1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 struct cec_msg *msg,
28 unsigned int la_idx);
29
30 /*
31 * 400 ms is the time it takes for one 16 byte message to be
32 * transferred and 5 is the maximum number of retries. Add
33 * another 100 ms as a margin. So if the transmit doesn't
34 * finish before that time something is really wrong and we
35 * have to time out.
36 *
37 * This is a sign that something it really wrong and a warning
38 * will be issued.
39 */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41
42 #define call_op(adap, op, arg...) \
43 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44
45 #define call_void_op(adap, op, arg...) \
46 do { \
47 if (adap->ops->op) \
48 adap->ops->op(adap, ## arg); \
49 } while (0)
50
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53 int i;
54
55 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56 if (adap->log_addrs.log_addr[i] == log_addr)
57 return i;
58 return -1;
59 }
60
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63 int i = cec_log_addr2idx(adap, log_addr);
64
65 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69 unsigned int *offset)
70 {
71 unsigned int loc = cec_get_edid_spa_location(edid, size);
72
73 if (offset)
74 *offset = loc;
75 if (loc == 0)
76 return CEC_PHYS_ADDR_INVALID;
77 return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82 const struct drm_connector *connector)
83 {
84 memset(conn_info, 0, sizeof(*conn_info));
85 conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86 conn_info->drm.card_no = connector->dev->primary->index;
87 conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90
91 /*
92 * Queue a new event for this filehandle. If ts == 0, then set it
93 * to the current time.
94 *
95 * We keep a queue of at most max_event events where max_event differs
96 * per event. If the queue becomes full, then drop the oldest event and
97 * keep track of how many events we've dropped.
98 */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)99 void cec_queue_event_fh(struct cec_fh *fh,
100 const struct cec_event *new_ev, u64 ts)
101 {
102 static const u16 max_events[CEC_NUM_EVENTS] = {
103 1, 1, 800, 800, 8, 8, 8, 8
104 };
105 struct cec_event_entry *entry;
106 unsigned int ev_idx = new_ev->event - 1;
107
108 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109 return;
110
111 if (ts == 0)
112 ts = ktime_get_ns();
113
114 mutex_lock(&fh->lock);
115 if (ev_idx < CEC_NUM_CORE_EVENTS)
116 entry = &fh->core_events[ev_idx];
117 else
118 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119 if (entry) {
120 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121 fh->queued_events[ev_idx]) {
122 entry->ev.lost_msgs.lost_msgs +=
123 new_ev->lost_msgs.lost_msgs;
124 goto unlock;
125 }
126 entry->ev = *new_ev;
127 entry->ev.ts = ts;
128
129 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130 /* Add new msg at the end of the queue */
131 list_add_tail(&entry->list, &fh->events[ev_idx]);
132 fh->queued_events[ev_idx]++;
133 fh->total_queued_events++;
134 goto unlock;
135 }
136
137 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138 list_add_tail(&entry->list, &fh->events[ev_idx]);
139 /* drop the oldest event */
140 entry = list_first_entry(&fh->events[ev_idx],
141 struct cec_event_entry, list);
142 list_del(&entry->list);
143 kfree(entry);
144 }
145 }
146 /* Mark that events were lost */
147 entry = list_first_entry_or_null(&fh->events[ev_idx],
148 struct cec_event_entry, list);
149 if (entry)
150 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151
152 unlock:
153 mutex_unlock(&fh->lock);
154 wake_up_interruptible(&fh->wait);
155 }
156
157 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)158 static void cec_queue_event(struct cec_adapter *adap,
159 const struct cec_event *ev)
160 {
161 u64 ts = ktime_get_ns();
162 struct cec_fh *fh;
163
164 mutex_lock(&adap->devnode.lock);
165 list_for_each_entry(fh, &adap->devnode.fhs, list)
166 cec_queue_event_fh(fh, ev, ts);
167 mutex_unlock(&adap->devnode.lock);
168 }
169
170 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172 bool dropped_events, ktime_t ts)
173 {
174 struct cec_event ev = {
175 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176 CEC_EVENT_PIN_CEC_LOW,
177 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178 };
179 struct cec_fh *fh;
180
181 mutex_lock(&adap->devnode.lock);
182 list_for_each_entry(fh, &adap->devnode.fhs, list)
183 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185 mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
188
189 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
191 {
192 struct cec_event ev = {
193 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
194 CEC_EVENT_PIN_HPD_LOW,
195 };
196 struct cec_fh *fh;
197
198 mutex_lock(&adap->devnode.lock);
199 list_for_each_entry(fh, &adap->devnode.fhs, list)
200 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
201 mutex_unlock(&adap->devnode.lock);
202 }
203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
204
205 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
207 {
208 struct cec_event ev = {
209 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
210 CEC_EVENT_PIN_5V_LOW,
211 };
212 struct cec_fh *fh;
213
214 mutex_lock(&adap->devnode.lock);
215 list_for_each_entry(fh, &adap->devnode.fhs, list)
216 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
217 mutex_unlock(&adap->devnode.lock);
218 }
219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
220
221 /*
222 * Queue a new message for this filehandle.
223 *
224 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
225 * queue becomes full, then drop the oldest message and keep track
226 * of how many messages we've dropped.
227 */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
229 {
230 static const struct cec_event ev_lost_msgs = {
231 .event = CEC_EVENT_LOST_MSGS,
232 .flags = 0,
233 {
234 .lost_msgs = { 1 },
235 },
236 };
237 struct cec_msg_entry *entry;
238
239 mutex_lock(&fh->lock);
240 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
241 if (entry) {
242 entry->msg = *msg;
243 /* Add new msg at the end of the queue */
244 list_add_tail(&entry->list, &fh->msgs);
245
246 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
247 /* All is fine if there is enough room */
248 fh->queued_msgs++;
249 mutex_unlock(&fh->lock);
250 wake_up_interruptible(&fh->wait);
251 return;
252 }
253
254 /*
255 * if the message queue is full, then drop the oldest one and
256 * send a lost message event.
257 */
258 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
259 list_del(&entry->list);
260 kfree(entry);
261 }
262 mutex_unlock(&fh->lock);
263
264 /*
265 * We lost a message, either because kmalloc failed or the queue
266 * was full.
267 */
268 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
269 }
270
271 /*
272 * Queue the message for those filehandles that are in monitor mode.
273 * If valid_la is true (this message is for us or was sent by us),
274 * then pass it on to any monitoring filehandle. If this message
275 * isn't for us or from us, then only give it to filehandles that
276 * are in MONITOR_ALL mode.
277 *
278 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
279 * set and the CEC adapter was placed in 'monitor all' mode.
280 */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)281 static void cec_queue_msg_monitor(struct cec_adapter *adap,
282 const struct cec_msg *msg,
283 bool valid_la)
284 {
285 struct cec_fh *fh;
286 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
287 CEC_MODE_MONITOR_ALL;
288
289 mutex_lock(&adap->devnode.lock);
290 list_for_each_entry(fh, &adap->devnode.fhs, list) {
291 if (fh->mode_follower >= monitor_mode)
292 cec_queue_msg_fh(fh, msg);
293 }
294 mutex_unlock(&adap->devnode.lock);
295 }
296
297 /*
298 * Queue the message for follower filehandles.
299 */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)300 static void cec_queue_msg_followers(struct cec_adapter *adap,
301 const struct cec_msg *msg)
302 {
303 struct cec_fh *fh;
304
305 mutex_lock(&adap->devnode.lock);
306 list_for_each_entry(fh, &adap->devnode.fhs, list) {
307 if (fh->mode_follower == CEC_MODE_FOLLOWER)
308 cec_queue_msg_fh(fh, msg);
309 }
310 mutex_unlock(&adap->devnode.lock);
311 }
312
313 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)314 static void cec_post_state_event(struct cec_adapter *adap)
315 {
316 struct cec_event ev = {
317 .event = CEC_EVENT_STATE_CHANGE,
318 };
319
320 ev.state_change.phys_addr = adap->phys_addr;
321 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
322 ev.state_change.have_conn_info =
323 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
324 cec_queue_event(adap, &ev);
325 }
326
327 /*
328 * A CEC transmit (and a possible wait for reply) completed.
329 * If this was in blocking mode, then complete it, otherwise
330 * queue the message for userspace to dequeue later.
331 *
332 * This function is called with adap->lock held.
333 */
cec_data_completed(struct cec_data * data)334 static void cec_data_completed(struct cec_data *data)
335 {
336 /*
337 * Delete this transmit from the filehandle's xfer_list since
338 * we're done with it.
339 *
340 * Note that if the filehandle is closed before this transmit
341 * finished, then the release() function will set data->fh to NULL.
342 * Without that we would be referring to a closed filehandle.
343 */
344 if (data->fh)
345 list_del(&data->xfer_list);
346
347 if (data->blocking) {
348 /*
349 * Someone is blocking so mark the message as completed
350 * and call complete.
351 */
352 data->completed = true;
353 complete(&data->c);
354 } else {
355 /*
356 * No blocking, so just queue the message if needed and
357 * free the memory.
358 */
359 if (data->fh)
360 cec_queue_msg_fh(data->fh, &data->msg);
361 kfree(data);
362 }
363 }
364
365 /*
366 * A pending CEC transmit needs to be cancelled, either because the CEC
367 * adapter is disabled or the transmit takes an impossibly long time to
368 * finish.
369 *
370 * This function is called with adap->lock held.
371 */
cec_data_cancel(struct cec_data * data,u8 tx_status)372 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
373 {
374 /*
375 * It's either the current transmit, or it is a pending
376 * transmit. Take the appropriate action to clear it.
377 */
378 if (data->adap->transmitting == data) {
379 data->adap->transmitting = NULL;
380 } else {
381 list_del_init(&data->list);
382 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
383 if (!WARN_ON(!data->adap->transmit_queue_sz))
384 data->adap->transmit_queue_sz--;
385 }
386
387 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
388 data->msg.rx_ts = ktime_get_ns();
389 data->msg.rx_status = CEC_RX_STATUS_ABORTED;
390 } else {
391 data->msg.tx_ts = ktime_get_ns();
392 data->msg.tx_status |= tx_status |
393 CEC_TX_STATUS_MAX_RETRIES;
394 data->msg.tx_error_cnt++;
395 data->attempts = 0;
396 }
397
398 /* Queue transmitted message for monitoring purposes */
399 cec_queue_msg_monitor(data->adap, &data->msg, 1);
400
401 cec_data_completed(data);
402 }
403
404 /*
405 * Flush all pending transmits and cancel any pending timeout work.
406 *
407 * This function is called with adap->lock held.
408 */
cec_flush(struct cec_adapter * adap)409 static void cec_flush(struct cec_adapter *adap)
410 {
411 struct cec_data *data, *n;
412
413 /*
414 * If the adapter is disabled, or we're asked to stop,
415 * then cancel any pending transmits.
416 */
417 while (!list_empty(&adap->transmit_queue)) {
418 data = list_first_entry(&adap->transmit_queue,
419 struct cec_data, list);
420 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
421 }
422 if (adap->transmitting)
423 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
424
425 /* Cancel the pending timeout work. */
426 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
427 if (cancel_delayed_work(&data->work))
428 cec_data_cancel(data, CEC_TX_STATUS_OK);
429 /*
430 * If cancel_delayed_work returned false, then
431 * the cec_wait_timeout function is running,
432 * which will call cec_data_completed. So no
433 * need to do anything special in that case.
434 */
435 }
436 /*
437 * If something went wrong and this counter isn't what it should
438 * be, then this will reset it back to 0. Warn if it is not 0,
439 * since it indicates a bug, either in this framework or in a
440 * CEC driver.
441 */
442 if (WARN_ON(adap->transmit_queue_sz))
443 adap->transmit_queue_sz = 0;
444 }
445
446 /*
447 * Main CEC state machine
448 *
449 * Wait until the thread should be stopped, or we are not transmitting and
450 * a new transmit message is queued up, in which case we start transmitting
451 * that message. When the adapter finished transmitting the message it will
452 * call cec_transmit_done().
453 *
454 * If the adapter is disabled, then remove all queued messages instead.
455 *
456 * If the current transmit times out, then cancel that transmit.
457 */
cec_thread_func(void * _adap)458 int cec_thread_func(void *_adap)
459 {
460 struct cec_adapter *adap = _adap;
461
462 for (;;) {
463 unsigned int signal_free_time;
464 struct cec_data *data;
465 bool timeout = false;
466 u8 attempts;
467
468 if (adap->transmit_in_progress) {
469 int err;
470
471 /*
472 * We are transmitting a message, so add a timeout
473 * to prevent the state machine to get stuck waiting
474 * for this message to finalize and add a check to
475 * see if the adapter is disabled in which case the
476 * transmit should be canceled.
477 */
478 err = wait_event_interruptible_timeout(adap->kthread_waitq,
479 (adap->needs_hpd &&
480 (!adap->is_configured && !adap->is_configuring)) ||
481 kthread_should_stop() ||
482 (!adap->transmit_in_progress &&
483 !list_empty(&adap->transmit_queue)),
484 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
485 timeout = err == 0;
486 } else {
487 /* Otherwise we just wait for something to happen. */
488 wait_event_interruptible(adap->kthread_waitq,
489 kthread_should_stop() ||
490 (!adap->transmit_in_progress &&
491 !list_empty(&adap->transmit_queue)));
492 }
493
494 mutex_lock(&adap->lock);
495
496 if ((adap->needs_hpd &&
497 (!adap->is_configured && !adap->is_configuring)) ||
498 kthread_should_stop()) {
499 cec_flush(adap);
500 goto unlock;
501 }
502
503 if (adap->transmit_in_progress && timeout) {
504 /*
505 * If we timeout, then log that. Normally this does
506 * not happen and it is an indication of a faulty CEC
507 * adapter driver, or the CEC bus is in some weird
508 * state. On rare occasions it can happen if there is
509 * so much traffic on the bus that the adapter was
510 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
511 */
512 if (adap->transmitting) {
513 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 adap->transmitting->msg.len,
515 adap->transmitting->msg.msg);
516 /* Just give up on this. */
517 cec_data_cancel(adap->transmitting,
518 CEC_TX_STATUS_TIMEOUT);
519 } else {
520 pr_warn("cec-%s: transmit timed out\n", adap->name);
521 }
522 adap->transmit_in_progress = false;
523 adap->tx_timeouts++;
524 goto unlock;
525 }
526
527 /*
528 * If we are still transmitting, or there is nothing new to
529 * transmit, then just continue waiting.
530 */
531 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 goto unlock;
533
534 /* Get a new message to transmit */
535 data = list_first_entry(&adap->transmit_queue,
536 struct cec_data, list);
537 list_del_init(&data->list);
538 if (!WARN_ON(!data->adap->transmit_queue_sz))
539 adap->transmit_queue_sz--;
540
541 /* Make this the current transmitting message */
542 adap->transmitting = data;
543
544 /*
545 * Suggested number of attempts as per the CEC 2.0 spec:
546 * 4 attempts is the default, except for 'secondary poll
547 * messages', i.e. poll messages not sent during the adapter
548 * configuration phase when it allocates logical addresses.
549 */
550 if (data->msg.len == 1 && adap->is_configured)
551 attempts = 2;
552 else
553 attempts = 4;
554
555 /* Set the suggested signal free time */
556 if (data->attempts) {
557 /* should be >= 3 data bit periods for a retry */
558 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 } else if (adap->last_initiator !=
560 cec_msg_initiator(&data->msg)) {
561 /* should be >= 5 data bit periods for new initiator */
562 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 adap->last_initiator = cec_msg_initiator(&data->msg);
564 } else {
565 /*
566 * should be >= 7 data bit periods for sending another
567 * frame immediately after another.
568 */
569 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 }
571 if (data->attempts == 0)
572 data->attempts = attempts;
573
574 /* Tell the adapter to transmit, cancel on error */
575 if (adap->ops->adap_transmit(adap, data->attempts,
576 signal_free_time, &data->msg))
577 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
578 else
579 adap->transmit_in_progress = true;
580
581 unlock:
582 mutex_unlock(&adap->lock);
583
584 if (kthread_should_stop())
585 break;
586 }
587 return 0;
588 }
589
590 /*
591 * Called by the CEC adapter if a transmit finished.
592 */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)593 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
594 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
595 u8 error_cnt, ktime_t ts)
596 {
597 struct cec_data *data;
598 struct cec_msg *msg;
599 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
600 low_drive_cnt + error_cnt;
601
602 dprintk(2, "%s: status 0x%02x\n", __func__, status);
603 if (attempts_made < 1)
604 attempts_made = 1;
605
606 mutex_lock(&adap->lock);
607 data = adap->transmitting;
608 if (!data) {
609 /*
610 * This might happen if a transmit was issued and the cable is
611 * unplugged while the transmit is ongoing. Ignore this
612 * transmit in that case.
613 */
614 if (!adap->transmit_in_progress)
615 dprintk(1, "%s was called without an ongoing transmit!\n",
616 __func__);
617 adap->transmit_in_progress = false;
618 goto wake_thread;
619 }
620 adap->transmit_in_progress = false;
621
622 msg = &data->msg;
623
624 /* Drivers must fill in the status! */
625 WARN_ON(status == 0);
626 msg->tx_ts = ktime_to_ns(ts);
627 msg->tx_status |= status;
628 msg->tx_arb_lost_cnt += arb_lost_cnt;
629 msg->tx_nack_cnt += nack_cnt;
630 msg->tx_low_drive_cnt += low_drive_cnt;
631 msg->tx_error_cnt += error_cnt;
632
633 /* Mark that we're done with this transmit */
634 adap->transmitting = NULL;
635
636 /*
637 * If there are still retry attempts left and there was an error and
638 * the hardware didn't signal that it retried itself (by setting
639 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
640 */
641 if (data->attempts > attempts_made &&
642 !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
643 /* Retry this message */
644 data->attempts -= attempts_made;
645 if (msg->timeout)
646 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
647 msg->len, msg->msg, data->attempts, msg->reply);
648 else
649 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
650 msg->len, msg->msg, data->attempts);
651 /* Add the message in front of the transmit queue */
652 list_add(&data->list, &adap->transmit_queue);
653 adap->transmit_queue_sz++;
654 goto wake_thread;
655 }
656
657 data->attempts = 0;
658
659 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
660 if (!(status & CEC_TX_STATUS_OK))
661 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
662
663 /* Queue transmitted message for monitoring purposes */
664 cec_queue_msg_monitor(adap, msg, 1);
665
666 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
667 msg->timeout) {
668 /*
669 * Queue the message into the wait queue if we want to wait
670 * for a reply.
671 */
672 list_add_tail(&data->list, &adap->wait_queue);
673 schedule_delayed_work(&data->work,
674 msecs_to_jiffies(msg->timeout));
675 } else {
676 /* Otherwise we're done */
677 cec_data_completed(data);
678 }
679
680 wake_thread:
681 /*
682 * Wake up the main thread to see if another message is ready
683 * for transmitting or to retry the current message.
684 */
685 wake_up_interruptible(&adap->kthread_waitq);
686 mutex_unlock(&adap->lock);
687 }
688 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
689
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)690 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
691 u8 status, ktime_t ts)
692 {
693 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
694 case CEC_TX_STATUS_OK:
695 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
696 return;
697 case CEC_TX_STATUS_ARB_LOST:
698 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
699 return;
700 case CEC_TX_STATUS_NACK:
701 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
702 return;
703 case CEC_TX_STATUS_LOW_DRIVE:
704 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
705 return;
706 case CEC_TX_STATUS_ERROR:
707 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
708 return;
709 default:
710 /* Should never happen */
711 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
712 return;
713 }
714 }
715 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
716
717 /*
718 * Called when waiting for a reply times out.
719 */
cec_wait_timeout(struct work_struct * work)720 static void cec_wait_timeout(struct work_struct *work)
721 {
722 struct cec_data *data = container_of(work, struct cec_data, work.work);
723 struct cec_adapter *adap = data->adap;
724
725 mutex_lock(&adap->lock);
726 /*
727 * Sanity check in case the timeout and the arrival of the message
728 * happened at the same time.
729 */
730 if (list_empty(&data->list))
731 goto unlock;
732
733 /* Mark the message as timed out */
734 list_del_init(&data->list);
735 data->msg.rx_ts = ktime_get_ns();
736 data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
737 cec_data_completed(data);
738 unlock:
739 mutex_unlock(&adap->lock);
740 }
741
742 /*
743 * Transmit a message. The fh argument may be NULL if the transmit is not
744 * associated with a specific filehandle.
745 *
746 * This function is called with adap->lock held.
747 */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)748 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
749 struct cec_fh *fh, bool block)
750 {
751 struct cec_data *data;
752 bool is_raw = msg_is_raw(msg);
753
754 if (adap->devnode.unregistered)
755 return -ENODEV;
756
757 msg->rx_ts = 0;
758 msg->tx_ts = 0;
759 msg->rx_status = 0;
760 msg->tx_status = 0;
761 msg->tx_arb_lost_cnt = 0;
762 msg->tx_nack_cnt = 0;
763 msg->tx_low_drive_cnt = 0;
764 msg->tx_error_cnt = 0;
765 msg->sequence = 0;
766
767 if (msg->reply && msg->timeout == 0) {
768 /* Make sure the timeout isn't 0. */
769 msg->timeout = 1000;
770 }
771 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
772
773 if (!msg->timeout)
774 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
775
776 /* Sanity checks */
777 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
778 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
779 return -EINVAL;
780 }
781
782 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
783
784 if (msg->timeout)
785 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
786 __func__, msg->len, msg->msg, msg->reply,
787 !block ? ", nb" : "");
788 else
789 dprintk(2, "%s: %*ph%s\n",
790 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
791
792 if (msg->timeout && msg->len == 1) {
793 dprintk(1, "%s: can't reply to poll msg\n", __func__);
794 return -EINVAL;
795 }
796
797 if (is_raw) {
798 if (!capable(CAP_SYS_RAWIO))
799 return -EPERM;
800 } else {
801 /* A CDC-Only device can only send CDC messages */
802 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
803 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
804 dprintk(1, "%s: not a CDC message\n", __func__);
805 return -EINVAL;
806 }
807
808 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
809 msg->msg[2] = adap->phys_addr >> 8;
810 msg->msg[3] = adap->phys_addr & 0xff;
811 }
812
813 if (msg->len == 1) {
814 if (cec_msg_destination(msg) == 0xf) {
815 dprintk(1, "%s: invalid poll message\n",
816 __func__);
817 return -EINVAL;
818 }
819 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
820 /*
821 * If the destination is a logical address our
822 * adapter has already claimed, then just NACK
823 * this. It depends on the hardware what it will
824 * do with a POLL to itself (some OK this), so
825 * it is just as easy to handle it here so the
826 * behavior will be consistent.
827 */
828 msg->tx_ts = ktime_get_ns();
829 msg->tx_status = CEC_TX_STATUS_NACK |
830 CEC_TX_STATUS_MAX_RETRIES;
831 msg->tx_nack_cnt = 1;
832 msg->sequence = ++adap->sequence;
833 if (!msg->sequence)
834 msg->sequence = ++adap->sequence;
835 return 0;
836 }
837 }
838 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
839 cec_has_log_addr(adap, cec_msg_destination(msg))) {
840 dprintk(1, "%s: destination is the adapter itself\n",
841 __func__);
842 return -EINVAL;
843 }
844 if (msg->len > 1 && adap->is_configured &&
845 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
846 dprintk(1, "%s: initiator has unknown logical address %d\n",
847 __func__, cec_msg_initiator(msg));
848 return -EINVAL;
849 }
850 /*
851 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
852 * transmitted to a TV, even if the adapter is unconfigured.
853 * This makes it possible to detect or wake up displays that
854 * pull down the HPD when in standby.
855 */
856 if (!adap->is_configured && !adap->is_configuring &&
857 (msg->len > 2 ||
858 cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
859 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
860 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
861 dprintk(1, "%s: adapter is unconfigured\n", __func__);
862 return -ENONET;
863 }
864 }
865
866 if (!adap->is_configured && !adap->is_configuring) {
867 if (adap->needs_hpd) {
868 dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
869 __func__);
870 return -ENONET;
871 }
872 if (msg->reply) {
873 dprintk(1, "%s: invalid msg->reply\n", __func__);
874 return -EINVAL;
875 }
876 }
877
878 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
879 dprintk(2, "%s: transmit queue full\n", __func__);
880 return -EBUSY;
881 }
882
883 data = kzalloc(sizeof(*data), GFP_KERNEL);
884 if (!data)
885 return -ENOMEM;
886
887 msg->sequence = ++adap->sequence;
888 if (!msg->sequence)
889 msg->sequence = ++adap->sequence;
890
891 data->msg = *msg;
892 data->fh = fh;
893 data->adap = adap;
894 data->blocking = block;
895
896 init_completion(&data->c);
897 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
898
899 if (fh)
900 list_add_tail(&data->xfer_list, &fh->xfer_list);
901
902 list_add_tail(&data->list, &adap->transmit_queue);
903 adap->transmit_queue_sz++;
904 if (!adap->transmitting)
905 wake_up_interruptible(&adap->kthread_waitq);
906
907 /* All done if we don't need to block waiting for completion */
908 if (!block)
909 return 0;
910
911 /*
912 * Release the lock and wait, retake the lock afterwards.
913 */
914 mutex_unlock(&adap->lock);
915 wait_for_completion_killable(&data->c);
916 if (!data->completed)
917 cancel_delayed_work_sync(&data->work);
918 mutex_lock(&adap->lock);
919
920 /* Cancel the transmit if it was interrupted */
921 if (!data->completed)
922 cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
923
924 /* The transmit completed (possibly with an error) */
925 *msg = data->msg;
926 kfree(data);
927 return 0;
928 }
929
930 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)931 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
932 bool block)
933 {
934 int ret;
935
936 mutex_lock(&adap->lock);
937 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
938 mutex_unlock(&adap->lock);
939 return ret;
940 }
941 EXPORT_SYMBOL_GPL(cec_transmit_msg);
942
943 /*
944 * I don't like forward references but without this the low-level
945 * cec_received_msg() function would come after a bunch of high-level
946 * CEC protocol handling functions. That was very confusing.
947 */
948 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
949 bool is_reply);
950
951 #define DIRECTED 0x80
952 #define BCAST1_4 0x40
953 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
954 #define BCAST (BCAST1_4 | BCAST2_0)
955 #define BOTH (BCAST | DIRECTED)
956
957 /*
958 * Specify minimum length and whether the message is directed, broadcast
959 * or both. Messages that do not match the criteria are ignored as per
960 * the CEC specification.
961 */
962 static const u8 cec_msg_size[256] = {
963 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
964 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
965 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
966 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
967 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
968 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
969 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
970 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
971 [CEC_MSG_STANDBY] = 2 | BOTH,
972 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
973 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
974 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
975 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
976 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
977 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
978 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
979 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
980 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
981 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
982 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
983 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
984 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
985 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
986 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
987 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
988 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
989 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
990 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
991 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
992 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
993 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
994 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
995 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
996 [CEC_MSG_PLAY] = 3 | DIRECTED,
997 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
998 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
999 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1000 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1001 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1002 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1003 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1004 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1005 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1006 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1007 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1008 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1009 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1010 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1011 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1012 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1013 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1014 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1015 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1016 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1017 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1018 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1019 [CEC_MSG_ABORT] = 2 | DIRECTED,
1020 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1021 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1022 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1023 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1024 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1025 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1026 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1027 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1028 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1029 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1030 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1031 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1032 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1033 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1034 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1035 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1036 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1037 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1038 };
1039
1040 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1041 void cec_received_msg_ts(struct cec_adapter *adap,
1042 struct cec_msg *msg, ktime_t ts)
1043 {
1044 struct cec_data *data;
1045 u8 msg_init = cec_msg_initiator(msg);
1046 u8 msg_dest = cec_msg_destination(msg);
1047 u8 cmd = msg->msg[1];
1048 bool is_reply = false;
1049 bool valid_la = true;
1050 u8 min_len = 0;
1051
1052 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1053 return;
1054
1055 if (adap->devnode.unregistered)
1056 return;
1057
1058 /*
1059 * Some CEC adapters will receive the messages that they transmitted.
1060 * This test filters out those messages by checking if we are the
1061 * initiator, and just returning in that case.
1062 *
1063 * Note that this won't work if this is an Unregistered device.
1064 *
1065 * It is bad practice if the hardware receives the message that it
1066 * transmitted and luckily most CEC adapters behave correctly in this
1067 * respect.
1068 */
1069 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1070 cec_has_log_addr(adap, msg_init))
1071 return;
1072
1073 msg->rx_ts = ktime_to_ns(ts);
1074 msg->rx_status = CEC_RX_STATUS_OK;
1075 msg->sequence = msg->reply = msg->timeout = 0;
1076 msg->tx_status = 0;
1077 msg->tx_ts = 0;
1078 msg->tx_arb_lost_cnt = 0;
1079 msg->tx_nack_cnt = 0;
1080 msg->tx_low_drive_cnt = 0;
1081 msg->tx_error_cnt = 0;
1082 msg->flags = 0;
1083 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1084
1085 mutex_lock(&adap->lock);
1086 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1087
1088 if (!adap->transmit_in_progress)
1089 adap->last_initiator = 0xff;
1090
1091 /* Check if this message was for us (directed or broadcast). */
1092 if (!cec_msg_is_broadcast(msg))
1093 valid_la = cec_has_log_addr(adap, msg_dest);
1094
1095 /*
1096 * Check if the length is not too short or if the message is a
1097 * broadcast message where a directed message was expected or
1098 * vice versa. If so, then the message has to be ignored (according
1099 * to section CEC 7.3 and CEC 12.2).
1100 */
1101 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1102 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1103
1104 min_len = cec_msg_size[cmd] & 0x1f;
1105 if (msg->len < min_len)
1106 valid_la = false;
1107 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1108 valid_la = false;
1109 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1110 valid_la = false;
1111 else if (cec_msg_is_broadcast(msg) &&
1112 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1113 !(dir_fl & BCAST1_4))
1114 valid_la = false;
1115 }
1116 if (valid_la && min_len) {
1117 /* These messages have special length requirements */
1118 switch (cmd) {
1119 case CEC_MSG_TIMER_STATUS:
1120 if (msg->msg[2] & 0x10) {
1121 switch (msg->msg[2] & 0xf) {
1122 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1123 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1124 if (msg->len < 5)
1125 valid_la = false;
1126 break;
1127 }
1128 } else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1129 if (msg->len < 5)
1130 valid_la = false;
1131 }
1132 break;
1133 case CEC_MSG_RECORD_ON:
1134 switch (msg->msg[2]) {
1135 case CEC_OP_RECORD_SRC_OWN:
1136 break;
1137 case CEC_OP_RECORD_SRC_DIGITAL:
1138 if (msg->len < 10)
1139 valid_la = false;
1140 break;
1141 case CEC_OP_RECORD_SRC_ANALOG:
1142 if (msg->len < 7)
1143 valid_la = false;
1144 break;
1145 case CEC_OP_RECORD_SRC_EXT_PLUG:
1146 if (msg->len < 4)
1147 valid_la = false;
1148 break;
1149 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1150 if (msg->len < 5)
1151 valid_la = false;
1152 break;
1153 }
1154 break;
1155 }
1156 }
1157
1158 /* It's a valid message and not a poll or CDC message */
1159 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1160 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1161
1162 /* The aborted command is in msg[2] */
1163 if (abort)
1164 cmd = msg->msg[2];
1165
1166 /*
1167 * Walk over all transmitted messages that are waiting for a
1168 * reply.
1169 */
1170 list_for_each_entry(data, &adap->wait_queue, list) {
1171 struct cec_msg *dst = &data->msg;
1172
1173 /*
1174 * The *only* CEC message that has two possible replies
1175 * is CEC_MSG_INITIATE_ARC.
1176 * In this case allow either of the two replies.
1177 */
1178 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1179 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1180 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1181 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1182 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1183 dst->reply = cmd;
1184
1185 /* Does the command match? */
1186 if ((abort && cmd != dst->msg[1]) ||
1187 (!abort && cmd != dst->reply))
1188 continue;
1189
1190 /* Does the addressing match? */
1191 if (msg_init != cec_msg_destination(dst) &&
1192 !cec_msg_is_broadcast(dst))
1193 continue;
1194
1195 /* We got a reply */
1196 memcpy(dst->msg, msg->msg, msg->len);
1197 dst->len = msg->len;
1198 dst->rx_ts = msg->rx_ts;
1199 dst->rx_status = msg->rx_status;
1200 if (abort)
1201 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1202 msg->flags = dst->flags;
1203 msg->sequence = dst->sequence;
1204 /* Remove it from the wait_queue */
1205 list_del_init(&data->list);
1206
1207 /* Cancel the pending timeout work */
1208 if (!cancel_delayed_work(&data->work)) {
1209 mutex_unlock(&adap->lock);
1210 cancel_delayed_work_sync(&data->work);
1211 mutex_lock(&adap->lock);
1212 }
1213 /*
1214 * Mark this as a reply, provided someone is still
1215 * waiting for the answer.
1216 */
1217 if (data->fh)
1218 is_reply = true;
1219 cec_data_completed(data);
1220 break;
1221 }
1222 }
1223 mutex_unlock(&adap->lock);
1224
1225 /* Pass the message on to any monitoring filehandles */
1226 cec_queue_msg_monitor(adap, msg, valid_la);
1227
1228 /* We're done if it is not for us or a poll message */
1229 if (!valid_la || msg->len <= 1)
1230 return;
1231
1232 if (adap->log_addrs.log_addr_mask == 0)
1233 return;
1234
1235 /*
1236 * Process the message on the protocol level. If is_reply is true,
1237 * then cec_receive_notify() won't pass on the reply to the listener(s)
1238 * since that was already done by cec_data_completed() above.
1239 */
1240 cec_receive_notify(adap, msg, is_reply);
1241 }
1242 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1243
1244 /* Logical Address Handling */
1245
1246 /*
1247 * Attempt to claim a specific logical address.
1248 *
1249 * This function is called with adap->lock held.
1250 */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1251 static int cec_config_log_addr(struct cec_adapter *adap,
1252 unsigned int idx,
1253 unsigned int log_addr)
1254 {
1255 struct cec_log_addrs *las = &adap->log_addrs;
1256 struct cec_msg msg = { };
1257 const unsigned int max_retries = 2;
1258 unsigned int i;
1259 int err;
1260
1261 if (cec_has_log_addr(adap, log_addr))
1262 return 0;
1263
1264 /* Send poll message */
1265 msg.len = 1;
1266 msg.msg[0] = (log_addr << 4) | log_addr;
1267
1268 for (i = 0; i < max_retries; i++) {
1269 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1270
1271 /*
1272 * While trying to poll the physical address was reset
1273 * and the adapter was unconfigured, so bail out.
1274 */
1275 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1276 return -EINTR;
1277
1278 if (err)
1279 return err;
1280
1281 /*
1282 * The message was aborted due to a disconnect or
1283 * unconfigure, just bail out.
1284 */
1285 if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1286 return -EINTR;
1287 if (msg.tx_status & CEC_TX_STATUS_OK)
1288 return 0;
1289 if (msg.tx_status & CEC_TX_STATUS_NACK)
1290 break;
1291 /*
1292 * Retry up to max_retries times if the message was neither
1293 * OKed or NACKed. This can happen due to e.g. a Lost
1294 * Arbitration condition.
1295 */
1296 }
1297
1298 /*
1299 * If we are unable to get an OK or a NACK after max_retries attempts
1300 * (and note that each attempt already consists of four polls), then
1301 * then we assume that something is really weird and that it is not a
1302 * good idea to try and claim this logical address.
1303 */
1304 if (i == max_retries)
1305 return 0;
1306
1307 /*
1308 * Message not acknowledged, so this logical
1309 * address is free to use.
1310 */
1311 err = adap->ops->adap_log_addr(adap, log_addr);
1312 if (err)
1313 return err;
1314
1315 las->log_addr[idx] = log_addr;
1316 las->log_addr_mask |= 1 << log_addr;
1317 return 1;
1318 }
1319
1320 /*
1321 * Unconfigure the adapter: clear all logical addresses and send
1322 * the state changed event.
1323 *
1324 * This function is called with adap->lock held.
1325 */
cec_adap_unconfigure(struct cec_adapter * adap)1326 static void cec_adap_unconfigure(struct cec_adapter *adap)
1327 {
1328 if (!adap->needs_hpd ||
1329 adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1330 WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1331 adap->log_addrs.log_addr_mask = 0;
1332 adap->is_configured = false;
1333 cec_flush(adap);
1334 wake_up_interruptible(&adap->kthread_waitq);
1335 cec_post_state_event(adap);
1336 }
1337
1338 /*
1339 * Attempt to claim the required logical addresses.
1340 */
cec_config_thread_func(void * arg)1341 static int cec_config_thread_func(void *arg)
1342 {
1343 /* The various LAs for each type of device */
1344 static const u8 tv_log_addrs[] = {
1345 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1346 CEC_LOG_ADDR_INVALID
1347 };
1348 static const u8 record_log_addrs[] = {
1349 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1350 CEC_LOG_ADDR_RECORD_3,
1351 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1352 CEC_LOG_ADDR_INVALID
1353 };
1354 static const u8 tuner_log_addrs[] = {
1355 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1356 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1357 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1358 CEC_LOG_ADDR_INVALID
1359 };
1360 static const u8 playback_log_addrs[] = {
1361 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1362 CEC_LOG_ADDR_PLAYBACK_3,
1363 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1364 CEC_LOG_ADDR_INVALID
1365 };
1366 static const u8 audiosystem_log_addrs[] = {
1367 CEC_LOG_ADDR_AUDIOSYSTEM,
1368 CEC_LOG_ADDR_INVALID
1369 };
1370 static const u8 specific_use_log_addrs[] = {
1371 CEC_LOG_ADDR_SPECIFIC,
1372 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1373 CEC_LOG_ADDR_INVALID
1374 };
1375 static const u8 *type2addrs[6] = {
1376 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1377 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1378 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1379 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1380 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1381 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1382 };
1383 static const u16 type2mask[] = {
1384 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1385 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1386 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1387 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1388 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1389 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1390 };
1391 struct cec_adapter *adap = arg;
1392 struct cec_log_addrs *las = &adap->log_addrs;
1393 int err;
1394 int i, j;
1395
1396 mutex_lock(&adap->lock);
1397 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1398 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1399 las->log_addr_mask = 0;
1400
1401 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1402 goto configured;
1403
1404 for (i = 0; i < las->num_log_addrs; i++) {
1405 unsigned int type = las->log_addr_type[i];
1406 const u8 *la_list;
1407 u8 last_la;
1408
1409 /*
1410 * The TV functionality can only map to physical address 0.
1411 * For any other address, try the Specific functionality
1412 * instead as per the spec.
1413 */
1414 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1415 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1416
1417 la_list = type2addrs[type];
1418 last_la = las->log_addr[i];
1419 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1420 if (last_la == CEC_LOG_ADDR_INVALID ||
1421 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1422 !((1 << last_la) & type2mask[type]))
1423 last_la = la_list[0];
1424
1425 err = cec_config_log_addr(adap, i, last_la);
1426 if (err > 0) /* Reused last LA */
1427 continue;
1428
1429 if (err < 0)
1430 goto unconfigure;
1431
1432 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1433 /* Tried this one already, skip it */
1434 if (la_list[j] == last_la)
1435 continue;
1436 /* The backup addresses are CEC 2.0 specific */
1437 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1438 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1439 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1440 continue;
1441
1442 err = cec_config_log_addr(adap, i, la_list[j]);
1443 if (err == 0) /* LA is in use */
1444 continue;
1445 if (err < 0)
1446 goto unconfigure;
1447 /* Done, claimed an LA */
1448 break;
1449 }
1450
1451 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1452 dprintk(1, "could not claim LA %d\n", i);
1453 }
1454
1455 if (adap->log_addrs.log_addr_mask == 0 &&
1456 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1457 goto unconfigure;
1458
1459 configured:
1460 if (adap->log_addrs.log_addr_mask == 0) {
1461 /* Fall back to unregistered */
1462 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1463 las->log_addr_mask = 1 << las->log_addr[0];
1464 for (i = 1; i < las->num_log_addrs; i++)
1465 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1466 }
1467 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1468 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1469 adap->is_configured = true;
1470 adap->is_configuring = false;
1471 cec_post_state_event(adap);
1472
1473 /*
1474 * Now post the Report Features and Report Physical Address broadcast
1475 * messages. Note that these are non-blocking transmits, meaning that
1476 * they are just queued up and once adap->lock is unlocked the main
1477 * thread will kick in and start transmitting these.
1478 *
1479 * If after this function is done (but before one or more of these
1480 * messages are actually transmitted) the CEC adapter is unconfigured,
1481 * then any remaining messages will be dropped by the main thread.
1482 */
1483 for (i = 0; i < las->num_log_addrs; i++) {
1484 struct cec_msg msg = {};
1485
1486 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1487 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1488 continue;
1489
1490 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1491
1492 /* Report Features must come first according to CEC 2.0 */
1493 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1494 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1495 cec_fill_msg_report_features(adap, &msg, i);
1496 cec_transmit_msg_fh(adap, &msg, NULL, false);
1497 }
1498
1499 /* Report Physical Address */
1500 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1501 las->primary_device_type[i]);
1502 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1503 las->log_addr[i],
1504 cec_phys_addr_exp(adap->phys_addr));
1505 cec_transmit_msg_fh(adap, &msg, NULL, false);
1506
1507 /* Report Vendor ID */
1508 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1509 cec_msg_device_vendor_id(&msg,
1510 adap->log_addrs.vendor_id);
1511 cec_transmit_msg_fh(adap, &msg, NULL, false);
1512 }
1513 }
1514 adap->kthread_config = NULL;
1515 complete(&adap->config_completion);
1516 mutex_unlock(&adap->lock);
1517 return 0;
1518
1519 unconfigure:
1520 for (i = 0; i < las->num_log_addrs; i++)
1521 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1522 cec_adap_unconfigure(adap);
1523 adap->is_configuring = false;
1524 adap->kthread_config = NULL;
1525 complete(&adap->config_completion);
1526 mutex_unlock(&adap->lock);
1527 return 0;
1528 }
1529
1530 /*
1531 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1532 * logical addresses.
1533 *
1534 * This function is called with adap->lock held.
1535 */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1536 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1537 {
1538 if (WARN_ON(adap->is_configuring || adap->is_configured))
1539 return;
1540
1541 init_completion(&adap->config_completion);
1542
1543 /* Ready to kick off the thread */
1544 adap->is_configuring = true;
1545 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1546 "ceccfg-%s", adap->name);
1547 if (IS_ERR(adap->kthread_config)) {
1548 adap->kthread_config = NULL;
1549 } else if (block) {
1550 mutex_unlock(&adap->lock);
1551 wait_for_completion(&adap->config_completion);
1552 mutex_lock(&adap->lock);
1553 }
1554 }
1555
1556 /* Set a new physical address and send an event notifying userspace of this.
1557 *
1558 * This function is called with adap->lock held.
1559 */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1560 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1561 {
1562 if (phys_addr == adap->phys_addr)
1563 return;
1564 if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1565 return;
1566
1567 dprintk(1, "new physical address %x.%x.%x.%x\n",
1568 cec_phys_addr_exp(phys_addr));
1569 if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1570 adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1571 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1572 cec_post_state_event(adap);
1573 cec_adap_unconfigure(adap);
1574 /* Disabling monitor all mode should always succeed */
1575 if (adap->monitor_all_cnt)
1576 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1577 mutex_lock(&adap->devnode.lock);
1578 if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1579 WARN_ON(adap->ops->adap_enable(adap, false));
1580 adap->transmit_in_progress = false;
1581 wake_up_interruptible(&adap->kthread_waitq);
1582 }
1583 mutex_unlock(&adap->devnode.lock);
1584 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1585 return;
1586 }
1587
1588 mutex_lock(&adap->devnode.lock);
1589 adap->last_initiator = 0xff;
1590 adap->transmit_in_progress = false;
1591
1592 if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1593 adap->ops->adap_enable(adap, true)) {
1594 mutex_unlock(&adap->devnode.lock);
1595 return;
1596 }
1597
1598 if (adap->monitor_all_cnt &&
1599 call_op(adap, adap_monitor_all_enable, true)) {
1600 if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1601 WARN_ON(adap->ops->adap_enable(adap, false));
1602 mutex_unlock(&adap->devnode.lock);
1603 return;
1604 }
1605 mutex_unlock(&adap->devnode.lock);
1606
1607 adap->phys_addr = phys_addr;
1608 cec_post_state_event(adap);
1609 if (adap->log_addrs.num_log_addrs)
1610 cec_claim_log_addrs(adap, block);
1611 }
1612
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1613 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1614 {
1615 if (IS_ERR_OR_NULL(adap))
1616 return;
1617
1618 mutex_lock(&adap->lock);
1619 __cec_s_phys_addr(adap, phys_addr, block);
1620 mutex_unlock(&adap->lock);
1621 }
1622 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1623
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1624 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1625 const struct edid *edid)
1626 {
1627 u16 pa = CEC_PHYS_ADDR_INVALID;
1628
1629 if (edid && edid->extensions)
1630 pa = cec_get_edid_phys_addr((const u8 *)edid,
1631 EDID_LENGTH * (edid->extensions + 1), NULL);
1632 cec_s_phys_addr(adap, pa, false);
1633 }
1634 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1635
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1636 void cec_s_conn_info(struct cec_adapter *adap,
1637 const struct cec_connector_info *conn_info)
1638 {
1639 if (IS_ERR_OR_NULL(adap))
1640 return;
1641
1642 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1643 return;
1644
1645 mutex_lock(&adap->lock);
1646 if (conn_info)
1647 adap->conn_info = *conn_info;
1648 else
1649 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1650 cec_post_state_event(adap);
1651 mutex_unlock(&adap->lock);
1652 }
1653 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1654
1655 /*
1656 * Called from either the ioctl or a driver to set the logical addresses.
1657 *
1658 * This function is called with adap->lock held.
1659 */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1660 int __cec_s_log_addrs(struct cec_adapter *adap,
1661 struct cec_log_addrs *log_addrs, bool block)
1662 {
1663 u16 type_mask = 0;
1664 int i;
1665
1666 if (adap->devnode.unregistered)
1667 return -ENODEV;
1668
1669 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1670 cec_adap_unconfigure(adap);
1671 adap->log_addrs.num_log_addrs = 0;
1672 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1673 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1674 adap->log_addrs.osd_name[0] = '\0';
1675 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1676 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1677 return 0;
1678 }
1679
1680 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1681 /*
1682 * Sanitize log_addrs fields if a CDC-Only device is
1683 * requested.
1684 */
1685 log_addrs->num_log_addrs = 1;
1686 log_addrs->osd_name[0] = '\0';
1687 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1688 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1689 /*
1690 * This is just an internal convention since a CDC-Only device
1691 * doesn't have to be a switch. But switches already use
1692 * unregistered, so it makes some kind of sense to pick this
1693 * as the primary device. Since a CDC-Only device never sends
1694 * any 'normal' CEC messages this primary device type is never
1695 * sent over the CEC bus.
1696 */
1697 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1698 log_addrs->all_device_types[0] = 0;
1699 log_addrs->features[0][0] = 0;
1700 log_addrs->features[0][1] = 0;
1701 }
1702
1703 /* Ensure the osd name is 0-terminated */
1704 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1705
1706 /* Sanity checks */
1707 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1708 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1709 return -EINVAL;
1710 }
1711
1712 /*
1713 * Vendor ID is a 24 bit number, so check if the value is
1714 * within the correct range.
1715 */
1716 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1717 (log_addrs->vendor_id & 0xff000000) != 0) {
1718 dprintk(1, "invalid vendor ID\n");
1719 return -EINVAL;
1720 }
1721
1722 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1723 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1724 dprintk(1, "invalid CEC version\n");
1725 return -EINVAL;
1726 }
1727
1728 if (log_addrs->num_log_addrs > 1)
1729 for (i = 0; i < log_addrs->num_log_addrs; i++)
1730 if (log_addrs->log_addr_type[i] ==
1731 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1732 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1733 return -EINVAL;
1734 }
1735
1736 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1737 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1738 u8 *features = log_addrs->features[i];
1739 bool op_is_dev_features = false;
1740 unsigned j;
1741
1742 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1743 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1744 dprintk(1, "unknown logical address type\n");
1745 return -EINVAL;
1746 }
1747 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1748 dprintk(1, "duplicate logical address type\n");
1749 return -EINVAL;
1750 }
1751 type_mask |= 1 << log_addrs->log_addr_type[i];
1752 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1753 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1754 /* Record already contains the playback functionality */
1755 dprintk(1, "invalid record + playback combination\n");
1756 return -EINVAL;
1757 }
1758 if (log_addrs->primary_device_type[i] >
1759 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1760 dprintk(1, "unknown primary device type\n");
1761 return -EINVAL;
1762 }
1763 if (log_addrs->primary_device_type[i] == 2) {
1764 dprintk(1, "invalid primary device type\n");
1765 return -EINVAL;
1766 }
1767 for (j = 0; j < feature_sz; j++) {
1768 if ((features[j] & 0x80) == 0) {
1769 if (op_is_dev_features)
1770 break;
1771 op_is_dev_features = true;
1772 }
1773 }
1774 if (!op_is_dev_features || j == feature_sz) {
1775 dprintk(1, "malformed features\n");
1776 return -EINVAL;
1777 }
1778 /* Zero unused part of the feature array */
1779 memset(features + j + 1, 0, feature_sz - j - 1);
1780 }
1781
1782 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1783 if (log_addrs->num_log_addrs > 2) {
1784 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1785 return -EINVAL;
1786 }
1787 if (log_addrs->num_log_addrs == 2) {
1788 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1789 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1790 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1791 return -EINVAL;
1792 }
1793 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1794 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1795 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1796 return -EINVAL;
1797 }
1798 }
1799 }
1800
1801 /* Zero unused LAs */
1802 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1803 log_addrs->primary_device_type[i] = 0;
1804 log_addrs->log_addr_type[i] = 0;
1805 log_addrs->all_device_types[i] = 0;
1806 memset(log_addrs->features[i], 0,
1807 sizeof(log_addrs->features[i]));
1808 }
1809
1810 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1811 adap->log_addrs = *log_addrs;
1812 if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1813 cec_claim_log_addrs(adap, block);
1814 return 0;
1815 }
1816
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1817 int cec_s_log_addrs(struct cec_adapter *adap,
1818 struct cec_log_addrs *log_addrs, bool block)
1819 {
1820 int err;
1821
1822 mutex_lock(&adap->lock);
1823 err = __cec_s_log_addrs(adap, log_addrs, block);
1824 mutex_unlock(&adap->lock);
1825 return err;
1826 }
1827 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1828
1829 /* High-level core CEC message handling */
1830
1831 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1832 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1833 struct cec_msg *msg,
1834 unsigned int la_idx)
1835 {
1836 const struct cec_log_addrs *las = &adap->log_addrs;
1837 const u8 *features = las->features[la_idx];
1838 bool op_is_dev_features = false;
1839 unsigned int idx;
1840
1841 /* Report Features */
1842 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1843 msg->len = 4;
1844 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1845 msg->msg[2] = adap->log_addrs.cec_version;
1846 msg->msg[3] = las->all_device_types[la_idx];
1847
1848 /* Write RC Profiles first, then Device Features */
1849 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1850 msg->msg[msg->len++] = features[idx];
1851 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1852 if (op_is_dev_features)
1853 break;
1854 op_is_dev_features = true;
1855 }
1856 }
1857 }
1858
1859 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1860 static int cec_feature_abort_reason(struct cec_adapter *adap,
1861 struct cec_msg *msg, u8 reason)
1862 {
1863 struct cec_msg tx_msg = { };
1864
1865 /*
1866 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1867 * message!
1868 */
1869 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1870 return 0;
1871 /* Don't Feature Abort messages from 'Unregistered' */
1872 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1873 return 0;
1874 cec_msg_set_reply_to(&tx_msg, msg);
1875 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1876 return cec_transmit_msg(adap, &tx_msg, false);
1877 }
1878
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1879 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1880 {
1881 return cec_feature_abort_reason(adap, msg,
1882 CEC_OP_ABORT_UNRECOGNIZED_OP);
1883 }
1884
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1885 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1886 {
1887 return cec_feature_abort_reason(adap, msg,
1888 CEC_OP_ABORT_REFUSED);
1889 }
1890
1891 /*
1892 * Called when a CEC message is received. This function will do any
1893 * necessary core processing. The is_reply bool is true if this message
1894 * is a reply to an earlier transmit.
1895 *
1896 * The message is either a broadcast message or a valid directed message.
1897 */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1898 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1899 bool is_reply)
1900 {
1901 bool is_broadcast = cec_msg_is_broadcast(msg);
1902 u8 dest_laddr = cec_msg_destination(msg);
1903 u8 init_laddr = cec_msg_initiator(msg);
1904 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1905 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1906 bool from_unregistered = init_laddr == 0xf;
1907 struct cec_msg tx_cec_msg = { };
1908
1909 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1910
1911 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1912 if (cec_is_cdc_only(&adap->log_addrs) &&
1913 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1914 return 0;
1915
1916 if (adap->ops->received) {
1917 /* Allow drivers to process the message first */
1918 if (adap->ops->received(adap, msg) != -ENOMSG)
1919 return 0;
1920 }
1921
1922 /*
1923 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1924 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1925 * handled by the CEC core, even if the passthrough mode is on.
1926 * The others are just ignored if passthrough mode is on.
1927 */
1928 switch (msg->msg[1]) {
1929 case CEC_MSG_GET_CEC_VERSION:
1930 case CEC_MSG_ABORT:
1931 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1932 case CEC_MSG_GIVE_OSD_NAME:
1933 /*
1934 * These messages reply with a directed message, so ignore if
1935 * the initiator is Unregistered.
1936 */
1937 if (!adap->passthrough && from_unregistered)
1938 return 0;
1939 fallthrough;
1940 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1941 case CEC_MSG_GIVE_FEATURES:
1942 case CEC_MSG_GIVE_PHYSICAL_ADDR:
1943 /*
1944 * Skip processing these messages if the passthrough mode
1945 * is on.
1946 */
1947 if (adap->passthrough)
1948 goto skip_processing;
1949 /* Ignore if addressing is wrong */
1950 if (is_broadcast)
1951 return 0;
1952 break;
1953
1954 case CEC_MSG_USER_CONTROL_PRESSED:
1955 case CEC_MSG_USER_CONTROL_RELEASED:
1956 /* Wrong addressing mode: don't process */
1957 if (is_broadcast || from_unregistered)
1958 goto skip_processing;
1959 break;
1960
1961 case CEC_MSG_REPORT_PHYSICAL_ADDR:
1962 /*
1963 * This message is always processed, regardless of the
1964 * passthrough setting.
1965 *
1966 * Exception: don't process if wrong addressing mode.
1967 */
1968 if (!is_broadcast)
1969 goto skip_processing;
1970 break;
1971
1972 default:
1973 break;
1974 }
1975
1976 cec_msg_set_reply_to(&tx_cec_msg, msg);
1977
1978 switch (msg->msg[1]) {
1979 /* The following messages are processed but still passed through */
1980 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1981 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1982
1983 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1984 cec_phys_addr_exp(pa), init_laddr);
1985 break;
1986 }
1987
1988 case CEC_MSG_USER_CONTROL_PRESSED:
1989 if (!(adap->capabilities & CEC_CAP_RC) ||
1990 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1991 break;
1992
1993 #ifdef CONFIG_MEDIA_CEC_RC
1994 switch (msg->msg[2]) {
1995 /*
1996 * Play function, this message can have variable length
1997 * depending on the specific play function that is used.
1998 */
1999 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2000 if (msg->len == 2)
2001 rc_keydown(adap->rc, RC_PROTO_CEC,
2002 msg->msg[2], 0);
2003 else
2004 rc_keydown(adap->rc, RC_PROTO_CEC,
2005 msg->msg[2] << 8 | msg->msg[3], 0);
2006 break;
2007 /*
2008 * Other function messages that are not handled.
2009 * Currently the RC framework does not allow to supply an
2010 * additional parameter to a keypress. These "keys" contain
2011 * other information such as channel number, an input number
2012 * etc.
2013 * For the time being these messages are not processed by the
2014 * framework and are simply forwarded to the user space.
2015 */
2016 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2017 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2018 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2019 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2020 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2021 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2022 break;
2023 default:
2024 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2025 break;
2026 }
2027 #endif
2028 break;
2029
2030 case CEC_MSG_USER_CONTROL_RELEASED:
2031 if (!(adap->capabilities & CEC_CAP_RC) ||
2032 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2033 break;
2034 #ifdef CONFIG_MEDIA_CEC_RC
2035 rc_keyup(adap->rc);
2036 #endif
2037 break;
2038
2039 /*
2040 * The remaining messages are only processed if the passthrough mode
2041 * is off.
2042 */
2043 case CEC_MSG_GET_CEC_VERSION:
2044 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2045 return cec_transmit_msg(adap, &tx_cec_msg, false);
2046
2047 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2048 /* Do nothing for CEC switches using addr 15 */
2049 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2050 return 0;
2051 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2052 return cec_transmit_msg(adap, &tx_cec_msg, false);
2053
2054 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2055 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2056 return cec_feature_abort(adap, msg);
2057 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2058 return cec_transmit_msg(adap, &tx_cec_msg, false);
2059
2060 case CEC_MSG_ABORT:
2061 /* Do nothing for CEC switches */
2062 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2063 return 0;
2064 return cec_feature_refused(adap, msg);
2065
2066 case CEC_MSG_GIVE_OSD_NAME: {
2067 if (adap->log_addrs.osd_name[0] == 0)
2068 return cec_feature_abort(adap, msg);
2069 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2070 return cec_transmit_msg(adap, &tx_cec_msg, false);
2071 }
2072
2073 case CEC_MSG_GIVE_FEATURES:
2074 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2075 return cec_feature_abort(adap, msg);
2076 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2077 return cec_transmit_msg(adap, &tx_cec_msg, false);
2078
2079 default:
2080 /*
2081 * Unprocessed messages are aborted if userspace isn't doing
2082 * any processing either.
2083 */
2084 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2085 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2086 return cec_feature_abort(adap, msg);
2087 break;
2088 }
2089
2090 skip_processing:
2091 /* If this was a reply, then we're done, unless otherwise specified */
2092 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2093 return 0;
2094
2095 /*
2096 * Send to the exclusive follower if there is one, otherwise send
2097 * to all followers.
2098 */
2099 if (adap->cec_follower)
2100 cec_queue_msg_fh(adap->cec_follower, msg);
2101 else
2102 cec_queue_msg_followers(adap, msg);
2103 return 0;
2104 }
2105
2106 /*
2107 * Helper functions to keep track of the 'monitor all' use count.
2108 *
2109 * These functions are called with adap->lock held.
2110 */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2111 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2112 {
2113 int ret = 0;
2114
2115 if (adap->monitor_all_cnt == 0)
2116 ret = call_op(adap, adap_monitor_all_enable, 1);
2117 if (ret == 0)
2118 adap->monitor_all_cnt++;
2119 return ret;
2120 }
2121
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2122 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2123 {
2124 adap->monitor_all_cnt--;
2125 if (adap->monitor_all_cnt == 0)
2126 WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2127 }
2128
2129 /*
2130 * Helper functions to keep track of the 'monitor pin' use count.
2131 *
2132 * These functions are called with adap->lock held.
2133 */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2134 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2135 {
2136 int ret = 0;
2137
2138 if (adap->monitor_pin_cnt == 0)
2139 ret = call_op(adap, adap_monitor_pin_enable, 1);
2140 if (ret == 0)
2141 adap->monitor_pin_cnt++;
2142 return ret;
2143 }
2144
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2145 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2146 {
2147 adap->monitor_pin_cnt--;
2148 if (adap->monitor_pin_cnt == 0)
2149 WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2150 }
2151
2152 #ifdef CONFIG_DEBUG_FS
2153 /*
2154 * Log the current state of the CEC adapter.
2155 * Very useful for debugging.
2156 */
cec_adap_status(struct seq_file * file,void * priv)2157 int cec_adap_status(struct seq_file *file, void *priv)
2158 {
2159 struct cec_adapter *adap = dev_get_drvdata(file->private);
2160 struct cec_data *data;
2161
2162 mutex_lock(&adap->lock);
2163 seq_printf(file, "configured: %d\n", adap->is_configured);
2164 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2165 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2166 cec_phys_addr_exp(adap->phys_addr));
2167 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2168 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2169 if (adap->cec_follower)
2170 seq_printf(file, "has CEC follower%s\n",
2171 adap->passthrough ? " (in passthrough mode)" : "");
2172 if (adap->cec_initiator)
2173 seq_puts(file, "has CEC initiator\n");
2174 if (adap->monitor_all_cnt)
2175 seq_printf(file, "file handles in Monitor All mode: %u\n",
2176 adap->monitor_all_cnt);
2177 if (adap->tx_timeouts) {
2178 seq_printf(file, "transmit timeouts: %u\n",
2179 adap->tx_timeouts);
2180 adap->tx_timeouts = 0;
2181 }
2182 data = adap->transmitting;
2183 if (data)
2184 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2185 data->msg.len, data->msg.msg, data->msg.reply,
2186 data->msg.timeout);
2187 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2188 list_for_each_entry(data, &adap->transmit_queue, list) {
2189 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2190 data->msg.len, data->msg.msg, data->msg.reply,
2191 data->msg.timeout);
2192 }
2193 list_for_each_entry(data, &adap->wait_queue, list) {
2194 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2195 data->msg.len, data->msg.msg, data->msg.reply,
2196 data->msg.timeout);
2197 }
2198
2199 call_void_op(adap, adap_status, file);
2200 mutex_unlock(&adap->lock);
2201 return 0;
2202 }
2203 #endif
2204