1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core IIO driver for Bosch BMA400 triaxial acceleration sensor.
4 *
5 * Copyright 2019 Dan Robertson <dan@dlrobertson.com>
6 *
7 * TODO:
8 * - Support for power management
9 * - Support events and interrupts
10 * - Create channel for step count
11 * - Create channel for sensor time
12 */
13
14 #include <linux/bitops.h>
15 #include <linux/device.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/consumer.h>
21
22 #include <linux/iio/iio.h>
23
24 #include "bma400.h"
25
26 /*
27 * The G-range selection may be one of 2g, 4g, 8, or 16g. The scale may
28 * be selected with the acc_range bits of the ACC_CONFIG1 register.
29 * NB: This buffer is populated in the device init.
30 */
31 static int bma400_scales[8];
32
33 /*
34 * See the ACC_CONFIG1 section of the datasheet.
35 * NB: This buffer is populated in the device init.
36 */
37 static int bma400_sample_freqs[14];
38
39 static const int bma400_osr_range[] = { 0, 1, 3 };
40
41 /* See the ACC_CONFIG0 section of the datasheet */
42 enum bma400_power_mode {
43 POWER_MODE_SLEEP = 0x00,
44 POWER_MODE_LOW = 0x01,
45 POWER_MODE_NORMAL = 0x02,
46 POWER_MODE_INVALID = 0x03,
47 };
48
49 struct bma400_sample_freq {
50 int hz;
51 int uhz;
52 };
53
54 struct bma400_data {
55 struct device *dev;
56 struct regmap *regmap;
57 struct regulator_bulk_data regulators[BMA400_NUM_REGULATORS];
58 struct mutex mutex; /* data register lock */
59 struct iio_mount_matrix orientation;
60 enum bma400_power_mode power_mode;
61 struct bma400_sample_freq sample_freq;
62 int oversampling_ratio;
63 int scale;
64 };
65
bma400_is_writable_reg(struct device * dev,unsigned int reg)66 static bool bma400_is_writable_reg(struct device *dev, unsigned int reg)
67 {
68 switch (reg) {
69 case BMA400_CHIP_ID_REG:
70 case BMA400_ERR_REG:
71 case BMA400_STATUS_REG:
72 case BMA400_X_AXIS_LSB_REG:
73 case BMA400_X_AXIS_MSB_REG:
74 case BMA400_Y_AXIS_LSB_REG:
75 case BMA400_Y_AXIS_MSB_REG:
76 case BMA400_Z_AXIS_LSB_REG:
77 case BMA400_Z_AXIS_MSB_REG:
78 case BMA400_SENSOR_TIME0:
79 case BMA400_SENSOR_TIME1:
80 case BMA400_SENSOR_TIME2:
81 case BMA400_EVENT_REG:
82 case BMA400_INT_STAT0_REG:
83 case BMA400_INT_STAT1_REG:
84 case BMA400_INT_STAT2_REG:
85 case BMA400_TEMP_DATA_REG:
86 case BMA400_FIFO_LENGTH0_REG:
87 case BMA400_FIFO_LENGTH1_REG:
88 case BMA400_FIFO_DATA_REG:
89 case BMA400_STEP_CNT0_REG:
90 case BMA400_STEP_CNT1_REG:
91 case BMA400_STEP_CNT3_REG:
92 case BMA400_STEP_STAT_REG:
93 return false;
94 default:
95 return true;
96 }
97 }
98
bma400_is_volatile_reg(struct device * dev,unsigned int reg)99 static bool bma400_is_volatile_reg(struct device *dev, unsigned int reg)
100 {
101 switch (reg) {
102 case BMA400_ERR_REG:
103 case BMA400_STATUS_REG:
104 case BMA400_X_AXIS_LSB_REG:
105 case BMA400_X_AXIS_MSB_REG:
106 case BMA400_Y_AXIS_LSB_REG:
107 case BMA400_Y_AXIS_MSB_REG:
108 case BMA400_Z_AXIS_LSB_REG:
109 case BMA400_Z_AXIS_MSB_REG:
110 case BMA400_SENSOR_TIME0:
111 case BMA400_SENSOR_TIME1:
112 case BMA400_SENSOR_TIME2:
113 case BMA400_EVENT_REG:
114 case BMA400_INT_STAT0_REG:
115 case BMA400_INT_STAT1_REG:
116 case BMA400_INT_STAT2_REG:
117 case BMA400_TEMP_DATA_REG:
118 case BMA400_FIFO_LENGTH0_REG:
119 case BMA400_FIFO_LENGTH1_REG:
120 case BMA400_FIFO_DATA_REG:
121 case BMA400_STEP_CNT0_REG:
122 case BMA400_STEP_CNT1_REG:
123 case BMA400_STEP_CNT3_REG:
124 case BMA400_STEP_STAT_REG:
125 return true;
126 default:
127 return false;
128 }
129 }
130
131 const struct regmap_config bma400_regmap_config = {
132 .reg_bits = 8,
133 .val_bits = 8,
134 .max_register = BMA400_CMD_REG,
135 .cache_type = REGCACHE_RBTREE,
136 .writeable_reg = bma400_is_writable_reg,
137 .volatile_reg = bma400_is_volatile_reg,
138 };
139 EXPORT_SYMBOL(bma400_regmap_config);
140
141 static const struct iio_mount_matrix *
bma400_accel_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)142 bma400_accel_get_mount_matrix(const struct iio_dev *indio_dev,
143 const struct iio_chan_spec *chan)
144 {
145 struct bma400_data *data = iio_priv(indio_dev);
146
147 return &data->orientation;
148 }
149
150 static const struct iio_chan_spec_ext_info bma400_ext_info[] = {
151 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma400_accel_get_mount_matrix),
152 { }
153 };
154
155 #define BMA400_ACC_CHANNEL(_axis) { \
156 .type = IIO_ACCEL, \
157 .modified = 1, \
158 .channel2 = IIO_MOD_##_axis, \
159 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
160 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
161 BIT(IIO_CHAN_INFO_SCALE) | \
162 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
163 .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
164 BIT(IIO_CHAN_INFO_SCALE) | \
165 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
166 .ext_info = bma400_ext_info, \
167 }
168
169 static const struct iio_chan_spec bma400_channels[] = {
170 BMA400_ACC_CHANNEL(X),
171 BMA400_ACC_CHANNEL(Y),
172 BMA400_ACC_CHANNEL(Z),
173 {
174 .type = IIO_TEMP,
175 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
176 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ),
177 },
178 };
179
bma400_get_temp_reg(struct bma400_data * data,int * val,int * val2)180 static int bma400_get_temp_reg(struct bma400_data *data, int *val, int *val2)
181 {
182 unsigned int raw_temp;
183 int host_temp;
184 int ret;
185
186 if (data->power_mode == POWER_MODE_SLEEP)
187 return -EBUSY;
188
189 ret = regmap_read(data->regmap, BMA400_TEMP_DATA_REG, &raw_temp);
190 if (ret)
191 return ret;
192
193 host_temp = sign_extend32(raw_temp, 7);
194 /*
195 * The formula for the TEMP_DATA register in the datasheet
196 * is: x * 0.5 + 23
197 */
198 *val = (host_temp >> 1) + 23;
199 *val2 = (host_temp & 0x1) * 500000;
200 return IIO_VAL_INT_PLUS_MICRO;
201 }
202
bma400_get_accel_reg(struct bma400_data * data,const struct iio_chan_spec * chan,int * val)203 static int bma400_get_accel_reg(struct bma400_data *data,
204 const struct iio_chan_spec *chan,
205 int *val)
206 {
207 __le16 raw_accel;
208 int lsb_reg;
209 int ret;
210
211 if (data->power_mode == POWER_MODE_SLEEP)
212 return -EBUSY;
213
214 switch (chan->channel2) {
215 case IIO_MOD_X:
216 lsb_reg = BMA400_X_AXIS_LSB_REG;
217 break;
218 case IIO_MOD_Y:
219 lsb_reg = BMA400_Y_AXIS_LSB_REG;
220 break;
221 case IIO_MOD_Z:
222 lsb_reg = BMA400_Z_AXIS_LSB_REG;
223 break;
224 default:
225 dev_err(data->dev, "invalid axis channel modifier\n");
226 return -EINVAL;
227 }
228
229 /* bulk read two registers, with the base being the LSB register */
230 ret = regmap_bulk_read(data->regmap, lsb_reg, &raw_accel,
231 sizeof(raw_accel));
232 if (ret)
233 return ret;
234
235 *val = sign_extend32(le16_to_cpu(raw_accel), 11);
236 return IIO_VAL_INT;
237 }
238
bma400_output_data_rate_from_raw(int raw,unsigned int * val,unsigned int * val2)239 static void bma400_output_data_rate_from_raw(int raw, unsigned int *val,
240 unsigned int *val2)
241 {
242 *val = BMA400_ACC_ODR_MAX_HZ >> (BMA400_ACC_ODR_MAX_RAW - raw);
243 if (raw > BMA400_ACC_ODR_MIN_RAW)
244 *val2 = 0;
245 else
246 *val2 = 500000;
247 }
248
bma400_get_accel_output_data_rate(struct bma400_data * data)249 static int bma400_get_accel_output_data_rate(struct bma400_data *data)
250 {
251 unsigned int val;
252 unsigned int odr;
253 int ret;
254
255 switch (data->power_mode) {
256 case POWER_MODE_LOW:
257 /*
258 * Runs at a fixed rate in low-power mode. See section 4.3
259 * in the datasheet.
260 */
261 bma400_output_data_rate_from_raw(BMA400_ACC_ODR_LP_RAW,
262 &data->sample_freq.hz,
263 &data->sample_freq.uhz);
264 return 0;
265 case POWER_MODE_NORMAL:
266 /*
267 * In normal mode the ODR can be found in the ACC_CONFIG1
268 * register.
269 */
270 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
271 if (ret)
272 goto error;
273
274 odr = val & BMA400_ACC_ODR_MASK;
275 if (odr < BMA400_ACC_ODR_MIN_RAW ||
276 odr > BMA400_ACC_ODR_MAX_RAW) {
277 ret = -EINVAL;
278 goto error;
279 }
280
281 bma400_output_data_rate_from_raw(odr, &data->sample_freq.hz,
282 &data->sample_freq.uhz);
283 return 0;
284 case POWER_MODE_SLEEP:
285 data->sample_freq.hz = 0;
286 data->sample_freq.uhz = 0;
287 return 0;
288 default:
289 ret = 0;
290 goto error;
291 }
292 error:
293 data->sample_freq.hz = -1;
294 data->sample_freq.uhz = -1;
295 return ret;
296 }
297
bma400_set_accel_output_data_rate(struct bma400_data * data,int hz,int uhz)298 static int bma400_set_accel_output_data_rate(struct bma400_data *data,
299 int hz, int uhz)
300 {
301 unsigned int idx;
302 unsigned int odr;
303 unsigned int val;
304 int ret;
305
306 if (hz >= BMA400_ACC_ODR_MIN_WHOLE_HZ) {
307 if (uhz || hz > BMA400_ACC_ODR_MAX_HZ)
308 return -EINVAL;
309
310 /* Note this works because MIN_WHOLE_HZ is odd */
311 idx = __ffs(hz);
312
313 if (hz >> idx != BMA400_ACC_ODR_MIN_WHOLE_HZ)
314 return -EINVAL;
315
316 idx += BMA400_ACC_ODR_MIN_RAW + 1;
317 } else if (hz == BMA400_ACC_ODR_MIN_HZ && uhz == 500000) {
318 idx = BMA400_ACC_ODR_MIN_RAW;
319 } else {
320 return -EINVAL;
321 }
322
323 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
324 if (ret)
325 return ret;
326
327 /* preserve the range and normal mode osr */
328 odr = (~BMA400_ACC_ODR_MASK & val) | idx;
329
330 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG, odr);
331 if (ret)
332 return ret;
333
334 bma400_output_data_rate_from_raw(idx, &data->sample_freq.hz,
335 &data->sample_freq.uhz);
336 return 0;
337 }
338
bma400_get_accel_oversampling_ratio(struct bma400_data * data)339 static int bma400_get_accel_oversampling_ratio(struct bma400_data *data)
340 {
341 unsigned int val;
342 unsigned int osr;
343 int ret;
344
345 /*
346 * The oversampling ratio is stored in a different register
347 * based on the power-mode. In normal mode the OSR is stored
348 * in ACC_CONFIG1. In low-power mode it is stored in
349 * ACC_CONFIG0.
350 */
351 switch (data->power_mode) {
352 case POWER_MODE_LOW:
353 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
354 if (ret) {
355 data->oversampling_ratio = -1;
356 return ret;
357 }
358
359 osr = (val & BMA400_LP_OSR_MASK) >> BMA400_LP_OSR_SHIFT;
360
361 data->oversampling_ratio = osr;
362 return 0;
363 case POWER_MODE_NORMAL:
364 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
365 if (ret) {
366 data->oversampling_ratio = -1;
367 return ret;
368 }
369
370 osr = (val & BMA400_NP_OSR_MASK) >> BMA400_NP_OSR_SHIFT;
371
372 data->oversampling_ratio = osr;
373 return 0;
374 case POWER_MODE_SLEEP:
375 data->oversampling_ratio = 0;
376 return 0;
377 default:
378 data->oversampling_ratio = -1;
379 return -EINVAL;
380 }
381 }
382
bma400_set_accel_oversampling_ratio(struct bma400_data * data,int val)383 static int bma400_set_accel_oversampling_ratio(struct bma400_data *data,
384 int val)
385 {
386 unsigned int acc_config;
387 int ret;
388
389 if (val & ~BMA400_TWO_BITS_MASK)
390 return -EINVAL;
391
392 /*
393 * The oversampling ratio is stored in a different register
394 * based on the power-mode.
395 */
396 switch (data->power_mode) {
397 case POWER_MODE_LOW:
398 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG,
399 &acc_config);
400 if (ret)
401 return ret;
402
403 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
404 (acc_config & ~BMA400_LP_OSR_MASK) |
405 (val << BMA400_LP_OSR_SHIFT));
406 if (ret) {
407 dev_err(data->dev, "Failed to write out OSR\n");
408 return ret;
409 }
410
411 data->oversampling_ratio = val;
412 return 0;
413 case POWER_MODE_NORMAL:
414 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG,
415 &acc_config);
416 if (ret)
417 return ret;
418
419 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
420 (acc_config & ~BMA400_NP_OSR_MASK) |
421 (val << BMA400_NP_OSR_SHIFT));
422 if (ret) {
423 dev_err(data->dev, "Failed to write out OSR\n");
424 return ret;
425 }
426
427 data->oversampling_ratio = val;
428 return 0;
429 default:
430 return -EINVAL;
431 }
432 return ret;
433 }
434
bma400_accel_scale_to_raw(struct bma400_data * data,unsigned int val)435 static int bma400_accel_scale_to_raw(struct bma400_data *data,
436 unsigned int val)
437 {
438 int raw;
439
440 if (val == 0)
441 return -EINVAL;
442
443 /* Note this works because BMA400_SCALE_MIN is odd */
444 raw = __ffs(val);
445
446 if (val >> raw != BMA400_SCALE_MIN)
447 return -EINVAL;
448
449 return raw;
450 }
451
bma400_get_accel_scale(struct bma400_data * data)452 static int bma400_get_accel_scale(struct bma400_data *data)
453 {
454 unsigned int raw_scale;
455 unsigned int val;
456 int ret;
457
458 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &val);
459 if (ret)
460 return ret;
461
462 raw_scale = (val & BMA400_ACC_SCALE_MASK) >> BMA400_SCALE_SHIFT;
463 if (raw_scale > BMA400_TWO_BITS_MASK)
464 return -EINVAL;
465
466 data->scale = BMA400_SCALE_MIN << raw_scale;
467
468 return 0;
469 }
470
bma400_set_accel_scale(struct bma400_data * data,unsigned int val)471 static int bma400_set_accel_scale(struct bma400_data *data, unsigned int val)
472 {
473 unsigned int acc_config;
474 int raw;
475 int ret;
476
477 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG1_REG, &acc_config);
478 if (ret)
479 return ret;
480
481 raw = bma400_accel_scale_to_raw(data, val);
482 if (raw < 0)
483 return raw;
484
485 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG1_REG,
486 (acc_config & ~BMA400_ACC_SCALE_MASK) |
487 (raw << BMA400_SCALE_SHIFT));
488 if (ret)
489 return ret;
490
491 data->scale = val;
492 return 0;
493 }
494
bma400_get_power_mode(struct bma400_data * data)495 static int bma400_get_power_mode(struct bma400_data *data)
496 {
497 unsigned int val;
498 int ret;
499
500 ret = regmap_read(data->regmap, BMA400_STATUS_REG, &val);
501 if (ret) {
502 dev_err(data->dev, "Failed to read status register\n");
503 return ret;
504 }
505
506 data->power_mode = (val >> 1) & BMA400_TWO_BITS_MASK;
507 return 0;
508 }
509
bma400_set_power_mode(struct bma400_data * data,enum bma400_power_mode mode)510 static int bma400_set_power_mode(struct bma400_data *data,
511 enum bma400_power_mode mode)
512 {
513 unsigned int val;
514 int ret;
515
516 ret = regmap_read(data->regmap, BMA400_ACC_CONFIG0_REG, &val);
517 if (ret)
518 return ret;
519
520 if (data->power_mode == mode)
521 return 0;
522
523 if (mode == POWER_MODE_INVALID)
524 return -EINVAL;
525
526 /* Preserve the low-power oversample ratio etc */
527 ret = regmap_write(data->regmap, BMA400_ACC_CONFIG0_REG,
528 mode | (val & ~BMA400_TWO_BITS_MASK));
529 if (ret) {
530 dev_err(data->dev, "Failed to write to power-mode\n");
531 return ret;
532 }
533
534 data->power_mode = mode;
535
536 /*
537 * Update our cached osr and odr based on the new
538 * power-mode.
539 */
540 bma400_get_accel_output_data_rate(data);
541 bma400_get_accel_oversampling_ratio(data);
542 return 0;
543 }
544
bma400_init_tables(void)545 static void bma400_init_tables(void)
546 {
547 int raw;
548 int i;
549
550 for (i = 0; i + 1 < ARRAY_SIZE(bma400_sample_freqs); i += 2) {
551 raw = (i / 2) + 5;
552 bma400_output_data_rate_from_raw(raw, &bma400_sample_freqs[i],
553 &bma400_sample_freqs[i + 1]);
554 }
555
556 for (i = 0; i + 1 < ARRAY_SIZE(bma400_scales); i += 2) {
557 raw = i / 2;
558 bma400_scales[i] = 0;
559 bma400_scales[i + 1] = BMA400_SCALE_MIN << raw;
560 }
561 }
562
bma400_init(struct bma400_data * data)563 static int bma400_init(struct bma400_data *data)
564 {
565 unsigned int val;
566 int ret;
567
568 /* Try to read chip_id register. It must return 0x90. */
569 ret = regmap_read(data->regmap, BMA400_CHIP_ID_REG, &val);
570 if (ret) {
571 dev_err(data->dev, "Failed to read chip id register\n");
572 goto out;
573 }
574
575 if (val != BMA400_ID_REG_VAL) {
576 dev_err(data->dev, "Chip ID mismatch\n");
577 ret = -ENODEV;
578 goto out;
579 }
580
581 data->regulators[BMA400_VDD_REGULATOR].supply = "vdd";
582 data->regulators[BMA400_VDDIO_REGULATOR].supply = "vddio";
583 ret = devm_regulator_bulk_get(data->dev,
584 ARRAY_SIZE(data->regulators),
585 data->regulators);
586 if (ret) {
587 if (ret != -EPROBE_DEFER)
588 dev_err(data->dev,
589 "Failed to get regulators: %d\n",
590 ret);
591
592 goto out;
593 }
594 ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
595 data->regulators);
596 if (ret) {
597 dev_err(data->dev, "Failed to enable regulators: %d\n",
598 ret);
599 goto out;
600 }
601
602 ret = bma400_get_power_mode(data);
603 if (ret) {
604 dev_err(data->dev, "Failed to get the initial power-mode\n");
605 goto err_reg_disable;
606 }
607
608 if (data->power_mode != POWER_MODE_NORMAL) {
609 ret = bma400_set_power_mode(data, POWER_MODE_NORMAL);
610 if (ret) {
611 dev_err(data->dev, "Failed to wake up the device\n");
612 goto err_reg_disable;
613 }
614 /*
615 * TODO: The datasheet waits 1500us here in the example, but
616 * lists 2/ODR as the wakeup time.
617 */
618 usleep_range(1500, 2000);
619 }
620
621 bma400_init_tables();
622
623 ret = bma400_get_accel_output_data_rate(data);
624 if (ret)
625 goto err_reg_disable;
626
627 ret = bma400_get_accel_oversampling_ratio(data);
628 if (ret)
629 goto err_reg_disable;
630
631 ret = bma400_get_accel_scale(data);
632 if (ret)
633 goto err_reg_disable;
634
635 /*
636 * Once the interrupt engine is supported we might use the
637 * data_src_reg, but for now ensure this is set to the
638 * variable ODR filter selectable by the sample frequency
639 * channel.
640 */
641 return regmap_write(data->regmap, BMA400_ACC_CONFIG2_REG, 0x00);
642
643 err_reg_disable:
644 regulator_bulk_disable(ARRAY_SIZE(data->regulators),
645 data->regulators);
646 out:
647 return ret;
648 }
649
bma400_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)650 static int bma400_read_raw(struct iio_dev *indio_dev,
651 struct iio_chan_spec const *chan, int *val,
652 int *val2, long mask)
653 {
654 struct bma400_data *data = iio_priv(indio_dev);
655 int ret;
656
657 switch (mask) {
658 case IIO_CHAN_INFO_PROCESSED:
659 mutex_lock(&data->mutex);
660 ret = bma400_get_temp_reg(data, val, val2);
661 mutex_unlock(&data->mutex);
662 return ret;
663 case IIO_CHAN_INFO_RAW:
664 mutex_lock(&data->mutex);
665 ret = bma400_get_accel_reg(data, chan, val);
666 mutex_unlock(&data->mutex);
667 return ret;
668 case IIO_CHAN_INFO_SAMP_FREQ:
669 switch (chan->type) {
670 case IIO_ACCEL:
671 if (data->sample_freq.hz < 0)
672 return -EINVAL;
673
674 *val = data->sample_freq.hz;
675 *val2 = data->sample_freq.uhz;
676 return IIO_VAL_INT_PLUS_MICRO;
677 case IIO_TEMP:
678 /*
679 * Runs at a fixed sampling frequency. See Section 4.4
680 * of the datasheet.
681 */
682 *val = 6;
683 *val2 = 250000;
684 return IIO_VAL_INT_PLUS_MICRO;
685 default:
686 return -EINVAL;
687 }
688 case IIO_CHAN_INFO_SCALE:
689 *val = 0;
690 *val2 = data->scale;
691 return IIO_VAL_INT_PLUS_MICRO;
692 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
693 /*
694 * TODO: We could avoid this logic and returning -EINVAL here if
695 * we set both the low-power and normal mode OSR registers when
696 * we configure the device.
697 */
698 if (data->oversampling_ratio < 0)
699 return -EINVAL;
700
701 *val = data->oversampling_ratio;
702 return IIO_VAL_INT;
703 default:
704 return -EINVAL;
705 }
706 }
707
bma400_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)708 static int bma400_read_avail(struct iio_dev *indio_dev,
709 struct iio_chan_spec const *chan,
710 const int **vals, int *type, int *length,
711 long mask)
712 {
713 switch (mask) {
714 case IIO_CHAN_INFO_SCALE:
715 *type = IIO_VAL_INT_PLUS_MICRO;
716 *vals = bma400_scales;
717 *length = ARRAY_SIZE(bma400_scales);
718 return IIO_AVAIL_LIST;
719 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
720 *type = IIO_VAL_INT;
721 *vals = bma400_osr_range;
722 *length = ARRAY_SIZE(bma400_osr_range);
723 return IIO_AVAIL_RANGE;
724 case IIO_CHAN_INFO_SAMP_FREQ:
725 *type = IIO_VAL_INT_PLUS_MICRO;
726 *vals = bma400_sample_freqs;
727 *length = ARRAY_SIZE(bma400_sample_freqs);
728 return IIO_AVAIL_LIST;
729 default:
730 return -EINVAL;
731 }
732 }
733
bma400_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)734 static int bma400_write_raw(struct iio_dev *indio_dev,
735 struct iio_chan_spec const *chan, int val, int val2,
736 long mask)
737 {
738 struct bma400_data *data = iio_priv(indio_dev);
739 int ret;
740
741 switch (mask) {
742 case IIO_CHAN_INFO_SAMP_FREQ:
743 /*
744 * The sample frequency is readonly for the temperature
745 * register and a fixed value in low-power mode.
746 */
747 if (chan->type != IIO_ACCEL)
748 return -EINVAL;
749
750 mutex_lock(&data->mutex);
751 ret = bma400_set_accel_output_data_rate(data, val, val2);
752 mutex_unlock(&data->mutex);
753 return ret;
754 case IIO_CHAN_INFO_SCALE:
755 if (val != 0 ||
756 val2 < BMA400_SCALE_MIN || val2 > BMA400_SCALE_MAX)
757 return -EINVAL;
758
759 mutex_lock(&data->mutex);
760 ret = bma400_set_accel_scale(data, val2);
761 mutex_unlock(&data->mutex);
762 return ret;
763 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
764 mutex_lock(&data->mutex);
765 ret = bma400_set_accel_oversampling_ratio(data, val);
766 mutex_unlock(&data->mutex);
767 return ret;
768 default:
769 return -EINVAL;
770 }
771 }
772
bma400_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long mask)773 static int bma400_write_raw_get_fmt(struct iio_dev *indio_dev,
774 struct iio_chan_spec const *chan,
775 long mask)
776 {
777 switch (mask) {
778 case IIO_CHAN_INFO_SAMP_FREQ:
779 return IIO_VAL_INT_PLUS_MICRO;
780 case IIO_CHAN_INFO_SCALE:
781 return IIO_VAL_INT_PLUS_MICRO;
782 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
783 return IIO_VAL_INT;
784 default:
785 return -EINVAL;
786 }
787 }
788
789 static const struct iio_info bma400_info = {
790 .read_raw = bma400_read_raw,
791 .read_avail = bma400_read_avail,
792 .write_raw = bma400_write_raw,
793 .write_raw_get_fmt = bma400_write_raw_get_fmt,
794 };
795
bma400_probe(struct device * dev,struct regmap * regmap,const char * name)796 int bma400_probe(struct device *dev, struct regmap *regmap, const char *name)
797 {
798 struct iio_dev *indio_dev;
799 struct bma400_data *data;
800 int ret;
801
802 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
803 if (!indio_dev)
804 return -ENOMEM;
805
806 data = iio_priv(indio_dev);
807 data->regmap = regmap;
808 data->dev = dev;
809
810 ret = bma400_init(data);
811 if (ret)
812 return ret;
813
814 ret = iio_read_mount_matrix(dev, "mount-matrix", &data->orientation);
815 if (ret)
816 return ret;
817
818 mutex_init(&data->mutex);
819 indio_dev->name = name;
820 indio_dev->info = &bma400_info;
821 indio_dev->channels = bma400_channels;
822 indio_dev->num_channels = ARRAY_SIZE(bma400_channels);
823 indio_dev->modes = INDIO_DIRECT_MODE;
824
825 dev_set_drvdata(dev, indio_dev);
826
827 return iio_device_register(indio_dev);
828 }
829 EXPORT_SYMBOL(bma400_probe);
830
bma400_remove(struct device * dev)831 int bma400_remove(struct device *dev)
832 {
833 struct iio_dev *indio_dev = dev_get_drvdata(dev);
834 struct bma400_data *data = iio_priv(indio_dev);
835 int ret;
836
837 mutex_lock(&data->mutex);
838 ret = bma400_set_power_mode(data, POWER_MODE_SLEEP);
839 mutex_unlock(&data->mutex);
840
841 regulator_bulk_disable(ARRAY_SIZE(data->regulators),
842 data->regulators);
843
844 iio_device_unregister(indio_dev);
845
846 return ret;
847 }
848 EXPORT_SYMBOL(bma400_remove);
849
850 MODULE_AUTHOR("Dan Robertson <dan@dlrobertson.com>");
851 MODULE_DESCRIPTION("Bosch BMA400 triaxial acceleration sensor core");
852 MODULE_LICENSE("GPL");
853