• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 static struct workqueue_struct *btree_io_wq;
103 
104 #define insert_lock(s, b)	((b)->level <= (s)->lock)
105 
106 
write_block(struct btree * b)107 static inline struct bset *write_block(struct btree *b)
108 {
109 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111 
bch_btree_init_next(struct btree * b)112 static void bch_btree_init_next(struct btree *b)
113 {
114 	/* If not a leaf node, always sort */
115 	if (b->level && b->keys.nsets)
116 		bch_btree_sort(&b->keys, &b->c->sort);
117 	else
118 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
119 
120 	if (b->written < btree_blocks(b))
121 		bch_bset_init_next(&b->keys, write_block(b),
122 				   bset_magic(&b->c->cache->sb));
123 
124 }
125 
126 /* Btree key manipulation */
127 
bkey_put(struct cache_set * c,struct bkey * k)128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 	unsigned int i;
131 
132 	for (i = 0; i < KEY_PTRS(k); i++)
133 		if (ptr_available(c, k, i))
134 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136 
137 /* Btree IO */
138 
btree_csum_set(struct btree * b,struct bset * i)139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 	uint64_t crc = b->key.ptr[0];
142 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
143 
144 	crc = bch_crc64_update(crc, data, end - data);
145 	return crc ^ 0xffffffffffffffffULL;
146 }
147 
bch_btree_node_read_done(struct btree * b)148 void bch_btree_node_read_done(struct btree *b)
149 {
150 	const char *err = "bad btree header";
151 	struct bset *i = btree_bset_first(b);
152 	struct btree_iter *iter;
153 
154 	/*
155 	 * c->fill_iter can allocate an iterator with more memory space
156 	 * than static MAX_BSETS.
157 	 * See the comment arount cache_set->fill_iter.
158 	 */
159 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 	iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 	iter->used = 0;
162 
163 #ifdef CONFIG_BCACHE_DEBUG
164 	iter->b = &b->keys;
165 #endif
166 
167 	if (!i->seq)
168 		goto err;
169 
170 	for (;
171 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 	     i = write_block(b)) {
173 		err = "unsupported bset version";
174 		if (i->version > BCACHE_BSET_VERSION)
175 			goto err;
176 
177 		err = "bad btree header";
178 		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 		    btree_blocks(b))
180 			goto err;
181 
182 		err = "bad magic";
183 		if (i->magic != bset_magic(&b->c->cache->sb))
184 			goto err;
185 
186 		err = "bad checksum";
187 		switch (i->version) {
188 		case 0:
189 			if (i->csum != csum_set(i))
190 				goto err;
191 			break;
192 		case BCACHE_BSET_VERSION:
193 			if (i->csum != btree_csum_set(b, i))
194 				goto err;
195 			break;
196 		}
197 
198 		err = "empty set";
199 		if (i != b->keys.set[0].data && !i->keys)
200 			goto err;
201 
202 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203 
204 		b->written += set_blocks(i, block_bytes(b->c->cache));
205 	}
206 
207 	err = "corrupted btree";
208 	for (i = write_block(b);
209 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 	     i = ((void *) i) + block_bytes(b->c->cache))
211 		if (i->seq == b->keys.set[0].data->seq)
212 			goto err;
213 
214 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215 
216 	i = b->keys.set[0].data;
217 	err = "short btree key";
218 	if (b->keys.set[0].size &&
219 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 		goto err;
221 
222 	if (b->written < btree_blocks(b))
223 		bch_bset_init_next(&b->keys, write_block(b),
224 				   bset_magic(&b->c->cache->sb));
225 out:
226 	mempool_free(iter, &b->c->fill_iter);
227 	return;
228 err:
229 	set_btree_node_io_error(b);
230 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 			    bset_block_offset(b, i), i->keys);
233 	goto out;
234 }
235 
btree_node_read_endio(struct bio * bio)236 static void btree_node_read_endio(struct bio *bio)
237 {
238 	struct closure *cl = bio->bi_private;
239 
240 	closure_put(cl);
241 }
242 
bch_btree_node_read(struct btree * b)243 static void bch_btree_node_read(struct btree *b)
244 {
245 	uint64_t start_time = local_clock();
246 	struct closure cl;
247 	struct bio *bio;
248 
249 	trace_bcache_btree_read(b);
250 
251 	closure_init_stack(&cl);
252 
253 	bio = bch_bbio_alloc(b->c);
254 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 	bio->bi_end_io	= btree_node_read_endio;
256 	bio->bi_private	= &cl;
257 	bio->bi_opf = REQ_OP_READ | REQ_META;
258 
259 	bch_bio_map(bio, b->keys.set[0].data);
260 
261 	bch_submit_bbio(bio, b->c, &b->key, 0);
262 	closure_sync(&cl);
263 
264 	if (bio->bi_status)
265 		set_btree_node_io_error(b);
266 
267 	bch_bbio_free(bio, b->c);
268 
269 	if (btree_node_io_error(b))
270 		goto err;
271 
272 	bch_btree_node_read_done(b);
273 	bch_time_stats_update(&b->c->btree_read_time, start_time);
274 
275 	return;
276 err:
277 	bch_cache_set_error(b->c, "io error reading bucket %zu",
278 			    PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280 
btree_complete_write(struct btree * b,struct btree_write * w)281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 	if (w->prio_blocked &&
284 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 		wake_up_allocators(b->c);
286 
287 	if (w->journal) {
288 		atomic_dec_bug(w->journal);
289 		__closure_wake_up(&b->c->journal.wait);
290 	}
291 
292 	w->prio_blocked	= 0;
293 	w->journal	= NULL;
294 }
295 
btree_node_write_unlock(struct closure * cl)296 static void btree_node_write_unlock(struct closure *cl)
297 {
298 	struct btree *b = container_of(cl, struct btree, io);
299 
300 	up(&b->io_mutex);
301 }
302 
__btree_node_write_done(struct closure * cl)303 static void __btree_node_write_done(struct closure *cl)
304 {
305 	struct btree *b = container_of(cl, struct btree, io);
306 	struct btree_write *w = btree_prev_write(b);
307 
308 	bch_bbio_free(b->bio, b->c);
309 	b->bio = NULL;
310 	btree_complete_write(b, w);
311 
312 	if (btree_node_dirty(b))
313 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314 
315 	closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317 
btree_node_write_done(struct closure * cl)318 static void btree_node_write_done(struct closure *cl)
319 {
320 	struct btree *b = container_of(cl, struct btree, io);
321 
322 	bio_free_pages(b->bio);
323 	__btree_node_write_done(cl);
324 }
325 
btree_node_write_endio(struct bio * bio)326 static void btree_node_write_endio(struct bio *bio)
327 {
328 	struct closure *cl = bio->bi_private;
329 	struct btree *b = container_of(cl, struct btree, io);
330 
331 	if (bio->bi_status)
332 		set_btree_node_io_error(b);
333 
334 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 	closure_put(cl);
336 }
337 
do_btree_node_write(struct btree * b)338 static void do_btree_node_write(struct btree *b)
339 {
340 	struct closure *cl = &b->io;
341 	struct bset *i = btree_bset_last(b);
342 	BKEY_PADDED(key) k;
343 
344 	i->version	= BCACHE_BSET_VERSION;
345 	i->csum		= btree_csum_set(b, i);
346 
347 	BUG_ON(b->bio);
348 	b->bio = bch_bbio_alloc(b->c);
349 
350 	b->bio->bi_end_io	= btree_node_write_endio;
351 	b->bio->bi_private	= cl;
352 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
353 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
354 	bch_bio_map(b->bio, i);
355 
356 	/*
357 	 * If we're appending to a leaf node, we don't technically need FUA -
358 	 * this write just needs to be persisted before the next journal write,
359 	 * which will be marked FLUSH|FUA.
360 	 *
361 	 * Similarly if we're writing a new btree root - the pointer is going to
362 	 * be in the next journal entry.
363 	 *
364 	 * But if we're writing a new btree node (that isn't a root) or
365 	 * appending to a non leaf btree node, we need either FUA or a flush
366 	 * when we write the parent with the new pointer. FUA is cheaper than a
367 	 * flush, and writes appending to leaf nodes aren't blocking anything so
368 	 * just make all btree node writes FUA to keep things sane.
369 	 */
370 
371 	bkey_copy(&k.key, &b->key);
372 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 		       bset_sector_offset(&b->keys, i));
374 
375 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 		struct bio_vec *bv;
377 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 		struct bvec_iter_all iter_all;
379 
380 		bio_for_each_segment_all(bv, b->bio, iter_all) {
381 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 			addr += PAGE_SIZE;
383 		}
384 
385 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
386 
387 		continue_at(cl, btree_node_write_done, NULL);
388 	} else {
389 		/*
390 		 * No problem for multipage bvec since the bio is
391 		 * just allocated
392 		 */
393 		b->bio->bi_vcnt = 0;
394 		bch_bio_map(b->bio, i);
395 
396 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
397 
398 		closure_sync(cl);
399 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 	}
401 }
402 
__bch_btree_node_write(struct btree * b,struct closure * parent)403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 	struct bset *i = btree_bset_last(b);
406 
407 	lockdep_assert_held(&b->write_lock);
408 
409 	trace_bcache_btree_write(b);
410 
411 	BUG_ON(current->bio_list);
412 	BUG_ON(b->written >= btree_blocks(b));
413 	BUG_ON(b->written && !i->keys);
414 	BUG_ON(btree_bset_first(b)->seq != i->seq);
415 	bch_check_keys(&b->keys, "writing");
416 
417 	cancel_delayed_work(&b->work);
418 
419 	/* If caller isn't waiting for write, parent refcount is cache set */
420 	down(&b->io_mutex);
421 	closure_init(&b->io, parent ?: &b->c->cl);
422 
423 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
424 	change_bit(BTREE_NODE_write_idx, &b->flags);
425 
426 	do_btree_node_write(b);
427 
428 	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
430 
431 	b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433 
bch_btree_node_write(struct btree * b,struct closure * parent)434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 	unsigned int nsets = b->keys.nsets;
437 
438 	lockdep_assert_held(&b->lock);
439 
440 	__bch_btree_node_write(b, parent);
441 
442 	/*
443 	 * do verify if there was more than one set initially (i.e. we did a
444 	 * sort) and we sorted down to a single set:
445 	 */
446 	if (nsets && !b->keys.nsets)
447 		bch_btree_verify(b);
448 
449 	bch_btree_init_next(b);
450 }
451 
bch_btree_node_write_sync(struct btree * b)452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 	struct closure cl;
455 
456 	closure_init_stack(&cl);
457 
458 	mutex_lock(&b->write_lock);
459 	bch_btree_node_write(b, &cl);
460 	mutex_unlock(&b->write_lock);
461 
462 	closure_sync(&cl);
463 }
464 
btree_node_write_work(struct work_struct * w)465 static void btree_node_write_work(struct work_struct *w)
466 {
467 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468 
469 	mutex_lock(&b->write_lock);
470 	if (btree_node_dirty(b))
471 		__bch_btree_node_write(b, NULL);
472 	mutex_unlock(&b->write_lock);
473 }
474 
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 	struct bset *i = btree_bset_last(b);
478 	struct btree_write *w = btree_current_write(b);
479 
480 	lockdep_assert_held(&b->write_lock);
481 
482 	BUG_ON(!b->written);
483 	BUG_ON(!i->keys);
484 
485 	if (!btree_node_dirty(b))
486 		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487 
488 	set_btree_node_dirty(b);
489 
490 	/*
491 	 * w->journal is always the oldest journal pin of all bkeys
492 	 * in the leaf node, to make sure the oldest jset seq won't
493 	 * be increased before this btree node is flushed.
494 	 */
495 	if (journal_ref) {
496 		if (w->journal &&
497 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 			atomic_dec_bug(w->journal);
499 			w->journal = NULL;
500 		}
501 
502 		if (!w->journal) {
503 			w->journal = journal_ref;
504 			atomic_inc(w->journal);
505 		}
506 	}
507 
508 	/* Force write if set is too big */
509 	if (set_bytes(i) > PAGE_SIZE - 48 &&
510 	    !current->bio_list)
511 		bch_btree_node_write(b, NULL);
512 }
513 
514 /*
515  * Btree in memory cache - allocation/freeing
516  * mca -> memory cache
517  */
518 
519 #define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 			  ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c)						\
522 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523 
mca_data_free(struct btree * b)524 static void mca_data_free(struct btree *b)
525 {
526 	BUG_ON(b->io_mutex.count != 1);
527 
528 	bch_btree_keys_free(&b->keys);
529 
530 	b->c->btree_cache_used--;
531 	list_move(&b->list, &b->c->btree_cache_freed);
532 }
533 
mca_bucket_free(struct btree * b)534 static void mca_bucket_free(struct btree *b)
535 {
536 	BUG_ON(btree_node_dirty(b));
537 
538 	b->key.ptr[0] = 0;
539 	hlist_del_init_rcu(&b->hash);
540 	list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542 
btree_order(struct bkey * k)543 static unsigned int btree_order(struct bkey *k)
544 {
545 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547 
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 	if (!bch_btree_keys_alloc(&b->keys,
551 				  max_t(unsigned int,
552 					ilog2(b->c->btree_pages),
553 					btree_order(k)),
554 				  gfp)) {
555 		b->c->btree_cache_used++;
556 		list_move(&b->list, &b->c->btree_cache);
557 	} else {
558 		list_move(&b->list, &b->c->btree_cache_freed);
559 	}
560 }
561 
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)562 static struct btree *mca_bucket_alloc(struct cache_set *c,
563 				      struct bkey *k, gfp_t gfp)
564 {
565 	/*
566 	 * kzalloc() is necessary here for initialization,
567 	 * see code comments in bch_btree_keys_init().
568 	 */
569 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
570 
571 	if (!b)
572 		return NULL;
573 
574 	init_rwsem(&b->lock);
575 	lockdep_set_novalidate_class(&b->lock);
576 	mutex_init(&b->write_lock);
577 	lockdep_set_novalidate_class(&b->write_lock);
578 	INIT_LIST_HEAD(&b->list);
579 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
580 	b->c = c;
581 	sema_init(&b->io_mutex, 1);
582 
583 	mca_data_alloc(b, k, gfp);
584 	return b;
585 }
586 
mca_reap(struct btree * b,unsigned int min_order,bool flush)587 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
588 {
589 	struct closure cl;
590 
591 	closure_init_stack(&cl);
592 	lockdep_assert_held(&b->c->bucket_lock);
593 
594 	if (!down_write_trylock(&b->lock))
595 		return -ENOMEM;
596 
597 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
598 
599 	if (b->keys.page_order < min_order)
600 		goto out_unlock;
601 
602 	if (!flush) {
603 		if (btree_node_dirty(b))
604 			goto out_unlock;
605 
606 		if (down_trylock(&b->io_mutex))
607 			goto out_unlock;
608 		up(&b->io_mutex);
609 	}
610 
611 retry:
612 	/*
613 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
614 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
615 	 * b->write_lock before checking BTREE_NODE_dirty bit.
616 	 */
617 	mutex_lock(&b->write_lock);
618 	/*
619 	 * If this btree node is selected in btree_flush_write() by journal
620 	 * code, delay and retry until the node is flushed by journal code
621 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
622 	 */
623 	if (btree_node_journal_flush(b)) {
624 		pr_debug("bnode %p is flushing by journal, retry\n", b);
625 		mutex_unlock(&b->write_lock);
626 		udelay(1);
627 		goto retry;
628 	}
629 
630 	if (btree_node_dirty(b))
631 		__bch_btree_node_write(b, &cl);
632 	mutex_unlock(&b->write_lock);
633 
634 	closure_sync(&cl);
635 
636 	/* wait for any in flight btree write */
637 	down(&b->io_mutex);
638 	up(&b->io_mutex);
639 
640 	return 0;
641 out_unlock:
642 	rw_unlock(true, b);
643 	return -ENOMEM;
644 }
645 
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)646 static unsigned long bch_mca_scan(struct shrinker *shrink,
647 				  struct shrink_control *sc)
648 {
649 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650 	struct btree *b, *t;
651 	unsigned long i, nr = sc->nr_to_scan;
652 	unsigned long freed = 0;
653 	unsigned int btree_cache_used;
654 
655 	if (c->shrinker_disabled)
656 		return SHRINK_STOP;
657 
658 	if (c->btree_cache_alloc_lock)
659 		return SHRINK_STOP;
660 
661 	/* Return -1 if we can't do anything right now */
662 	if (sc->gfp_mask & __GFP_IO)
663 		mutex_lock(&c->bucket_lock);
664 	else if (!mutex_trylock(&c->bucket_lock))
665 		return -1;
666 
667 	/*
668 	 * It's _really_ critical that we don't free too many btree nodes - we
669 	 * have to always leave ourselves a reserve. The reserve is how we
670 	 * guarantee that allocating memory for a new btree node can always
671 	 * succeed, so that inserting keys into the btree can always succeed and
672 	 * IO can always make forward progress:
673 	 */
674 	nr /= c->btree_pages;
675 	if (nr == 0)
676 		nr = 1;
677 	nr = min_t(unsigned long, nr, mca_can_free(c));
678 
679 	i = 0;
680 	btree_cache_used = c->btree_cache_used;
681 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
682 		if (nr <= 0)
683 			goto out;
684 
685 		if (!mca_reap(b, 0, false)) {
686 			mca_data_free(b);
687 			rw_unlock(true, b);
688 			freed++;
689 		}
690 		nr--;
691 		i++;
692 	}
693 
694 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
695 		if (nr <= 0 || i >= btree_cache_used)
696 			goto out;
697 
698 		if (!mca_reap(b, 0, false)) {
699 			mca_bucket_free(b);
700 			mca_data_free(b);
701 			rw_unlock(true, b);
702 			freed++;
703 		}
704 
705 		nr--;
706 		i++;
707 	}
708 out:
709 	mutex_unlock(&c->bucket_lock);
710 	return freed * c->btree_pages;
711 }
712 
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)713 static unsigned long bch_mca_count(struct shrinker *shrink,
714 				   struct shrink_control *sc)
715 {
716 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
717 
718 	if (c->shrinker_disabled)
719 		return 0;
720 
721 	if (c->btree_cache_alloc_lock)
722 		return 0;
723 
724 	return mca_can_free(c) * c->btree_pages;
725 }
726 
bch_btree_cache_free(struct cache_set * c)727 void bch_btree_cache_free(struct cache_set *c)
728 {
729 	struct btree *b;
730 	struct closure cl;
731 
732 	closure_init_stack(&cl);
733 
734 	if (c->shrink.list.next)
735 		unregister_shrinker(&c->shrink);
736 
737 	mutex_lock(&c->bucket_lock);
738 
739 #ifdef CONFIG_BCACHE_DEBUG
740 	if (c->verify_data)
741 		list_move(&c->verify_data->list, &c->btree_cache);
742 
743 	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
744 #endif
745 
746 	list_splice(&c->btree_cache_freeable,
747 		    &c->btree_cache);
748 
749 	while (!list_empty(&c->btree_cache)) {
750 		b = list_first_entry(&c->btree_cache, struct btree, list);
751 
752 		/*
753 		 * This function is called by cache_set_free(), no I/O
754 		 * request on cache now, it is unnecessary to acquire
755 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
756 		 */
757 		if (btree_node_dirty(b)) {
758 			btree_complete_write(b, btree_current_write(b));
759 			clear_bit(BTREE_NODE_dirty, &b->flags);
760 		}
761 		mca_data_free(b);
762 	}
763 
764 	while (!list_empty(&c->btree_cache_freed)) {
765 		b = list_first_entry(&c->btree_cache_freed,
766 				     struct btree, list);
767 		list_del(&b->list);
768 		cancel_delayed_work_sync(&b->work);
769 		kfree(b);
770 	}
771 
772 	mutex_unlock(&c->bucket_lock);
773 }
774 
bch_btree_cache_alloc(struct cache_set * c)775 int bch_btree_cache_alloc(struct cache_set *c)
776 {
777 	unsigned int i;
778 
779 	for (i = 0; i < mca_reserve(c); i++)
780 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
781 			return -ENOMEM;
782 
783 	list_splice_init(&c->btree_cache,
784 			 &c->btree_cache_freeable);
785 
786 #ifdef CONFIG_BCACHE_DEBUG
787 	mutex_init(&c->verify_lock);
788 
789 	c->verify_ondisk = (void *)
790 		__get_free_pages(GFP_KERNEL|__GFP_COMP,
791 				 ilog2(meta_bucket_pages(&c->cache->sb)));
792 	if (!c->verify_ondisk) {
793 		/*
794 		 * Don't worry about the mca_rereserve buckets
795 		 * allocated in previous for-loop, they will be
796 		 * handled properly in bch_cache_set_unregister().
797 		 */
798 		return -ENOMEM;
799 	}
800 
801 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802 
803 	if (c->verify_data &&
804 	    c->verify_data->keys.set->data)
805 		list_del_init(&c->verify_data->list);
806 	else
807 		c->verify_data = NULL;
808 #endif
809 
810 	c->shrink.count_objects = bch_mca_count;
811 	c->shrink.scan_objects = bch_mca_scan;
812 	c->shrink.seeks = 4;
813 	c->shrink.batch = c->btree_pages * 2;
814 
815 	if (register_shrinker(&c->shrink))
816 		pr_warn("bcache: %s: could not register shrinker\n",
817 				__func__);
818 
819 	return 0;
820 }
821 
822 /* Btree in memory cache - hash table */
823 
mca_hash(struct cache_set * c,struct bkey * k)824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825 {
826 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827 }
828 
mca_find(struct cache_set * c,struct bkey * k)829 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830 {
831 	struct btree *b;
832 
833 	rcu_read_lock();
834 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836 			goto out;
837 	b = NULL;
838 out:
839 	rcu_read_unlock();
840 	return b;
841 }
842 
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844 {
845 	spin_lock(&c->btree_cannibalize_lock);
846 	if (likely(c->btree_cache_alloc_lock == NULL)) {
847 		c->btree_cache_alloc_lock = current;
848 	} else if (c->btree_cache_alloc_lock != current) {
849 		if (op)
850 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
851 					TASK_UNINTERRUPTIBLE);
852 		spin_unlock(&c->btree_cannibalize_lock);
853 		return -EINTR;
854 	}
855 	spin_unlock(&c->btree_cannibalize_lock);
856 
857 	return 0;
858 }
859 
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)860 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
861 				     struct bkey *k)
862 {
863 	struct btree *b;
864 
865 	trace_bcache_btree_cache_cannibalize(c);
866 
867 	if (mca_cannibalize_lock(c, op))
868 		return ERR_PTR(-EINTR);
869 
870 	list_for_each_entry_reverse(b, &c->btree_cache, list)
871 		if (!mca_reap(b, btree_order(k), false))
872 			return b;
873 
874 	list_for_each_entry_reverse(b, &c->btree_cache, list)
875 		if (!mca_reap(b, btree_order(k), true))
876 			return b;
877 
878 	WARN(1, "btree cache cannibalize failed\n");
879 	return ERR_PTR(-ENOMEM);
880 }
881 
882 /*
883  * We can only have one thread cannibalizing other cached btree nodes at a time,
884  * or we'll deadlock. We use an open coded mutex to ensure that, which a
885  * cannibalize_bucket() will take. This means every time we unlock the root of
886  * the btree, we need to release this lock if we have it held.
887  */
bch_cannibalize_unlock(struct cache_set * c)888 void bch_cannibalize_unlock(struct cache_set *c)
889 {
890 	spin_lock(&c->btree_cannibalize_lock);
891 	if (c->btree_cache_alloc_lock == current) {
892 		c->btree_cache_alloc_lock = NULL;
893 		wake_up(&c->btree_cache_wait);
894 	}
895 	spin_unlock(&c->btree_cannibalize_lock);
896 }
897 
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)898 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
899 			       struct bkey *k, int level)
900 {
901 	struct btree *b;
902 
903 	BUG_ON(current->bio_list);
904 
905 	lockdep_assert_held(&c->bucket_lock);
906 
907 	if (mca_find(c, k))
908 		return NULL;
909 
910 	/* btree_free() doesn't free memory; it sticks the node on the end of
911 	 * the list. Check if there's any freed nodes there:
912 	 */
913 	list_for_each_entry(b, &c->btree_cache_freeable, list)
914 		if (!mca_reap(b, btree_order(k), false))
915 			goto out;
916 
917 	/* We never free struct btree itself, just the memory that holds the on
918 	 * disk node. Check the freed list before allocating a new one:
919 	 */
920 	list_for_each_entry(b, &c->btree_cache_freed, list)
921 		if (!mca_reap(b, 0, false)) {
922 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
923 			if (!b->keys.set[0].data)
924 				goto err;
925 			else
926 				goto out;
927 		}
928 
929 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
930 	if (!b)
931 		goto err;
932 
933 	BUG_ON(!down_write_trylock(&b->lock));
934 	if (!b->keys.set->data)
935 		goto err;
936 out:
937 	BUG_ON(b->io_mutex.count != 1);
938 
939 	bkey_copy(&b->key, k);
940 	list_move(&b->list, &c->btree_cache);
941 	hlist_del_init_rcu(&b->hash);
942 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
943 
944 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
945 	b->parent	= (void *) ~0UL;
946 	b->flags	= 0;
947 	b->written	= 0;
948 	b->level	= level;
949 
950 	if (!b->level)
951 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
952 				    &b->c->expensive_debug_checks);
953 	else
954 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
955 				    &b->c->expensive_debug_checks);
956 
957 	return b;
958 err:
959 	if (b)
960 		rw_unlock(true, b);
961 
962 	b = mca_cannibalize(c, op, k);
963 	if (!IS_ERR(b))
964 		goto out;
965 
966 	return b;
967 }
968 
969 /*
970  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
971  * in from disk if necessary.
972  *
973  * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
974  *
975  * The btree node will have either a read or a write lock held, depending on
976  * level and op->lock.
977  */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)978 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
979 				 struct bkey *k, int level, bool write,
980 				 struct btree *parent)
981 {
982 	int i = 0;
983 	struct btree *b;
984 
985 	BUG_ON(level < 0);
986 retry:
987 	b = mca_find(c, k);
988 
989 	if (!b) {
990 		if (current->bio_list)
991 			return ERR_PTR(-EAGAIN);
992 
993 		mutex_lock(&c->bucket_lock);
994 		b = mca_alloc(c, op, k, level);
995 		mutex_unlock(&c->bucket_lock);
996 
997 		if (!b)
998 			goto retry;
999 		if (IS_ERR(b))
1000 			return b;
1001 
1002 		bch_btree_node_read(b);
1003 
1004 		if (!write)
1005 			downgrade_write(&b->lock);
1006 	} else {
1007 		rw_lock(write, b, level);
1008 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1009 			rw_unlock(write, b);
1010 			goto retry;
1011 		}
1012 		BUG_ON(b->level != level);
1013 	}
1014 
1015 	if (btree_node_io_error(b)) {
1016 		rw_unlock(write, b);
1017 		return ERR_PTR(-EIO);
1018 	}
1019 
1020 	BUG_ON(!b->written);
1021 
1022 	b->parent = parent;
1023 
1024 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1025 		prefetch(b->keys.set[i].tree);
1026 		prefetch(b->keys.set[i].data);
1027 	}
1028 
1029 	for (; i <= b->keys.nsets; i++)
1030 		prefetch(b->keys.set[i].data);
1031 
1032 	return b;
1033 }
1034 
btree_node_prefetch(struct btree * parent,struct bkey * k)1035 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036 {
1037 	struct btree *b;
1038 
1039 	mutex_lock(&parent->c->bucket_lock);
1040 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041 	mutex_unlock(&parent->c->bucket_lock);
1042 
1043 	if (!IS_ERR_OR_NULL(b)) {
1044 		b->parent = parent;
1045 		bch_btree_node_read(b);
1046 		rw_unlock(true, b);
1047 	}
1048 }
1049 
1050 /* Btree alloc */
1051 
btree_node_free(struct btree * b)1052 static void btree_node_free(struct btree *b)
1053 {
1054 	trace_bcache_btree_node_free(b);
1055 
1056 	BUG_ON(b == b->c->root);
1057 
1058 retry:
1059 	mutex_lock(&b->write_lock);
1060 	/*
1061 	 * If the btree node is selected and flushing in btree_flush_write(),
1062 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1063 	 * then it is safe to free the btree node here. Otherwise this btree
1064 	 * node will be in race condition.
1065 	 */
1066 	if (btree_node_journal_flush(b)) {
1067 		mutex_unlock(&b->write_lock);
1068 		pr_debug("bnode %p journal_flush set, retry\n", b);
1069 		udelay(1);
1070 		goto retry;
1071 	}
1072 
1073 	if (btree_node_dirty(b)) {
1074 		btree_complete_write(b, btree_current_write(b));
1075 		clear_bit(BTREE_NODE_dirty, &b->flags);
1076 	}
1077 
1078 	mutex_unlock(&b->write_lock);
1079 
1080 	cancel_delayed_work(&b->work);
1081 
1082 	mutex_lock(&b->c->bucket_lock);
1083 	bch_bucket_free(b->c, &b->key);
1084 	mca_bucket_free(b);
1085 	mutex_unlock(&b->c->bucket_lock);
1086 }
1087 
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1088 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1089 				     int level, bool wait,
1090 				     struct btree *parent)
1091 {
1092 	BKEY_PADDED(key) k;
1093 	struct btree *b;
1094 
1095 	mutex_lock(&c->bucket_lock);
1096 retry:
1097 	/* return ERR_PTR(-EAGAIN) when it fails */
1098 	b = ERR_PTR(-EAGAIN);
1099 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1100 		goto err;
1101 
1102 	bkey_put(c, &k.key);
1103 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1104 
1105 	b = mca_alloc(c, op, &k.key, level);
1106 	if (IS_ERR(b))
1107 		goto err_free;
1108 
1109 	if (!b) {
1110 		cache_bug(c,
1111 			"Tried to allocate bucket that was in btree cache");
1112 		goto retry;
1113 	}
1114 
1115 	b->parent = parent;
1116 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1117 
1118 	mutex_unlock(&c->bucket_lock);
1119 
1120 	trace_bcache_btree_node_alloc(b);
1121 	return b;
1122 err_free:
1123 	bch_bucket_free(c, &k.key);
1124 err:
1125 	mutex_unlock(&c->bucket_lock);
1126 
1127 	trace_bcache_btree_node_alloc_fail(c);
1128 	return b;
1129 }
1130 
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1131 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1132 					  struct btree_op *op, int level,
1133 					  struct btree *parent)
1134 {
1135 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1136 }
1137 
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1138 static struct btree *btree_node_alloc_replacement(struct btree *b,
1139 						  struct btree_op *op)
1140 {
1141 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1142 
1143 	if (!IS_ERR(n)) {
1144 		mutex_lock(&n->write_lock);
1145 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1146 		bkey_copy_key(&n->key, &b->key);
1147 		mutex_unlock(&n->write_lock);
1148 	}
1149 
1150 	return n;
1151 }
1152 
make_btree_freeing_key(struct btree * b,struct bkey * k)1153 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1154 {
1155 	unsigned int i;
1156 
1157 	mutex_lock(&b->c->bucket_lock);
1158 
1159 	atomic_inc(&b->c->prio_blocked);
1160 
1161 	bkey_copy(k, &b->key);
1162 	bkey_copy_key(k, &ZERO_KEY);
1163 
1164 	for (i = 0; i < KEY_PTRS(k); i++)
1165 		SET_PTR_GEN(k, i,
1166 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1167 					PTR_BUCKET(b->c, &b->key, i)));
1168 
1169 	mutex_unlock(&b->c->bucket_lock);
1170 }
1171 
btree_check_reserve(struct btree * b,struct btree_op * op)1172 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1173 {
1174 	struct cache_set *c = b->c;
1175 	struct cache *ca = c->cache;
1176 	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1177 
1178 	mutex_lock(&c->bucket_lock);
1179 
1180 	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1181 		if (op)
1182 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1183 					TASK_UNINTERRUPTIBLE);
1184 		mutex_unlock(&c->bucket_lock);
1185 		return -EINTR;
1186 	}
1187 
1188 	mutex_unlock(&c->bucket_lock);
1189 
1190 	return mca_cannibalize_lock(b->c, op);
1191 }
1192 
1193 /* Garbage collection */
1194 
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1195 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1196 				    struct bkey *k)
1197 {
1198 	uint8_t stale = 0;
1199 	unsigned int i;
1200 	struct bucket *g;
1201 
1202 	/*
1203 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1204 	 * freed, but since ptr_bad() returns true we'll never actually use them
1205 	 * for anything and thus we don't want mark their pointers here
1206 	 */
1207 	if (!bkey_cmp(k, &ZERO_KEY))
1208 		return stale;
1209 
1210 	for (i = 0; i < KEY_PTRS(k); i++) {
1211 		if (!ptr_available(c, k, i))
1212 			continue;
1213 
1214 		g = PTR_BUCKET(c, k, i);
1215 
1216 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1217 			g->last_gc = PTR_GEN(k, i);
1218 
1219 		if (ptr_stale(c, k, i)) {
1220 			stale = max(stale, ptr_stale(c, k, i));
1221 			continue;
1222 		}
1223 
1224 		cache_bug_on(GC_MARK(g) &&
1225 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1226 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1227 			     GC_MARK(g), level);
1228 
1229 		if (level)
1230 			SET_GC_MARK(g, GC_MARK_METADATA);
1231 		else if (KEY_DIRTY(k))
1232 			SET_GC_MARK(g, GC_MARK_DIRTY);
1233 		else if (!GC_MARK(g))
1234 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1235 
1236 		/* guard against overflow */
1237 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1238 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1239 					     MAX_GC_SECTORS_USED));
1240 
1241 		BUG_ON(!GC_SECTORS_USED(g));
1242 	}
1243 
1244 	return stale;
1245 }
1246 
1247 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1248 
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1249 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1250 {
1251 	unsigned int i;
1252 
1253 	for (i = 0; i < KEY_PTRS(k); i++)
1254 		if (ptr_available(c, k, i) &&
1255 		    !ptr_stale(c, k, i)) {
1256 			struct bucket *b = PTR_BUCKET(c, k, i);
1257 
1258 			b->gen = PTR_GEN(k, i);
1259 
1260 			if (level && bkey_cmp(k, &ZERO_KEY))
1261 				b->prio = BTREE_PRIO;
1262 			else if (!level && b->prio == BTREE_PRIO)
1263 				b->prio = INITIAL_PRIO;
1264 		}
1265 
1266 	__bch_btree_mark_key(c, level, k);
1267 }
1268 
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1269 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1270 {
1271 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1272 }
1273 
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1274 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1275 {
1276 	uint8_t stale = 0;
1277 	unsigned int keys = 0, good_keys = 0;
1278 	struct bkey *k;
1279 	struct btree_iter iter;
1280 	struct bset_tree *t;
1281 
1282 	gc->nodes++;
1283 
1284 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1285 		stale = max(stale, btree_mark_key(b, k));
1286 		keys++;
1287 
1288 		if (bch_ptr_bad(&b->keys, k))
1289 			continue;
1290 
1291 		gc->key_bytes += bkey_u64s(k);
1292 		gc->nkeys++;
1293 		good_keys++;
1294 
1295 		gc->data += KEY_SIZE(k);
1296 	}
1297 
1298 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1299 		btree_bug_on(t->size &&
1300 			     bset_written(&b->keys, t) &&
1301 			     bkey_cmp(&b->key, &t->end) < 0,
1302 			     b, "found short btree key in gc");
1303 
1304 	if (b->c->gc_always_rewrite)
1305 		return true;
1306 
1307 	if (stale > 10)
1308 		return true;
1309 
1310 	if ((keys - good_keys) * 2 > keys)
1311 		return true;
1312 
1313 	return false;
1314 }
1315 
1316 #define GC_MERGE_NODES	4U
1317 
1318 struct gc_merge_info {
1319 	struct btree	*b;
1320 	unsigned int	keys;
1321 };
1322 
1323 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1324 				 struct keylist *insert_keys,
1325 				 atomic_t *journal_ref,
1326 				 struct bkey *replace_key);
1327 
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1328 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1329 			     struct gc_stat *gc, struct gc_merge_info *r)
1330 {
1331 	unsigned int i, nodes = 0, keys = 0, blocks;
1332 	struct btree *new_nodes[GC_MERGE_NODES];
1333 	struct keylist keylist;
1334 	struct closure cl;
1335 	struct bkey *k;
1336 
1337 	bch_keylist_init(&keylist);
1338 
1339 	if (btree_check_reserve(b, NULL))
1340 		return 0;
1341 
1342 	memset(new_nodes, 0, sizeof(new_nodes));
1343 	closure_init_stack(&cl);
1344 
1345 	while (nodes < GC_MERGE_NODES && !IS_ERR(r[nodes].b))
1346 		keys += r[nodes++].keys;
1347 
1348 	blocks = btree_default_blocks(b->c) * 2 / 3;
1349 
1350 	if (nodes < 2 ||
1351 	    __set_blocks(b->keys.set[0].data, keys,
1352 			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1353 		return 0;
1354 
1355 	for (i = 0; i < nodes; i++) {
1356 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1357 		if (IS_ERR(new_nodes[i]))
1358 			goto out_nocoalesce;
1359 	}
1360 
1361 	/*
1362 	 * We have to check the reserve here, after we've allocated our new
1363 	 * nodes, to make sure the insert below will succeed - we also check
1364 	 * before as an optimization to potentially avoid a bunch of expensive
1365 	 * allocs/sorts
1366 	 */
1367 	if (btree_check_reserve(b, NULL))
1368 		goto out_nocoalesce;
1369 
1370 	for (i = 0; i < nodes; i++)
1371 		mutex_lock(&new_nodes[i]->write_lock);
1372 
1373 	for (i = nodes - 1; i > 0; --i) {
1374 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1375 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1376 		struct bkey *k, *last = NULL;
1377 
1378 		keys = 0;
1379 
1380 		if (i > 1) {
1381 			for (k = n2->start;
1382 			     k < bset_bkey_last(n2);
1383 			     k = bkey_next(k)) {
1384 				if (__set_blocks(n1, n1->keys + keys +
1385 						 bkey_u64s(k),
1386 						 block_bytes(b->c->cache)) > blocks)
1387 					break;
1388 
1389 				last = k;
1390 				keys += bkey_u64s(k);
1391 			}
1392 		} else {
1393 			/*
1394 			 * Last node we're not getting rid of - we're getting
1395 			 * rid of the node at r[0]. Have to try and fit all of
1396 			 * the remaining keys into this node; we can't ensure
1397 			 * they will always fit due to rounding and variable
1398 			 * length keys (shouldn't be possible in practice,
1399 			 * though)
1400 			 */
1401 			if (__set_blocks(n1, n1->keys + n2->keys,
1402 					 block_bytes(b->c->cache)) >
1403 			    btree_blocks(new_nodes[i]))
1404 				goto out_unlock_nocoalesce;
1405 
1406 			keys = n2->keys;
1407 			/* Take the key of the node we're getting rid of */
1408 			last = &r->b->key;
1409 		}
1410 
1411 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1412 		       btree_blocks(new_nodes[i]));
1413 
1414 		if (last)
1415 			bkey_copy_key(&new_nodes[i]->key, last);
1416 
1417 		memcpy(bset_bkey_last(n1),
1418 		       n2->start,
1419 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1420 
1421 		n1->keys += keys;
1422 		r[i].keys = n1->keys;
1423 
1424 		memmove(n2->start,
1425 			bset_bkey_idx(n2, keys),
1426 			(void *) bset_bkey_last(n2) -
1427 			(void *) bset_bkey_idx(n2, keys));
1428 
1429 		n2->keys -= keys;
1430 
1431 		if (__bch_keylist_realloc(&keylist,
1432 					  bkey_u64s(&new_nodes[i]->key)))
1433 			goto out_unlock_nocoalesce;
1434 
1435 		bch_btree_node_write(new_nodes[i], &cl);
1436 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1437 	}
1438 
1439 	for (i = 0; i < nodes; i++)
1440 		mutex_unlock(&new_nodes[i]->write_lock);
1441 
1442 	closure_sync(&cl);
1443 
1444 	/* We emptied out this node */
1445 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1446 	btree_node_free(new_nodes[0]);
1447 	rw_unlock(true, new_nodes[0]);
1448 	new_nodes[0] = NULL;
1449 
1450 	for (i = 0; i < nodes; i++) {
1451 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1452 			goto out_nocoalesce;
1453 
1454 		make_btree_freeing_key(r[i].b, keylist.top);
1455 		bch_keylist_push(&keylist);
1456 	}
1457 
1458 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1459 	BUG_ON(!bch_keylist_empty(&keylist));
1460 
1461 	for (i = 0; i < nodes; i++) {
1462 		btree_node_free(r[i].b);
1463 		rw_unlock(true, r[i].b);
1464 
1465 		r[i].b = new_nodes[i];
1466 	}
1467 
1468 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1469 	r[nodes - 1].b = ERR_PTR(-EINTR);
1470 
1471 	trace_bcache_btree_gc_coalesce(nodes);
1472 	gc->nodes--;
1473 
1474 	bch_keylist_free(&keylist);
1475 
1476 	/* Invalidated our iterator */
1477 	return -EINTR;
1478 
1479 out_unlock_nocoalesce:
1480 	for (i = 0; i < nodes; i++)
1481 		mutex_unlock(&new_nodes[i]->write_lock);
1482 
1483 out_nocoalesce:
1484 	closure_sync(&cl);
1485 
1486 	while ((k = bch_keylist_pop(&keylist)))
1487 		if (!bkey_cmp(k, &ZERO_KEY))
1488 			atomic_dec(&b->c->prio_blocked);
1489 	bch_keylist_free(&keylist);
1490 
1491 	for (i = 0; i < nodes; i++)
1492 		if (!IS_ERR(new_nodes[i])) {
1493 			btree_node_free(new_nodes[i]);
1494 			rw_unlock(true, new_nodes[i]);
1495 		}
1496 	return 0;
1497 }
1498 
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1499 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1500 				 struct btree *replace)
1501 {
1502 	struct keylist keys;
1503 	struct btree *n;
1504 
1505 	if (btree_check_reserve(b, NULL))
1506 		return 0;
1507 
1508 	n = btree_node_alloc_replacement(replace, NULL);
1509 
1510 	/* recheck reserve after allocating replacement node */
1511 	if (btree_check_reserve(b, NULL)) {
1512 		btree_node_free(n);
1513 		rw_unlock(true, n);
1514 		return 0;
1515 	}
1516 
1517 	bch_btree_node_write_sync(n);
1518 
1519 	bch_keylist_init(&keys);
1520 	bch_keylist_add(&keys, &n->key);
1521 
1522 	make_btree_freeing_key(replace, keys.top);
1523 	bch_keylist_push(&keys);
1524 
1525 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1526 	BUG_ON(!bch_keylist_empty(&keys));
1527 
1528 	btree_node_free(replace);
1529 	rw_unlock(true, n);
1530 
1531 	/* Invalidated our iterator */
1532 	return -EINTR;
1533 }
1534 
btree_gc_count_keys(struct btree * b)1535 static unsigned int btree_gc_count_keys(struct btree *b)
1536 {
1537 	struct bkey *k;
1538 	struct btree_iter iter;
1539 	unsigned int ret = 0;
1540 
1541 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1542 		ret += bkey_u64s(k);
1543 
1544 	return ret;
1545 }
1546 
btree_gc_min_nodes(struct cache_set * c)1547 static size_t btree_gc_min_nodes(struct cache_set *c)
1548 {
1549 	size_t min_nodes;
1550 
1551 	/*
1552 	 * Since incremental GC would stop 100ms when front
1553 	 * side I/O comes, so when there are many btree nodes,
1554 	 * if GC only processes constant (100) nodes each time,
1555 	 * GC would last a long time, and the front side I/Os
1556 	 * would run out of the buckets (since no new bucket
1557 	 * can be allocated during GC), and be blocked again.
1558 	 * So GC should not process constant nodes, but varied
1559 	 * nodes according to the number of btree nodes, which
1560 	 * realized by dividing GC into constant(100) times,
1561 	 * so when there are many btree nodes, GC can process
1562 	 * more nodes each time, otherwise, GC will process less
1563 	 * nodes each time (but no less than MIN_GC_NODES)
1564 	 */
1565 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1566 	if (min_nodes < MIN_GC_NODES)
1567 		min_nodes = MIN_GC_NODES;
1568 
1569 	return min_nodes;
1570 }
1571 
1572 
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1573 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1574 			    struct closure *writes, struct gc_stat *gc)
1575 {
1576 	int ret = 0;
1577 	bool should_rewrite;
1578 	struct bkey *k;
1579 	struct btree_iter iter;
1580 	struct gc_merge_info r[GC_MERGE_NODES];
1581 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1582 
1583 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1584 
1585 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1586 		i->b = ERR_PTR(-EINTR);
1587 
1588 	while (1) {
1589 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1590 		if (k) {
1591 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1592 						  true, b);
1593 			if (IS_ERR(r->b)) {
1594 				ret = PTR_ERR(r->b);
1595 				break;
1596 			}
1597 
1598 			r->keys = btree_gc_count_keys(r->b);
1599 
1600 			ret = btree_gc_coalesce(b, op, gc, r);
1601 			if (ret)
1602 				break;
1603 		}
1604 
1605 		if (!last->b)
1606 			break;
1607 
1608 		if (!IS_ERR(last->b)) {
1609 			should_rewrite = btree_gc_mark_node(last->b, gc);
1610 			if (should_rewrite) {
1611 				ret = btree_gc_rewrite_node(b, op, last->b);
1612 				if (ret)
1613 					break;
1614 			}
1615 
1616 			if (last->b->level) {
1617 				ret = btree_gc_recurse(last->b, op, writes, gc);
1618 				if (ret)
1619 					break;
1620 			}
1621 
1622 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1623 
1624 			/*
1625 			 * Must flush leaf nodes before gc ends, since replace
1626 			 * operations aren't journalled
1627 			 */
1628 			mutex_lock(&last->b->write_lock);
1629 			if (btree_node_dirty(last->b))
1630 				bch_btree_node_write(last->b, writes);
1631 			mutex_unlock(&last->b->write_lock);
1632 			rw_unlock(true, last->b);
1633 		}
1634 
1635 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1636 		r->b = NULL;
1637 
1638 		if (atomic_read(&b->c->search_inflight) &&
1639 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1640 			gc->nodes_pre =  gc->nodes;
1641 			ret = -EAGAIN;
1642 			break;
1643 		}
1644 
1645 		if (need_resched()) {
1646 			ret = -EAGAIN;
1647 			break;
1648 		}
1649 	}
1650 
1651 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1652 		if (!IS_ERR_OR_NULL(i->b)) {
1653 			mutex_lock(&i->b->write_lock);
1654 			if (btree_node_dirty(i->b))
1655 				bch_btree_node_write(i->b, writes);
1656 			mutex_unlock(&i->b->write_lock);
1657 			rw_unlock(true, i->b);
1658 		}
1659 
1660 	return ret;
1661 }
1662 
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1663 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1664 			     struct closure *writes, struct gc_stat *gc)
1665 {
1666 	struct btree *n = NULL;
1667 	int ret = 0;
1668 	bool should_rewrite;
1669 
1670 	should_rewrite = btree_gc_mark_node(b, gc);
1671 	if (should_rewrite) {
1672 		n = btree_node_alloc_replacement(b, NULL);
1673 
1674 		if (!IS_ERR(n)) {
1675 			bch_btree_node_write_sync(n);
1676 
1677 			bch_btree_set_root(n);
1678 			btree_node_free(b);
1679 			rw_unlock(true, n);
1680 
1681 			return -EINTR;
1682 		}
1683 	}
1684 
1685 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1686 
1687 	if (b->level) {
1688 		ret = btree_gc_recurse(b, op, writes, gc);
1689 		if (ret)
1690 			return ret;
1691 	}
1692 
1693 	bkey_copy_key(&b->c->gc_done, &b->key);
1694 
1695 	return ret;
1696 }
1697 
btree_gc_start(struct cache_set * c)1698 static void btree_gc_start(struct cache_set *c)
1699 {
1700 	struct cache *ca;
1701 	struct bucket *b;
1702 
1703 	if (!c->gc_mark_valid)
1704 		return;
1705 
1706 	mutex_lock(&c->bucket_lock);
1707 
1708 	c->gc_mark_valid = 0;
1709 	c->gc_done = ZERO_KEY;
1710 
1711 	ca = c->cache;
1712 	for_each_bucket(b, ca) {
1713 		b->last_gc = b->gen;
1714 		if (!atomic_read(&b->pin)) {
1715 			SET_GC_MARK(b, 0);
1716 			SET_GC_SECTORS_USED(b, 0);
1717 		}
1718 	}
1719 
1720 	mutex_unlock(&c->bucket_lock);
1721 }
1722 
bch_btree_gc_finish(struct cache_set * c)1723 static void bch_btree_gc_finish(struct cache_set *c)
1724 {
1725 	struct bucket *b;
1726 	struct cache *ca;
1727 	unsigned int i, j;
1728 	uint64_t *k;
1729 
1730 	mutex_lock(&c->bucket_lock);
1731 
1732 	set_gc_sectors(c);
1733 	c->gc_mark_valid = 1;
1734 	c->need_gc	= 0;
1735 
1736 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1737 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1738 			    GC_MARK_METADATA);
1739 
1740 	/* don't reclaim buckets to which writeback keys point */
1741 	rcu_read_lock();
1742 	for (i = 0; i < c->devices_max_used; i++) {
1743 		struct bcache_device *d = c->devices[i];
1744 		struct cached_dev *dc;
1745 		struct keybuf_key *w, *n;
1746 
1747 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1748 			continue;
1749 		dc = container_of(d, struct cached_dev, disk);
1750 
1751 		spin_lock(&dc->writeback_keys.lock);
1752 		rbtree_postorder_for_each_entry_safe(w, n,
1753 					&dc->writeback_keys.keys, node)
1754 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1755 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1756 					    GC_MARK_DIRTY);
1757 		spin_unlock(&dc->writeback_keys.lock);
1758 	}
1759 	rcu_read_unlock();
1760 
1761 	c->avail_nbuckets = 0;
1762 
1763 	ca = c->cache;
1764 	ca->invalidate_needs_gc = 0;
1765 
1766 	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1767 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1768 
1769 	for (k = ca->prio_buckets;
1770 	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1771 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1772 
1773 	for_each_bucket(b, ca) {
1774 		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1775 
1776 		if (atomic_read(&b->pin))
1777 			continue;
1778 
1779 		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1780 
1781 		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1782 			c->avail_nbuckets++;
1783 	}
1784 
1785 	mutex_unlock(&c->bucket_lock);
1786 }
1787 
bch_btree_gc(struct cache_set * c)1788 static void bch_btree_gc(struct cache_set *c)
1789 {
1790 	int ret;
1791 	struct gc_stat stats;
1792 	struct closure writes;
1793 	struct btree_op op;
1794 	uint64_t start_time = local_clock();
1795 
1796 	trace_bcache_gc_start(c);
1797 
1798 	memset(&stats, 0, sizeof(struct gc_stat));
1799 	closure_init_stack(&writes);
1800 	bch_btree_op_init(&op, SHRT_MAX);
1801 
1802 	btree_gc_start(c);
1803 
1804 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1805 	do {
1806 		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1807 		closure_sync(&writes);
1808 		cond_resched();
1809 
1810 		if (ret == -EAGAIN)
1811 			schedule_timeout_interruptible(msecs_to_jiffies
1812 						       (GC_SLEEP_MS));
1813 		else if (ret)
1814 			pr_warn("gc failed!\n");
1815 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1816 
1817 	bch_btree_gc_finish(c);
1818 	wake_up_allocators(c);
1819 
1820 	bch_time_stats_update(&c->btree_gc_time, start_time);
1821 
1822 	stats.key_bytes *= sizeof(uint64_t);
1823 	stats.data	<<= 9;
1824 	bch_update_bucket_in_use(c, &stats);
1825 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1826 
1827 	trace_bcache_gc_end(c);
1828 
1829 	bch_moving_gc(c);
1830 }
1831 
gc_should_run(struct cache_set * c)1832 static bool gc_should_run(struct cache_set *c)
1833 {
1834 	struct cache *ca = c->cache;
1835 
1836 	if (ca->invalidate_needs_gc)
1837 		return true;
1838 
1839 	if (atomic_read(&c->sectors_to_gc) < 0)
1840 		return true;
1841 
1842 	return false;
1843 }
1844 
bch_gc_thread(void * arg)1845 static int bch_gc_thread(void *arg)
1846 {
1847 	struct cache_set *c = arg;
1848 
1849 	while (1) {
1850 		wait_event_interruptible(c->gc_wait,
1851 			   kthread_should_stop() ||
1852 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1853 			   gc_should_run(c));
1854 
1855 		if (kthread_should_stop() ||
1856 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1857 			break;
1858 
1859 		set_gc_sectors(c);
1860 		bch_btree_gc(c);
1861 	}
1862 
1863 	wait_for_kthread_stop();
1864 	return 0;
1865 }
1866 
bch_gc_thread_start(struct cache_set * c)1867 int bch_gc_thread_start(struct cache_set *c)
1868 {
1869 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1870 	return PTR_ERR_OR_ZERO(c->gc_thread);
1871 }
1872 
1873 /* Initial partial gc */
1874 
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1875 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1876 {
1877 	int ret = 0;
1878 	struct bkey *k, *p = NULL;
1879 	struct btree_iter iter;
1880 
1881 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1882 		bch_initial_mark_key(b->c, b->level, k);
1883 
1884 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1885 
1886 	if (b->level) {
1887 		bch_btree_iter_init(&b->keys, &iter, NULL);
1888 
1889 		do {
1890 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1891 						       bch_ptr_bad);
1892 			if (k) {
1893 				btree_node_prefetch(b, k);
1894 				/*
1895 				 * initiallize c->gc_stats.nodes
1896 				 * for incremental GC
1897 				 */
1898 				b->c->gc_stats.nodes++;
1899 			}
1900 
1901 			if (p)
1902 				ret = bcache_btree(check_recurse, p, b, op);
1903 
1904 			p = k;
1905 		} while (p && !ret);
1906 	}
1907 
1908 	return ret;
1909 }
1910 
1911 
bch_btree_check_thread(void * arg)1912 static int bch_btree_check_thread(void *arg)
1913 {
1914 	int ret;
1915 	struct btree_check_info *info = arg;
1916 	struct btree_check_state *check_state = info->state;
1917 	struct cache_set *c = check_state->c;
1918 	struct btree_iter iter;
1919 	struct bkey *k, *p;
1920 	int cur_idx, prev_idx, skip_nr;
1921 
1922 	k = p = NULL;
1923 	cur_idx = prev_idx = 0;
1924 	ret = 0;
1925 
1926 	/* root node keys are checked before thread created */
1927 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1928 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1929 	BUG_ON(!k);
1930 
1931 	p = k;
1932 	while (k) {
1933 		/*
1934 		 * Fetch a root node key index, skip the keys which
1935 		 * should be fetched by other threads, then check the
1936 		 * sub-tree indexed by the fetched key.
1937 		 */
1938 		spin_lock(&check_state->idx_lock);
1939 		cur_idx = check_state->key_idx;
1940 		check_state->key_idx++;
1941 		spin_unlock(&check_state->idx_lock);
1942 
1943 		skip_nr = cur_idx - prev_idx;
1944 
1945 		while (skip_nr) {
1946 			k = bch_btree_iter_next_filter(&iter,
1947 						       &c->root->keys,
1948 						       bch_ptr_bad);
1949 			if (k)
1950 				p = k;
1951 			else {
1952 				/*
1953 				 * No more keys to check in root node,
1954 				 * current checking threads are enough,
1955 				 * stop creating more.
1956 				 */
1957 				atomic_set(&check_state->enough, 1);
1958 				/* Update check_state->enough earlier */
1959 				smp_mb__after_atomic();
1960 				goto out;
1961 			}
1962 			skip_nr--;
1963 			cond_resched();
1964 		}
1965 
1966 		if (p) {
1967 			struct btree_op op;
1968 
1969 			btree_node_prefetch(c->root, p);
1970 			c->gc_stats.nodes++;
1971 			bch_btree_op_init(&op, 0);
1972 			ret = bcache_btree(check_recurse, p, c->root, &op);
1973 			/*
1974 			 * The op may be added to cache_set's btree_cache_wait
1975 			 * in mca_cannibalize(), must ensure it is removed from
1976 			 * the list and release btree_cache_alloc_lock before
1977 			 * free op memory.
1978 			 * Otherwise, the btree_cache_wait will be damaged.
1979 			 */
1980 			bch_cannibalize_unlock(c);
1981 			finish_wait(&c->btree_cache_wait, &(&op)->wait);
1982 			if (ret)
1983 				goto out;
1984 		}
1985 		p = NULL;
1986 		prev_idx = cur_idx;
1987 		cond_resched();
1988 	}
1989 
1990 out:
1991 	info->result = ret;
1992 	/* update check_state->started among all CPUs */
1993 	smp_mb__before_atomic();
1994 	if (atomic_dec_and_test(&check_state->started))
1995 		wake_up(&check_state->wait);
1996 
1997 	return ret;
1998 }
1999 
2000 
2001 
bch_btree_chkthread_nr(void)2002 static int bch_btree_chkthread_nr(void)
2003 {
2004 	int n = num_online_cpus()/2;
2005 
2006 	if (n == 0)
2007 		n = 1;
2008 	else if (n > BCH_BTR_CHKTHREAD_MAX)
2009 		n = BCH_BTR_CHKTHREAD_MAX;
2010 
2011 	return n;
2012 }
2013 
bch_btree_check(struct cache_set * c)2014 int bch_btree_check(struct cache_set *c)
2015 {
2016 	int ret = 0;
2017 	int i;
2018 	struct bkey *k = NULL;
2019 	struct btree_iter iter;
2020 	struct btree_check_state check_state;
2021 
2022 	/* check and mark root node keys */
2023 	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2024 		bch_initial_mark_key(c, c->root->level, k);
2025 
2026 	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2027 
2028 	if (c->root->level == 0)
2029 		return 0;
2030 
2031 	memset(&check_state, 0, sizeof(struct btree_check_state));
2032 	check_state.c = c;
2033 	check_state.total_threads = bch_btree_chkthread_nr();
2034 	check_state.key_idx = 0;
2035 	spin_lock_init(&check_state.idx_lock);
2036 	atomic_set(&check_state.started, 0);
2037 	atomic_set(&check_state.enough, 0);
2038 	init_waitqueue_head(&check_state.wait);
2039 
2040 	rw_lock(0, c->root, c->root->level);
2041 	/*
2042 	 * Run multiple threads to check btree nodes in parallel,
2043 	 * if check_state.enough is non-zero, it means current
2044 	 * running check threads are enough, unncessary to create
2045 	 * more.
2046 	 */
2047 	for (i = 0; i < check_state.total_threads; i++) {
2048 		/* fetch latest check_state.enough earlier */
2049 		smp_mb__before_atomic();
2050 		if (atomic_read(&check_state.enough))
2051 			break;
2052 
2053 		check_state.infos[i].result = 0;
2054 		check_state.infos[i].state = &check_state;
2055 
2056 		check_state.infos[i].thread =
2057 			kthread_run(bch_btree_check_thread,
2058 				    &check_state.infos[i],
2059 				    "bch_btrchk[%d]", i);
2060 		if (IS_ERR(check_state.infos[i].thread)) {
2061 			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2062 			for (--i; i >= 0; i--)
2063 				kthread_stop(check_state.infos[i].thread);
2064 			ret = -ENOMEM;
2065 			goto out;
2066 		}
2067 		atomic_inc(&check_state.started);
2068 	}
2069 
2070 	/*
2071 	 * Must wait for all threads to stop.
2072 	 */
2073 	wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2074 
2075 	for (i = 0; i < check_state.total_threads; i++) {
2076 		if (check_state.infos[i].result) {
2077 			ret = check_state.infos[i].result;
2078 			goto out;
2079 		}
2080 	}
2081 
2082 out:
2083 	rw_unlock(0, c->root);
2084 	return ret;
2085 }
2086 
bch_initial_gc_finish(struct cache_set * c)2087 void bch_initial_gc_finish(struct cache_set *c)
2088 {
2089 	struct cache *ca = c->cache;
2090 	struct bucket *b;
2091 
2092 	bch_btree_gc_finish(c);
2093 
2094 	mutex_lock(&c->bucket_lock);
2095 
2096 	/*
2097 	 * We need to put some unused buckets directly on the prio freelist in
2098 	 * order to get the allocator thread started - it needs freed buckets in
2099 	 * order to rewrite the prios and gens, and it needs to rewrite prios
2100 	 * and gens in order to free buckets.
2101 	 *
2102 	 * This is only safe for buckets that have no live data in them, which
2103 	 * there should always be some of.
2104 	 */
2105 	for_each_bucket(b, ca) {
2106 		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2107 		    fifo_full(&ca->free[RESERVE_BTREE]))
2108 			break;
2109 
2110 		if (bch_can_invalidate_bucket(ca, b) &&
2111 		    !GC_MARK(b)) {
2112 			__bch_invalidate_one_bucket(ca, b);
2113 			if (!fifo_push(&ca->free[RESERVE_PRIO],
2114 			   b - ca->buckets))
2115 				fifo_push(&ca->free[RESERVE_BTREE],
2116 					  b - ca->buckets);
2117 		}
2118 	}
2119 
2120 	mutex_unlock(&c->bucket_lock);
2121 }
2122 
2123 /* Btree insertion */
2124 
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2125 static bool btree_insert_key(struct btree *b, struct bkey *k,
2126 			     struct bkey *replace_key)
2127 {
2128 	unsigned int status;
2129 
2130 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2131 
2132 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2133 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2134 		bch_check_keys(&b->keys, "%u for %s", status,
2135 			       replace_key ? "replace" : "insert");
2136 
2137 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2138 					      status);
2139 		return true;
2140 	} else
2141 		return false;
2142 }
2143 
insert_u64s_remaining(struct btree * b)2144 static size_t insert_u64s_remaining(struct btree *b)
2145 {
2146 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2147 
2148 	/*
2149 	 * Might land in the middle of an existing extent and have to split it
2150 	 */
2151 	if (b->keys.ops->is_extents)
2152 		ret -= KEY_MAX_U64S;
2153 
2154 	return max(ret, 0L);
2155 }
2156 
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2157 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2158 				  struct keylist *insert_keys,
2159 				  struct bkey *replace_key)
2160 {
2161 	bool ret = false;
2162 	int oldsize = bch_count_data(&b->keys);
2163 
2164 	while (!bch_keylist_empty(insert_keys)) {
2165 		struct bkey *k = insert_keys->keys;
2166 
2167 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2168 			break;
2169 
2170 		if (bkey_cmp(k, &b->key) <= 0) {
2171 			if (!b->level)
2172 				bkey_put(b->c, k);
2173 
2174 			ret |= btree_insert_key(b, k, replace_key);
2175 			bch_keylist_pop_front(insert_keys);
2176 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2177 			BKEY_PADDED(key) temp;
2178 			bkey_copy(&temp.key, insert_keys->keys);
2179 
2180 			bch_cut_back(&b->key, &temp.key);
2181 			bch_cut_front(&b->key, insert_keys->keys);
2182 
2183 			ret |= btree_insert_key(b, &temp.key, replace_key);
2184 			break;
2185 		} else {
2186 			break;
2187 		}
2188 	}
2189 
2190 	if (!ret)
2191 		op->insert_collision = true;
2192 
2193 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2194 
2195 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2196 	return ret;
2197 }
2198 
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2199 static int btree_split(struct btree *b, struct btree_op *op,
2200 		       struct keylist *insert_keys,
2201 		       struct bkey *replace_key)
2202 {
2203 	bool split;
2204 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2205 	uint64_t start_time = local_clock();
2206 	struct closure cl;
2207 	struct keylist parent_keys;
2208 
2209 	closure_init_stack(&cl);
2210 	bch_keylist_init(&parent_keys);
2211 
2212 	if (btree_check_reserve(b, op)) {
2213 		if (!b->level)
2214 			return -EINTR;
2215 		else
2216 			WARN(1, "insufficient reserve for split\n");
2217 	}
2218 
2219 	n1 = btree_node_alloc_replacement(b, op);
2220 	if (IS_ERR(n1))
2221 		goto err;
2222 
2223 	split = set_blocks(btree_bset_first(n1),
2224 			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2225 
2226 	if (split) {
2227 		unsigned int keys = 0;
2228 
2229 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2230 
2231 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2232 		if (IS_ERR(n2))
2233 			goto err_free1;
2234 
2235 		if (!b->parent) {
2236 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2237 			if (IS_ERR(n3))
2238 				goto err_free2;
2239 		}
2240 
2241 		mutex_lock(&n1->write_lock);
2242 		mutex_lock(&n2->write_lock);
2243 
2244 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2245 
2246 		/*
2247 		 * Has to be a linear search because we don't have an auxiliary
2248 		 * search tree yet
2249 		 */
2250 
2251 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2252 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2253 							keys));
2254 
2255 		bkey_copy_key(&n1->key,
2256 			      bset_bkey_idx(btree_bset_first(n1), keys));
2257 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2258 
2259 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2260 		btree_bset_first(n1)->keys = keys;
2261 
2262 		memcpy(btree_bset_first(n2)->start,
2263 		       bset_bkey_last(btree_bset_first(n1)),
2264 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2265 
2266 		bkey_copy_key(&n2->key, &b->key);
2267 
2268 		bch_keylist_add(&parent_keys, &n2->key);
2269 		bch_btree_node_write(n2, &cl);
2270 		mutex_unlock(&n2->write_lock);
2271 		rw_unlock(true, n2);
2272 	} else {
2273 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2274 
2275 		mutex_lock(&n1->write_lock);
2276 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2277 	}
2278 
2279 	bch_keylist_add(&parent_keys, &n1->key);
2280 	bch_btree_node_write(n1, &cl);
2281 	mutex_unlock(&n1->write_lock);
2282 
2283 	if (n3) {
2284 		/* Depth increases, make a new root */
2285 		mutex_lock(&n3->write_lock);
2286 		bkey_copy_key(&n3->key, &MAX_KEY);
2287 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2288 		bch_btree_node_write(n3, &cl);
2289 		mutex_unlock(&n3->write_lock);
2290 
2291 		closure_sync(&cl);
2292 		bch_btree_set_root(n3);
2293 		rw_unlock(true, n3);
2294 	} else if (!b->parent) {
2295 		/* Root filled up but didn't need to be split */
2296 		closure_sync(&cl);
2297 		bch_btree_set_root(n1);
2298 	} else {
2299 		/* Split a non root node */
2300 		closure_sync(&cl);
2301 		make_btree_freeing_key(b, parent_keys.top);
2302 		bch_keylist_push(&parent_keys);
2303 
2304 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2305 		BUG_ON(!bch_keylist_empty(&parent_keys));
2306 	}
2307 
2308 	btree_node_free(b);
2309 	rw_unlock(true, n1);
2310 
2311 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2312 
2313 	return 0;
2314 err_free2:
2315 	bkey_put(b->c, &n2->key);
2316 	btree_node_free(n2);
2317 	rw_unlock(true, n2);
2318 err_free1:
2319 	bkey_put(b->c, &n1->key);
2320 	btree_node_free(n1);
2321 	rw_unlock(true, n1);
2322 err:
2323 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2324 
2325 	if (n3 == ERR_PTR(-EAGAIN) ||
2326 	    n2 == ERR_PTR(-EAGAIN) ||
2327 	    n1 == ERR_PTR(-EAGAIN))
2328 		return -EAGAIN;
2329 
2330 	return -ENOMEM;
2331 }
2332 
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2333 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2334 				 struct keylist *insert_keys,
2335 				 atomic_t *journal_ref,
2336 				 struct bkey *replace_key)
2337 {
2338 	struct closure cl;
2339 
2340 	BUG_ON(b->level && replace_key);
2341 
2342 	closure_init_stack(&cl);
2343 
2344 	mutex_lock(&b->write_lock);
2345 
2346 	if (write_block(b) != btree_bset_last(b) &&
2347 	    b->keys.last_set_unwritten)
2348 		bch_btree_init_next(b); /* just wrote a set */
2349 
2350 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2351 		mutex_unlock(&b->write_lock);
2352 		goto split;
2353 	}
2354 
2355 	BUG_ON(write_block(b) != btree_bset_last(b));
2356 
2357 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2358 		if (!b->level)
2359 			bch_btree_leaf_dirty(b, journal_ref);
2360 		else
2361 			bch_btree_node_write(b, &cl);
2362 	}
2363 
2364 	mutex_unlock(&b->write_lock);
2365 
2366 	/* wait for btree node write if necessary, after unlock */
2367 	closure_sync(&cl);
2368 
2369 	return 0;
2370 split:
2371 	if (current->bio_list) {
2372 		op->lock = b->c->root->level + 1;
2373 		return -EAGAIN;
2374 	} else if (op->lock <= b->c->root->level) {
2375 		op->lock = b->c->root->level + 1;
2376 		return -EINTR;
2377 	} else {
2378 		/* Invalidated all iterators */
2379 		int ret = btree_split(b, op, insert_keys, replace_key);
2380 
2381 		if (bch_keylist_empty(insert_keys))
2382 			return 0;
2383 		else if (!ret)
2384 			return -EINTR;
2385 		return ret;
2386 	}
2387 }
2388 
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2389 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2390 			       struct bkey *check_key)
2391 {
2392 	int ret = -EINTR;
2393 	uint64_t btree_ptr = b->key.ptr[0];
2394 	unsigned long seq = b->seq;
2395 	struct keylist insert;
2396 	bool upgrade = op->lock == -1;
2397 
2398 	bch_keylist_init(&insert);
2399 
2400 	if (upgrade) {
2401 		rw_unlock(false, b);
2402 		rw_lock(true, b, b->level);
2403 
2404 		if (b->key.ptr[0] != btree_ptr ||
2405 		    b->seq != seq + 1) {
2406 			op->lock = b->level;
2407 			goto out;
2408 		}
2409 	}
2410 
2411 	SET_KEY_PTRS(check_key, 1);
2412 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2413 
2414 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2415 
2416 	bch_keylist_add(&insert, check_key);
2417 
2418 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2419 
2420 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2421 out:
2422 	if (upgrade)
2423 		downgrade_write(&b->lock);
2424 	return ret;
2425 }
2426 
2427 struct btree_insert_op {
2428 	struct btree_op	op;
2429 	struct keylist	*keys;
2430 	atomic_t	*journal_ref;
2431 	struct bkey	*replace_key;
2432 };
2433 
btree_insert_fn(struct btree_op * b_op,struct btree * b)2434 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2435 {
2436 	struct btree_insert_op *op = container_of(b_op,
2437 					struct btree_insert_op, op);
2438 
2439 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2440 					op->journal_ref, op->replace_key);
2441 	if (ret && !bch_keylist_empty(op->keys))
2442 		return ret;
2443 	else
2444 		return MAP_DONE;
2445 }
2446 
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2447 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2448 		     atomic_t *journal_ref, struct bkey *replace_key)
2449 {
2450 	struct btree_insert_op op;
2451 	int ret = 0;
2452 
2453 	BUG_ON(current->bio_list);
2454 	BUG_ON(bch_keylist_empty(keys));
2455 
2456 	bch_btree_op_init(&op.op, 0);
2457 	op.keys		= keys;
2458 	op.journal_ref	= journal_ref;
2459 	op.replace_key	= replace_key;
2460 
2461 	while (!ret && !bch_keylist_empty(keys)) {
2462 		op.op.lock = 0;
2463 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2464 					       &START_KEY(keys->keys),
2465 					       btree_insert_fn);
2466 	}
2467 
2468 	if (ret) {
2469 		struct bkey *k;
2470 
2471 		pr_err("error %i\n", ret);
2472 
2473 		while ((k = bch_keylist_pop(keys)))
2474 			bkey_put(c, k);
2475 	} else if (op.op.insert_collision)
2476 		ret = -ESRCH;
2477 
2478 	return ret;
2479 }
2480 
bch_btree_set_root(struct btree * b)2481 void bch_btree_set_root(struct btree *b)
2482 {
2483 	unsigned int i;
2484 	struct closure cl;
2485 
2486 	closure_init_stack(&cl);
2487 
2488 	trace_bcache_btree_set_root(b);
2489 
2490 	BUG_ON(!b->written);
2491 
2492 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2493 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2494 
2495 	mutex_lock(&b->c->bucket_lock);
2496 	list_del_init(&b->list);
2497 	mutex_unlock(&b->c->bucket_lock);
2498 
2499 	b->c->root = b;
2500 
2501 	bch_journal_meta(b->c, &cl);
2502 	closure_sync(&cl);
2503 }
2504 
2505 /* Map across nodes or keys */
2506 
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2507 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2508 				       struct bkey *from,
2509 				       btree_map_nodes_fn *fn, int flags)
2510 {
2511 	int ret = MAP_CONTINUE;
2512 
2513 	if (b->level) {
2514 		struct bkey *k;
2515 		struct btree_iter iter;
2516 
2517 		bch_btree_iter_init(&b->keys, &iter, from);
2518 
2519 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2520 						       bch_ptr_bad))) {
2521 			ret = bcache_btree(map_nodes_recurse, k, b,
2522 				    op, from, fn, flags);
2523 			from = NULL;
2524 
2525 			if (ret != MAP_CONTINUE)
2526 				return ret;
2527 		}
2528 	}
2529 
2530 	if (!b->level || flags == MAP_ALL_NODES)
2531 		ret = fn(op, b);
2532 
2533 	return ret;
2534 }
2535 
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2536 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2537 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2538 {
2539 	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2540 }
2541 
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2542 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2543 				      struct bkey *from, btree_map_keys_fn *fn,
2544 				      int flags)
2545 {
2546 	int ret = MAP_CONTINUE;
2547 	struct bkey *k;
2548 	struct btree_iter iter;
2549 
2550 	bch_btree_iter_init(&b->keys, &iter, from);
2551 
2552 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2553 		ret = !b->level
2554 			? fn(op, b, k)
2555 			: bcache_btree(map_keys_recurse, k,
2556 				       b, op, from, fn, flags);
2557 		from = NULL;
2558 
2559 		if (ret != MAP_CONTINUE)
2560 			return ret;
2561 	}
2562 
2563 	if (!b->level && (flags & MAP_END_KEY))
2564 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2565 				     KEY_OFFSET(&b->key), 0));
2566 
2567 	return ret;
2568 }
2569 
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2570 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2571 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2572 {
2573 	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2574 }
2575 
2576 /* Keybuf code */
2577 
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2578 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2579 {
2580 	/* Overlapping keys compare equal */
2581 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2582 		return -1;
2583 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2584 		return 1;
2585 	return 0;
2586 }
2587 
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2588 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2589 					    struct keybuf_key *r)
2590 {
2591 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2592 }
2593 
2594 struct refill {
2595 	struct btree_op	op;
2596 	unsigned int	nr_found;
2597 	struct keybuf	*buf;
2598 	struct bkey	*end;
2599 	keybuf_pred_fn	*pred;
2600 };
2601 
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2602 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2603 			    struct bkey *k)
2604 {
2605 	struct refill *refill = container_of(op, struct refill, op);
2606 	struct keybuf *buf = refill->buf;
2607 	int ret = MAP_CONTINUE;
2608 
2609 	if (bkey_cmp(k, refill->end) > 0) {
2610 		ret = MAP_DONE;
2611 		goto out;
2612 	}
2613 
2614 	if (!KEY_SIZE(k)) /* end key */
2615 		goto out;
2616 
2617 	if (refill->pred(buf, k)) {
2618 		struct keybuf_key *w;
2619 
2620 		spin_lock(&buf->lock);
2621 
2622 		w = array_alloc(&buf->freelist);
2623 		if (!w) {
2624 			spin_unlock(&buf->lock);
2625 			return MAP_DONE;
2626 		}
2627 
2628 		w->private = NULL;
2629 		bkey_copy(&w->key, k);
2630 
2631 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2632 			array_free(&buf->freelist, w);
2633 		else
2634 			refill->nr_found++;
2635 
2636 		if (array_freelist_empty(&buf->freelist))
2637 			ret = MAP_DONE;
2638 
2639 		spin_unlock(&buf->lock);
2640 	}
2641 out:
2642 	buf->last_scanned = *k;
2643 	return ret;
2644 }
2645 
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2646 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2647 		       struct bkey *end, keybuf_pred_fn *pred)
2648 {
2649 	struct bkey start = buf->last_scanned;
2650 	struct refill refill;
2651 
2652 	cond_resched();
2653 
2654 	bch_btree_op_init(&refill.op, -1);
2655 	refill.nr_found	= 0;
2656 	refill.buf	= buf;
2657 	refill.end	= end;
2658 	refill.pred	= pred;
2659 
2660 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2661 			   refill_keybuf_fn, MAP_END_KEY);
2662 
2663 	trace_bcache_keyscan(refill.nr_found,
2664 			     KEY_INODE(&start), KEY_OFFSET(&start),
2665 			     KEY_INODE(&buf->last_scanned),
2666 			     KEY_OFFSET(&buf->last_scanned));
2667 
2668 	spin_lock(&buf->lock);
2669 
2670 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2671 		struct keybuf_key *w;
2672 
2673 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2674 		buf->start	= START_KEY(&w->key);
2675 
2676 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2677 		buf->end	= w->key;
2678 	} else {
2679 		buf->start	= MAX_KEY;
2680 		buf->end	= MAX_KEY;
2681 	}
2682 
2683 	spin_unlock(&buf->lock);
2684 }
2685 
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2686 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2687 {
2688 	rb_erase(&w->node, &buf->keys);
2689 	array_free(&buf->freelist, w);
2690 }
2691 
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2692 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2693 {
2694 	spin_lock(&buf->lock);
2695 	__bch_keybuf_del(buf, w);
2696 	spin_unlock(&buf->lock);
2697 }
2698 
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2699 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2700 				  struct bkey *end)
2701 {
2702 	bool ret = false;
2703 	struct keybuf_key *p, *w, s;
2704 
2705 	s.key = *start;
2706 
2707 	if (bkey_cmp(end, &buf->start) <= 0 ||
2708 	    bkey_cmp(start, &buf->end) >= 0)
2709 		return false;
2710 
2711 	spin_lock(&buf->lock);
2712 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2713 
2714 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2715 		p = w;
2716 		w = RB_NEXT(w, node);
2717 
2718 		if (p->private)
2719 			ret = true;
2720 		else
2721 			__bch_keybuf_del(buf, p);
2722 	}
2723 
2724 	spin_unlock(&buf->lock);
2725 	return ret;
2726 }
2727 
bch_keybuf_next(struct keybuf * buf)2728 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2729 {
2730 	struct keybuf_key *w;
2731 
2732 	spin_lock(&buf->lock);
2733 
2734 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2735 
2736 	while (w && w->private)
2737 		w = RB_NEXT(w, node);
2738 
2739 	if (w)
2740 		w->private = ERR_PTR(-EINTR);
2741 
2742 	spin_unlock(&buf->lock);
2743 	return w;
2744 }
2745 
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2746 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2747 					  struct keybuf *buf,
2748 					  struct bkey *end,
2749 					  keybuf_pred_fn *pred)
2750 {
2751 	struct keybuf_key *ret;
2752 
2753 	while (1) {
2754 		ret = bch_keybuf_next(buf);
2755 		if (ret)
2756 			break;
2757 
2758 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2759 			pr_debug("scan finished\n");
2760 			break;
2761 		}
2762 
2763 		bch_refill_keybuf(c, buf, end, pred);
2764 	}
2765 
2766 	return ret;
2767 }
2768 
bch_keybuf_init(struct keybuf * buf)2769 void bch_keybuf_init(struct keybuf *buf)
2770 {
2771 	buf->last_scanned	= MAX_KEY;
2772 	buf->keys		= RB_ROOT;
2773 
2774 	spin_lock_init(&buf->lock);
2775 	array_allocator_init(&buf->freelist);
2776 }
2777 
bch_btree_exit(void)2778 void bch_btree_exit(void)
2779 {
2780 	if (btree_io_wq)
2781 		destroy_workqueue(btree_io_wq);
2782 }
2783 
bch_btree_init(void)2784 int __init bch_btree_init(void)
2785 {
2786 	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2787 	if (!btree_io_wq)
2788 		return -ENOMEM;
2789 
2790 	return 0;
2791 }
2792