• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
xor_init(struct loop_device * lo,const struct loop_info64 * info)121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
get_size(loff_t offset,loff_t sizelimit,struct file * file)144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
get_loop_size(struct loop_device * lo,struct file * file)165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
__loop_update_dio(struct loop_device * lo,bool dio)170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 /**
232  * loop_set_size() - sets device size and notifies userspace
233  * @lo: struct loop_device to set the size for
234  * @size: new size of the loop device
235  *
236  * Callers must validate that the size passed into this function fits into
237  * a sector_t, eg using loop_validate_size()
238  */
loop_set_size(struct loop_device * lo,loff_t size)239 static void loop_set_size(struct loop_device *lo, loff_t size)
240 {
241 	struct block_device *bdev = lo->lo_device;
242 
243 	bd_set_nr_sectors(bdev, size);
244 
245 	if (!set_capacity_revalidate_and_notify(lo->lo_disk, size, false))
246 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
247 }
248 
249 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)250 lo_do_transfer(struct loop_device *lo, int cmd,
251 	       struct page *rpage, unsigned roffs,
252 	       struct page *lpage, unsigned loffs,
253 	       int size, sector_t rblock)
254 {
255 	int ret;
256 
257 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
258 	if (likely(!ret))
259 		return 0;
260 
261 	printk_ratelimited(KERN_ERR
262 		"loop: Transfer error at byte offset %llu, length %i.\n",
263 		(unsigned long long)rblock << 9, size);
264 	return ret;
265 }
266 
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)267 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
268 {
269 	struct iov_iter i;
270 	ssize_t bw;
271 
272 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
273 
274 	file_start_write(file);
275 	bw = vfs_iter_write(file, &i, ppos, 0);
276 	file_end_write(file);
277 
278 	if (likely(bw ==  bvec->bv_len))
279 		return 0;
280 
281 	printk_ratelimited(KERN_ERR
282 		"loop: Write error at byte offset %llu, length %i.\n",
283 		(unsigned long long)*ppos, bvec->bv_len);
284 	if (bw >= 0)
285 		bw = -EIO;
286 	return bw;
287 }
288 
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)289 static int lo_write_simple(struct loop_device *lo, struct request *rq,
290 		loff_t pos)
291 {
292 	struct bio_vec bvec;
293 	struct req_iterator iter;
294 	int ret = 0;
295 
296 	rq_for_each_segment(bvec, rq, iter) {
297 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
298 		if (ret < 0)
299 			break;
300 		cond_resched();
301 	}
302 
303 	return ret;
304 }
305 
306 /*
307  * This is the slow, transforming version that needs to double buffer the
308  * data as it cannot do the transformations in place without having direct
309  * access to the destination pages of the backing file.
310  */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)311 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
312 		loff_t pos)
313 {
314 	struct bio_vec bvec, b;
315 	struct req_iterator iter;
316 	struct page *page;
317 	int ret = 0;
318 
319 	page = alloc_page(GFP_NOIO);
320 	if (unlikely(!page))
321 		return -ENOMEM;
322 
323 	rq_for_each_segment(bvec, rq, iter) {
324 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
325 			bvec.bv_offset, bvec.bv_len, pos >> 9);
326 		if (unlikely(ret))
327 			break;
328 
329 		b.bv_page = page;
330 		b.bv_offset = 0;
331 		b.bv_len = bvec.bv_len;
332 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
333 		if (ret < 0)
334 			break;
335 	}
336 
337 	__free_page(page);
338 	return ret;
339 }
340 
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)341 static int lo_read_simple(struct loop_device *lo, struct request *rq,
342 		loff_t pos)
343 {
344 	struct bio_vec bvec;
345 	struct req_iterator iter;
346 	struct iov_iter i;
347 	ssize_t len;
348 
349 	rq_for_each_segment(bvec, rq, iter) {
350 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
351 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
352 		if (len < 0)
353 			return len;
354 
355 		flush_dcache_page(bvec.bv_page);
356 
357 		if (len != bvec.bv_len) {
358 			struct bio *bio;
359 
360 			__rq_for_each_bio(bio, rq)
361 				zero_fill_bio(bio);
362 			break;
363 		}
364 		cond_resched();
365 	}
366 
367 	return 0;
368 }
369 
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)370 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
371 		loff_t pos)
372 {
373 	struct bio_vec bvec, b;
374 	struct req_iterator iter;
375 	struct iov_iter i;
376 	struct page *page;
377 	ssize_t len;
378 	int ret = 0;
379 
380 	page = alloc_page(GFP_NOIO);
381 	if (unlikely(!page))
382 		return -ENOMEM;
383 
384 	rq_for_each_segment(bvec, rq, iter) {
385 		loff_t offset = pos;
386 
387 		b.bv_page = page;
388 		b.bv_offset = 0;
389 		b.bv_len = bvec.bv_len;
390 
391 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
392 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
393 		if (len < 0) {
394 			ret = len;
395 			goto out_free_page;
396 		}
397 
398 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
399 			bvec.bv_offset, len, offset >> 9);
400 		if (ret)
401 			goto out_free_page;
402 
403 		flush_dcache_page(bvec.bv_page);
404 
405 		if (len != bvec.bv_len) {
406 			struct bio *bio;
407 
408 			__rq_for_each_bio(bio, rq)
409 				zero_fill_bio(bio);
410 			break;
411 		}
412 	}
413 
414 	ret = 0;
415 out_free_page:
416 	__free_page(page);
417 	return ret;
418 }
419 
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)420 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
421 			int mode)
422 {
423 	/*
424 	 * We use fallocate to manipulate the space mappings used by the image
425 	 * a.k.a. discard/zerorange. However we do not support this if
426 	 * encryption is enabled, because it may give an attacker useful
427 	 * information.
428 	 */
429 	struct file *file = lo->lo_backing_file;
430 	struct request_queue *q = lo->lo_queue;
431 	int ret;
432 
433 	mode |= FALLOC_FL_KEEP_SIZE;
434 
435 	if (!blk_queue_discard(q)) {
436 		ret = -EOPNOTSUPP;
437 		goto out;
438 	}
439 
440 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
441 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
442 		ret = -EIO;
443  out:
444 	return ret;
445 }
446 
lo_req_flush(struct loop_device * lo,struct request * rq)447 static int lo_req_flush(struct loop_device *lo, struct request *rq)
448 {
449 	struct file *file = lo->lo_backing_file;
450 	int ret = vfs_fsync(file, 0);
451 	if (unlikely(ret && ret != -EINVAL))
452 		ret = -EIO;
453 
454 	return ret;
455 }
456 
lo_complete_rq(struct request * rq)457 static void lo_complete_rq(struct request *rq)
458 {
459 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
460 	blk_status_t ret = BLK_STS_OK;
461 
462 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
463 	    req_op(rq) != REQ_OP_READ) {
464 		if (cmd->ret < 0)
465 			ret = errno_to_blk_status(cmd->ret);
466 		goto end_io;
467 	}
468 
469 	/*
470 	 * Short READ - if we got some data, advance our request and
471 	 * retry it. If we got no data, end the rest with EIO.
472 	 */
473 	if (cmd->ret) {
474 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
475 		cmd->ret = 0;
476 		blk_mq_requeue_request(rq, true);
477 	} else {
478 		if (cmd->use_aio) {
479 			struct bio *bio = rq->bio;
480 
481 			while (bio) {
482 				zero_fill_bio(bio);
483 				bio = bio->bi_next;
484 			}
485 		}
486 		ret = BLK_STS_IOERR;
487 end_io:
488 		blk_mq_end_request(rq, ret);
489 	}
490 }
491 
lo_rw_aio_do_completion(struct loop_cmd * cmd)492 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
493 {
494 	struct request *rq = blk_mq_rq_from_pdu(cmd);
495 
496 	if (!atomic_dec_and_test(&cmd->ref))
497 		return;
498 	kfree(cmd->bvec);
499 	cmd->bvec = NULL;
500 	if (likely(!blk_should_fake_timeout(rq->q)))
501 		blk_mq_complete_request(rq);
502 }
503 
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)504 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
505 {
506 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
507 
508 	if (cmd->css)
509 		css_put(cmd->css);
510 	cmd->ret = ret;
511 	lo_rw_aio_do_completion(cmd);
512 }
513 
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)514 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
515 		     loff_t pos, bool rw)
516 {
517 	struct iov_iter iter;
518 	struct req_iterator rq_iter;
519 	struct bio_vec *bvec;
520 	struct request *rq = blk_mq_rq_from_pdu(cmd);
521 	struct bio *bio = rq->bio;
522 	struct file *file = lo->lo_backing_file;
523 	struct bio_vec tmp;
524 	unsigned int offset;
525 	int nr_bvec = 0;
526 	int ret;
527 
528 	rq_for_each_bvec(tmp, rq, rq_iter)
529 		nr_bvec++;
530 
531 	if (rq->bio != rq->biotail) {
532 
533 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
534 				     GFP_NOIO);
535 		if (!bvec)
536 			return -EIO;
537 		cmd->bvec = bvec;
538 
539 		/*
540 		 * The bios of the request may be started from the middle of
541 		 * the 'bvec' because of bio splitting, so we can't directly
542 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
543 		 * API will take care of all details for us.
544 		 */
545 		rq_for_each_bvec(tmp, rq, rq_iter) {
546 			*bvec = tmp;
547 			bvec++;
548 		}
549 		bvec = cmd->bvec;
550 		offset = 0;
551 	} else {
552 		/*
553 		 * Same here, this bio may be started from the middle of the
554 		 * 'bvec' because of bio splitting, so offset from the bvec
555 		 * must be passed to iov iterator
556 		 */
557 		offset = bio->bi_iter.bi_bvec_done;
558 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
559 	}
560 	atomic_set(&cmd->ref, 2);
561 
562 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
563 	iter.iov_offset = offset;
564 
565 	cmd->iocb.ki_pos = pos;
566 	cmd->iocb.ki_filp = file;
567 	cmd->iocb.ki_complete = lo_rw_aio_complete;
568 	cmd->iocb.ki_flags = IOCB_DIRECT;
569 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
570 	if (cmd->css)
571 		kthread_associate_blkcg(cmd->css);
572 
573 	if (rw == WRITE)
574 		ret = call_write_iter(file, &cmd->iocb, &iter);
575 	else
576 		ret = call_read_iter(file, &cmd->iocb, &iter);
577 
578 	lo_rw_aio_do_completion(cmd);
579 	kthread_associate_blkcg(NULL);
580 
581 	if (ret != -EIOCBQUEUED)
582 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
583 	return 0;
584 }
585 
do_req_filebacked(struct loop_device * lo,struct request * rq)586 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
587 {
588 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
589 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
590 
591 	/*
592 	 * lo_write_simple and lo_read_simple should have been covered
593 	 * by io submit style function like lo_rw_aio(), one blocker
594 	 * is that lo_read_simple() need to call flush_dcache_page after
595 	 * the page is written from kernel, and it isn't easy to handle
596 	 * this in io submit style function which submits all segments
597 	 * of the req at one time. And direct read IO doesn't need to
598 	 * run flush_dcache_page().
599 	 */
600 	switch (req_op(rq)) {
601 	case REQ_OP_FLUSH:
602 		return lo_req_flush(lo, rq);
603 	case REQ_OP_WRITE_ZEROES:
604 		/*
605 		 * If the caller doesn't want deallocation, call zeroout to
606 		 * write zeroes the range.  Otherwise, punch them out.
607 		 */
608 		return lo_fallocate(lo, rq, pos,
609 			(rq->cmd_flags & REQ_NOUNMAP) ?
610 				FALLOC_FL_ZERO_RANGE :
611 				FALLOC_FL_PUNCH_HOLE);
612 	case REQ_OP_DISCARD:
613 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
614 	case REQ_OP_WRITE:
615 		if (lo->transfer)
616 			return lo_write_transfer(lo, rq, pos);
617 		else if (cmd->use_aio)
618 			return lo_rw_aio(lo, cmd, pos, WRITE);
619 		else
620 			return lo_write_simple(lo, rq, pos);
621 	case REQ_OP_READ:
622 		if (lo->transfer)
623 			return lo_read_transfer(lo, rq, pos);
624 		else if (cmd->use_aio)
625 			return lo_rw_aio(lo, cmd, pos, READ);
626 		else
627 			return lo_read_simple(lo, rq, pos);
628 	default:
629 		WARN_ON_ONCE(1);
630 		return -EIO;
631 	}
632 }
633 
loop_update_dio(struct loop_device * lo)634 static inline void loop_update_dio(struct loop_device *lo)
635 {
636 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
637 				lo->use_dio);
638 }
639 
loop_reread_partitions(struct loop_device * lo,struct block_device * bdev)640 static void loop_reread_partitions(struct loop_device *lo,
641 				   struct block_device *bdev)
642 {
643 	int rc;
644 
645 	mutex_lock(&bdev->bd_mutex);
646 	rc = bdev_disk_changed(bdev, false);
647 	mutex_unlock(&bdev->bd_mutex);
648 	if (rc)
649 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
650 			__func__, lo->lo_number, lo->lo_file_name, rc);
651 }
652 
is_loop_device(struct file * file)653 static inline int is_loop_device(struct file *file)
654 {
655 	struct inode *i = file->f_mapping->host;
656 
657 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
658 }
659 
loop_validate_file(struct file * file,struct block_device * bdev)660 static int loop_validate_file(struct file *file, struct block_device *bdev)
661 {
662 	struct inode	*inode = file->f_mapping->host;
663 	struct file	*f = file;
664 
665 	/* Avoid recursion */
666 	while (is_loop_device(f)) {
667 		struct loop_device *l;
668 
669 		if (f->f_mapping->host->i_bdev == bdev)
670 			return -EBADF;
671 
672 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
673 		if (l->lo_state != Lo_bound) {
674 			return -EINVAL;
675 		}
676 		f = l->lo_backing_file;
677 	}
678 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
679 		return -EINVAL;
680 	return 0;
681 }
682 
683 /*
684  * loop_change_fd switched the backing store of a loopback device to
685  * a new file. This is useful for operating system installers to free up
686  * the original file and in High Availability environments to switch to
687  * an alternative location for the content in case of server meltdown.
688  * This can only work if the loop device is used read-only, and if the
689  * new backing store is the same size and type as the old backing store.
690  */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)691 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
692 			  unsigned int arg)
693 {
694 	struct file	*file = NULL, *old_file;
695 	int		error;
696 	bool		partscan;
697 
698 	error = mutex_lock_killable(&loop_ctl_mutex);
699 	if (error)
700 		return error;
701 	error = -ENXIO;
702 	if (lo->lo_state != Lo_bound)
703 		goto out_err;
704 
705 	/* the loop device has to be read-only */
706 	error = -EINVAL;
707 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
708 		goto out_err;
709 
710 	error = -EBADF;
711 	file = fget(arg);
712 	if (!file)
713 		goto out_err;
714 
715 	error = loop_validate_file(file, bdev);
716 	if (error)
717 		goto out_err;
718 
719 	old_file = lo->lo_backing_file;
720 
721 	error = -EINVAL;
722 
723 	/* size of the new backing store needs to be the same */
724 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
725 		goto out_err;
726 
727 	/* and ... switch */
728 	blk_mq_freeze_queue(lo->lo_queue);
729 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
730 	lo->lo_backing_file = file;
731 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
732 	mapping_set_gfp_mask(file->f_mapping,
733 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
734 	loop_update_dio(lo);
735 	blk_mq_unfreeze_queue(lo->lo_queue);
736 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
737 	mutex_unlock(&loop_ctl_mutex);
738 	/*
739 	 * We must drop file reference outside of loop_ctl_mutex as dropping
740 	 * the file ref can take bd_mutex which creates circular locking
741 	 * dependency.
742 	 */
743 	fput(old_file);
744 	if (partscan)
745 		loop_reread_partitions(lo, bdev);
746 	return 0;
747 
748 out_err:
749 	mutex_unlock(&loop_ctl_mutex);
750 	if (file)
751 		fput(file);
752 	return error;
753 }
754 
755 /* loop sysfs attributes */
756 
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))757 static ssize_t loop_attr_show(struct device *dev, char *page,
758 			      ssize_t (*callback)(struct loop_device *, char *))
759 {
760 	struct gendisk *disk = dev_to_disk(dev);
761 	struct loop_device *lo = disk->private_data;
762 
763 	return callback(lo, page);
764 }
765 
766 #define LOOP_ATTR_RO(_name)						\
767 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
768 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
769 				struct device_attribute *attr, char *b)	\
770 {									\
771 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
772 }									\
773 static struct device_attribute loop_attr_##_name =			\
774 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
775 
loop_attr_backing_file_show(struct loop_device * lo,char * buf)776 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
777 {
778 	ssize_t ret;
779 	char *p = NULL;
780 
781 	spin_lock_irq(&lo->lo_lock);
782 	if (lo->lo_backing_file)
783 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
784 	spin_unlock_irq(&lo->lo_lock);
785 
786 	if (IS_ERR_OR_NULL(p))
787 		ret = PTR_ERR(p);
788 	else {
789 		ret = strlen(p);
790 		memmove(buf, p, ret);
791 		buf[ret++] = '\n';
792 		buf[ret] = 0;
793 	}
794 
795 	return ret;
796 }
797 
loop_attr_offset_show(struct loop_device * lo,char * buf)798 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
799 {
800 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
801 }
802 
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)803 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
804 {
805 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
806 }
807 
loop_attr_autoclear_show(struct loop_device * lo,char * buf)808 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
809 {
810 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
811 
812 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
813 }
814 
loop_attr_partscan_show(struct loop_device * lo,char * buf)815 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
816 {
817 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
818 
819 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
820 }
821 
loop_attr_dio_show(struct loop_device * lo,char * buf)822 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
823 {
824 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
825 
826 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
827 }
828 
829 LOOP_ATTR_RO(backing_file);
830 LOOP_ATTR_RO(offset);
831 LOOP_ATTR_RO(sizelimit);
832 LOOP_ATTR_RO(autoclear);
833 LOOP_ATTR_RO(partscan);
834 LOOP_ATTR_RO(dio);
835 
836 static struct attribute *loop_attrs[] = {
837 	&loop_attr_backing_file.attr,
838 	&loop_attr_offset.attr,
839 	&loop_attr_sizelimit.attr,
840 	&loop_attr_autoclear.attr,
841 	&loop_attr_partscan.attr,
842 	&loop_attr_dio.attr,
843 	NULL,
844 };
845 
846 static struct attribute_group loop_attribute_group = {
847 	.name = "loop",
848 	.attrs= loop_attrs,
849 };
850 
loop_sysfs_init(struct loop_device * lo)851 static void loop_sysfs_init(struct loop_device *lo)
852 {
853 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
854 						&loop_attribute_group);
855 }
856 
loop_sysfs_exit(struct loop_device * lo)857 static void loop_sysfs_exit(struct loop_device *lo)
858 {
859 	if (lo->sysfs_inited)
860 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
861 				   &loop_attribute_group);
862 }
863 
loop_config_discard(struct loop_device * lo)864 static void loop_config_discard(struct loop_device *lo)
865 {
866 	struct file *file = lo->lo_backing_file;
867 	struct inode *inode = file->f_mapping->host;
868 	struct request_queue *q = lo->lo_queue;
869 	u32 granularity, max_discard_sectors;
870 
871 	/*
872 	 * If the backing device is a block device, mirror its zeroing
873 	 * capability. Set the discard sectors to the block device's zeroing
874 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
875 	 * not blkdev_issue_discard(). This maintains consistent behavior with
876 	 * file-backed loop devices: discarded regions read back as zero.
877 	 */
878 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
879 		struct request_queue *backingq;
880 
881 		backingq = bdev_get_queue(inode->i_bdev);
882 
883 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
884 		granularity = backingq->limits.discard_granularity ?:
885 			queue_physical_block_size(backingq);
886 
887 	/*
888 	 * We use punch hole to reclaim the free space used by the
889 	 * image a.k.a. discard. However we do not support discard if
890 	 * encryption is enabled, because it may give an attacker
891 	 * useful information.
892 	 */
893 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
894 		max_discard_sectors = 0;
895 		granularity = 0;
896 
897 	} else {
898 		max_discard_sectors = UINT_MAX >> 9;
899 		granularity = inode->i_sb->s_blocksize;
900 	}
901 
902 	if (max_discard_sectors) {
903 		q->limits.discard_granularity = granularity;
904 		blk_queue_max_discard_sectors(q, max_discard_sectors);
905 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
906 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
907 	} else {
908 		q->limits.discard_granularity = 0;
909 		blk_queue_max_discard_sectors(q, 0);
910 		blk_queue_max_write_zeroes_sectors(q, 0);
911 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
912 	}
913 	q->limits.discard_alignment = 0;
914 }
915 
loop_unprepare_queue(struct loop_device * lo)916 static void loop_unprepare_queue(struct loop_device *lo)
917 {
918 	kthread_flush_worker(&lo->worker);
919 	kthread_stop(lo->worker_task);
920 }
921 
loop_kthread_worker_fn(void * worker_ptr)922 static int loop_kthread_worker_fn(void *worker_ptr)
923 {
924 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
925 	return kthread_worker_fn(worker_ptr);
926 }
927 
loop_prepare_queue(struct loop_device * lo)928 static int loop_prepare_queue(struct loop_device *lo)
929 {
930 	kthread_init_worker(&lo->worker);
931 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
932 			&lo->worker, "loop%d", lo->lo_number);
933 	if (IS_ERR(lo->worker_task))
934 		return -ENOMEM;
935 	set_user_nice(lo->worker_task, MIN_NICE);
936 	return 0;
937 }
938 
loop_update_rotational(struct loop_device * lo)939 static void loop_update_rotational(struct loop_device *lo)
940 {
941 	struct file *file = lo->lo_backing_file;
942 	struct inode *file_inode = file->f_mapping->host;
943 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
944 	struct request_queue *q = lo->lo_queue;
945 	bool nonrot = true;
946 
947 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
948 	if (file_bdev)
949 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
950 
951 	if (nonrot)
952 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
953 	else
954 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
955 }
956 
957 static int
loop_release_xfer(struct loop_device * lo)958 loop_release_xfer(struct loop_device *lo)
959 {
960 	int err = 0;
961 	struct loop_func_table *xfer = lo->lo_encryption;
962 
963 	if (xfer) {
964 		if (xfer->release)
965 			err = xfer->release(lo);
966 		lo->transfer = NULL;
967 		lo->lo_encryption = NULL;
968 		module_put(xfer->owner);
969 	}
970 	return err;
971 }
972 
973 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)974 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
975 	       const struct loop_info64 *i)
976 {
977 	int err = 0;
978 
979 	if (xfer) {
980 		struct module *owner = xfer->owner;
981 
982 		if (!try_module_get(owner))
983 			return -EINVAL;
984 		if (xfer->init)
985 			err = xfer->init(lo, i);
986 		if (err)
987 			module_put(owner);
988 		else
989 			lo->lo_encryption = xfer;
990 	}
991 	return err;
992 }
993 
994 /**
995  * loop_set_status_from_info - configure device from loop_info
996  * @lo: struct loop_device to configure
997  * @info: struct loop_info64 to configure the device with
998  *
999  * Configures the loop device parameters according to the passed
1000  * in loop_info64 configuration.
1001  */
1002 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)1003 loop_set_status_from_info(struct loop_device *lo,
1004 			  const struct loop_info64 *info)
1005 {
1006 	int err;
1007 	struct loop_func_table *xfer;
1008 	kuid_t uid = current_uid();
1009 
1010 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1011 		return -EINVAL;
1012 
1013 	err = loop_release_xfer(lo);
1014 	if (err)
1015 		return err;
1016 
1017 	if (info->lo_encrypt_type) {
1018 		unsigned int type = info->lo_encrypt_type;
1019 
1020 		if (type >= MAX_LO_CRYPT)
1021 			return -EINVAL;
1022 		xfer = xfer_funcs[type];
1023 		if (xfer == NULL)
1024 			return -EINVAL;
1025 	} else
1026 		xfer = NULL;
1027 
1028 	err = loop_init_xfer(lo, xfer, info);
1029 	if (err)
1030 		return err;
1031 
1032 	/* Avoid assigning overflow values */
1033 	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
1034 		return -EOVERFLOW;
1035 
1036 	lo->lo_offset = info->lo_offset;
1037 	lo->lo_sizelimit = info->lo_sizelimit;
1038 
1039 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1040 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1041 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1042 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1043 
1044 	if (!xfer)
1045 		xfer = &none_funcs;
1046 	lo->transfer = xfer->transfer;
1047 	lo->ioctl = xfer->ioctl;
1048 
1049 	lo->lo_flags = info->lo_flags;
1050 
1051 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1052 	lo->lo_init[0] = info->lo_init[0];
1053 	lo->lo_init[1] = info->lo_init[1];
1054 	if (info->lo_encrypt_key_size) {
1055 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1056 		       info->lo_encrypt_key_size);
1057 		lo->lo_key_owner = uid;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
loop_configure(struct loop_device * lo,fmode_t mode,struct block_device * bdev,const struct loop_config * config)1063 static int loop_configure(struct loop_device *lo, fmode_t mode,
1064 			  struct block_device *bdev,
1065 			  const struct loop_config *config)
1066 {
1067 	struct file	*file;
1068 	struct inode	*inode;
1069 	struct address_space *mapping;
1070 	struct block_device *claimed_bdev = NULL;
1071 	int		error;
1072 	loff_t		size;
1073 	bool		partscan;
1074 	unsigned short  bsize;
1075 
1076 	/* This is safe, since we have a reference from open(). */
1077 	__module_get(THIS_MODULE);
1078 
1079 	error = -EBADF;
1080 	file = fget(config->fd);
1081 	if (!file)
1082 		goto out;
1083 
1084 	/*
1085 	 * If we don't hold exclusive handle for the device, upgrade to it
1086 	 * here to avoid changing device under exclusive owner.
1087 	 */
1088 	if (!(mode & FMODE_EXCL)) {
1089 		claimed_bdev = bdev->bd_contains;
1090 		error = bd_prepare_to_claim(bdev, claimed_bdev, loop_configure);
1091 		if (error)
1092 			goto out_putf;
1093 	}
1094 
1095 	error = mutex_lock_killable(&loop_ctl_mutex);
1096 	if (error)
1097 		goto out_bdev;
1098 
1099 	error = -EBUSY;
1100 	if (lo->lo_state != Lo_unbound)
1101 		goto out_unlock;
1102 
1103 	error = loop_validate_file(file, bdev);
1104 	if (error)
1105 		goto out_unlock;
1106 
1107 	mapping = file->f_mapping;
1108 	inode = mapping->host;
1109 
1110 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1111 		error = -EINVAL;
1112 		goto out_unlock;
1113 	}
1114 
1115 	if (config->block_size) {
1116 		error = blk_validate_block_size(config->block_size);
1117 		if (error)
1118 			goto out_unlock;
1119 	}
1120 
1121 	error = loop_set_status_from_info(lo, &config->info);
1122 	if (error)
1123 		goto out_unlock;
1124 
1125 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1126 	    !file->f_op->write_iter)
1127 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1128 
1129 	error = loop_prepare_queue(lo);
1130 	if (error)
1131 		goto out_unlock;
1132 
1133 	set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1134 
1135 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1136 	lo->lo_device = bdev;
1137 	lo->lo_backing_file = file;
1138 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1139 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1140 
1141 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1142 		blk_queue_write_cache(lo->lo_queue, true, false);
1143 
1144 	if (config->block_size)
1145 		bsize = config->block_size;
1146 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1147 		/* In case of direct I/O, match underlying block size */
1148 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1149 	else
1150 		bsize = 512;
1151 
1152 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1153 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1154 	blk_queue_io_min(lo->lo_queue, bsize);
1155 
1156 	loop_config_discard(lo);
1157 	loop_update_rotational(lo);
1158 	loop_update_dio(lo);
1159 	loop_sysfs_init(lo);
1160 
1161 	size = get_loop_size(lo, file);
1162 	loop_set_size(lo, size);
1163 
1164 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1165 		      block_size(inode->i_bdev) : PAGE_SIZE);
1166 
1167 	lo->lo_state = Lo_bound;
1168 	if (part_shift)
1169 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1170 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1171 	if (partscan)
1172 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1173 
1174 	/* Grab the block_device to prevent its destruction after we
1175 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1176 	 */
1177 	bdgrab(bdev);
1178 	mutex_unlock(&loop_ctl_mutex);
1179 	if (partscan)
1180 		loop_reread_partitions(lo, bdev);
1181 	if (claimed_bdev)
1182 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1183 	return 0;
1184 
1185 out_unlock:
1186 	mutex_unlock(&loop_ctl_mutex);
1187 out_bdev:
1188 	if (claimed_bdev)
1189 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1190 out_putf:
1191 	fput(file);
1192 out:
1193 	/* This is safe: open() is still holding a reference. */
1194 	module_put(THIS_MODULE);
1195 	return error;
1196 }
1197 
__loop_clr_fd(struct loop_device * lo,bool release)1198 static int __loop_clr_fd(struct loop_device *lo, bool release)
1199 {
1200 	struct file *filp = NULL;
1201 	gfp_t gfp = lo->old_gfp_mask;
1202 	struct block_device *bdev = lo->lo_device;
1203 	int err = 0;
1204 	bool partscan = false;
1205 	int lo_number;
1206 
1207 	mutex_lock(&loop_ctl_mutex);
1208 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1209 		err = -ENXIO;
1210 		goto out_unlock;
1211 	}
1212 
1213 	filp = lo->lo_backing_file;
1214 	if (filp == NULL) {
1215 		err = -EINVAL;
1216 		goto out_unlock;
1217 	}
1218 
1219 	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1220 		blk_queue_write_cache(lo->lo_queue, false, false);
1221 
1222 	/* freeze request queue during the transition */
1223 	blk_mq_freeze_queue(lo->lo_queue);
1224 
1225 	spin_lock_irq(&lo->lo_lock);
1226 	lo->lo_backing_file = NULL;
1227 	spin_unlock_irq(&lo->lo_lock);
1228 
1229 	loop_release_xfer(lo);
1230 	lo->transfer = NULL;
1231 	lo->ioctl = NULL;
1232 	lo->lo_device = NULL;
1233 	lo->lo_encryption = NULL;
1234 	lo->lo_offset = 0;
1235 	lo->lo_sizelimit = 0;
1236 	lo->lo_encrypt_key_size = 0;
1237 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1238 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1239 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1240 	blk_queue_logical_block_size(lo->lo_queue, 512);
1241 	blk_queue_physical_block_size(lo->lo_queue, 512);
1242 	blk_queue_io_min(lo->lo_queue, 512);
1243 	if (bdev) {
1244 		bdput(bdev);
1245 		invalidate_bdev(bdev);
1246 		bdev->bd_inode->i_mapping->wb_err = 0;
1247 	}
1248 	set_capacity(lo->lo_disk, 0);
1249 	loop_sysfs_exit(lo);
1250 	if (bdev) {
1251 		bd_set_nr_sectors(bdev, 0);
1252 		/* let user-space know about this change */
1253 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1254 	}
1255 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1256 	/* This is safe: open() is still holding a reference. */
1257 	module_put(THIS_MODULE);
1258 	blk_mq_unfreeze_queue(lo->lo_queue);
1259 
1260 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1261 	lo_number = lo->lo_number;
1262 	loop_unprepare_queue(lo);
1263 out_unlock:
1264 	mutex_unlock(&loop_ctl_mutex);
1265 	if (partscan) {
1266 		/*
1267 		 * bd_mutex has been held already in release path, so don't
1268 		 * acquire it if this function is called in such case.
1269 		 *
1270 		 * If the reread partition isn't from release path, lo_refcnt
1271 		 * must be at least one and it can only become zero when the
1272 		 * current holder is released.
1273 		 */
1274 		if (!release)
1275 			mutex_lock(&bdev->bd_mutex);
1276 		err = bdev_disk_changed(bdev, false);
1277 		if (!release)
1278 			mutex_unlock(&bdev->bd_mutex);
1279 		if (err)
1280 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1281 				__func__, lo_number, err);
1282 		/* Device is gone, no point in returning error */
1283 		err = 0;
1284 	}
1285 
1286 	/*
1287 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1288 	 * finished.
1289 	 *
1290 	 * There cannot be anybody else entering __loop_clr_fd() as
1291 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1292 	 * protects us from all the other places trying to change the 'lo'
1293 	 * device.
1294 	 */
1295 	mutex_lock(&loop_ctl_mutex);
1296 	lo->lo_flags = 0;
1297 	if (!part_shift)
1298 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1299 	lo->lo_state = Lo_unbound;
1300 	mutex_unlock(&loop_ctl_mutex);
1301 
1302 	/*
1303 	 * Need not hold loop_ctl_mutex to fput backing file.
1304 	 * Calling fput holding loop_ctl_mutex triggers a circular
1305 	 * lock dependency possibility warning as fput can take
1306 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1307 	 */
1308 	if (filp)
1309 		fput(filp);
1310 	return err;
1311 }
1312 
loop_clr_fd(struct loop_device * lo)1313 static int loop_clr_fd(struct loop_device *lo)
1314 {
1315 	int err;
1316 
1317 	err = mutex_lock_killable(&loop_ctl_mutex);
1318 	if (err)
1319 		return err;
1320 	if (lo->lo_state != Lo_bound) {
1321 		mutex_unlock(&loop_ctl_mutex);
1322 		return -ENXIO;
1323 	}
1324 	/*
1325 	 * If we've explicitly asked to tear down the loop device,
1326 	 * and it has an elevated reference count, set it for auto-teardown when
1327 	 * the last reference goes away. This stops $!~#$@ udev from
1328 	 * preventing teardown because it decided that it needs to run blkid on
1329 	 * the loopback device whenever they appear. xfstests is notorious for
1330 	 * failing tests because blkid via udev races with a losetup
1331 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1332 	 * command to fail with EBUSY.
1333 	 */
1334 	if (atomic_read(&lo->lo_refcnt) > 1) {
1335 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1336 		mutex_unlock(&loop_ctl_mutex);
1337 		return 0;
1338 	}
1339 	lo->lo_state = Lo_rundown;
1340 	mutex_unlock(&loop_ctl_mutex);
1341 
1342 	return __loop_clr_fd(lo, false);
1343 }
1344 
1345 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1346 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1347 {
1348 	int err;
1349 	struct block_device *bdev;
1350 	kuid_t uid = current_uid();
1351 	int prev_lo_flags;
1352 	bool partscan = false;
1353 	bool size_changed = false;
1354 
1355 	err = mutex_lock_killable(&loop_ctl_mutex);
1356 	if (err)
1357 		return err;
1358 	if (lo->lo_encrypt_key_size &&
1359 	    !uid_eq(lo->lo_key_owner, uid) &&
1360 	    !capable(CAP_SYS_ADMIN)) {
1361 		err = -EPERM;
1362 		goto out_unlock;
1363 	}
1364 	if (lo->lo_state != Lo_bound) {
1365 		err = -ENXIO;
1366 		goto out_unlock;
1367 	}
1368 
1369 	if (lo->lo_offset != info->lo_offset ||
1370 	    lo->lo_sizelimit != info->lo_sizelimit) {
1371 		size_changed = true;
1372 		sync_blockdev(lo->lo_device);
1373 		invalidate_bdev(lo->lo_device);
1374 	}
1375 
1376 	/* I/O need to be drained during transfer transition */
1377 	blk_mq_freeze_queue(lo->lo_queue);
1378 
1379 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1380 		/* If any pages were dirtied after invalidate_bdev(), try again */
1381 		err = -EAGAIN;
1382 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1383 			__func__, lo->lo_number, lo->lo_file_name,
1384 			lo->lo_device->bd_inode->i_mapping->nrpages);
1385 		goto out_unfreeze;
1386 	}
1387 
1388 	prev_lo_flags = lo->lo_flags;
1389 
1390 	err = loop_set_status_from_info(lo, info);
1391 	if (err)
1392 		goto out_unfreeze;
1393 
1394 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1395 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1396 	/* For those flags, use the previous values instead */
1397 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1398 	/* For flags that can't be cleared, use previous values too */
1399 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1400 
1401 	if (size_changed) {
1402 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1403 					   lo->lo_backing_file);
1404 		loop_set_size(lo, new_size);
1405 	}
1406 
1407 	loop_config_discard(lo);
1408 
1409 	/* update dio if lo_offset or transfer is changed */
1410 	__loop_update_dio(lo, lo->use_dio);
1411 
1412 out_unfreeze:
1413 	blk_mq_unfreeze_queue(lo->lo_queue);
1414 
1415 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1416 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1417 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1418 		bdev = lo->lo_device;
1419 		partscan = true;
1420 	}
1421 out_unlock:
1422 	mutex_unlock(&loop_ctl_mutex);
1423 	if (partscan)
1424 		loop_reread_partitions(lo, bdev);
1425 
1426 	return err;
1427 }
1428 
1429 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1430 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1431 {
1432 	struct path path;
1433 	struct kstat stat;
1434 	int ret;
1435 
1436 	ret = mutex_lock_killable(&loop_ctl_mutex);
1437 	if (ret)
1438 		return ret;
1439 	if (lo->lo_state != Lo_bound) {
1440 		mutex_unlock(&loop_ctl_mutex);
1441 		return -ENXIO;
1442 	}
1443 
1444 	memset(info, 0, sizeof(*info));
1445 	info->lo_number = lo->lo_number;
1446 	info->lo_offset = lo->lo_offset;
1447 	info->lo_sizelimit = lo->lo_sizelimit;
1448 	info->lo_flags = lo->lo_flags;
1449 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1450 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1451 	info->lo_encrypt_type =
1452 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1453 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1454 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1455 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1456 		       lo->lo_encrypt_key_size);
1457 	}
1458 
1459 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1460 	path = lo->lo_backing_file->f_path;
1461 	path_get(&path);
1462 	mutex_unlock(&loop_ctl_mutex);
1463 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1464 	if (!ret) {
1465 		info->lo_device = huge_encode_dev(stat.dev);
1466 		info->lo_inode = stat.ino;
1467 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1468 	}
1469 	path_put(&path);
1470 	return ret;
1471 }
1472 
1473 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1474 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1475 {
1476 	memset(info64, 0, sizeof(*info64));
1477 	info64->lo_number = info->lo_number;
1478 	info64->lo_device = info->lo_device;
1479 	info64->lo_inode = info->lo_inode;
1480 	info64->lo_rdevice = info->lo_rdevice;
1481 	info64->lo_offset = info->lo_offset;
1482 	info64->lo_sizelimit = 0;
1483 	info64->lo_encrypt_type = info->lo_encrypt_type;
1484 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1485 	info64->lo_flags = info->lo_flags;
1486 	info64->lo_init[0] = info->lo_init[0];
1487 	info64->lo_init[1] = info->lo_init[1];
1488 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1489 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1490 	else
1491 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1492 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1493 }
1494 
1495 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1496 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1497 {
1498 	memset(info, 0, sizeof(*info));
1499 	info->lo_number = info64->lo_number;
1500 	info->lo_device = info64->lo_device;
1501 	info->lo_inode = info64->lo_inode;
1502 	info->lo_rdevice = info64->lo_rdevice;
1503 	info->lo_offset = info64->lo_offset;
1504 	info->lo_encrypt_type = info64->lo_encrypt_type;
1505 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1506 	info->lo_flags = info64->lo_flags;
1507 	info->lo_init[0] = info64->lo_init[0];
1508 	info->lo_init[1] = info64->lo_init[1];
1509 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1510 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1511 	else
1512 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1513 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1514 
1515 	/* error in case values were truncated */
1516 	if (info->lo_device != info64->lo_device ||
1517 	    info->lo_rdevice != info64->lo_rdevice ||
1518 	    info->lo_inode != info64->lo_inode ||
1519 	    info->lo_offset != info64->lo_offset)
1520 		return -EOVERFLOW;
1521 
1522 	return 0;
1523 }
1524 
1525 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1526 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1527 {
1528 	struct loop_info info;
1529 	struct loop_info64 info64;
1530 
1531 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1532 		return -EFAULT;
1533 	loop_info64_from_old(&info, &info64);
1534 	return loop_set_status(lo, &info64);
1535 }
1536 
1537 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1538 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1539 {
1540 	struct loop_info64 info64;
1541 
1542 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1543 		return -EFAULT;
1544 	return loop_set_status(lo, &info64);
1545 }
1546 
1547 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1548 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1549 	struct loop_info info;
1550 	struct loop_info64 info64;
1551 	int err;
1552 
1553 	if (!arg)
1554 		return -EINVAL;
1555 	err = loop_get_status(lo, &info64);
1556 	if (!err)
1557 		err = loop_info64_to_old(&info64, &info);
1558 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1559 		err = -EFAULT;
1560 
1561 	return err;
1562 }
1563 
1564 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1565 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1566 	struct loop_info64 info64;
1567 	int err;
1568 
1569 	if (!arg)
1570 		return -EINVAL;
1571 	err = loop_get_status(lo, &info64);
1572 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1573 		err = -EFAULT;
1574 
1575 	return err;
1576 }
1577 
loop_set_capacity(struct loop_device * lo)1578 static int loop_set_capacity(struct loop_device *lo)
1579 {
1580 	loff_t size;
1581 
1582 	if (unlikely(lo->lo_state != Lo_bound))
1583 		return -ENXIO;
1584 
1585 	size = get_loop_size(lo, lo->lo_backing_file);
1586 	loop_set_size(lo, size);
1587 
1588 	return 0;
1589 }
1590 
loop_set_dio(struct loop_device * lo,unsigned long arg)1591 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1592 {
1593 	int error = -ENXIO;
1594 	if (lo->lo_state != Lo_bound)
1595 		goto out;
1596 
1597 	__loop_update_dio(lo, !!arg);
1598 	if (lo->use_dio == !!arg)
1599 		return 0;
1600 	error = -EINVAL;
1601  out:
1602 	return error;
1603 }
1604 
loop_set_block_size(struct loop_device * lo,unsigned long arg)1605 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1606 {
1607 	int err = 0;
1608 
1609 	if (lo->lo_state != Lo_bound)
1610 		return -ENXIO;
1611 
1612 	err = blk_validate_block_size(arg);
1613 	if (err)
1614 		return err;
1615 
1616 	if (lo->lo_queue->limits.logical_block_size == arg)
1617 		return 0;
1618 
1619 	sync_blockdev(lo->lo_device);
1620 	invalidate_bdev(lo->lo_device);
1621 
1622 	blk_mq_freeze_queue(lo->lo_queue);
1623 
1624 	/* invalidate_bdev should have truncated all the pages */
1625 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1626 		err = -EAGAIN;
1627 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1628 			__func__, lo->lo_number, lo->lo_file_name,
1629 			lo->lo_device->bd_inode->i_mapping->nrpages);
1630 		goto out_unfreeze;
1631 	}
1632 
1633 	blk_queue_logical_block_size(lo->lo_queue, arg);
1634 	blk_queue_physical_block_size(lo->lo_queue, arg);
1635 	blk_queue_io_min(lo->lo_queue, arg);
1636 	loop_update_dio(lo);
1637 out_unfreeze:
1638 	blk_mq_unfreeze_queue(lo->lo_queue);
1639 
1640 	return err;
1641 }
1642 
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1643 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1644 			   unsigned long arg)
1645 {
1646 	int err;
1647 
1648 	err = mutex_lock_killable(&loop_ctl_mutex);
1649 	if (err)
1650 		return err;
1651 	switch (cmd) {
1652 	case LOOP_SET_CAPACITY:
1653 		err = loop_set_capacity(lo);
1654 		break;
1655 	case LOOP_SET_DIRECT_IO:
1656 		err = loop_set_dio(lo, arg);
1657 		break;
1658 	case LOOP_SET_BLOCK_SIZE:
1659 		err = loop_set_block_size(lo, arg);
1660 		break;
1661 	default:
1662 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1663 	}
1664 	mutex_unlock(&loop_ctl_mutex);
1665 	return err;
1666 }
1667 
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1668 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1669 	unsigned int cmd, unsigned long arg)
1670 {
1671 	struct loop_device *lo = bdev->bd_disk->private_data;
1672 	void __user *argp = (void __user *) arg;
1673 	int err;
1674 
1675 	switch (cmd) {
1676 	case LOOP_SET_FD: {
1677 		/*
1678 		 * Legacy case - pass in a zeroed out struct loop_config with
1679 		 * only the file descriptor set , which corresponds with the
1680 		 * default parameters we'd have used otherwise.
1681 		 */
1682 		struct loop_config config;
1683 
1684 		memset(&config, 0, sizeof(config));
1685 		config.fd = arg;
1686 
1687 		return loop_configure(lo, mode, bdev, &config);
1688 	}
1689 	case LOOP_CONFIGURE: {
1690 		struct loop_config config;
1691 
1692 		if (copy_from_user(&config, argp, sizeof(config)))
1693 			return -EFAULT;
1694 
1695 		return loop_configure(lo, mode, bdev, &config);
1696 	}
1697 	case LOOP_CHANGE_FD:
1698 		return loop_change_fd(lo, bdev, arg);
1699 	case LOOP_CLR_FD:
1700 		return loop_clr_fd(lo);
1701 	case LOOP_SET_STATUS:
1702 		err = -EPERM;
1703 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1704 			err = loop_set_status_old(lo, argp);
1705 		}
1706 		break;
1707 	case LOOP_GET_STATUS:
1708 		return loop_get_status_old(lo, argp);
1709 	case LOOP_SET_STATUS64:
1710 		err = -EPERM;
1711 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1712 			err = loop_set_status64(lo, argp);
1713 		}
1714 		break;
1715 	case LOOP_GET_STATUS64:
1716 		return loop_get_status64(lo, argp);
1717 	case LOOP_SET_CAPACITY:
1718 	case LOOP_SET_DIRECT_IO:
1719 	case LOOP_SET_BLOCK_SIZE:
1720 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1721 			return -EPERM;
1722 		fallthrough;
1723 	default:
1724 		err = lo_simple_ioctl(lo, cmd, arg);
1725 		break;
1726 	}
1727 
1728 	return err;
1729 }
1730 
1731 #ifdef CONFIG_COMPAT
1732 struct compat_loop_info {
1733 	compat_int_t	lo_number;      /* ioctl r/o */
1734 	compat_dev_t	lo_device;      /* ioctl r/o */
1735 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1736 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1737 	compat_int_t	lo_offset;
1738 	compat_int_t	lo_encrypt_type;
1739 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1740 	compat_int_t	lo_flags;       /* ioctl r/o */
1741 	char		lo_name[LO_NAME_SIZE];
1742 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1743 	compat_ulong_t	lo_init[2];
1744 	char		reserved[4];
1745 };
1746 
1747 /*
1748  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1749  * - noinlined to reduce stack space usage in main part of driver
1750  */
1751 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1752 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1753 			struct loop_info64 *info64)
1754 {
1755 	struct compat_loop_info info;
1756 
1757 	if (copy_from_user(&info, arg, sizeof(info)))
1758 		return -EFAULT;
1759 
1760 	memset(info64, 0, sizeof(*info64));
1761 	info64->lo_number = info.lo_number;
1762 	info64->lo_device = info.lo_device;
1763 	info64->lo_inode = info.lo_inode;
1764 	info64->lo_rdevice = info.lo_rdevice;
1765 	info64->lo_offset = info.lo_offset;
1766 	info64->lo_sizelimit = 0;
1767 	info64->lo_encrypt_type = info.lo_encrypt_type;
1768 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1769 	info64->lo_flags = info.lo_flags;
1770 	info64->lo_init[0] = info.lo_init[0];
1771 	info64->lo_init[1] = info.lo_init[1];
1772 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1773 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1774 	else
1775 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1776 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1777 	return 0;
1778 }
1779 
1780 /*
1781  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1782  * - noinlined to reduce stack space usage in main part of driver
1783  */
1784 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1785 loop_info64_to_compat(const struct loop_info64 *info64,
1786 		      struct compat_loop_info __user *arg)
1787 {
1788 	struct compat_loop_info info;
1789 
1790 	memset(&info, 0, sizeof(info));
1791 	info.lo_number = info64->lo_number;
1792 	info.lo_device = info64->lo_device;
1793 	info.lo_inode = info64->lo_inode;
1794 	info.lo_rdevice = info64->lo_rdevice;
1795 	info.lo_offset = info64->lo_offset;
1796 	info.lo_encrypt_type = info64->lo_encrypt_type;
1797 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1798 	info.lo_flags = info64->lo_flags;
1799 	info.lo_init[0] = info64->lo_init[0];
1800 	info.lo_init[1] = info64->lo_init[1];
1801 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1802 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1803 	else
1804 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1805 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1806 
1807 	/* error in case values were truncated */
1808 	if (info.lo_device != info64->lo_device ||
1809 	    info.lo_rdevice != info64->lo_rdevice ||
1810 	    info.lo_inode != info64->lo_inode ||
1811 	    info.lo_offset != info64->lo_offset ||
1812 	    info.lo_init[0] != info64->lo_init[0] ||
1813 	    info.lo_init[1] != info64->lo_init[1])
1814 		return -EOVERFLOW;
1815 
1816 	if (copy_to_user(arg, &info, sizeof(info)))
1817 		return -EFAULT;
1818 	return 0;
1819 }
1820 
1821 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1822 loop_set_status_compat(struct loop_device *lo,
1823 		       const struct compat_loop_info __user *arg)
1824 {
1825 	struct loop_info64 info64;
1826 	int ret;
1827 
1828 	ret = loop_info64_from_compat(arg, &info64);
1829 	if (ret < 0)
1830 		return ret;
1831 	return loop_set_status(lo, &info64);
1832 }
1833 
1834 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1835 loop_get_status_compat(struct loop_device *lo,
1836 		       struct compat_loop_info __user *arg)
1837 {
1838 	struct loop_info64 info64;
1839 	int err;
1840 
1841 	if (!arg)
1842 		return -EINVAL;
1843 	err = loop_get_status(lo, &info64);
1844 	if (!err)
1845 		err = loop_info64_to_compat(&info64, arg);
1846 	return err;
1847 }
1848 
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1849 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1850 			   unsigned int cmd, unsigned long arg)
1851 {
1852 	struct loop_device *lo = bdev->bd_disk->private_data;
1853 	int err;
1854 
1855 	switch(cmd) {
1856 	case LOOP_SET_STATUS:
1857 		err = loop_set_status_compat(lo,
1858 			     (const struct compat_loop_info __user *)arg);
1859 		break;
1860 	case LOOP_GET_STATUS:
1861 		err = loop_get_status_compat(lo,
1862 				     (struct compat_loop_info __user *)arg);
1863 		break;
1864 	case LOOP_SET_CAPACITY:
1865 	case LOOP_CLR_FD:
1866 	case LOOP_GET_STATUS64:
1867 	case LOOP_SET_STATUS64:
1868 	case LOOP_CONFIGURE:
1869 		arg = (unsigned long) compat_ptr(arg);
1870 		fallthrough;
1871 	case LOOP_SET_FD:
1872 	case LOOP_CHANGE_FD:
1873 	case LOOP_SET_BLOCK_SIZE:
1874 	case LOOP_SET_DIRECT_IO:
1875 		err = lo_ioctl(bdev, mode, cmd, arg);
1876 		break;
1877 	default:
1878 		err = -ENOIOCTLCMD;
1879 		break;
1880 	}
1881 	return err;
1882 }
1883 #endif
1884 
lo_open(struct block_device * bdev,fmode_t mode)1885 static int lo_open(struct block_device *bdev, fmode_t mode)
1886 {
1887 	struct loop_device *lo;
1888 	int err;
1889 
1890 	err = mutex_lock_killable(&loop_ctl_mutex);
1891 	if (err)
1892 		return err;
1893 	lo = bdev->bd_disk->private_data;
1894 	if (!lo) {
1895 		err = -ENXIO;
1896 		goto out;
1897 	}
1898 
1899 	atomic_inc(&lo->lo_refcnt);
1900 out:
1901 	mutex_unlock(&loop_ctl_mutex);
1902 	return err;
1903 }
1904 
lo_release(struct gendisk * disk,fmode_t mode)1905 static void lo_release(struct gendisk *disk, fmode_t mode)
1906 {
1907 	struct loop_device *lo;
1908 
1909 	mutex_lock(&loop_ctl_mutex);
1910 	lo = disk->private_data;
1911 	if (atomic_dec_return(&lo->lo_refcnt))
1912 		goto out_unlock;
1913 
1914 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1915 		if (lo->lo_state != Lo_bound)
1916 			goto out_unlock;
1917 		lo->lo_state = Lo_rundown;
1918 		mutex_unlock(&loop_ctl_mutex);
1919 		/*
1920 		 * In autoclear mode, stop the loop thread
1921 		 * and remove configuration after last close.
1922 		 */
1923 		__loop_clr_fd(lo, true);
1924 		return;
1925 	} else if (lo->lo_state == Lo_bound) {
1926 		/*
1927 		 * Otherwise keep thread (if running) and config,
1928 		 * but flush possible ongoing bios in thread.
1929 		 */
1930 		blk_mq_freeze_queue(lo->lo_queue);
1931 		blk_mq_unfreeze_queue(lo->lo_queue);
1932 	}
1933 
1934 out_unlock:
1935 	mutex_unlock(&loop_ctl_mutex);
1936 }
1937 
1938 static const struct block_device_operations lo_fops = {
1939 	.owner =	THIS_MODULE,
1940 	.open =		lo_open,
1941 	.release =	lo_release,
1942 	.ioctl =	lo_ioctl,
1943 #ifdef CONFIG_COMPAT
1944 	.compat_ioctl =	lo_compat_ioctl,
1945 #endif
1946 };
1947 
1948 /*
1949  * And now the modules code and kernel interface.
1950  */
1951 static int max_loop;
1952 module_param(max_loop, int, 0444);
1953 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1954 module_param(max_part, int, 0444);
1955 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1956 MODULE_LICENSE("GPL");
1957 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1958 
loop_register_transfer(struct loop_func_table * funcs)1959 int loop_register_transfer(struct loop_func_table *funcs)
1960 {
1961 	unsigned int n = funcs->number;
1962 
1963 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1964 		return -EINVAL;
1965 	xfer_funcs[n] = funcs;
1966 	return 0;
1967 }
1968 
unregister_transfer_cb(int id,void * ptr,void * data)1969 static int unregister_transfer_cb(int id, void *ptr, void *data)
1970 {
1971 	struct loop_device *lo = ptr;
1972 	struct loop_func_table *xfer = data;
1973 
1974 	mutex_lock(&loop_ctl_mutex);
1975 	if (lo->lo_encryption == xfer)
1976 		loop_release_xfer(lo);
1977 	mutex_unlock(&loop_ctl_mutex);
1978 	return 0;
1979 }
1980 
loop_unregister_transfer(int number)1981 int loop_unregister_transfer(int number)
1982 {
1983 	unsigned int n = number;
1984 	struct loop_func_table *xfer;
1985 
1986 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1987 		return -EINVAL;
1988 
1989 	xfer_funcs[n] = NULL;
1990 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1991 	return 0;
1992 }
1993 
1994 EXPORT_SYMBOL(loop_register_transfer);
1995 EXPORT_SYMBOL(loop_unregister_transfer);
1996 
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1997 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1998 		const struct blk_mq_queue_data *bd)
1999 {
2000 	struct request *rq = bd->rq;
2001 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2002 	struct loop_device *lo = rq->q->queuedata;
2003 
2004 	blk_mq_start_request(rq);
2005 
2006 	if (lo->lo_state != Lo_bound)
2007 		return BLK_STS_IOERR;
2008 
2009 	switch (req_op(rq)) {
2010 	case REQ_OP_FLUSH:
2011 	case REQ_OP_DISCARD:
2012 	case REQ_OP_WRITE_ZEROES:
2013 		cmd->use_aio = false;
2014 		break;
2015 	default:
2016 		cmd->use_aio = lo->use_dio;
2017 		break;
2018 	}
2019 
2020 	/* always use the first bio's css */
2021 #ifdef CONFIG_BLK_CGROUP
2022 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2023 		cmd->css = &bio_blkcg(rq->bio)->css;
2024 		css_get(cmd->css);
2025 	} else
2026 #endif
2027 		cmd->css = NULL;
2028 	kthread_queue_work(&lo->worker, &cmd->work);
2029 
2030 	return BLK_STS_OK;
2031 }
2032 
loop_handle_cmd(struct loop_cmd * cmd)2033 static void loop_handle_cmd(struct loop_cmd *cmd)
2034 {
2035 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2036 	const bool write = op_is_write(req_op(rq));
2037 	struct loop_device *lo = rq->q->queuedata;
2038 	int ret = 0;
2039 
2040 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2041 		ret = -EIO;
2042 		goto failed;
2043 	}
2044 
2045 	ret = do_req_filebacked(lo, rq);
2046  failed:
2047 	/* complete non-aio request */
2048 	if (!cmd->use_aio || ret) {
2049 		if (ret == -EOPNOTSUPP)
2050 			cmd->ret = ret;
2051 		else
2052 			cmd->ret = ret ? -EIO : 0;
2053 		if (likely(!blk_should_fake_timeout(rq->q)))
2054 			blk_mq_complete_request(rq);
2055 	}
2056 }
2057 
loop_queue_work(struct kthread_work * work)2058 static void loop_queue_work(struct kthread_work *work)
2059 {
2060 	struct loop_cmd *cmd =
2061 		container_of(work, struct loop_cmd, work);
2062 
2063 	loop_handle_cmd(cmd);
2064 }
2065 
loop_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2066 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2067 		unsigned int hctx_idx, unsigned int numa_node)
2068 {
2069 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2070 
2071 	kthread_init_work(&cmd->work, loop_queue_work);
2072 	return 0;
2073 }
2074 
2075 static const struct blk_mq_ops loop_mq_ops = {
2076 	.queue_rq       = loop_queue_rq,
2077 	.init_request	= loop_init_request,
2078 	.complete	= lo_complete_rq,
2079 };
2080 
loop_add(struct loop_device ** l,int i)2081 static int loop_add(struct loop_device **l, int i)
2082 {
2083 	struct loop_device *lo;
2084 	struct gendisk *disk;
2085 	int err;
2086 
2087 	err = -ENOMEM;
2088 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2089 	if (!lo)
2090 		goto out;
2091 
2092 	lo->lo_state = Lo_unbound;
2093 
2094 	/* allocate id, if @id >= 0, we're requesting that specific id */
2095 	if (i >= 0) {
2096 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2097 		if (err == -ENOSPC)
2098 			err = -EEXIST;
2099 	} else {
2100 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2101 	}
2102 	if (err < 0)
2103 		goto out_free_dev;
2104 	i = err;
2105 
2106 	err = -ENOMEM;
2107 	lo->tag_set.ops = &loop_mq_ops;
2108 	lo->tag_set.nr_hw_queues = 1;
2109 	lo->tag_set.queue_depth = 128;
2110 	lo->tag_set.numa_node = NUMA_NO_NODE;
2111 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2112 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2113 		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2114 	lo->tag_set.driver_data = lo;
2115 
2116 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2117 	if (err)
2118 		goto out_free_idr;
2119 
2120 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2121 	if (IS_ERR(lo->lo_queue)) {
2122 		err = PTR_ERR(lo->lo_queue);
2123 		goto out_cleanup_tags;
2124 	}
2125 	lo->lo_queue->queuedata = lo;
2126 
2127 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2128 
2129 	/*
2130 	 * By default, we do buffer IO, so it doesn't make sense to enable
2131 	 * merge because the I/O submitted to backing file is handled page by
2132 	 * page. For directio mode, merge does help to dispatch bigger request
2133 	 * to underlayer disk. We will enable merge once directio is enabled.
2134 	 */
2135 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2136 
2137 	err = -ENOMEM;
2138 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2139 	if (!disk)
2140 		goto out_free_queue;
2141 
2142 	/*
2143 	 * Disable partition scanning by default. The in-kernel partition
2144 	 * scanning can be requested individually per-device during its
2145 	 * setup. Userspace can always add and remove partitions from all
2146 	 * devices. The needed partition minors are allocated from the
2147 	 * extended minor space, the main loop device numbers will continue
2148 	 * to match the loop minors, regardless of the number of partitions
2149 	 * used.
2150 	 *
2151 	 * If max_part is given, partition scanning is globally enabled for
2152 	 * all loop devices. The minors for the main loop devices will be
2153 	 * multiples of max_part.
2154 	 *
2155 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2156 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2157 	 * complicated, are too static, inflexible and may surprise
2158 	 * userspace tools. Parameters like this in general should be avoided.
2159 	 */
2160 	if (!part_shift)
2161 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2162 	disk->flags |= GENHD_FL_EXT_DEVT;
2163 	atomic_set(&lo->lo_refcnt, 0);
2164 	lo->lo_number		= i;
2165 	spin_lock_init(&lo->lo_lock);
2166 	disk->major		= LOOP_MAJOR;
2167 	disk->first_minor	= i << part_shift;
2168 	disk->fops		= &lo_fops;
2169 	disk->private_data	= lo;
2170 	disk->queue		= lo->lo_queue;
2171 	sprintf(disk->disk_name, "loop%d", i);
2172 	add_disk(disk);
2173 	*l = lo;
2174 	return lo->lo_number;
2175 
2176 out_free_queue:
2177 	blk_cleanup_queue(lo->lo_queue);
2178 out_cleanup_tags:
2179 	blk_mq_free_tag_set(&lo->tag_set);
2180 out_free_idr:
2181 	idr_remove(&loop_index_idr, i);
2182 out_free_dev:
2183 	kfree(lo);
2184 out:
2185 	return err;
2186 }
2187 
loop_remove(struct loop_device * lo)2188 static void loop_remove(struct loop_device *lo)
2189 {
2190 	del_gendisk(lo->lo_disk);
2191 	blk_cleanup_queue(lo->lo_queue);
2192 	blk_mq_free_tag_set(&lo->tag_set);
2193 	put_disk(lo->lo_disk);
2194 	kfree(lo);
2195 }
2196 
find_free_cb(int id,void * ptr,void * data)2197 static int find_free_cb(int id, void *ptr, void *data)
2198 {
2199 	struct loop_device *lo = ptr;
2200 	struct loop_device **l = data;
2201 
2202 	if (lo->lo_state == Lo_unbound) {
2203 		*l = lo;
2204 		return 1;
2205 	}
2206 	return 0;
2207 }
2208 
loop_lookup(struct loop_device ** l,int i)2209 static int loop_lookup(struct loop_device **l, int i)
2210 {
2211 	struct loop_device *lo;
2212 	int ret = -ENODEV;
2213 
2214 	if (i < 0) {
2215 		int err;
2216 
2217 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2218 		if (err == 1) {
2219 			*l = lo;
2220 			ret = lo->lo_number;
2221 		}
2222 		goto out;
2223 	}
2224 
2225 	/* lookup and return a specific i */
2226 	lo = idr_find(&loop_index_idr, i);
2227 	if (lo) {
2228 		*l = lo;
2229 		ret = lo->lo_number;
2230 	}
2231 out:
2232 	return ret;
2233 }
2234 
loop_probe(dev_t dev,int * part,void * data)2235 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2236 {
2237 	struct loop_device *lo;
2238 	struct kobject *kobj;
2239 	int err;
2240 
2241 	mutex_lock(&loop_ctl_mutex);
2242 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2243 	if (err < 0)
2244 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2245 	if (err < 0)
2246 		kobj = NULL;
2247 	else
2248 		kobj = get_disk_and_module(lo->lo_disk);
2249 	mutex_unlock(&loop_ctl_mutex);
2250 
2251 	*part = 0;
2252 	return kobj;
2253 }
2254 
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2255 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2256 			       unsigned long parm)
2257 {
2258 	struct loop_device *lo;
2259 	int ret;
2260 
2261 	ret = mutex_lock_killable(&loop_ctl_mutex);
2262 	if (ret)
2263 		return ret;
2264 
2265 	ret = -ENOSYS;
2266 	switch (cmd) {
2267 	case LOOP_CTL_ADD:
2268 		ret = loop_lookup(&lo, parm);
2269 		if (ret >= 0) {
2270 			ret = -EEXIST;
2271 			break;
2272 		}
2273 		ret = loop_add(&lo, parm);
2274 		break;
2275 	case LOOP_CTL_REMOVE:
2276 		ret = loop_lookup(&lo, parm);
2277 		if (ret < 0)
2278 			break;
2279 		if (lo->lo_state != Lo_unbound) {
2280 			ret = -EBUSY;
2281 			break;
2282 		}
2283 		if (atomic_read(&lo->lo_refcnt) > 0) {
2284 			ret = -EBUSY;
2285 			break;
2286 		}
2287 		lo->lo_disk->private_data = NULL;
2288 		idr_remove(&loop_index_idr, lo->lo_number);
2289 		loop_remove(lo);
2290 		break;
2291 	case LOOP_CTL_GET_FREE:
2292 		ret = loop_lookup(&lo, -1);
2293 		if (ret >= 0)
2294 			break;
2295 		ret = loop_add(&lo, -1);
2296 	}
2297 	mutex_unlock(&loop_ctl_mutex);
2298 
2299 	return ret;
2300 }
2301 
2302 static const struct file_operations loop_ctl_fops = {
2303 	.open		= nonseekable_open,
2304 	.unlocked_ioctl	= loop_control_ioctl,
2305 	.compat_ioctl	= loop_control_ioctl,
2306 	.owner		= THIS_MODULE,
2307 	.llseek		= noop_llseek,
2308 };
2309 
2310 static struct miscdevice loop_misc = {
2311 	.minor		= LOOP_CTRL_MINOR,
2312 	.name		= "loop-control",
2313 	.fops		= &loop_ctl_fops,
2314 };
2315 
2316 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2317 MODULE_ALIAS("devname:loop-control");
2318 
loop_init(void)2319 static int __init loop_init(void)
2320 {
2321 	int i, nr;
2322 	unsigned long range;
2323 	struct loop_device *lo;
2324 	int err;
2325 
2326 	part_shift = 0;
2327 	if (max_part > 0) {
2328 		part_shift = fls(max_part);
2329 
2330 		/*
2331 		 * Adjust max_part according to part_shift as it is exported
2332 		 * to user space so that user can decide correct minor number
2333 		 * if [s]he want to create more devices.
2334 		 *
2335 		 * Note that -1 is required because partition 0 is reserved
2336 		 * for the whole disk.
2337 		 */
2338 		max_part = (1UL << part_shift) - 1;
2339 	}
2340 
2341 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2342 		err = -EINVAL;
2343 		goto err_out;
2344 	}
2345 
2346 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2347 		err = -EINVAL;
2348 		goto err_out;
2349 	}
2350 
2351 	/*
2352 	 * If max_loop is specified, create that many devices upfront.
2353 	 * This also becomes a hard limit. If max_loop is not specified,
2354 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2355 	 * init time. Loop devices can be requested on-demand with the
2356 	 * /dev/loop-control interface, or be instantiated by accessing
2357 	 * a 'dead' device node.
2358 	 */
2359 	if (max_loop) {
2360 		nr = max_loop;
2361 		range = max_loop << part_shift;
2362 	} else {
2363 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2364 		range = 1UL << MINORBITS;
2365 	}
2366 
2367 	err = misc_register(&loop_misc);
2368 	if (err < 0)
2369 		goto err_out;
2370 
2371 
2372 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2373 		err = -EIO;
2374 		goto misc_out;
2375 	}
2376 
2377 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2378 				  THIS_MODULE, loop_probe, NULL, NULL);
2379 
2380 	/* pre-create number of devices given by config or max_loop */
2381 	mutex_lock(&loop_ctl_mutex);
2382 	for (i = 0; i < nr; i++)
2383 		loop_add(&lo, i);
2384 	mutex_unlock(&loop_ctl_mutex);
2385 
2386 	printk(KERN_INFO "loop: module loaded\n");
2387 	return 0;
2388 
2389 misc_out:
2390 	misc_deregister(&loop_misc);
2391 err_out:
2392 	return err;
2393 }
2394 
loop_exit_cb(int id,void * ptr,void * data)2395 static int loop_exit_cb(int id, void *ptr, void *data)
2396 {
2397 	struct loop_device *lo = ptr;
2398 
2399 	loop_remove(lo);
2400 	return 0;
2401 }
2402 
loop_exit(void)2403 static void __exit loop_exit(void)
2404 {
2405 	unsigned long range;
2406 
2407 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2408 
2409 	mutex_lock(&loop_ctl_mutex);
2410 
2411 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2412 	idr_destroy(&loop_index_idr);
2413 
2414 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2415 	unregister_blkdev(LOOP_MAJOR, "loop");
2416 
2417 	misc_deregister(&loop_misc);
2418 
2419 	mutex_unlock(&loop_ctl_mutex);
2420 }
2421 
2422 module_init(loop_init);
2423 module_exit(loop_exit);
2424 
2425 #ifndef MODULE
max_loop_setup(char * str)2426 static int __init max_loop_setup(char *str)
2427 {
2428 	max_loop = simple_strtol(str, NULL, 0);
2429 	return 1;
2430 }
2431 
2432 __setup("max_loop=", max_loop_setup);
2433 #endif
2434