• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4  *                            FireStream  50 (MB86695) device driver
5  */
6 
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
10  */
11 
12 /*
13 */
14 
15 
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
38 #include <asm/io.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
42 
43 #include "firestream.h"
44 
45 static int loopback = 0;
46 static int num=0x5a;
47 
48 /* According to measurements (but they look suspicious to me!) done in
49  * '97, 37% of the packets are one cell in size. So it pays to have
50  * buffers allocated at that size. A large jump in percentage of
51  * packets occurs at packets around 536 bytes in length. So it also
52  * pays to have those pre-allocated. Unfortunately, we can't fully
53  * take advantage of this as the majority of the packets is likely to
54  * be TCP/IP (As where obviously the measurement comes from) There the
55  * link would be opened with say a 1500 byte MTU, and we can't handle
56  * smaller buffers more efficiently than the larger ones. -- REW
57  */
58 
59 /* Due to the way Linux memory management works, specifying "576" as
60  * an allocation size here isn't going to help. They are allocated
61  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62  * large), it doesn't pay to allocate the smallest size (64) -- REW */
63 
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65  * are appreciated. -- REW */
66 
67 /* The last entry should be about 64k. However, the "buffer size" is
68  * passed to the chip in a 16 bit field. I don't know how "65536"
69  * would be interpreted. -- REW */
70 
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
73 /* log2:                 7     8     9    10    11    12    14     16 */
74 
75 #if 0
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
77 #else
78 /* debug */
79 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
80 #endif
81 /* log2:                 10    10    9    8     7     6     5      5  */
82 /* sumlog2:              17    18    18   18    18    18    19     21 */
83 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
84 /* tot mem: almost 4M */
85 
86 /* NP is shorter, so that it fits on a single line. */
87 #undef NP
88 
89 
90 /* Small hardware gotcha:
91 
92    The FS50 CAM (VP/VC match registers) always take the lowest channel
93    number that matches. This is not a problem.
94 
95    However, they also ignore whether the channel is enabled or
96    not. This means that if you allocate channel 0 to 1.2 and then
97    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98    match channel for channel 0 will "steal" the traffic from channel
99    1, even if you correctly disable channel 0.
100 
101    Workaround:
102 
103    - When disabling channels, write an invalid VP/VC value to the
104    match register. (We use 0xffffffff, which in the worst case
105    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106    anything as some "when not in use, program to 0" bits are now
107    programmed to 1...)
108 
109    - Don't initialize the match registers to 0, as 0.0 is a valid
110    channel.
111 */
112 
113 
114 /* Optimization hints and tips.
115 
116    The FireStream chips are very capable of reducing the amount of
117    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118    action. You could try to minimize this a bit.
119 
120    Besides that, the userspace->kernel copy and the PCI bus are the
121    performance limiting issues for this driver.
122 
123    You could queue up a bunch of outgoing packets without telling the
124    FireStream. I'm not sure that's going to win you much though. The
125    Linux layer won't tell us in advance when it's not going to give us
126    any more packets in a while. So this is tricky to implement right without
127    introducing extra delays.
128 
129    -- REW
130  */
131 
132 
133 
134 
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137    freepool descriptor! */
138 static char *res_strings[] = {
139 	"RX OK: streaming not EOP",
140 	"RX OK: streaming EOP",
141 	"RX OK: Single buffer packet",
142 	"RX OK: packet mode",
143 	"RX OK: F4 OAM (end to end)",
144 	"RX OK: F4 OAM (Segment)",
145 	"RX OK: F5 OAM (end to end)",
146 	"RX OK: F5 OAM (Segment)",
147 	"RX OK: RM cell",
148 	"RX OK: TRANSP cell",
149 	"RX OK: TRANSPC cell",
150 	"Unmatched cell",
151 	"reserved 12",
152 	"reserved 13",
153 	"reserved 14",
154 	"Unrecognized cell",
155 	"reserved 16",
156 	"reassembly abort: AAL5 abort",
157 	"packet purged",
158 	"packet ageing timeout",
159 	"channel ageing timeout",
160 	"calculated length error",
161 	"programmed length limit error",
162 	"aal5 crc32 error",
163 	"oam transp or transpc crc10 error",
164 	"reserved 25",
165 	"reserved 26",
166 	"reserved 27",
167 	"reserved 28",
168 	"reserved 29",
169 	"reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 	"reassembly abort: no buffers",
171 	"receive buffer overflow",
172 	"change in GFC",
173 	"receive buffer full",
174 	"low priority discard - no receive descriptor",
175 	"low priority discard - missing end of packet",
176 	"reserved 37",
177 	"reserved 38",
178 	"reserved 39",
179 	"reserved 40",
180 	"reserved 41",
181 	"reserved 42",
182 	"reserved 43",
183 	"reserved 44",
184 	"reserved 45",
185 	"reserved 46",
186 	"reserved 47",
187 	"reserved 48",
188 	"reserved 49",
189 	"reserved 50",
190 	"reserved 51",
191 	"reserved 52",
192 	"reserved 53",
193 	"reserved 54",
194 	"reserved 55",
195 	"reserved 56",
196 	"reserved 57",
197 	"reserved 58",
198 	"reserved 59",
199 	"reserved 60",
200 	"reserved 61",
201 	"reserved 62",
202 	"reserved 63",
203 };
204 
205 static char *irq_bitname[] = {
206 	"LPCO",
207 	"DPCO",
208 	"RBRQ0_W",
209 	"RBRQ1_W",
210 	"RBRQ2_W",
211 	"RBRQ3_W",
212 	"RBRQ0_NF",
213 	"RBRQ1_NF",
214 	"RBRQ2_NF",
215 	"RBRQ3_NF",
216 	"BFP_SC",
217 	"INIT",
218 	"INIT_ERR",
219 	"USCEO",
220 	"UPEC0",
221 	"VPFCO",
222 	"CRCCO",
223 	"HECO",
224 	"TBRQ_W",
225 	"TBRQ_NF",
226 	"CTPQ_E",
227 	"GFC_C0",
228 	"PCI_FTL",
229 	"CSQ_W",
230 	"CSQ_NF",
231 	"EXT_INT",
232 	"RXDMA_S"
233 };
234 
235 
236 #define PHY_EOF -1
237 #define PHY_CLEARALL -2
238 
239 struct reginit_item {
240 	int reg, val;
241 };
242 
243 
244 static struct reginit_item PHY_NTC_INIT[] = {
245 	{ PHY_CLEARALL, 0x40 },
246 	{ 0x12,  0x0001 },
247 	{ 0x13,  0x7605 },
248 	{ 0x1A,  0x0001 },
249 	{ 0x1B,  0x0005 },
250 	{ 0x38,  0x0003 },
251 	{ 0x39,  0x0006 },   /* changed here to make loopback */
252 	{ 0x01,  0x5262 },
253 	{ 0x15,  0x0213 },
254 	{ 0x00,  0x0003 },
255 	{ PHY_EOF, 0},    /* -1 signals end of list */
256 };
257 
258 
259 /* Safetyfeature: If the card interrupts more than this number of times
260    in a jiffy (1/100th of a second) then we just disable the interrupt and
261    print a message. This prevents the system from hanging.
262 
263    150000 packets per second is close to the limit a PC is going to have
264    anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
266 
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268    that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
270 
271 /*
272    This driver can spew a whole lot of debugging output at you. If you
273    need maximum performance, you should disable the DEBUG define. To
274    aid in debugging in the field, I'm leaving the compile-time debug
275    features enabled, and disable them "runtime". That allows me to
276    instruct people with problems to enable debugging without requiring
277    them to recompile... -- REW
278 */
279 #define DEBUG
280 
281 #ifdef DEBUG
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283 #else
284 #define fs_dprintk(f, str...) /* nothing */
285 #endif
286 
287 
288 static int fs_keystream = 0;
289 
290 #ifdef DEBUG
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292    if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
294 #else
295 #define fs_debug 0
296 #endif
297 
298 #ifdef MODULE
299 #ifdef DEBUG
300 module_param(fs_debug, int, 0644);
301 #endif
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306 #endif
307 
308 
309 #define FS_DEBUG_FLOW    0x00000001
310 #define FS_DEBUG_OPEN    0x00000002
311 #define FS_DEBUG_QUEUE   0x00000004
312 #define FS_DEBUG_IRQ     0x00000008
313 #define FS_DEBUG_INIT    0x00000010
314 #define FS_DEBUG_SEND    0x00000020
315 #define FS_DEBUG_PHY     0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS     0x00000100
318 #define FS_DEBUG_TXQ     0x00000200
319 #define FS_DEBUG_ALLOC   0x00000400
320 #define FS_DEBUG_TXMEM   0x00000800
321 #define FS_DEBUG_QSIZE   0x00001000
322 
323 
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
326 
327 
328 static struct fs_dev *fs_boards = NULL;
329 
330 #ifdef DEBUG
331 
my_hd(void * addr,int len)332 static void my_hd (void *addr, int len)
333 {
334 	int j, ch;
335 	unsigned char *ptr = addr;
336 
337 	while (len > 0) {
338 		printk ("%p ", ptr);
339 		for (j=0;j < ((len < 16)?len:16);j++) {
340 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 		}
342 		for (  ;j < 16;j++) {
343 			printk ("   %s", (j==7)?" ":"");
344 		}
345 		for (j=0;j < ((len < 16)?len:16);j++) {
346 			ch = ptr[j];
347 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 		}
349 		printk ("\n");
350 		ptr += 16;
351 		len -= 16;
352 	}
353 }
354 #else /* DEBUG */
my_hd(void * addr,int len)355 static void my_hd (void *addr, int len){}
356 #endif /* DEBUG */
357 
358 /********** free an skb (as per ATM device driver documentation) **********/
359 
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361  * I copied it over from the ambassador driver. -- REW */
362 
fs_kfree_skb(struct sk_buff * skb)363 static inline void fs_kfree_skb (struct sk_buff * skb)
364 {
365 	if (ATM_SKB(skb)->vcc->pop)
366 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 	else
368 		dev_kfree_skb_any (skb);
369 }
370 
371 
372 
373 
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375  * floating point format. Turns out the Ambassador uses the exact same
376  * encoding. I just copied it over. If Mitch agrees, I'll move it over
377  * to the atm_misc file or something like that. (and remove it from
378  * here and the ambassador driver) -- REW
379  */
380 
381 /* The good thing about this format is that it is monotonic. So,
382    a conversion routine need not be very complicated. To be able to
383    round "nearest" we need to take along a few extra bits. Lets
384    put these after 16 bits, so that we can just return the top 16
385    bits of the 32bit number as the result:
386 
387    int mr (unsigned int rate, int r)
388      {
389      int e = 16+9;
390      static int round[4]={0, 0, 0xffff, 0x8000};
391      if (!rate) return 0;
392      while (rate & 0xfc000000) {
393        rate >>= 1;
394        e++;
395      }
396      while (! (rate & 0xfe000000)) {
397        rate <<= 1;
398        e--;
399      }
400 
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402      rate &= ~0x02000000;
403 // Next add in the exponent
404      rate |= e << (16+9);
405 // And perform the rounding:
406      return (rate + round[r]) >> 16;
407    }
408 
409    14 lines-of-code. Compare that with the 120 that the Ambassador
410    guys needed. (would be 8 lines shorter if I'd try to really reduce
411    the number of lines:
412 
413    int mr (unsigned int rate, int r)
414    {
415      int e = 16+9;
416      static int round[4]={0, 0, 0xffff, 0x8000};
417      if (!rate) return 0;
418      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
419      for (;!(rate & 0xfe000000);rate <<= 1, e--);
420      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421    }
422 
423    Exercise for the reader: Remove one more line-of-code, without
424    cheating. (Just joining two lines is cheating). (I know it's
425    possible, don't think you've beat me if you found it... If you
426    manage to lose two lines or more, keep me updated! ;-)
427 
428    -- REW */
429 
430 
431 #define ROUND_UP      1
432 #define ROUND_DOWN    2
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
435 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)436 static int make_rate(unsigned int rate, int r,
437 		      u16 *bits, unsigned int *actual)
438 {
439 	unsigned char exp = -1; /* hush gcc */
440 	unsigned int man = -1;  /* hush gcc */
441 
442 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443 
444 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 	   given 5-bit e and 9-bit m:
446 	   rate = EITHER (1+m/2^9)*2^e    OR 0
447 	   bits = EITHER 1<<14 | e<<9 | m OR 0
448 	   (bit 15 is "reserved", bit 14 "non-zero")
449 	   smallest rate is 0 (special representation)
450 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 	   simple algorithm:
453 	   find position of top bit, this gives e
454 	   remove top bit and shift (rounding if feeling clever) by 9-e
455 	*/
456 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 	   representable. // This should move into the ambassador driver
458 	   when properly merged. -- REW */
459 
460 	if (rate > 0xffc00000U) {
461 		/* larger than largest representable rate */
462 
463 		if (r == ROUND_UP) {
464 			return -EINVAL;
465 		} else {
466 			exp = 31;
467 			man = 511;
468 		}
469 
470 	} else if (rate) {
471 		/* representable rate */
472 
473 		exp = 31;
474 		man = rate;
475 
476 		/* invariant: rate = man*2^(exp-31) */
477 		while (!(man & (1<<31))) {
478 			exp = exp - 1;
479 			man = man<<1;
480 		}
481 
482 		/* man has top bit set
483 		   rate = (2^31+(man-2^31))*2^(exp-31)
484 		   rate = (1+(man-2^31)/2^31)*2^exp
485 		*/
486 		man = man<<1;
487 		man &= 0xffffffffU; /* a nop on 32-bit systems */
488 		/* rate = (1+man/2^32)*2^exp
489 
490 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 		   time to lose significance... we want m in the range 0 to 2^9-1
492 		   rounding presents a minor problem... we first decide which way
493 		   we are rounding (based on given rounding direction and possibly
494 		   the bits of the mantissa that are to be discarded).
495 		*/
496 
497 		switch (r) {
498 		case ROUND_DOWN: {
499 			/* just truncate */
500 			man = man>>(32-9);
501 			break;
502 		}
503 		case ROUND_UP: {
504 			/* check all bits that we are discarding */
505 			if (man & (~0U>>9)) {
506 				man = (man>>(32-9)) + 1;
507 				if (man == (1<<9)) {
508 					/* no need to check for round up outside of range */
509 					man = 0;
510 					exp += 1;
511 				}
512 			} else {
513 				man = (man>>(32-9));
514 			}
515 			break;
516 		}
517 		case ROUND_NEAREST: {
518 			/* check msb that we are discarding */
519 			if (man & (1<<(32-9-1))) {
520 				man = (man>>(32-9)) + 1;
521 				if (man == (1<<9)) {
522 					/* no need to check for round up outside of range */
523 					man = 0;
524 					exp += 1;
525 				}
526 			} else {
527 				man = (man>>(32-9));
528 			}
529 			break;
530 		}
531 		}
532 
533 	} else {
534 		/* zero rate - not representable */
535 
536 		if (r == ROUND_DOWN) {
537 			return -EINVAL;
538 		} else {
539 			exp = 0;
540 			man = 0;
541 		}
542 	}
543 
544 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545 
546 	if (bits)
547 		*bits = /* (1<<14) | */ (exp<<9) | man;
548 
549 	if (actual)
550 		*actual = (exp >= 9)
551 			? (1 << exp) + (man << (exp-9))
552 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553 
554 	return 0;
555 }
556 
557 
558 
559 
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562    certain registers or to just log all accesses. */
563 
write_fs(struct fs_dev * dev,int offset,u32 val)564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565 {
566 	writel (val, dev->base + offset);
567 }
568 
569 
read_fs(struct fs_dev * dev,int offset)570 static inline u32  read_fs (struct fs_dev *dev, int offset)
571 {
572 	return readl (dev->base + offset);
573 }
574 
575 
576 
get_qentry(struct fs_dev * dev,struct queue * q)577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578 {
579 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580 }
581 
582 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584 {
585 	u32 wp;
586 	struct FS_QENTRY *cqe;
587 
588 	/* XXX Sanity check: the write pointer can be checked to be
589 	   still the same as the value passed as qe... -- REW */
590 	/*  udelay (5); */
591 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 			    q->offset);
594 		schedule ();
595 	}
596 
597 	wp &= ~0xf;
598 	cqe = bus_to_virt (wp);
599 	if (qe != cqe) {
600 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 	}
602 
603 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604 
605 	{
606 		static int c;
607 		if (!(c++ % 100))
608 			{
609 				int rp, wp;
610 				rp =  read_fs (dev, Q_RP(q->offset));
611 				wp =  read_fs (dev, Q_WP(q->offset));
612 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 					    q->offset, rp, wp, wp-rp);
614 			}
615 	}
616 }
617 
618 #ifdef DEBUG_EXTRA
619 static struct FS_QENTRY pq[60];
620 static int qp;
621 
622 static struct FS_BPENTRY dq[60];
623 static int qd;
624 static void *da[60];
625 #endif
626 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 			  u32 cmd, u32 p1, u32 p2, u32 p3)
629 {
630 	struct FS_QENTRY *qe;
631 
632 	qe = get_qentry (dev, q);
633 	qe->cmd = cmd;
634 	qe->p0 = p1;
635 	qe->p1 = p2;
636 	qe->p2 = p3;
637 	submit_qentry (dev,  q, qe);
638 
639 #ifdef DEBUG_EXTRA
640 	pq[qp].cmd = cmd;
641 	pq[qp].p0 = p1;
642 	pq[qp].p1 = p2;
643 	pq[qp].p2 = p3;
644 	qp++;
645 	if (qp >= 60) qp = 0;
646 #endif
647 }
648 
649 /* Test the "other" way one day... -- REW */
650 #if 1
651 #define submit_command submit_queue
652 #else
653 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 			    u32 cmd, u32 p1, u32 p2, u32 p3)
656 {
657 	write_fs (dev, CMDR0, cmd);
658 	write_fs (dev, CMDR1, p1);
659 	write_fs (dev, CMDR2, p2);
660 	write_fs (dev, CMDR3, p3);
661 }
662 #endif
663 
664 
665 
process_return_queue(struct fs_dev * dev,struct queue * q)666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
667 {
668 	long rq;
669 	struct FS_QENTRY *qe;
670 	void *tc;
671 
672 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 		qe = bus_to_virt (rq);
675 
676 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678 
679 		switch (STATUS_CODE (qe)) {
680 		case 5:
681 			tc = bus_to_virt (qe->p0);
682 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 			kfree (tc);
684 			break;
685 		}
686 
687 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 	}
689 }
690 
691 
process_txdone_queue(struct fs_dev * dev,struct queue * q)692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693 {
694 	long rq;
695 	long tmp;
696 	struct FS_QENTRY *qe;
697 	struct sk_buff *skb;
698 	struct FS_BPENTRY *td;
699 
700 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 		qe = bus_to_virt (rq);
703 
704 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706 
707 		if (STATUS_CODE (qe) != 2)
708 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710 
711 
712 		switch (STATUS_CODE (qe)) {
713 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 			fallthrough;
715 		case 0x02:
716 			/* Process a real txdone entry. */
717 			tmp = qe->p0;
718 			if (tmp & 0x0f)
719 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 			tmp &= ~0x0f;
721 			td = bus_to_virt (tmp);
722 
723 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725 
726 			skb = td->skb;
727 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 			}
731 			td->dev->ntxpckts--;
732 
733 			{
734 				static int c=0;
735 
736 				if (!(c++ % 100)) {
737 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 				}
739 			}
740 
741 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742 
743 			fs_dprintk (FS_DEBUG_TXMEM, "i");
744 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 			fs_kfree_skb (skb);
746 
747 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 			kfree (td);
750 			break;
751 		default:
752 			/* Here we get the tx purge inhibit command ... */
753 			/* Action, I believe, is "don't do anything". -- REW */
754 			;
755 		}
756 
757 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 	}
759 }
760 
761 
process_incoming(struct fs_dev * dev,struct queue * q)762 static void process_incoming (struct fs_dev *dev, struct queue *q)
763 {
764 	long rq;
765 	struct FS_QENTRY *qe;
766 	struct FS_BPENTRY *pe;
767 	struct sk_buff *skb;
768 	unsigned int channo;
769 	struct atm_vcc *atm_vcc;
770 
771 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 		qe = bus_to_virt (rq);
774 
775 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
776 			    qe->cmd, qe->p0, qe->p1, qe->p2);
777 
778 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 			    STATUS_CODE (qe),
780 			    res_strings[STATUS_CODE(qe)]);
781 
782 		pe = bus_to_virt (qe->p0);
783 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 			    pe->skb, pe->fp);
786 
787 		channo = qe->cmd & 0xffff;
788 
789 		if (channo < dev->nchannels)
790 			atm_vcc = dev->atm_vccs[channo];
791 		else
792 			atm_vcc = NULL;
793 
794 		/* Single buffer packet */
795 		switch (STATUS_CODE (qe)) {
796 		case 0x1:
797 			/* Fall through for streaming mode */
798 		case 0x2:/* Packet received OK.... */
799 			if (atm_vcc) {
800 				skb = pe->skb;
801 				pe->fp->n--;
802 #if 0
803 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
804 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
805 #endif
806 				skb_put (skb, qe->p1 & 0xffff);
807 				ATM_SKB(skb)->vcc = atm_vcc;
808 				atomic_inc(&atm_vcc->stats->rx);
809 				__net_timestamp(skb);
810 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
811 				atm_vcc->push (atm_vcc, skb);
812 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
813 				kfree (pe);
814 			} else {
815 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
816 			}
817 			break;
818 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
819 			     has been consumed and needs to be processed. -- REW */
820 			if (qe->p1 & 0xffff) {
821 				pe = bus_to_virt (qe->p0);
822 				pe->fp->n--;
823 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
824 				dev_kfree_skb_any (pe->skb);
825 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
826 				kfree (pe);
827 			}
828 			if (atm_vcc)
829 				atomic_inc(&atm_vcc->stats->rx_drop);
830 			break;
831 		case 0x1f: /*  Reassembly abort: no buffers. */
832 			/* Silently increment error counter. */
833 			if (atm_vcc)
834 				atomic_inc(&atm_vcc->stats->rx_drop);
835 			break;
836 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
837 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
838 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
839 		}
840 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
841 	}
842 }
843 
844 
845 
846 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
847 
fs_open(struct atm_vcc * atm_vcc)848 static int fs_open(struct atm_vcc *atm_vcc)
849 {
850 	struct fs_dev *dev;
851 	struct fs_vcc *vcc;
852 	struct fs_transmit_config *tc;
853 	struct atm_trafprm * txtp;
854 	struct atm_trafprm * rxtp;
855 	/*  struct fs_receive_config *rc;*/
856 	/*  struct FS_QENTRY *qe; */
857 	int error;
858 	int bfp;
859 	int to;
860 	unsigned short tmc0;
861 	short vpi = atm_vcc->vpi;
862 	int vci = atm_vcc->vci;
863 
864 	func_enter ();
865 
866 	dev = FS_DEV(atm_vcc->dev);
867 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
868 		    dev, atm_vcc);
869 
870 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
871 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
872 
873 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
874 	    (atm_vcc->qos.aal != ATM_AAL2))
875 	  return -EINVAL; /* XXX AAL0 */
876 
877 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
878 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
879 
880 	/* XXX handle qos parameters (rate limiting) ? */
881 
882 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
883 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
884 	if (!vcc) {
885 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
886 		return -ENOMEM;
887 	}
888 
889 	atm_vcc->dev_data = vcc;
890 	vcc->last_skb = NULL;
891 
892 	init_waitqueue_head (&vcc->close_wait);
893 
894 	txtp = &atm_vcc->qos.txtp;
895 	rxtp = &atm_vcc->qos.rxtp;
896 
897 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
898 		if (IS_FS50(dev)) {
899 			/* Increment the channel numer: take a free one next time.  */
900 			for (to=33;to;to--, dev->channo++) {
901 				/* We only have 32 channels */
902 				if (dev->channo >= 32)
903 					dev->channo = 0;
904 				/* If we need to do RX, AND the RX is inuse, try the next */
905 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
906 					continue;
907 				/* If we need to do TX, AND the TX is inuse, try the next */
908 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
909 					continue;
910 				/* Ok, both are free! (or not needed) */
911 				break;
912 			}
913 			if (!to) {
914 				printk ("No more free channels for FS50..\n");
915 				kfree(vcc);
916 				return -EBUSY;
917 			}
918 			vcc->channo = dev->channo;
919 			dev->channo &= dev->channel_mask;
920 
921 		} else {
922 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
923 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
924 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
925 				printk ("Channel is in use for FS155.\n");
926 				kfree(vcc);
927 				return -EBUSY;
928 			}
929 		}
930 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
931 			    vcc->channo, vcc->channo);
932 	}
933 
934 	if (DO_DIRECTION (txtp)) {
935 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
936 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
937 			    tc, sizeof (struct fs_transmit_config));
938 		if (!tc) {
939 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
940 			kfree(vcc);
941 			return -ENOMEM;
942 		}
943 
944 		/* Allocate the "open" entry from the high priority txq. This makes
945 		   it most likely that the chip will notice it. It also prevents us
946 		   from having to wait for completion. On the other hand, we may
947 		   need to wait for completion anyway, to see if it completed
948 		   successfully. */
949 
950 		switch (atm_vcc->qos.aal) {
951 		case ATM_AAL2:
952 		case ATM_AAL0:
953 		  tc->flags = 0
954 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
955 		    | TC_FLAGS_PACKET
956 		    | (1 << 28)
957 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
958 		    | TC_FLAGS_CAL0;
959 		  break;
960 		case ATM_AAL5:
961 		  tc->flags = 0
962 			| TC_FLAGS_AAL5
963 			| TC_FLAGS_PACKET  /* ??? */
964 			| TC_FLAGS_TYPE_CBR
965 			| TC_FLAGS_CAL0;
966 		  break;
967 		default:
968 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
969 			tc->flags = 0;
970 		}
971 		/* Docs are vague about this atm_hdr field. By the way, the FS
972 		 * chip makes odd errors if lower bits are set.... -- REW */
973 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
974 		tmc0 = 0;
975 		{
976 			int pcr = atm_pcr_goal (txtp);
977 
978 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
979 
980 			/* XXX Hmm. officially we're only allowed to do this if rounding
981 			   is round_down -- REW */
982 			if (IS_FS50(dev)) {
983 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
984 			} else {
985 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
986 			}
987 			if (!pcr) {
988 				/* no rate cap */
989 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
990 			} else {
991 				int r;
992 				if (pcr < 0) {
993 					r = ROUND_DOWN;
994 					pcr = -pcr;
995 				} else {
996 					r = ROUND_UP;
997 				}
998 				error = make_rate (pcr, r, &tmc0, NULL);
999 				if (error) {
1000 					kfree(tc);
1001 					kfree(vcc);
1002 					return error;
1003 				}
1004 			}
1005 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1006 		}
1007 
1008 		tc->TMC[0] = tmc0 | 0x4000;
1009 		tc->TMC[1] = 0; /* Unused */
1010 		tc->TMC[2] = 0; /* Unused */
1011 		tc->TMC[3] = 0; /* Unused */
1012 
1013 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1014 		tc->rtag[0] = 0; /* What should I do with routing tags???
1015 				    -- Not used -- AS -- Thanks -- REW*/
1016 		tc->rtag[1] = 0;
1017 		tc->rtag[2] = 0;
1018 
1019 		if (fs_debug & FS_DEBUG_OPEN) {
1020 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1021 			my_hd (tc, sizeof (*tc));
1022 		}
1023 
1024 		/* We now use the "submit_command" function to submit commands to
1025 		   the firestream. There is a define up near the definition of
1026 		   that routine that switches this routine between immediate write
1027 		   to the immediate command registers and queuing the commands in
1028 		   the HPTXQ for execution. This last technique might be more
1029 		   efficient if we know we're going to submit a whole lot of
1030 		   commands in one go, but this driver is not setup to be able to
1031 		   use such a construct. So it probably doen't matter much right
1032 		   now. -- REW */
1033 
1034 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1035 		submit_command (dev, &dev->hp_txq,
1036 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1037 				virt_to_bus (tc), 0, 0);
1038 
1039 		submit_command (dev, &dev->hp_txq,
1040 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1041 				0, 0, 0);
1042 		set_bit (vcc->channo, dev->tx_inuse);
1043 	}
1044 
1045 	if (DO_DIRECTION (rxtp)) {
1046 		dev->atm_vccs[vcc->channo] = atm_vcc;
1047 
1048 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1049 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1050 		if (bfp >= FS_NR_FREE_POOLS) {
1051 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1052 				    atm_vcc->qos.rxtp.max_sdu);
1053 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1054 
1055 			/* XXX clear tx inuse. Close TX part? */
1056 			dev->atm_vccs[vcc->channo] = NULL;
1057 			kfree (vcc);
1058 			return -EINVAL;
1059 		}
1060 
1061 		switch (atm_vcc->qos.aal) {
1062 		case ATM_AAL0:
1063 		case ATM_AAL2:
1064 			submit_command (dev, &dev->hp_txq,
1065 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1066 					RC_FLAGS_TRANSP |
1067 					RC_FLAGS_BFPS_BFP * bfp |
1068 					RC_FLAGS_RXBM_PSB, 0, 0);
1069 			break;
1070 		case ATM_AAL5:
1071 			submit_command (dev, &dev->hp_txq,
1072 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 					RC_FLAGS_AAL5 |
1074 					RC_FLAGS_BFPS_BFP * bfp |
1075 					RC_FLAGS_RXBM_PSB, 0, 0);
1076 			break;
1077 		}
1078 		if (IS_FS50 (dev)) {
1079 			submit_command (dev, &dev->hp_txq,
1080 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1081 					0x80 + vcc->channo,
1082 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1083 		}
1084 		submit_command (dev, &dev->hp_txq,
1085 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1086 				0, 0, 0);
1087 	}
1088 
1089 	/* Indicate we're done! */
1090 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1091 
1092 	func_exit ();
1093 	return 0;
1094 }
1095 
1096 
fs_close(struct atm_vcc * atm_vcc)1097 static void fs_close(struct atm_vcc *atm_vcc)
1098 {
1099 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1100 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1101 	struct atm_trafprm * txtp;
1102 	struct atm_trafprm * rxtp;
1103 
1104 	func_enter ();
1105 
1106 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1107 
1108 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1109 	if (vcc->last_skb) {
1110 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1111 			    vcc->last_skb);
1112 		/* We're going to wait for the last packet to get sent on this VC. It would
1113 		   be impolite not to send them don't you think?
1114 		   XXX
1115 		   We don't know which packets didn't get sent. So if we get interrupted in
1116 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1117 		   On the other hand, it's awfully convenient that we can abort a "close" that
1118 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1119 		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1120 	}
1121 
1122 	txtp = &atm_vcc->qos.txtp;
1123 	rxtp = &atm_vcc->qos.rxtp;
1124 
1125 
1126 	/* See App note XXX (Unpublished as of now) for the reason for the
1127 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1128 
1129 	if (DO_DIRECTION (txtp)) {
1130 		submit_command (dev,  &dev->hp_txq,
1131 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1132 		clear_bit (vcc->channo, dev->tx_inuse);
1133 	}
1134 
1135 	if (DO_DIRECTION (rxtp)) {
1136 		submit_command (dev,  &dev->hp_txq,
1137 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1138 		dev->atm_vccs [vcc->channo] = NULL;
1139 
1140 		/* This means that this is configured as a receive channel */
1141 		if (IS_FS50 (dev)) {
1142 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1143 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1144 			   (0xfff...) -- REW */
1145 			submit_command (dev, &dev->hp_txq,
1146 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1147 					0x80 + vcc->channo, -1, 0 );
1148 		}
1149 	}
1150 
1151 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1152 	kfree (vcc);
1153 
1154 	func_exit ();
1155 }
1156 
1157 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1158 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1159 {
1160 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1161 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1162 	struct FS_BPENTRY *td;
1163 
1164 	func_enter ();
1165 
1166 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1167 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1168 		    atm_vcc, skb, vcc, dev);
1169 
1170 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1171 
1172 	ATM_SKB(skb)->vcc = atm_vcc;
1173 
1174 	vcc->last_skb = skb;
1175 
1176 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1177 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1178 	if (!td) {
1179 		/* Oops out of mem */
1180 		return -ENOMEM;
1181 	}
1182 
1183 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1184 		    *(int *) skb->data);
1185 
1186 	td->flags =  TD_EPI | TD_DATA | skb->len;
1187 	td->next = 0;
1188 	td->bsa  = virt_to_bus (skb->data);
1189 	td->skb = skb;
1190 	td->dev = dev;
1191 	dev->ntxpckts++;
1192 
1193 #ifdef DEBUG_EXTRA
1194 	da[qd] = td;
1195 	dq[qd].flags = td->flags;
1196 	dq[qd].next  = td->next;
1197 	dq[qd].bsa   = td->bsa;
1198 	dq[qd].skb   = td->skb;
1199 	dq[qd].dev   = td->dev;
1200 	qd++;
1201 	if (qd >= 60) qd = 0;
1202 #endif
1203 
1204 	submit_queue (dev, &dev->hp_txq,
1205 		      QE_TRANSMIT_DE | vcc->channo,
1206 		      virt_to_bus (td), 0,
1207 		      virt_to_bus (td));
1208 
1209 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1210 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1211 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1212 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1213 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1214 
1215 	func_exit ();
1216 	return 0;
1217 }
1218 
1219 
1220 /* Some function placeholders for functions we don't yet support. */
1221 
1222 #if 0
1223 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1224 {
1225 	func_enter ();
1226 	func_exit ();
1227 	return -ENOIOCTLCMD;
1228 }
1229 
1230 
1231 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1232 			 void __user *optval,int optlen)
1233 {
1234 	func_enter ();
1235 	func_exit ();
1236 	return 0;
1237 }
1238 
1239 
1240 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1241 			 void __user *optval,unsigned int optlen)
1242 {
1243 	func_enter ();
1244 	func_exit ();
1245 	return 0;
1246 }
1247 
1248 
1249 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1250 		       unsigned long addr)
1251 {
1252 	func_enter ();
1253 	func_exit ();
1254 }
1255 
1256 
1257 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1258 {
1259 	func_enter ();
1260 	func_exit ();
1261 	return 0;
1262 }
1263 
1264 
1265 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1266 {
1267 	func_enter ();
1268 	func_exit ();
1269 	return 0;
1270 };
1271 
1272 #endif
1273 
1274 
1275 static const struct atmdev_ops ops = {
1276 	.open =         fs_open,
1277 	.close =        fs_close,
1278 	.send =         fs_send,
1279 	.owner =        THIS_MODULE,
1280 	/* ioctl:          fs_ioctl, */
1281 	/* change_qos:     fs_change_qos, */
1282 
1283 	/* For now implement these internally here... */
1284 	/* phy_put:        fs_phy_put, */
1285 	/* phy_get:        fs_phy_get, */
1286 };
1287 
1288 
undocumented_pci_fix(struct pci_dev * pdev)1289 static void undocumented_pci_fix(struct pci_dev *pdev)
1290 {
1291 	u32 tint;
1292 
1293 	/* The Windows driver says: */
1294 	/* Switch off FireStream Retry Limit Threshold
1295 	 */
1296 
1297 	/* The register at 0x28 is documented as "reserved", no further
1298 	   comments. */
1299 
1300 	pci_read_config_dword (pdev, 0x28, &tint);
1301 	if (tint != 0x80) {
1302 		tint = 0x80;
1303 		pci_write_config_dword (pdev, 0x28, tint);
1304 	}
1305 }
1306 
1307 
1308 
1309 /**************************************************************************
1310  *                              PHY routines                              *
1311  **************************************************************************/
1312 
write_phy(struct fs_dev * dev,int regnum,int val)1313 static void write_phy(struct fs_dev *dev, int regnum, int val)
1314 {
1315 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1316 			regnum, val, 0);
1317 }
1318 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1319 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1320 {
1321 	int i;
1322 
1323 	func_enter ();
1324 	while (reginit->reg != PHY_EOF) {
1325 		if (reginit->reg == PHY_CLEARALL) {
1326 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1327 			for (i=0;i<reginit->val;i++) {
1328 				write_phy (dev, i, 0);
1329 			}
1330 		} else {
1331 			write_phy (dev, reginit->reg, reginit->val);
1332 		}
1333 		reginit++;
1334 	}
1335 	func_exit ();
1336 	return 0;
1337 }
1338 
reset_chip(struct fs_dev * dev)1339 static void reset_chip (struct fs_dev *dev)
1340 {
1341 	int i;
1342 
1343 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1344 
1345 	/* Undocumented delay */
1346 	udelay (128);
1347 
1348 	/* The "internal registers are documented to all reset to zero, but
1349 	   comments & code in the Windows driver indicates that the pools are
1350 	   NOT reset. */
1351 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1352 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1353 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1354 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1355 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1356 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1357 	}
1358 
1359 	/* The same goes for the match channel registers, although those are
1360 	   NOT documented that way in the Windows driver. -- REW */
1361 	/* The Windows driver DOES write 0 to these registers somewhere in
1362 	   the init sequence. However, a small hardware-feature, will
1363 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1364 	   allocated happens to have no disabled channels that have a lower
1365 	   number. -- REW */
1366 
1367 	/* Clear the match channel registers. */
1368 	if (IS_FS50 (dev)) {
1369 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1370 			write_fs (dev, 0x200 + i * 4, -1);
1371 		}
1372 	}
1373 }
1374 
aligned_kmalloc(int size,gfp_t flags,int alignment)1375 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1376 {
1377 	void  *t;
1378 
1379 	if (alignment <= 0x10) {
1380 		t = kmalloc (size, flags);
1381 		if ((unsigned long)t & (alignment-1)) {
1382 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1383 			kfree (t);
1384 			return aligned_kmalloc (size, flags, alignment * 4);
1385 		}
1386 		return t;
1387 	}
1388 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1389 	return NULL;
1390 }
1391 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1392 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1393 		  int nentries, int is_rq)
1394 {
1395 	int sz = nentries * sizeof (struct FS_QENTRY);
1396 	struct FS_QENTRY *p;
1397 
1398 	func_enter ();
1399 
1400 	fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1401 		    queue, nentries);
1402 
1403 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1404 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1405 
1406 	if (!p) return 0;
1407 
1408 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1409 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1410 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1411 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1412 	if (is_rq) {
1413 		/* Configuration for the receive queue: 0: interrupt immediately,
1414 		   no pre-warning to empty queues: We do our best to keep the
1415 		   queue filled anyway. */
1416 		write_fs (dev, Q_CNF(queue), 0 );
1417 	}
1418 
1419 	txq->sa = p;
1420 	txq->ea = p;
1421 	txq->offset = queue;
1422 
1423 	func_exit ();
1424 	return 1;
1425 }
1426 
1427 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1428 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1429 		   int bufsize, int nr_buffers)
1430 {
1431 	func_enter ();
1432 
1433 	fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1434 
1435 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1436 	write_fs (dev, FP_SA(queue),  0);
1437 	write_fs (dev, FP_EA(queue),  0);
1438 	write_fs (dev, FP_CTU(queue), 0);
1439 	write_fs (dev, FP_CNT(queue), 0);
1440 
1441 	fp->offset = queue;
1442 	fp->bufsize = bufsize;
1443 	fp->nr_buffers = nr_buffers;
1444 
1445 	func_exit ();
1446 	return 1;
1447 }
1448 
1449 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1450 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1451 {
1452 #if 0
1453 	/* This seems to be unreliable.... */
1454 	return read_fs (dev, FP_CNT (fp->offset));
1455 #else
1456 	return fp->n;
1457 #endif
1458 }
1459 
1460 
1461 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1462    does. I've seen "receive abort: no buffers" and things started
1463    working again after that...  -- REW */
1464 
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1465 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1466 			gfp_t gfp_flags)
1467 {
1468 	struct FS_BPENTRY *qe, *ne;
1469 	struct sk_buff *skb;
1470 	int n = 0;
1471 	u32 qe_tmp;
1472 
1473 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1474 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1475 		    fp->nr_buffers);
1476 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1477 
1478 		skb = alloc_skb (fp->bufsize, gfp_flags);
1479 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1480 		if (!skb) break;
1481 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1482 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1483 		if (!ne) {
1484 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1485 			dev_kfree_skb_any (skb);
1486 			break;
1487 		}
1488 
1489 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1490 			    skb, ne, skb->data, skb->head);
1491 		n++;
1492 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1493 		ne->next  = virt_to_bus (NULL);
1494 		ne->bsa   = virt_to_bus (skb->data);
1495 		ne->aal_bufsize = fp->bufsize;
1496 		ne->skb = skb;
1497 		ne->fp = fp;
1498 
1499 		/*
1500 		 * FIXME: following code encodes and decodes
1501 		 * machine pointers (could be 64-bit) into a
1502 		 * 32-bit register.
1503 		 */
1504 
1505 		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1506 		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1507 		if (qe_tmp) {
1508 			qe = bus_to_virt ((long) qe_tmp);
1509 			qe->next = virt_to_bus(ne);
1510 			qe->flags &= ~FP_FLAGS_EPI;
1511 		} else
1512 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1513 
1514 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1515 		fp->n++;   /* XXX Atomic_inc? */
1516 		write_fs (dev, FP_CTU(fp->offset), 1);
1517 	}
1518 
1519 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1520 }
1521 
free_queue(struct fs_dev * dev,struct queue * txq)1522 static void free_queue(struct fs_dev *dev, struct queue *txq)
1523 {
1524 	func_enter ();
1525 
1526 	write_fs (dev, Q_SA(txq->offset), 0);
1527 	write_fs (dev, Q_EA(txq->offset), 0);
1528 	write_fs (dev, Q_RP(txq->offset), 0);
1529 	write_fs (dev, Q_WP(txq->offset), 0);
1530 	/* Configuration ? */
1531 
1532 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1533 	kfree (txq->sa);
1534 
1535 	func_exit ();
1536 }
1537 
free_freepool(struct fs_dev * dev,struct freepool * fp)1538 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1539 {
1540 	func_enter ();
1541 
1542 	write_fs (dev, FP_CNF(fp->offset), 0);
1543 	write_fs (dev, FP_SA (fp->offset), 0);
1544 	write_fs (dev, FP_EA (fp->offset), 0);
1545 	write_fs (dev, FP_CNT(fp->offset), 0);
1546 	write_fs (dev, FP_CTU(fp->offset), 0);
1547 
1548 	func_exit ();
1549 }
1550 
1551 
1552 
fs_irq(int irq,void * dev_id)1553 static irqreturn_t fs_irq (int irq, void *dev_id)
1554 {
1555 	int i;
1556 	u32 status;
1557 	struct fs_dev *dev = dev_id;
1558 
1559 	status = read_fs (dev, ISR);
1560 	if (!status)
1561 		return IRQ_NONE;
1562 
1563 	func_enter ();
1564 
1565 #ifdef IRQ_RATE_LIMIT
1566 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1567 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1568 	{
1569 		static int lastjif;
1570 		static int nintr=0;
1571 
1572 		if (lastjif == jiffies) {
1573 			if (++nintr > IRQ_RATE_LIMIT) {
1574 				free_irq (dev->irq, dev_id);
1575 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1576 					dev->irq);
1577 			}
1578 		} else {
1579 			lastjif = jiffies;
1580 			nintr = 0;
1581 		}
1582 	}
1583 #endif
1584 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1585 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1586 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1587 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1588 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1589 
1590 	/* print the bits in the ISR register. */
1591 	if (fs_debug & FS_DEBUG_IRQ) {
1592 		/* The FS_DEBUG things are unnecessary here. But this way it is
1593 		   clear for grep that these are debug prints. */
1594 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1595 		for (i=0;i<27;i++)
1596 			if (status & (1 << i))
1597 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1598 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1599 	}
1600 
1601 	if (status & ISR_RBRQ0_W) {
1602 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1603 		process_incoming (dev, &dev->rx_rq[0]);
1604 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1605 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1606 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1607 	}
1608 
1609 	if (status & ISR_RBRQ1_W) {
1610 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1611 		process_incoming (dev, &dev->rx_rq[1]);
1612 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1613 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1614 	}
1615 
1616 	if (status & ISR_RBRQ2_W) {
1617 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1618 		process_incoming (dev, &dev->rx_rq[2]);
1619 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1620 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1621 	}
1622 
1623 	if (status & ISR_RBRQ3_W) {
1624 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1625 		process_incoming (dev, &dev->rx_rq[3]);
1626 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1627 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1628 	}
1629 
1630 	if (status & ISR_CSQ_W) {
1631 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1632 		process_return_queue (dev, &dev->st_q);
1633 	}
1634 
1635 	if (status & ISR_TBRQ_W) {
1636 		fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1637 		process_txdone_queue (dev, &dev->tx_relq);
1638 	}
1639 
1640 	func_exit ();
1641 	return IRQ_HANDLED;
1642 }
1643 
1644 
1645 #ifdef FS_POLL_FREQ
fs_poll(struct timer_list * t)1646 static void fs_poll (struct timer_list *t)
1647 {
1648 	struct fs_dev *dev = from_timer(dev, t, timer);
1649 
1650 	fs_irq (0, dev);
1651 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1652 	add_timer (&dev->timer);
1653 }
1654 #endif
1655 
fs_init(struct fs_dev * dev)1656 static int fs_init(struct fs_dev *dev)
1657 {
1658 	struct pci_dev  *pci_dev;
1659 	int isr, to;
1660 	int i;
1661 
1662 	func_enter ();
1663 	pci_dev = dev->pci_dev;
1664 
1665 	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1666 		IS_FS50(dev)?50:155,
1667 		(unsigned long long)pci_resource_start(pci_dev, 0),
1668 		dev->pci_dev->irq);
1669 
1670 	if (fs_debug & FS_DEBUG_INIT)
1671 		my_hd ((unsigned char *) dev, sizeof (*dev));
1672 
1673 	undocumented_pci_fix (pci_dev);
1674 
1675 	dev->hw_base = pci_resource_start(pci_dev, 0);
1676 
1677 	dev->base = ioremap(dev->hw_base, 0x1000);
1678 	if (!dev->base)
1679 		return 1;
1680 
1681 	reset_chip (dev);
1682 
1683 	write_fs (dev, SARMODE0, 0
1684 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1685 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1686 		  | (1 * SARMODE0_CWRE)
1687 		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1688 			  SARMODE0_PRPWT_FS155_3)
1689 		  | (1 * SARMODE0_CALSUP_1)
1690 		  | (IS_FS50(dev) ? (0
1691 				   | SARMODE0_RXVCS_32
1692 				   | SARMODE0_ABRVCS_32
1693 				   | SARMODE0_TXVCS_32):
1694 		                  (0
1695 				   | SARMODE0_RXVCS_1k
1696 				   | SARMODE0_ABRVCS_1k
1697 				   | SARMODE0_TXVCS_1k)));
1698 
1699 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1700 	   1ms. */
1701 	to = 100;
1702 	while (--to) {
1703 		isr = read_fs (dev, ISR);
1704 
1705 		/* This bit is documented as "RESERVED" */
1706 		if (isr & ISR_INIT_ERR) {
1707 			printk (KERN_ERR "Error initializing the FS... \n");
1708 			goto unmap;
1709 		}
1710 		if (isr & ISR_INIT) {
1711 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1712 			break;
1713 		}
1714 
1715 		/* Try again after 10ms. */
1716 		msleep(10);
1717 	}
1718 
1719 	if (!to) {
1720 		printk (KERN_ERR "timeout initializing the FS... \n");
1721 		goto unmap;
1722 	}
1723 
1724 	/* XXX fix for fs155 */
1725 	dev->channel_mask = 0x1f;
1726 	dev->channo = 0;
1727 
1728 	/* AN3: 10 */
1729 	write_fs (dev, SARMODE1, 0
1730 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1731 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1732 		  | (1 * SARMODE1_DCRM)
1733 		  | (1 * SARMODE1_DCOAM)
1734 		  | (0 * SARMODE1_OAMCRC)
1735 		  | (0 * SARMODE1_DUMPE)
1736 		  | (0 * SARMODE1_GPLEN)
1737 		  | (0 * SARMODE1_GNAM)
1738 		  | (0 * SARMODE1_GVAS)
1739 		  | (0 * SARMODE1_GPAS)
1740 		  | (1 * SARMODE1_GPRI)
1741 		  | (0 * SARMODE1_PMS)
1742 		  | (0 * SARMODE1_GFCR)
1743 		  | (1 * SARMODE1_HECM2)
1744 		  | (1 * SARMODE1_HECM1)
1745 		  | (1 * SARMODE1_HECM0)
1746 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1747 		  | (0 * 0xff) /* XXX FS155 */);
1748 
1749 
1750 	/* Cal prescale etc */
1751 
1752 	/* AN3: 11 */
1753 	write_fs (dev, TMCONF, 0x0000000f);
1754 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1755 	write_fs (dev, 0x80, 0x000F00E4);
1756 
1757 	/* AN3: 12 */
1758 	write_fs (dev, CELLOSCONF, 0
1759 		  | (   0 * CELLOSCONF_CEN)
1760 		  | (       CELLOSCONF_SC1)
1761 		  | (0x80 * CELLOSCONF_COBS)
1762 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1763 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1764 					       * performance jumped 50->70... */
1765 
1766 	/* Magic value by Hang */
1767 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1768 
1769 	if (IS_FS50 (dev)) {
1770 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1771 		dev->atm_dev->ci_range.vpi_bits = 12;
1772 		dev->atm_dev->ci_range.vci_bits = 16;
1773 		dev->nchannels = FS50_NR_CHANNELS;
1774 	} else {
1775 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1776 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1777 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1778 		/* We can chose the split arbitrarily. We might be able to
1779 		   support more. Whatever. This should do for now. */
1780 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1781 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1782 
1783 		/* Address bits we can't use should be compared to 0. */
1784 		write_fs (dev, RAC, 0);
1785 
1786 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1787 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1788 		 * other bits, then compare with 0, which is exactly what we
1789 		 * want. */
1790 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1791 		dev->nchannels = FS155_NR_CHANNELS;
1792 	}
1793 	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1794 				 GFP_KERNEL);
1795 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1796 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1797 
1798 	if (!dev->atm_vccs) {
1799 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1800 		/* XXX Clean up..... */
1801 		goto unmap;
1802 	}
1803 
1804 	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1805 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1806 		    dev->atm_vccs, dev->nchannels / 8);
1807 
1808 	if (!dev->tx_inuse) {
1809 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1810 		/* XXX Clean up..... */
1811 		goto unmap;
1812 	}
1813 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1814 	/* -- RAS2 : FS50 only: Default is OK. */
1815 
1816 	/* DMAMODE, default should be OK. -- REW */
1817 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1818 
1819 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1820 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1821 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1822 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1823 
1824 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1825 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1826 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1827 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1828 	}
1829 
1830 
1831 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1832 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1833 
1834 	dev->irq = pci_dev->irq;
1835 	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1836 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1837 		/* XXX undo all previous stuff... */
1838 		goto unmap;
1839 	}
1840 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1841 
1842 	/* We want to be notified of most things. Just the statistics count
1843 	   overflows are not interesting */
1844 	write_fs (dev, IMR, 0
1845 		  | ISR_RBRQ0_W
1846 		  | ISR_RBRQ1_W
1847 		  | ISR_RBRQ2_W
1848 		  | ISR_RBRQ3_W
1849 		  | ISR_TBRQ_W
1850 		  | ISR_CSQ_W);
1851 
1852 	write_fs (dev, SARMODE0, 0
1853 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1854 		  | (1 * SARMODE0_GINT)
1855 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1856 		  | (0 * SARMODE0_CWRE)
1857 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1858 		                  SARMODE0_PRPWT_FS155_3)
1859 		  | (1 * SARMODE0_CALSUP_1)
1860 		  | (IS_FS50 (dev)?(0
1861 				    | SARMODE0_RXVCS_32
1862 				    | SARMODE0_ABRVCS_32
1863 				    | SARMODE0_TXVCS_32):
1864 		                   (0
1865 				    | SARMODE0_RXVCS_1k
1866 				    | SARMODE0_ABRVCS_1k
1867 				    | SARMODE0_TXVCS_1k))
1868 		  | (1 * SARMODE0_RUN));
1869 
1870 	init_phy (dev, PHY_NTC_INIT);
1871 
1872 	if (loopback == 2) {
1873 		write_phy (dev, 0x39, 0x000e);
1874 	}
1875 
1876 #ifdef FS_POLL_FREQ
1877 	timer_setup(&dev->timer, fs_poll, 0);
1878 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1879 	add_timer (&dev->timer);
1880 #endif
1881 
1882 	dev->atm_dev->dev_data = dev;
1883 
1884 	func_exit ();
1885 	return 0;
1886 unmap:
1887 	iounmap(dev->base);
1888 	return 1;
1889 }
1890 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1891 static int firestream_init_one(struct pci_dev *pci_dev,
1892 			       const struct pci_device_id *ent)
1893 {
1894 	struct atm_dev *atm_dev;
1895 	struct fs_dev *fs_dev;
1896 
1897 	if (pci_enable_device(pci_dev))
1898 		goto err_out;
1899 
1900 	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1901 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1902 		    fs_dev, sizeof (struct fs_dev));
1903 	if (!fs_dev)
1904 		goto err_out;
1905 	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1906 	if (!atm_dev)
1907 		goto err_out_free_fs_dev;
1908 
1909 	fs_dev->pci_dev = pci_dev;
1910 	fs_dev->atm_dev = atm_dev;
1911 	fs_dev->flags = ent->driver_data;
1912 
1913 	if (fs_init(fs_dev))
1914 		goto err_out_free_atm_dev;
1915 
1916 	fs_dev->next = fs_boards;
1917 	fs_boards = fs_dev;
1918 	return 0;
1919 
1920  err_out_free_atm_dev:
1921 	atm_dev_deregister(atm_dev);
1922  err_out_free_fs_dev:
1923  	kfree(fs_dev);
1924  err_out:
1925 	return -ENODEV;
1926 }
1927 
firestream_remove_one(struct pci_dev * pdev)1928 static void firestream_remove_one(struct pci_dev *pdev)
1929 {
1930 	int i;
1931 	struct fs_dev *dev, *nxtdev;
1932 	struct fs_vcc *vcc;
1933 	struct FS_BPENTRY *fp, *nxt;
1934 
1935 	func_enter ();
1936 
1937 #if 0
1938 	printk ("hptxq:\n");
1939 	for (i=0;i<60;i++) {
1940 		printk ("%d: %08x %08x %08x %08x \n",
1941 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1942 		qp++;
1943 		if (qp >= 60) qp = 0;
1944 	}
1945 
1946 	printk ("descriptors:\n");
1947 	for (i=0;i<60;i++) {
1948 		printk ("%d: %p: %08x %08x %p %p\n",
1949 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1950 		qd++;
1951 		if (qd >= 60) qd = 0;
1952 	}
1953 #endif
1954 
1955 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1956 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1957 
1958 		/* XXX Hit all the tx channels too! */
1959 
1960 		for (i=0;i < dev->nchannels;i++) {
1961 			if (dev->atm_vccs[i]) {
1962 				vcc = FS_VCC (dev->atm_vccs[i]);
1963 				submit_command (dev,  &dev->hp_txq,
1964 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1965 				submit_command (dev,  &dev->hp_txq,
1966 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1967 
1968 			}
1969 		}
1970 
1971 		/* XXX Wait a while for the chip to release all buffers. */
1972 
1973 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1974 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1975 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1976 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1977 				dev_kfree_skb_any (fp->skb);
1978 				nxt = bus_to_virt (fp->next);
1979 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1980 				kfree (fp);
1981 			}
1982 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1983 			dev_kfree_skb_any (fp->skb);
1984 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1985 			kfree (fp);
1986 		}
1987 
1988 		/* Hang the chip in "reset", prevent it clobbering memory that is
1989 		   no longer ours. */
1990 		reset_chip (dev);
1991 
1992 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1993 		free_irq (dev->irq, dev);
1994 		del_timer_sync (&dev->timer);
1995 
1996 		atm_dev_deregister(dev->atm_dev);
1997 		free_queue (dev, &dev->hp_txq);
1998 		free_queue (dev, &dev->lp_txq);
1999 		free_queue (dev, &dev->tx_relq);
2000 		free_queue (dev, &dev->st_q);
2001 
2002 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2003 		kfree (dev->atm_vccs);
2004 
2005 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2006 			free_freepool (dev, &dev->rx_fp[i]);
2007 
2008 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2009 			free_queue (dev, &dev->rx_rq[i]);
2010 
2011 		iounmap(dev->base);
2012 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2013 		nxtdev = dev->next;
2014 		kfree (dev);
2015 	}
2016 
2017 	func_exit ();
2018 }
2019 
2020 static const struct pci_device_id firestream_pci_tbl[] = {
2021 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2022 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2023 	{ 0, }
2024 };
2025 
2026 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2027 
2028 static struct pci_driver firestream_driver = {
2029 	.name		= "firestream",
2030 	.id_table	= firestream_pci_tbl,
2031 	.probe		= firestream_init_one,
2032 	.remove		= firestream_remove_one,
2033 };
2034 
firestream_init_module(void)2035 static int __init firestream_init_module (void)
2036 {
2037 	int error;
2038 
2039 	func_enter ();
2040 	error = pci_register_driver(&firestream_driver);
2041 	func_exit ();
2042 	return error;
2043 }
2044 
firestream_cleanup_module(void)2045 static void __exit firestream_cleanup_module(void)
2046 {
2047 	pci_unregister_driver(&firestream_driver);
2048 }
2049 
2050 module_init(firestream_init_module);
2051 module_exit(firestream_cleanup_module);
2052 
2053 MODULE_LICENSE("GPL");
2054 
2055 
2056 
2057