acpi_desc->idts);
3660 INIT_LIST_HEAD(&acpi_desc->flushes);
3661 INIT_LIST_HEAD(&acpi_desc->memdevs);
3662 INIT_LIST_HEAD(&acpi_desc->dimms);
3663 INIT_LIST_HEAD(&acpi_desc->list);
3664 mutex_init(&acpi_desc->init_mutex);
3665 acpi_desc->scrub_tmo = 1;
3666 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3667 }
3668 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3669
acpi_nfit_put_table(void * table)3670 static void acpi_nfit_put_table(void *table)
3671 {
3672 acpi_put_table(table);
3673 }
3674
acpi_nfit_shutdown(void * data)3675 void acpi_nfit_shutdown(void *data)
3676 {
3677 struct acpi_nfit_desc *acpi_desc = data;
3678 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3679
3680 /*
3681 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3682 * race teardown
3683 */
3684 mutex_lock(&acpi_desc_lock);
3685 list_del(&acpi_desc->list);
3686 mutex_unlock(&acpi_desc_lock);
3687
3688 mutex_lock(&acpi_desc->init_mutex);
3689 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3690 mutex_unlock(&acpi_desc->init_mutex);
3691 cancel_delayed_work_sync(&acpi_desc->dwork);
3692
3693 /*
3694 * Bounce the nvdimm bus lock to make sure any in-flight
3695 * acpi_nfit_ars_rescan() submissions have had a chance to
3696 * either submit or see ->cancel set.
3697 */
3698 nfit_device_lock(bus_dev);
3699 nfit_device_unlock(bus_dev);
3700
3701 flush_workqueue(nfit_wq);
3702 }
3703 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3704
acpi_nfit_add(struct acpi_device * adev)3705 static int acpi_nfit_add(struct acpi_device *adev)
3706 {
3707 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3708 struct acpi_nfit_desc *acpi_desc;
3709 struct device *dev = &adev->dev;
3710 struct acpi_table_header *tbl;
3711 acpi_status status = AE_OK;
3712 acpi_size sz;
3713 int rc = 0;
3714
3715 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3716 if (ACPI_FAILURE(status)) {
3717 /* The NVDIMM root device allows OS to trigger enumeration of
3718 * NVDIMMs through NFIT at boot time and re-enumeration at
3719 * root level via the _FIT method during runtime.
3720 * This is ok to return 0 here, we could have an nvdimm
3721 * hotplugged later and evaluate _FIT method which returns
3722 * data in the format of a series of NFIT Structures.
3723 */
3724 dev_dbg(dev, "failed to find NFIT at startup\n");
3725 return 0;
3726 }
3727
3728 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3729 if (rc)
3730 return rc;
3731 sz = tbl->length;
3732
3733 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3734 if (!acpi_desc)
3735 return -ENOMEM;
3736 acpi_nfit_desc_init(acpi_desc, &adev->dev);
3737
3738 /* Save the acpi header for exporting the revision via sysfs */
3739 acpi_desc->acpi_header = *tbl;
3740
3741 /* Evaluate _FIT and override with that if present */
3742 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3743 if (ACPI_SUCCESS(status) && buf.length > 0) {
3744 union acpi_object *obj = buf.pointer;
3745
3746 if (obj->type == ACPI_TYPE_BUFFER)
3747 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3748 obj->buffer.length);
3749 else
3750 dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3751 (int) obj->type);
3752 kfree(buf.pointer);
3753 } else
3754 /* skip over the lead-in header table */
3755 rc = acpi_nfit_init(acpi_desc, (void *) tbl
3756 + sizeof(struct acpi_table_nfit),
3757 sz - sizeof(struct acpi_table_nfit));
3758
3759 if (rc)
3760 return rc;
3761 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3762 }
3763
acpi_nfit_remove(struct acpi_device * adev)3764 static int acpi_nfit_remove(struct acpi_device *adev)
3765 {
3766 /* see acpi_nfit_unregister */
3767 return 0;
3768 }
3769
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3770 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3771 {
3772 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3773 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3774 union acpi_object *obj;
3775 acpi_status status;
3776 int ret;
3777
3778 if (!dev->driver) {
3779 /* dev->driver may be null if we're being removed */
3780 dev_dbg(dev, "no driver found for dev\n");
3781 return;
3782 }
3783
3784 if (!acpi_desc) {
3785 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3786 if (!acpi_desc)
3787 return;
3788 acpi_nfit_desc_init(acpi_desc, dev);
3789 } else {
3790 /*
3791 * Finish previous registration before considering new
3792 * regions.
3793 */
3794 flush_workqueue(nfit_wq);
3795 }
3796
3797 /* Evaluate _FIT */
3798 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3799 if (ACPI_FAILURE(status)) {
3800 dev_err(dev, "failed to evaluate _FIT\n");
3801 return;
3802 }
3803
3804 obj = buf.pointer;
3805 if (obj->type == ACPI_TYPE_BUFFER) {
3806 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3807 obj->buffer.length);
3808 if (ret)
3809 dev_err(dev, "failed to merge updated NFIT\n");
3810 } else
3811 dev_err(dev, "Invalid _FIT\n");
3812 kfree(buf.pointer);
3813 }
3814
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3815 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3816 {
3817 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3818
3819 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3820 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3821 else
3822 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3823 }
3824
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3825 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3826 {
3827 dev_dbg(dev, "event: 0x%x\n", event);
3828
3829 switch (event) {
3830 case NFIT_NOTIFY_UPDATE:
3831 return acpi_nfit_update_notify(dev, handle);
3832 case NFIT_NOTIFY_UC_MEMORY_ERROR:
3833 return acpi_nfit_uc_error_notify(dev, handle);
3834 default:
3835 return;
3836 }
3837 }
3838 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3839
acpi_nfit_notify(struct acpi_device * adev,u32 event)3840 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3841 {
3842 nfit_device_lock(&adev->dev);
3843 __acpi_nfit_notify(&adev->dev, adev->handle, event);
3844 nfit_device_unlock(&adev->dev);
3845 }
3846
3847 static const struct acpi_device_id acpi_nfit_ids[] = {
3848 { "ACPI0012", 0 },
3849 { "", 0 },
3850 };
3851 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3852
3853 static struct acpi_driver acpi_nfit_driver = {
3854 .name = KBUILD_MODNAME,
3855 .ids = acpi_nfit_ids,
3856 .ops = {
3857 .add = acpi_nfit_add,
3858 .remove = acpi_nfit_remove,
3859 .notify = acpi_nfit_notify,
3860 },
3861 };
3862
nfit_init(void)3863 static __init int nfit_init(void)
3864 {
3865 int ret;
3866
3867 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3868 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3869 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3870 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3871 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3872 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3873 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3874 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3875
3876 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3877 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3878 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3879 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3880 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3881 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3882 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3883 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3884 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3885 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3886 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3887 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3888 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3889 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3890 guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3891
3892 nfit_wq = create_singlethread_workqueue("nfit");
3893 if (!nfit_wq)
3894 return -ENOMEM;
3895
3896 nfit_mce_register();
3897 ret = acpi_bus_register_driver(&acpi_nfit_driver);
3898 if (ret) {
3899 nfit_mce_unregister();
3900 destroy_workqueue(nfit_wq);
3901 }
3902
3903 return ret;
3904
3905 }
3906
nfit_exit(void)3907 static __exit void nfit_exit(void)
3908 {
3909 nfit_mce_unregister();
3910 acpi_bus_unregister_driver(&acpi_nfit_driver);
3911 destroy_workqueue(nfit_wq);
3912 WARN_ON(!list_empty(&acpi_descs));
3913 }
3914
3915 module_init(nfit_init);
3916 module_exit(nfit_exit);
3917 MODULE_LICENSE("GPL v2");
3918 MODULE_AUTHOR("Intel Corporation");
3919