1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "cikd.h"
26 #include "cik_sdma.h"
27 #include "gfx_v7_0.h"
28 #include "gca/gfx_7_2_d.h"
29 #include "gca/gfx_7_2_enum.h"
30 #include "gca/gfx_7_2_sh_mask.h"
31 #include "oss/oss_2_0_d.h"
32 #include "oss/oss_2_0_sh_mask.h"
33 #include "gmc/gmc_7_1_d.h"
34 #include "gmc/gmc_7_1_sh_mask.h"
35 #include "cik_structs.h"
36
37 enum hqd_dequeue_request_type {
38 NO_ACTION = 0,
39 DRAIN_PIPE,
40 RESET_WAVES
41 };
42
43 enum {
44 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
45 MAX_WATCH_ADDRESSES = 4
46 };
47
48 enum {
49 ADDRESS_WATCH_REG_ADDR_HI = 0,
50 ADDRESS_WATCH_REG_ADDR_LO,
51 ADDRESS_WATCH_REG_CNTL,
52 ADDRESS_WATCH_REG_MAX
53 };
54
55 /* not defined in the CI/KV reg file */
56 enum {
57 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60 /* extend the mask to 26 bits to match the low address field */
61 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
63 };
64
65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
70 };
71
72 union TCP_WATCH_CNTL_BITS {
73 struct {
74 uint32_t mask:24;
75 uint32_t vmid:4;
76 uint32_t atc:1;
77 uint32_t mode:2;
78 uint32_t valid:1;
79 } bitfields, bits;
80 uint32_t u32All;
81 signed int i32All;
82 float f32All;
83 };
84
get_amdgpu_device(struct kgd_dev * kgd)85 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
86 {
87 return (struct amdgpu_device *)kgd;
88 }
89
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)90 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
91 uint32_t queue, uint32_t vmid)
92 {
93 struct amdgpu_device *adev = get_amdgpu_device(kgd);
94 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
95
96 mutex_lock(&adev->srbm_mutex);
97 WREG32(mmSRBM_GFX_CNTL, value);
98 }
99
unlock_srbm(struct kgd_dev * kgd)100 static void unlock_srbm(struct kgd_dev *kgd)
101 {
102 struct amdgpu_device *adev = get_amdgpu_device(kgd);
103
104 WREG32(mmSRBM_GFX_CNTL, 0);
105 mutex_unlock(&adev->srbm_mutex);
106 }
107
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)108 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
109 uint32_t queue_id)
110 {
111 struct amdgpu_device *adev = get_amdgpu_device(kgd);
112
113 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
114 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
115
116 lock_srbm(kgd, mec, pipe, queue_id, 0);
117 }
118
release_queue(struct kgd_dev * kgd)119 static void release_queue(struct kgd_dev *kgd)
120 {
121 unlock_srbm(kgd);
122 }
123
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)124 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
125 uint32_t sh_mem_config,
126 uint32_t sh_mem_ape1_base,
127 uint32_t sh_mem_ape1_limit,
128 uint32_t sh_mem_bases)
129 {
130 struct amdgpu_device *adev = get_amdgpu_device(kgd);
131
132 lock_srbm(kgd, 0, 0, 0, vmid);
133
134 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
135 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
136 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
137 WREG32(mmSH_MEM_BASES, sh_mem_bases);
138
139 unlock_srbm(kgd);
140 }
141
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,u32 pasid,unsigned int vmid)142 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
143 unsigned int vmid)
144 {
145 struct amdgpu_device *adev = get_amdgpu_device(kgd);
146
147 /*
148 * We have to assume that there is no outstanding mapping.
149 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
150 * a mapping is in progress or because a mapping finished and the
151 * SW cleared it. So the protocol is to always wait & clear.
152 */
153 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
154 ATC_VMID0_PASID_MAPPING__VALID_MASK;
155
156 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
157
158 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
159 cpu_relax();
160 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
161
162 /* Mapping vmid to pasid also for IH block */
163 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
164
165 return 0;
166 }
167
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)168 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
169 {
170 struct amdgpu_device *adev = get_amdgpu_device(kgd);
171 uint32_t mec;
172 uint32_t pipe;
173
174 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
175 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
176
177 lock_srbm(kgd, mec, pipe, 0, 0);
178
179 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
180 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
181
182 unlock_srbm(kgd);
183
184 return 0;
185 }
186
get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers * m)187 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
188 {
189 uint32_t retval;
190
191 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
192 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
193
194 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
195 m->sdma_engine_id, m->sdma_queue_id, retval);
196
197 return retval;
198 }
199
get_mqd(void * mqd)200 static inline struct cik_mqd *get_mqd(void *mqd)
201 {
202 return (struct cik_mqd *)mqd;
203 }
204
get_sdma_mqd(void * mqd)205 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
206 {
207 return (struct cik_sdma_rlc_registers *)mqd;
208 }
209
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)210 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
211 uint32_t queue_id, uint32_t __user *wptr,
212 uint32_t wptr_shift, uint32_t wptr_mask,
213 struct mm_struct *mm)
214 {
215 struct amdgpu_device *adev = get_amdgpu_device(kgd);
216 struct cik_mqd *m;
217 uint32_t *mqd_hqd;
218 uint32_t reg, wptr_val, data;
219 bool valid_wptr = false;
220
221 m = get_mqd(mqd);
222
223 acquire_queue(kgd, pipe_id, queue_id);
224
225 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
226 mqd_hqd = &m->cp_mqd_base_addr_lo;
227
228 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
229 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
230
231 /* Copy userspace write pointer value to register.
232 * Activate doorbell logic to monitor subsequent changes.
233 */
234 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
235 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
236 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
237
238 /* read_user_ptr may take the mm->mmap_lock.
239 * release srbm_mutex to avoid circular dependency between
240 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
241 */
242 release_queue(kgd);
243 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
244 acquire_queue(kgd, pipe_id, queue_id);
245 if (valid_wptr)
246 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
247
248 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
249 WREG32(mmCP_HQD_ACTIVE, data);
250
251 release_queue(kgd);
252
253 return 0;
254 }
255
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)256 static int kgd_hqd_dump(struct kgd_dev *kgd,
257 uint32_t pipe_id, uint32_t queue_id,
258 uint32_t (**dump)[2], uint32_t *n_regs)
259 {
260 struct amdgpu_device *adev = get_amdgpu_device(kgd);
261 uint32_t i = 0, reg;
262 #define HQD_N_REGS (35+4)
263 #define DUMP_REG(addr) do { \
264 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
265 break; \
266 (*dump)[i][0] = (addr) << 2; \
267 (*dump)[i++][1] = RREG32(addr); \
268 } while (0)
269
270 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
271 if (*dump == NULL)
272 return -ENOMEM;
273
274 acquire_queue(kgd, pipe_id, queue_id);
275
276 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
277 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
278 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
279 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
280
281 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
282 DUMP_REG(reg);
283
284 release_queue(kgd);
285
286 WARN_ON_ONCE(i != HQD_N_REGS);
287 *n_regs = i;
288
289 return 0;
290 }
291
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)292 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
293 uint32_t __user *wptr, struct mm_struct *mm)
294 {
295 struct amdgpu_device *adev = get_amdgpu_device(kgd);
296 struct cik_sdma_rlc_registers *m;
297 unsigned long end_jiffies;
298 uint32_t sdma_rlc_reg_offset;
299 uint32_t data;
300
301 m = get_sdma_mqd(mqd);
302 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
303
304 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
305 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
306
307 end_jiffies = msecs_to_jiffies(2000) + jiffies;
308 while (true) {
309 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
310 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
311 break;
312 if (time_after(jiffies, end_jiffies)) {
313 pr_err("SDMA RLC not idle in %s\n", __func__);
314 return -ETIME;
315 }
316 usleep_range(500, 1000);
317 }
318
319 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
320 ENABLE, 1);
321 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
322 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
323 m->sdma_rlc_rb_rptr);
324
325 if (read_user_wptr(mm, wptr, data))
326 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
327 else
328 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
329 m->sdma_rlc_rb_rptr);
330
331 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
332 m->sdma_rlc_virtual_addr);
333 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
334 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
335 m->sdma_rlc_rb_base_hi);
336 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
337 m->sdma_rlc_rb_rptr_addr_lo);
338 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
339 m->sdma_rlc_rb_rptr_addr_hi);
340
341 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
342 RB_ENABLE, 1);
343 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
344
345 return 0;
346 }
347
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)348 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
349 uint32_t engine_id, uint32_t queue_id,
350 uint32_t (**dump)[2], uint32_t *n_regs)
351 {
352 struct amdgpu_device *adev = get_amdgpu_device(kgd);
353 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
354 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
355 uint32_t i = 0, reg;
356 #undef HQD_N_REGS
357 #define HQD_N_REGS (19+4)
358
359 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
360 if (*dump == NULL)
361 return -ENOMEM;
362
363 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
364 DUMP_REG(sdma_offset + reg);
365 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
366 reg++)
367 DUMP_REG(sdma_offset + reg);
368
369 WARN_ON_ONCE(i != HQD_N_REGS);
370 *n_regs = i;
371
372 return 0;
373 }
374
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)375 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
376 uint32_t pipe_id, uint32_t queue_id)
377 {
378 struct amdgpu_device *adev = get_amdgpu_device(kgd);
379 uint32_t act;
380 bool retval = false;
381 uint32_t low, high;
382
383 acquire_queue(kgd, pipe_id, queue_id);
384 act = RREG32(mmCP_HQD_ACTIVE);
385 if (act) {
386 low = lower_32_bits(queue_address >> 8);
387 high = upper_32_bits(queue_address >> 8);
388
389 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
390 high == RREG32(mmCP_HQD_PQ_BASE_HI))
391 retval = true;
392 }
393 release_queue(kgd);
394 return retval;
395 }
396
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)397 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
398 {
399 struct amdgpu_device *adev = get_amdgpu_device(kgd);
400 struct cik_sdma_rlc_registers *m;
401 uint32_t sdma_rlc_reg_offset;
402 uint32_t sdma_rlc_rb_cntl;
403
404 m = get_sdma_mqd(mqd);
405 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
406
407 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
408
409 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
410 return true;
411
412 return false;
413 }
414
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)415 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
416 enum kfd_preempt_type reset_type,
417 unsigned int utimeout, uint32_t pipe_id,
418 uint32_t queue_id)
419 {
420 struct amdgpu_device *adev = get_amdgpu_device(kgd);
421 uint32_t temp;
422 enum hqd_dequeue_request_type type;
423 unsigned long flags, end_jiffies;
424 int retry;
425
426 if (amdgpu_in_reset(adev))
427 return -EIO;
428
429 acquire_queue(kgd, pipe_id, queue_id);
430 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
431
432 switch (reset_type) {
433 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
434 type = DRAIN_PIPE;
435 break;
436 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
437 type = RESET_WAVES;
438 break;
439 default:
440 type = DRAIN_PIPE;
441 break;
442 }
443
444 /* Workaround: If IQ timer is active and the wait time is close to or
445 * equal to 0, dequeueing is not safe. Wait until either the wait time
446 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
447 * cleared before continuing. Also, ensure wait times are set to at
448 * least 0x3.
449 */
450 local_irq_save(flags);
451 preempt_disable();
452 retry = 5000; /* wait for 500 usecs at maximum */
453 while (true) {
454 temp = RREG32(mmCP_HQD_IQ_TIMER);
455 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
456 pr_debug("HW is processing IQ\n");
457 goto loop;
458 }
459 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
460 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
461 == 3) /* SEM-rearm is safe */
462 break;
463 /* Wait time 3 is safe for CP, but our MMIO read/write
464 * time is close to 1 microsecond, so check for 10 to
465 * leave more buffer room
466 */
467 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
468 >= 10)
469 break;
470 pr_debug("IQ timer is active\n");
471 } else
472 break;
473 loop:
474 if (!retry) {
475 pr_err("CP HQD IQ timer status time out\n");
476 break;
477 }
478 ndelay(100);
479 --retry;
480 }
481 retry = 1000;
482 while (true) {
483 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
484 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
485 break;
486 pr_debug("Dequeue request is pending\n");
487
488 if (!retry) {
489 pr_err("CP HQD dequeue request time out\n");
490 break;
491 }
492 ndelay(100);
493 --retry;
494 }
495 local_irq_restore(flags);
496 preempt_enable();
497
498 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
499
500 end_jiffies = (utimeout * HZ / 1000) + jiffies;
501 while (true) {
502 temp = RREG32(mmCP_HQD_ACTIVE);
503 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
504 break;
505 if (time_after(jiffies, end_jiffies)) {
506 pr_err("cp queue preemption time out\n");
507 release_queue(kgd);
508 return -ETIME;
509 }
510 usleep_range(500, 1000);
511 }
512
513 release_queue(kgd);
514 return 0;
515 }
516
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)517 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
518 unsigned int utimeout)
519 {
520 struct amdgpu_device *adev = get_amdgpu_device(kgd);
521 struct cik_sdma_rlc_registers *m;
522 uint32_t sdma_rlc_reg_offset;
523 uint32_t temp;
524 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
525
526 m = get_sdma_mqd(mqd);
527 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
528
529 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
530 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
531 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
532
533 while (true) {
534 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
535 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
536 break;
537 if (time_after(jiffies, end_jiffies)) {
538 pr_err("SDMA RLC not idle in %s\n", __func__);
539 return -ETIME;
540 }
541 usleep_range(500, 1000);
542 }
543
544 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
545 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
546 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
547 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
548
549 m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
550
551 return 0;
552 }
553
kgd_address_watch_disable(struct kgd_dev * kgd)554 static int kgd_address_watch_disable(struct kgd_dev *kgd)
555 {
556 struct amdgpu_device *adev = get_amdgpu_device(kgd);
557 union TCP_WATCH_CNTL_BITS cntl;
558 unsigned int i;
559
560 cntl.u32All = 0;
561
562 cntl.bitfields.valid = 0;
563 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
564 cntl.bitfields.atc = 1;
565
566 /* Turning off this address until we set all the registers */
567 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
568 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
569 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
570
571 return 0;
572 }
573
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)574 static int kgd_address_watch_execute(struct kgd_dev *kgd,
575 unsigned int watch_point_id,
576 uint32_t cntl_val,
577 uint32_t addr_hi,
578 uint32_t addr_lo)
579 {
580 struct amdgpu_device *adev = get_amdgpu_device(kgd);
581 union TCP_WATCH_CNTL_BITS cntl;
582
583 cntl.u32All = cntl_val;
584
585 /* Turning off this watch point until we set all the registers */
586 cntl.bitfields.valid = 0;
587 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
588 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
589
590 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
591 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
592
593 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
594 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
595
596 /* Enable the watch point */
597 cntl.bitfields.valid = 1;
598
599 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
600 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
601
602 return 0;
603 }
604
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)605 static int kgd_wave_control_execute(struct kgd_dev *kgd,
606 uint32_t gfx_index_val,
607 uint32_t sq_cmd)
608 {
609 struct amdgpu_device *adev = get_amdgpu_device(kgd);
610 uint32_t data;
611
612 mutex_lock(&adev->grbm_idx_mutex);
613
614 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
615 WREG32(mmSQ_CMD, sq_cmd);
616
617 /* Restore the GRBM_GFX_INDEX register */
618
619 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
620 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
621 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
622
623 WREG32(mmGRBM_GFX_INDEX, data);
624
625 mutex_unlock(&adev->grbm_idx_mutex);
626
627 return 0;
628 }
629
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)630 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
631 unsigned int watch_point_id,
632 unsigned int reg_offset)
633 {
634 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
635 }
636
get_atc_vmid_pasid_mapping_info(struct kgd_dev * kgd,uint8_t vmid,uint16_t * p_pasid)637 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
638 uint8_t vmid, uint16_t *p_pasid)
639 {
640 uint32_t value;
641 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
642
643 value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
644 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
645
646 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
647 }
648
set_scratch_backing_va(struct kgd_dev * kgd,uint64_t va,uint32_t vmid)649 static void set_scratch_backing_va(struct kgd_dev *kgd,
650 uint64_t va, uint32_t vmid)
651 {
652 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
653
654 lock_srbm(kgd, 0, 0, 0, vmid);
655 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
656 unlock_srbm(kgd);
657 }
658
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint64_t page_table_base)659 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
660 uint64_t page_table_base)
661 {
662 struct amdgpu_device *adev = get_amdgpu_device(kgd);
663
664 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
665 pr_err("trying to set page table base for wrong VMID\n");
666 return;
667 }
668 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
669 lower_32_bits(page_table_base));
670 }
671
672 /**
673 * read_vmid_from_vmfault_reg - read vmid from register
674 *
675 * adev: amdgpu_device pointer
676 * @vmid: vmid pointer
677 * read vmid from register (CIK).
678 */
read_vmid_from_vmfault_reg(struct kgd_dev * kgd)679 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
680 {
681 struct amdgpu_device *adev = get_amdgpu_device(kgd);
682
683 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
684
685 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
686 }
687
688 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
689 .program_sh_mem_settings = kgd_program_sh_mem_settings,
690 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
691 .init_interrupts = kgd_init_interrupts,
692 .hqd_load = kgd_hqd_load,
693 .hqd_sdma_load = kgd_hqd_sdma_load,
694 .hqd_dump = kgd_hqd_dump,
695 .hqd_sdma_dump = kgd_hqd_sdma_dump,
696 .hqd_is_occupied = kgd_hqd_is_occupied,
697 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
698 .hqd_destroy = kgd_hqd_destroy,
699 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
700 .address_watch_disable = kgd_address_watch_disable,
701 .address_watch_execute = kgd_address_watch_execute,
702 .wave_control_execute = kgd_wave_control_execute,
703 .address_watch_get_offset = kgd_address_watch_get_offset,
704 .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
705 .set_scratch_backing_va = set_scratch_backing_va,
706 .set_vm_context_page_table_base = set_vm_context_page_table_base,
707 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
708 };
709