1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 */
5 #include <linux/clk.h>
6 #include <linux/slab.h>
7 #include <linux/bitops.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/mtd/rawnand.h>
12 #include <linux/mtd/partitions.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma/qcom_bam_dma.h>
17
18 /* NANDc reg offsets */
19 #define NAND_FLASH_CMD 0x00
20 #define NAND_ADDR0 0x04
21 #define NAND_ADDR1 0x08
22 #define NAND_FLASH_CHIP_SELECT 0x0c
23 #define NAND_EXEC_CMD 0x10
24 #define NAND_FLASH_STATUS 0x14
25 #define NAND_BUFFER_STATUS 0x18
26 #define NAND_DEV0_CFG0 0x20
27 #define NAND_DEV0_CFG1 0x24
28 #define NAND_DEV0_ECC_CFG 0x28
29 #define NAND_DEV1_ECC_CFG 0x2c
30 #define NAND_DEV1_CFG0 0x30
31 #define NAND_DEV1_CFG1 0x34
32 #define NAND_READ_ID 0x40
33 #define NAND_READ_STATUS 0x44
34 #define NAND_DEV_CMD0 0xa0
35 #define NAND_DEV_CMD1 0xa4
36 #define NAND_DEV_CMD2 0xa8
37 #define NAND_DEV_CMD_VLD 0xac
38 #define SFLASHC_BURST_CFG 0xe0
39 #define NAND_ERASED_CW_DETECT_CFG 0xe8
40 #define NAND_ERASED_CW_DETECT_STATUS 0xec
41 #define NAND_EBI2_ECC_BUF_CFG 0xf0
42 #define FLASH_BUF_ACC 0x100
43
44 #define NAND_CTRL 0xf00
45 #define NAND_VERSION 0xf08
46 #define NAND_READ_LOCATION_0 0xf20
47 #define NAND_READ_LOCATION_1 0xf24
48 #define NAND_READ_LOCATION_2 0xf28
49 #define NAND_READ_LOCATION_3 0xf2c
50
51 /* dummy register offsets, used by write_reg_dma */
52 #define NAND_DEV_CMD1_RESTORE 0xdead
53 #define NAND_DEV_CMD_VLD_RESTORE 0xbeef
54
55 /* NAND_FLASH_CMD bits */
56 #define PAGE_ACC BIT(4)
57 #define LAST_PAGE BIT(5)
58
59 /* NAND_FLASH_CHIP_SELECT bits */
60 #define NAND_DEV_SEL 0
61 #define DM_EN BIT(2)
62
63 /* NAND_FLASH_STATUS bits */
64 #define FS_OP_ERR BIT(4)
65 #define FS_READY_BSY_N BIT(5)
66 #define FS_MPU_ERR BIT(8)
67 #define FS_DEVICE_STS_ERR BIT(16)
68 #define FS_DEVICE_WP BIT(23)
69
70 /* NAND_BUFFER_STATUS bits */
71 #define BS_UNCORRECTABLE_BIT BIT(8)
72 #define BS_CORRECTABLE_ERR_MSK 0x1f
73
74 /* NAND_DEVn_CFG0 bits */
75 #define DISABLE_STATUS_AFTER_WRITE 4
76 #define CW_PER_PAGE 6
77 #define UD_SIZE_BYTES 9
78 #define ECC_PARITY_SIZE_BYTES_RS 19
79 #define SPARE_SIZE_BYTES 23
80 #define NUM_ADDR_CYCLES 27
81 #define STATUS_BFR_READ 30
82 #define SET_RD_MODE_AFTER_STATUS 31
83
84 /* NAND_DEVn_CFG0 bits */
85 #define DEV0_CFG1_ECC_DISABLE 0
86 #define WIDE_FLASH 1
87 #define NAND_RECOVERY_CYCLES 2
88 #define CS_ACTIVE_BSY 5
89 #define BAD_BLOCK_BYTE_NUM 6
90 #define BAD_BLOCK_IN_SPARE_AREA 16
91 #define WR_RD_BSY_GAP 17
92 #define ENABLE_BCH_ECC 27
93
94 /* NAND_DEV0_ECC_CFG bits */
95 #define ECC_CFG_ECC_DISABLE 0
96 #define ECC_SW_RESET 1
97 #define ECC_MODE 4
98 #define ECC_PARITY_SIZE_BYTES_BCH 8
99 #define ECC_NUM_DATA_BYTES 16
100 #define ECC_FORCE_CLK_OPEN 30
101
102 /* NAND_DEV_CMD1 bits */
103 #define READ_ADDR 0
104
105 /* NAND_DEV_CMD_VLD bits */
106 #define READ_START_VLD BIT(0)
107 #define READ_STOP_VLD BIT(1)
108 #define WRITE_START_VLD BIT(2)
109 #define ERASE_START_VLD BIT(3)
110 #define SEQ_READ_START_VLD BIT(4)
111
112 /* NAND_EBI2_ECC_BUF_CFG bits */
113 #define NUM_STEPS 0
114
115 /* NAND_ERASED_CW_DETECT_CFG bits */
116 #define ERASED_CW_ECC_MASK 1
117 #define AUTO_DETECT_RES 0
118 #define MASK_ECC (1 << ERASED_CW_ECC_MASK)
119 #define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
120 #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
121 #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
122 #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
123
124 /* NAND_ERASED_CW_DETECT_STATUS bits */
125 #define PAGE_ALL_ERASED BIT(7)
126 #define CODEWORD_ALL_ERASED BIT(6)
127 #define PAGE_ERASED BIT(5)
128 #define CODEWORD_ERASED BIT(4)
129 #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
130 #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
131
132 /* NAND_READ_LOCATION_n bits */
133 #define READ_LOCATION_OFFSET 0
134 #define READ_LOCATION_SIZE 16
135 #define READ_LOCATION_LAST 31
136
137 /* Version Mask */
138 #define NAND_VERSION_MAJOR_MASK 0xf0000000
139 #define NAND_VERSION_MAJOR_SHIFT 28
140 #define NAND_VERSION_MINOR_MASK 0x0fff0000
141 #define NAND_VERSION_MINOR_SHIFT 16
142
143 /* NAND OP_CMDs */
144 #define OP_PAGE_READ 0x2
145 #define OP_PAGE_READ_WITH_ECC 0x3
146 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4
147 #define OP_PROGRAM_PAGE 0x6
148 #define OP_PAGE_PROGRAM_WITH_ECC 0x7
149 #define OP_PROGRAM_PAGE_SPARE 0x9
150 #define OP_BLOCK_ERASE 0xa
151 #define OP_FETCH_ID 0xb
152 #define OP_RESET_DEVICE 0xd
153
154 /* Default Value for NAND_DEV_CMD_VLD */
155 #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
156 ERASE_START_VLD | SEQ_READ_START_VLD)
157
158 /* NAND_CTRL bits */
159 #define BAM_MODE_EN BIT(0)
160
161 /*
162 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
163 * the driver calls the chunks 'step' or 'codeword' interchangeably
164 */
165 #define NANDC_STEP_SIZE 512
166
167 /*
168 * the largest page size we support is 8K, this will have 16 steps/codewords
169 * of 512 bytes each
170 */
171 #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
172
173 /* we read at most 3 registers per codeword scan */
174 #define MAX_REG_RD (3 * MAX_NUM_STEPS)
175
176 /* ECC modes supported by the controller */
177 #define ECC_NONE BIT(0)
178 #define ECC_RS_4BIT BIT(1)
179 #define ECC_BCH_4BIT BIT(2)
180 #define ECC_BCH_8BIT BIT(3)
181
182 #define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
183 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
184 ((offset) << READ_LOCATION_OFFSET) | \
185 ((size) << READ_LOCATION_SIZE) | \
186 ((is_last) << READ_LOCATION_LAST))
187
188 /*
189 * Returns the actual register address for all NAND_DEV_ registers
190 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
191 */
192 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
193
194 /* Returns the NAND register physical address */
195 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
196
197 /* Returns the dma address for reg read buffer */
198 #define reg_buf_dma_addr(chip, vaddr) \
199 ((chip)->reg_read_dma + \
200 ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
201
202 #define QPIC_PER_CW_CMD_ELEMENTS 32
203 #define QPIC_PER_CW_CMD_SGL 32
204 #define QPIC_PER_CW_DATA_SGL 8
205
206 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
207
208 /*
209 * Flags used in DMA descriptor preparation helper functions
210 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
211 */
212 /* Don't set the EOT in current tx BAM sgl */
213 #define NAND_BAM_NO_EOT BIT(0)
214 /* Set the NWD flag in current BAM sgl */
215 #define NAND_BAM_NWD BIT(1)
216 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
217 #define NAND_BAM_NEXT_SGL BIT(2)
218 /*
219 * Erased codeword status is being used two times in single transfer so this
220 * flag will determine the current value of erased codeword status register
221 */
222 #define NAND_ERASED_CW_SET BIT(4)
223
224 /*
225 * This data type corresponds to the BAM transaction which will be used for all
226 * NAND transfers.
227 * @bam_ce - the array of BAM command elements
228 * @cmd_sgl - sgl for NAND BAM command pipe
229 * @data_sgl - sgl for NAND BAM consumer/producer pipe
230 * @bam_ce_pos - the index in bam_ce which is available for next sgl
231 * @bam_ce_start - the index in bam_ce which marks the start position ce
232 * for current sgl. It will be used for size calculation
233 * for current sgl
234 * @cmd_sgl_pos - current index in command sgl.
235 * @cmd_sgl_start - start index in command sgl.
236 * @tx_sgl_pos - current index in data sgl for tx.
237 * @tx_sgl_start - start index in data sgl for tx.
238 * @rx_sgl_pos - current index in data sgl for rx.
239 * @rx_sgl_start - start index in data sgl for rx.
240 * @wait_second_completion - wait for second DMA desc completion before making
241 * the NAND transfer completion.
242 * @txn_done - completion for NAND transfer.
243 * @last_data_desc - last DMA desc in data channel (tx/rx).
244 * @last_cmd_desc - last DMA desc in command channel.
245 */
246 struct bam_transaction {
247 struct bam_cmd_element *bam_ce;
248 struct scatterlist *cmd_sgl;
249 struct scatterlist *data_sgl;
250 u32 bam_ce_pos;
251 u32 bam_ce_start;
252 u32 cmd_sgl_pos;
253 u32 cmd_sgl_start;
254 u32 tx_sgl_pos;
255 u32 tx_sgl_start;
256 u32 rx_sgl_pos;
257 u32 rx_sgl_start;
258 bool wait_second_completion;
259 struct completion txn_done;
260 struct dma_async_tx_descriptor *last_data_desc;
261 struct dma_async_tx_descriptor *last_cmd_desc;
262 };
263
264 /*
265 * This data type corresponds to the nand dma descriptor
266 * @list - list for desc_info
267 * @dir - DMA transfer direction
268 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
269 * ADM
270 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
271 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
272 * @dma_desc - low level DMA engine descriptor
273 */
274 struct desc_info {
275 struct list_head node;
276
277 enum dma_data_direction dir;
278 union {
279 struct scatterlist adm_sgl;
280 struct {
281 struct scatterlist *bam_sgl;
282 int sgl_cnt;
283 };
284 };
285 struct dma_async_tx_descriptor *dma_desc;
286 };
287
288 /*
289 * holds the current register values that we want to write. acts as a contiguous
290 * chunk of memory which we use to write the controller registers through DMA.
291 */
292 struct nandc_regs {
293 __le32 cmd;
294 __le32 addr0;
295 __le32 addr1;
296 __le32 chip_sel;
297 __le32 exec;
298
299 __le32 cfg0;
300 __le32 cfg1;
301 __le32 ecc_bch_cfg;
302
303 __le32 clrflashstatus;
304 __le32 clrreadstatus;
305
306 __le32 cmd1;
307 __le32 vld;
308
309 __le32 orig_cmd1;
310 __le32 orig_vld;
311
312 __le32 ecc_buf_cfg;
313 __le32 read_location0;
314 __le32 read_location1;
315 __le32 read_location2;
316 __le32 read_location3;
317
318 __le32 erased_cw_detect_cfg_clr;
319 __le32 erased_cw_detect_cfg_set;
320 };
321
322 /*
323 * NAND controller data struct
324 *
325 * @controller: base controller structure
326 * @host_list: list containing all the chips attached to the
327 * controller
328 * @dev: parent device
329 * @base: MMIO base
330 * @base_phys: physical base address of controller registers
331 * @base_dma: dma base address of controller registers
332 * @core_clk: controller clock
333 * @aon_clk: another controller clock
334 *
335 * @chan: dma channel
336 * @cmd_crci: ADM DMA CRCI for command flow control
337 * @data_crci: ADM DMA CRCI for data flow control
338 * @desc_list: DMA descriptor list (list of desc_infos)
339 *
340 * @data_buffer: our local DMA buffer for page read/writes,
341 * used when we can't use the buffer provided
342 * by upper layers directly
343 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
344 * functions
345 * @reg_read_buf: local buffer for reading back registers via DMA
346 * @reg_read_dma: contains dma address for register read buffer
347 * @reg_read_pos: marker for data read in reg_read_buf
348 *
349 * @regs: a contiguous chunk of memory for DMA register
350 * writes. contains the register values to be
351 * written to controller
352 * @cmd1/vld: some fixed controller register values
353 * @props: properties of current NAND controller,
354 * initialized via DT match data
355 * @max_cwperpage: maximum QPIC codewords required. calculated
356 * from all connected NAND devices pagesize
357 */
358 struct qcom_nand_controller {
359 struct nand_controller controller;
360 struct list_head host_list;
361
362 struct device *dev;
363
364 void __iomem *base;
365 phys_addr_t base_phys;
366 dma_addr_t base_dma;
367
368 struct clk *core_clk;
369 struct clk *aon_clk;
370
371 union {
372 /* will be used only by QPIC for BAM DMA */
373 struct {
374 struct dma_chan *tx_chan;
375 struct dma_chan *rx_chan;
376 struct dma_chan *cmd_chan;
377 };
378
379 /* will be used only by EBI2 for ADM DMA */
380 struct {
381 struct dma_chan *chan;
382 unsigned int cmd_crci;
383 unsigned int data_crci;
384 };
385 };
386
387 struct list_head desc_list;
388 struct bam_transaction *bam_txn;
389
390 u8 *data_buffer;
391 int buf_size;
392 int buf_count;
393 int buf_start;
394 unsigned int max_cwperpage;
395
396 __le32 *reg_read_buf;
397 dma_addr_t reg_read_dma;
398 int reg_read_pos;
399
400 struct nandc_regs *regs;
401
402 u32 cmd1, vld;
403 const struct qcom_nandc_props *props;
404 };
405
406 /*
407 * NAND chip structure
408 *
409 * @chip: base NAND chip structure
410 * @node: list node to add itself to host_list in
411 * qcom_nand_controller
412 *
413 * @cs: chip select value for this chip
414 * @cw_size: the number of bytes in a single step/codeword
415 * of a page, consisting of all data, ecc, spare
416 * and reserved bytes
417 * @cw_data: the number of bytes within a codeword protected
418 * by ECC
419 * @use_ecc: request the controller to use ECC for the
420 * upcoming read/write
421 * @bch_enabled: flag to tell whether BCH ECC mode is used
422 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
423 * chip
424 * @status: value to be returned if NAND_CMD_STATUS command
425 * is executed
426 * @last_command: keeps track of last command on this chip. used
427 * for reading correct status
428 *
429 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
430 * ecc/non-ecc mode for the current nand flash
431 * device
432 */
433 struct qcom_nand_host {
434 struct nand_chip chip;
435 struct list_head node;
436
437 int cs;
438 int cw_size;
439 int cw_data;
440 bool use_ecc;
441 bool bch_enabled;
442 int ecc_bytes_hw;
443 int spare_bytes;
444 int bbm_size;
445 u8 status;
446 int last_command;
447
448 u32 cfg0, cfg1;
449 u32 cfg0_raw, cfg1_raw;
450 u32 ecc_buf_cfg;
451 u32 ecc_bch_cfg;
452 u32 clrflashstatus;
453 u32 clrreadstatus;
454 };
455
456 /*
457 * This data type corresponds to the NAND controller properties which varies
458 * among different NAND controllers.
459 * @ecc_modes - ecc mode for NAND
460 * @is_bam - whether NAND controller is using BAM
461 * @is_qpic - whether NAND CTRL is part of qpic IP
462 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
463 */
464 struct qcom_nandc_props {
465 u32 ecc_modes;
466 bool is_bam;
467 bool is_qpic;
468 u32 dev_cmd_reg_start;
469 };
470
471 /* Frees the BAM transaction memory */
free_bam_transaction(struct qcom_nand_controller * nandc)472 static void free_bam_transaction(struct qcom_nand_controller *nandc)
473 {
474 struct bam_transaction *bam_txn = nandc->bam_txn;
475
476 devm_kfree(nandc->dev, bam_txn);
477 }
478
479 /* Allocates and Initializes the BAM transaction */
480 static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller * nandc)481 alloc_bam_transaction(struct qcom_nand_controller *nandc)
482 {
483 struct bam_transaction *bam_txn;
484 size_t bam_txn_size;
485 unsigned int num_cw = nandc->max_cwperpage;
486 void *bam_txn_buf;
487
488 bam_txn_size =
489 sizeof(*bam_txn) + num_cw *
490 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
491 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
492 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
493
494 bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
495 if (!bam_txn_buf)
496 return NULL;
497
498 bam_txn = bam_txn_buf;
499 bam_txn_buf += sizeof(*bam_txn);
500
501 bam_txn->bam_ce = bam_txn_buf;
502 bam_txn_buf +=
503 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
504
505 bam_txn->cmd_sgl = bam_txn_buf;
506 bam_txn_buf +=
507 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
508
509 bam_txn->data_sgl = bam_txn_buf;
510
511 init_completion(&bam_txn->txn_done);
512
513 return bam_txn;
514 }
515
516 /* Clears the BAM transaction indexes */
clear_bam_transaction(struct qcom_nand_controller * nandc)517 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
518 {
519 struct bam_transaction *bam_txn = nandc->bam_txn;
520
521 if (!nandc->props->is_bam)
522 return;
523
524 bam_txn->bam_ce_pos = 0;
525 bam_txn->bam_ce_start = 0;
526 bam_txn->cmd_sgl_pos = 0;
527 bam_txn->cmd_sgl_start = 0;
528 bam_txn->tx_sgl_pos = 0;
529 bam_txn->tx_sgl_start = 0;
530 bam_txn->rx_sgl_pos = 0;
531 bam_txn->rx_sgl_start = 0;
532 bam_txn->last_data_desc = NULL;
533 bam_txn->wait_second_completion = false;
534
535 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
536 QPIC_PER_CW_CMD_SGL);
537 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
538 QPIC_PER_CW_DATA_SGL);
539
540 reinit_completion(&bam_txn->txn_done);
541 }
542
543 /* Callback for DMA descriptor completion */
qpic_bam_dma_done(void * data)544 static void qpic_bam_dma_done(void *data)
545 {
546 struct bam_transaction *bam_txn = data;
547
548 /*
549 * In case of data transfer with NAND, 2 callbacks will be generated.
550 * One for command channel and another one for data channel.
551 * If current transaction has data descriptors
552 * (i.e. wait_second_completion is true), then set this to false
553 * and wait for second DMA descriptor completion.
554 */
555 if (bam_txn->wait_second_completion)
556 bam_txn->wait_second_completion = false;
557 else
558 complete(&bam_txn->txn_done);
559 }
560
to_qcom_nand_host(struct nand_chip * chip)561 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
562 {
563 return container_of(chip, struct qcom_nand_host, chip);
564 }
565
566 static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)567 get_qcom_nand_controller(struct nand_chip *chip)
568 {
569 return container_of(chip->controller, struct qcom_nand_controller,
570 controller);
571 }
572
nandc_read(struct qcom_nand_controller * nandc,int offset)573 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
574 {
575 return ioread32(nandc->base + offset);
576 }
577
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)578 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
579 u32 val)
580 {
581 iowrite32(val, nandc->base + offset);
582 }
583
nandc_read_buffer_sync(struct qcom_nand_controller * nandc,bool is_cpu)584 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
585 bool is_cpu)
586 {
587 if (!nandc->props->is_bam)
588 return;
589
590 if (is_cpu)
591 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
592 MAX_REG_RD *
593 sizeof(*nandc->reg_read_buf),
594 DMA_FROM_DEVICE);
595 else
596 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
597 MAX_REG_RD *
598 sizeof(*nandc->reg_read_buf),
599 DMA_FROM_DEVICE);
600 }
601
offset_to_nandc_reg(struct nandc_regs * regs,int offset)602 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
603 {
604 switch (offset) {
605 case NAND_FLASH_CMD:
606 return ®s->cmd;
607 case NAND_ADDR0:
608 return ®s->addr0;
609 case NAND_ADDR1:
610 return ®s->addr1;
611 case NAND_FLASH_CHIP_SELECT:
612 return ®s->chip_sel;
613 case NAND_EXEC_CMD:
614 return ®s->exec;
615 case NAND_FLASH_STATUS:
616 return ®s->clrflashstatus;
617 case NAND_DEV0_CFG0:
618 return ®s->cfg0;
619 case NAND_DEV0_CFG1:
620 return ®s->cfg1;
621 case NAND_DEV0_ECC_CFG:
622 return ®s->ecc_bch_cfg;
623 case NAND_READ_STATUS:
624 return ®s->clrreadstatus;
625 case NAND_DEV_CMD1:
626 return ®s->cmd1;
627 case NAND_DEV_CMD1_RESTORE:
628 return ®s->orig_cmd1;
629 case NAND_DEV_CMD_VLD:
630 return ®s->vld;
631 case NAND_DEV_CMD_VLD_RESTORE:
632 return ®s->orig_vld;
633 case NAND_EBI2_ECC_BUF_CFG:
634 return ®s->ecc_buf_cfg;
635 case NAND_READ_LOCATION_0:
636 return ®s->read_location0;
637 case NAND_READ_LOCATION_1:
638 return ®s->read_location1;
639 case NAND_READ_LOCATION_2:
640 return ®s->read_location2;
641 case NAND_READ_LOCATION_3:
642 return ®s->read_location3;
643 default:
644 return NULL;
645 }
646 }
647
nandc_set_reg(struct qcom_nand_controller * nandc,int offset,u32 val)648 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
649 u32 val)
650 {
651 struct nandc_regs *regs = nandc->regs;
652 __le32 *reg;
653
654 reg = offset_to_nandc_reg(regs, offset);
655
656 if (reg)
657 *reg = cpu_to_le32(val);
658 }
659
660 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)661 static void set_address(struct qcom_nand_host *host, u16 column, int page)
662 {
663 struct nand_chip *chip = &host->chip;
664 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
665
666 if (chip->options & NAND_BUSWIDTH_16)
667 column >>= 1;
668
669 nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
670 nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
671 }
672
673 /*
674 * update_rw_regs: set up read/write register values, these will be
675 * written to the NAND controller registers via DMA
676 *
677 * @num_cw: number of steps for the read/write operation
678 * @read: read or write operation
679 */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read)680 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
681 {
682 struct nand_chip *chip = &host->chip;
683 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
684 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
685
686 if (read) {
687 if (host->use_ecc)
688 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
689 else
690 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
691 } else {
692 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
693 }
694
695 if (host->use_ecc) {
696 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
697 (num_cw - 1) << CW_PER_PAGE;
698
699 cfg1 = host->cfg1;
700 ecc_bch_cfg = host->ecc_bch_cfg;
701 } else {
702 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
703 (num_cw - 1) << CW_PER_PAGE;
704
705 cfg1 = host->cfg1_raw;
706 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
707 }
708
709 nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
710 nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
711 nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
712 nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
713 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
714 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
715 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
716 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
717
718 if (read)
719 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
720 host->cw_data : host->cw_size, 1);
721 }
722
723 /*
724 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
725 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
726 * which will be submitted to DMA engine.
727 */
prepare_bam_async_desc(struct qcom_nand_controller * nandc,struct dma_chan * chan,unsigned long flags)728 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
729 struct dma_chan *chan,
730 unsigned long flags)
731 {
732 struct desc_info *desc;
733 struct scatterlist *sgl;
734 unsigned int sgl_cnt;
735 int ret;
736 struct bam_transaction *bam_txn = nandc->bam_txn;
737 enum dma_transfer_direction dir_eng;
738 struct dma_async_tx_descriptor *dma_desc;
739
740 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
741 if (!desc)
742 return -ENOMEM;
743
744 if (chan == nandc->cmd_chan) {
745 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
746 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
747 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
748 dir_eng = DMA_MEM_TO_DEV;
749 desc->dir = DMA_TO_DEVICE;
750 } else if (chan == nandc->tx_chan) {
751 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
752 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
753 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
754 dir_eng = DMA_MEM_TO_DEV;
755 desc->dir = DMA_TO_DEVICE;
756 } else {
757 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
758 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
759 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
760 dir_eng = DMA_DEV_TO_MEM;
761 desc->dir = DMA_FROM_DEVICE;
762 }
763
764 sg_mark_end(sgl + sgl_cnt - 1);
765 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
766 if (ret == 0) {
767 dev_err(nandc->dev, "failure in mapping desc\n");
768 kfree(desc);
769 return -ENOMEM;
770 }
771
772 desc->sgl_cnt = sgl_cnt;
773 desc->bam_sgl = sgl;
774
775 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
776 flags);
777
778 if (!dma_desc) {
779 dev_err(nandc->dev, "failure in prep desc\n");
780 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
781 kfree(desc);
782 return -EINVAL;
783 }
784
785 desc->dma_desc = dma_desc;
786
787 /* update last data/command descriptor */
788 if (chan == nandc->cmd_chan)
789 bam_txn->last_cmd_desc = dma_desc;
790 else
791 bam_txn->last_data_desc = dma_desc;
792
793 list_add_tail(&desc->node, &nandc->desc_list);
794
795 return 0;
796 }
797
798 /*
799 * Prepares the command descriptor for BAM DMA which will be used for NAND
800 * register reads and writes. The command descriptor requires the command
801 * to be formed in command element type so this function uses the command
802 * element from bam transaction ce array and fills the same with required
803 * data. A single SGL can contain multiple command elements so
804 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
805 * after the current command element.
806 */
prep_bam_dma_desc_cmd(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,unsigned int flags)807 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
808 int reg_off, const void *vaddr,
809 int size, unsigned int flags)
810 {
811 int bam_ce_size;
812 int i, ret;
813 struct bam_cmd_element *bam_ce_buffer;
814 struct bam_transaction *bam_txn = nandc->bam_txn;
815
816 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
817
818 /* fill the command desc */
819 for (i = 0; i < size; i++) {
820 if (read)
821 bam_prep_ce(&bam_ce_buffer[i],
822 nandc_reg_phys(nandc, reg_off + 4 * i),
823 BAM_READ_COMMAND,
824 reg_buf_dma_addr(nandc,
825 (__le32 *)vaddr + i));
826 else
827 bam_prep_ce_le32(&bam_ce_buffer[i],
828 nandc_reg_phys(nandc, reg_off + 4 * i),
829 BAM_WRITE_COMMAND,
830 *((__le32 *)vaddr + i));
831 }
832
833 bam_txn->bam_ce_pos += size;
834
835 /* use the separate sgl after this command */
836 if (flags & NAND_BAM_NEXT_SGL) {
837 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
838 bam_ce_size = (bam_txn->bam_ce_pos -
839 bam_txn->bam_ce_start) *
840 sizeof(struct bam_cmd_element);
841 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
842 bam_ce_buffer, bam_ce_size);
843 bam_txn->cmd_sgl_pos++;
844 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
845
846 if (flags & NAND_BAM_NWD) {
847 ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
848 DMA_PREP_FENCE |
849 DMA_PREP_CMD);
850 if (ret)
851 return ret;
852 }
853 }
854
855 return 0;
856 }
857
858 /*
859 * Prepares the data descriptor for BAM DMA which will be used for NAND
860 * data reads and writes.
861 */
prep_bam_dma_desc_data(struct qcom_nand_controller * nandc,bool read,const void * vaddr,int size,unsigned int flags)862 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
863 const void *vaddr,
864 int size, unsigned int flags)
865 {
866 int ret;
867 struct bam_transaction *bam_txn = nandc->bam_txn;
868
869 if (read) {
870 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
871 vaddr, size);
872 bam_txn->rx_sgl_pos++;
873 } else {
874 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
875 vaddr, size);
876 bam_txn->tx_sgl_pos++;
877
878 /*
879 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
880 * is not set, form the DMA descriptor
881 */
882 if (!(flags & NAND_BAM_NO_EOT)) {
883 ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
884 DMA_PREP_INTERRUPT);
885 if (ret)
886 return ret;
887 }
888 }
889
890 return 0;
891 }
892
prep_adm_dma_desc(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,bool flow_control)893 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
894 int reg_off, const void *vaddr, int size,
895 bool flow_control)
896 {
897 struct desc_info *desc;
898 struct dma_async_tx_descriptor *dma_desc;
899 struct scatterlist *sgl;
900 struct dma_slave_config slave_conf;
901 enum dma_transfer_direction dir_eng;
902 int ret;
903
904 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
905 if (!desc)
906 return -ENOMEM;
907
908 sgl = &desc->adm_sgl;
909
910 sg_init_one(sgl, vaddr, size);
911
912 if (read) {
913 dir_eng = DMA_DEV_TO_MEM;
914 desc->dir = DMA_FROM_DEVICE;
915 } else {
916 dir_eng = DMA_MEM_TO_DEV;
917 desc->dir = DMA_TO_DEVICE;
918 }
919
920 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
921 if (ret == 0) {
922 ret = -ENOMEM;
923 goto err;
924 }
925
926 memset(&slave_conf, 0x00, sizeof(slave_conf));
927
928 slave_conf.device_fc = flow_control;
929 if (read) {
930 slave_conf.src_maxburst = 16;
931 slave_conf.src_addr = nandc->base_dma + reg_off;
932 slave_conf.slave_id = nandc->data_crci;
933 } else {
934 slave_conf.dst_maxburst = 16;
935 slave_conf.dst_addr = nandc->base_dma + reg_off;
936 slave_conf.slave_id = nandc->cmd_crci;
937 }
938
939 ret = dmaengine_slave_config(nandc->chan, &slave_conf);
940 if (ret) {
941 dev_err(nandc->dev, "failed to configure dma channel\n");
942 goto err;
943 }
944
945 dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
946 if (!dma_desc) {
947 dev_err(nandc->dev, "failed to prepare desc\n");
948 ret = -EINVAL;
949 goto err;
950 }
951
952 desc->dma_desc = dma_desc;
953
954 list_add_tail(&desc->node, &nandc->desc_list);
955
956 return 0;
957 err:
958 kfree(desc);
959
960 return ret;
961 }
962
963 /*
964 * read_reg_dma: prepares a descriptor to read a given number of
965 * contiguous registers to the reg_read_buf pointer
966 *
967 * @first: offset of the first register in the contiguous block
968 * @num_regs: number of registers to read
969 * @flags: flags to control DMA descriptor preparation
970 */
read_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)971 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
972 int num_regs, unsigned int flags)
973 {
974 bool flow_control = false;
975 void *vaddr;
976
977 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
978 nandc->reg_read_pos += num_regs;
979
980 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
981 first = dev_cmd_reg_addr(nandc, first);
982
983 if (nandc->props->is_bam)
984 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
985 num_regs, flags);
986
987 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
988 flow_control = true;
989
990 return prep_adm_dma_desc(nandc, true, first, vaddr,
991 num_regs * sizeof(u32), flow_control);
992 }
993
994 /*
995 * write_reg_dma: prepares a descriptor to write a given number of
996 * contiguous registers
997 *
998 * @first: offset of the first register in the contiguous block
999 * @num_regs: number of registers to write
1000 * @flags: flags to control DMA descriptor preparation
1001 */
write_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)1002 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1003 int num_regs, unsigned int flags)
1004 {
1005 bool flow_control = false;
1006 struct nandc_regs *regs = nandc->regs;
1007 void *vaddr;
1008
1009 vaddr = offset_to_nandc_reg(regs, first);
1010
1011 if (first == NAND_ERASED_CW_DETECT_CFG) {
1012 if (flags & NAND_ERASED_CW_SET)
1013 vaddr = ®s->erased_cw_detect_cfg_set;
1014 else
1015 vaddr = ®s->erased_cw_detect_cfg_clr;
1016 }
1017
1018 if (first == NAND_EXEC_CMD)
1019 flags |= NAND_BAM_NWD;
1020
1021 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1022 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1023
1024 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1025 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1026
1027 if (nandc->props->is_bam)
1028 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1029 num_regs, flags);
1030
1031 if (first == NAND_FLASH_CMD)
1032 flow_control = true;
1033
1034 return prep_adm_dma_desc(nandc, false, first, vaddr,
1035 num_regs * sizeof(u32), flow_control);
1036 }
1037
1038 /*
1039 * read_data_dma: prepares a DMA descriptor to transfer data from the
1040 * controller's internal buffer to the buffer 'vaddr'
1041 *
1042 * @reg_off: offset within the controller's data buffer
1043 * @vaddr: virtual address of the buffer we want to write to
1044 * @size: DMA transaction size in bytes
1045 * @flags: flags to control DMA descriptor preparation
1046 */
read_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1047 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1048 const u8 *vaddr, int size, unsigned int flags)
1049 {
1050 if (nandc->props->is_bam)
1051 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1052
1053 return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1054 }
1055
1056 /*
1057 * write_data_dma: prepares a DMA descriptor to transfer data from
1058 * 'vaddr' to the controller's internal buffer
1059 *
1060 * @reg_off: offset within the controller's data buffer
1061 * @vaddr: virtual address of the buffer we want to read from
1062 * @size: DMA transaction size in bytes
1063 * @flags: flags to control DMA descriptor preparation
1064 */
write_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1065 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1066 const u8 *vaddr, int size, unsigned int flags)
1067 {
1068 if (nandc->props->is_bam)
1069 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1070
1071 return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1072 }
1073
1074 /*
1075 * Helper to prepare DMA descriptors for configuring registers
1076 * before reading a NAND page.
1077 */
config_nand_page_read(struct qcom_nand_controller * nandc)1078 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1079 {
1080 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1081 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1082 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1083 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1084 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1085 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1086 }
1087
1088 /*
1089 * Helper to prepare DMA descriptors for configuring registers
1090 * before reading each codeword in NAND page.
1091 */
1092 static void
config_nand_cw_read(struct qcom_nand_controller * nandc,bool use_ecc)1093 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1094 {
1095 if (nandc->props->is_bam)
1096 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1097 NAND_BAM_NEXT_SGL);
1098
1099 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1100 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1101
1102 if (use_ecc) {
1103 read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1104 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1105 NAND_BAM_NEXT_SGL);
1106 } else {
1107 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1108 }
1109 }
1110
1111 /*
1112 * Helper to prepare dma descriptors to configure registers needed for reading a
1113 * single codeword in page
1114 */
1115 static void
config_nand_single_cw_page_read(struct qcom_nand_controller * nandc,bool use_ecc)1116 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1117 bool use_ecc)
1118 {
1119 config_nand_page_read(nandc);
1120 config_nand_cw_read(nandc, use_ecc);
1121 }
1122
1123 /*
1124 * Helper to prepare DMA descriptors used to configure registers needed for
1125 * before writing a NAND page.
1126 */
config_nand_page_write(struct qcom_nand_controller * nandc)1127 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1128 {
1129 write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1130 write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1131 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1132 NAND_BAM_NEXT_SGL);
1133 }
1134
1135 /*
1136 * Helper to prepare DMA descriptors for configuring registers
1137 * before writing each codeword in NAND page.
1138 */
config_nand_cw_write(struct qcom_nand_controller * nandc)1139 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1140 {
1141 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1142 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1143
1144 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1145
1146 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1147 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1148 }
1149
1150 /*
1151 * the following functions are used within chip->legacy.cmdfunc() to
1152 * perform different NAND_CMD_* commands
1153 */
1154
1155 /* sets up descriptors for NAND_CMD_PARAM */
nandc_param(struct qcom_nand_host * host)1156 static int nandc_param(struct qcom_nand_host *host)
1157 {
1158 struct nand_chip *chip = &host->chip;
1159 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1160
1161 /*
1162 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1163 * in use. we configure the controller to perform a raw read of 512
1164 * bytes to read onfi params
1165 */
1166 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1167 nandc_set_reg(nandc, NAND_ADDR0, 0);
1168 nandc_set_reg(nandc, NAND_ADDR1, 0);
1169 nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1170 | 512 << UD_SIZE_BYTES
1171 | 5 << NUM_ADDR_CYCLES
1172 | 0 << SPARE_SIZE_BYTES);
1173 nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1174 | 0 << CS_ACTIVE_BSY
1175 | 17 << BAD_BLOCK_BYTE_NUM
1176 | 1 << BAD_BLOCK_IN_SPARE_AREA
1177 | 2 << WR_RD_BSY_GAP
1178 | 0 << WIDE_FLASH
1179 | 1 << DEV0_CFG1_ECC_DISABLE);
1180 nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1181
1182 /* configure CMD1 and VLD for ONFI param probing */
1183 nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1184 (nandc->vld & ~READ_START_VLD));
1185 nandc_set_reg(nandc, NAND_DEV_CMD1,
1186 (nandc->cmd1 & ~(0xFF << READ_ADDR))
1187 | NAND_CMD_PARAM << READ_ADDR);
1188
1189 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1190
1191 nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1192 nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1193 nandc_set_read_loc(nandc, 0, 0, 512, 1);
1194
1195 write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1196 write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1197
1198 nandc->buf_count = 512;
1199 memset(nandc->data_buffer, 0xff, nandc->buf_count);
1200
1201 config_nand_single_cw_page_read(nandc, false);
1202
1203 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1204 nandc->buf_count, 0);
1205
1206 /* restore CMD1 and VLD regs */
1207 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1208 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1209
1210 return 0;
1211 }
1212
1213 /* sets up descriptors for NAND_CMD_ERASE1 */
erase_block(struct qcom_nand_host * host,int page_addr)1214 static int erase_block(struct qcom_nand_host *host, int page_addr)
1215 {
1216 struct nand_chip *chip = &host->chip;
1217 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1218
1219 nandc_set_reg(nandc, NAND_FLASH_CMD,
1220 OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1221 nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1222 nandc_set_reg(nandc, NAND_ADDR1, 0);
1223 nandc_set_reg(nandc, NAND_DEV0_CFG0,
1224 host->cfg0_raw & ~(7 << CW_PER_PAGE));
1225 nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1226 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1227 nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1228 nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1229
1230 write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1231 write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1232 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1233
1234 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1235
1236 write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1237 write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1238
1239 return 0;
1240 }
1241
1242 /* sets up descriptors for NAND_CMD_READID */
read_id(struct qcom_nand_host * host,int column)1243 static int read_id(struct qcom_nand_host *host, int column)
1244 {
1245 struct nand_chip *chip = &host->chip;
1246 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1247
1248 if (column == -1)
1249 return 0;
1250
1251 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1252 nandc_set_reg(nandc, NAND_ADDR0, column);
1253 nandc_set_reg(nandc, NAND_ADDR1, 0);
1254 nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1255 nandc->props->is_bam ? 0 : DM_EN);
1256 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1257
1258 write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1259 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1260
1261 read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1262
1263 return 0;
1264 }
1265
1266 /* sets up descriptors for NAND_CMD_RESET */
reset(struct qcom_nand_host * host)1267 static int reset(struct qcom_nand_host *host)
1268 {
1269 struct nand_chip *chip = &host->chip;
1270 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1271
1272 nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1273 nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1274
1275 write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1276 write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1277
1278 read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1279
1280 return 0;
1281 }
1282
1283 /* helpers to submit/free our list of dma descriptors */
submit_descs(struct qcom_nand_controller * nandc)1284 static int submit_descs(struct qcom_nand_controller *nandc)
1285 {
1286 struct desc_info *desc;
1287 dma_cookie_t cookie = 0;
1288 struct bam_transaction *bam_txn = nandc->bam_txn;
1289 int r;
1290
1291 if (nandc->props->is_bam) {
1292 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1293 r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1294 if (r)
1295 return r;
1296 }
1297
1298 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1299 r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1300 DMA_PREP_INTERRUPT);
1301 if (r)
1302 return r;
1303 }
1304
1305 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1306 r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1307 DMA_PREP_CMD);
1308 if (r)
1309 return r;
1310 }
1311 }
1312
1313 list_for_each_entry(desc, &nandc->desc_list, node)
1314 cookie = dmaengine_submit(desc->dma_desc);
1315
1316 if (nandc->props->is_bam) {
1317 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1318 bam_txn->last_cmd_desc->callback_param = bam_txn;
1319 if (bam_txn->last_data_desc) {
1320 bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1321 bam_txn->last_data_desc->callback_param = bam_txn;
1322 bam_txn->wait_second_completion = true;
1323 }
1324
1325 dma_async_issue_pending(nandc->tx_chan);
1326 dma_async_issue_pending(nandc->rx_chan);
1327 dma_async_issue_pending(nandc->cmd_chan);
1328
1329 if (!wait_for_completion_timeout(&bam_txn->txn_done,
1330 QPIC_NAND_COMPLETION_TIMEOUT))
1331 return -ETIMEDOUT;
1332 } else {
1333 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1334 return -ETIMEDOUT;
1335 }
1336
1337 return 0;
1338 }
1339
free_descs(struct qcom_nand_controller * nandc)1340 static void free_descs(struct qcom_nand_controller *nandc)
1341 {
1342 struct desc_info *desc, *n;
1343
1344 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1345 list_del(&desc->node);
1346
1347 if (nandc->props->is_bam)
1348 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1349 desc->sgl_cnt, desc->dir);
1350 else
1351 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1352 desc->dir);
1353
1354 kfree(desc);
1355 }
1356 }
1357
1358 /* reset the register read buffer for next NAND operation */
clear_read_regs(struct qcom_nand_controller * nandc)1359 static void clear_read_regs(struct qcom_nand_controller *nandc)
1360 {
1361 nandc->reg_read_pos = 0;
1362 nandc_read_buffer_sync(nandc, false);
1363 }
1364
pre_command(struct qcom_nand_host * host,int command)1365 static void pre_command(struct qcom_nand_host *host, int command)
1366 {
1367 struct nand_chip *chip = &host->chip;
1368 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1369
1370 nandc->buf_count = 0;
1371 nandc->buf_start = 0;
1372 host->use_ecc = false;
1373 host->last_command = command;
1374
1375 clear_read_regs(nandc);
1376
1377 if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1378 command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1379 clear_bam_transaction(nandc);
1380 }
1381
1382 /*
1383 * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1384 * privately maintained status byte, this status byte can be read after
1385 * NAND_CMD_STATUS is called
1386 */
parse_erase_write_errors(struct qcom_nand_host * host,int command)1387 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1388 {
1389 struct nand_chip *chip = &host->chip;
1390 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1391 struct nand_ecc_ctrl *ecc = &chip->ecc;
1392 int num_cw;
1393 int i;
1394
1395 num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1396 nandc_read_buffer_sync(nandc, true);
1397
1398 for (i = 0; i < num_cw; i++) {
1399 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1400
1401 if (flash_status & FS_MPU_ERR)
1402 host->status &= ~NAND_STATUS_WP;
1403
1404 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1405 (flash_status &
1406 FS_DEVICE_STS_ERR)))
1407 host->status |= NAND_STATUS_FAIL;
1408 }
1409 }
1410
post_command(struct qcom_nand_host * host,int command)1411 static void post_command(struct qcom_nand_host *host, int command)
1412 {
1413 struct nand_chip *chip = &host->chip;
1414 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1415
1416 switch (command) {
1417 case NAND_CMD_READID:
1418 nandc_read_buffer_sync(nandc, true);
1419 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1420 nandc->buf_count);
1421 break;
1422 case NAND_CMD_PAGEPROG:
1423 case NAND_CMD_ERASE1:
1424 parse_erase_write_errors(host, command);
1425 break;
1426 default:
1427 break;
1428 }
1429 }
1430
1431 /*
1432 * Implements chip->legacy.cmdfunc. It's only used for a limited set of
1433 * commands. The rest of the commands wouldn't be called by upper layers.
1434 * For example, NAND_CMD_READOOB would never be called because we have our own
1435 * versions of read_oob ops for nand_ecc_ctrl.
1436 */
qcom_nandc_command(struct nand_chip * chip,unsigned int command,int column,int page_addr)1437 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1438 int column, int page_addr)
1439 {
1440 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1441 struct nand_ecc_ctrl *ecc = &chip->ecc;
1442 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1443 bool wait = false;
1444 int ret = 0;
1445
1446 pre_command(host, command);
1447
1448 switch (command) {
1449 case NAND_CMD_RESET:
1450 ret = reset(host);
1451 wait = true;
1452 break;
1453
1454 case NAND_CMD_READID:
1455 nandc->buf_count = 4;
1456 ret = read_id(host, column);
1457 wait = true;
1458 break;
1459
1460 case NAND_CMD_PARAM:
1461 ret = nandc_param(host);
1462 wait = true;
1463 break;
1464
1465 case NAND_CMD_ERASE1:
1466 ret = erase_block(host, page_addr);
1467 wait = true;
1468 break;
1469
1470 case NAND_CMD_READ0:
1471 /* we read the entire page for now */
1472 WARN_ON(column != 0);
1473
1474 host->use_ecc = true;
1475 set_address(host, 0, page_addr);
1476 update_rw_regs(host, ecc->steps, true);
1477 break;
1478
1479 case NAND_CMD_SEQIN:
1480 WARN_ON(column != 0);
1481 set_address(host, 0, page_addr);
1482 break;
1483
1484 case NAND_CMD_PAGEPROG:
1485 case NAND_CMD_STATUS:
1486 case NAND_CMD_NONE:
1487 default:
1488 break;
1489 }
1490
1491 if (ret) {
1492 dev_err(nandc->dev, "failure executing command %d\n",
1493 command);
1494 free_descs(nandc);
1495 return;
1496 }
1497
1498 if (wait) {
1499 ret = submit_descs(nandc);
1500 if (ret)
1501 dev_err(nandc->dev,
1502 "failure submitting descs for command %d\n",
1503 command);
1504 }
1505
1506 free_descs(nandc);
1507
1508 post_command(host, command);
1509 }
1510
1511 /*
1512 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1513 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1514 *
1515 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1516 * but it notifies that it is an erased CW by placing special characters at
1517 * certain offsets in the buffer.
1518 *
1519 * verify if the page is erased or not, and fix up the page for RS ECC by
1520 * replacing the special characters with 0xff.
1521 */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)1522 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1523 {
1524 u8 empty1, empty2;
1525
1526 /*
1527 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1528 * is erased by looking for 0x54s at offsets 3 and 175 from the
1529 * beginning of each codeword
1530 */
1531
1532 empty1 = data_buf[3];
1533 empty2 = data_buf[175];
1534
1535 /*
1536 * if the erased codework markers, if they exist override them with
1537 * 0xffs
1538 */
1539 if ((empty1 == 0x54 && empty2 == 0xff) ||
1540 (empty1 == 0xff && empty2 == 0x54)) {
1541 data_buf[3] = 0xff;
1542 data_buf[175] = 0xff;
1543 }
1544
1545 /*
1546 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1547 * restore the original values at the special offsets
1548 */
1549 if (memchr_inv(data_buf, 0xff, data_len)) {
1550 data_buf[3] = empty1;
1551 data_buf[175] = empty2;
1552
1553 return false;
1554 }
1555
1556 return true;
1557 }
1558
1559 struct read_stats {
1560 __le32 flash;
1561 __le32 buffer;
1562 __le32 erased_cw;
1563 };
1564
1565 /* reads back FLASH_STATUS register set by the controller */
check_flash_errors(struct qcom_nand_host * host,int cw_cnt)1566 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1567 {
1568 struct nand_chip *chip = &host->chip;
1569 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1570 int i;
1571
1572 nandc_read_buffer_sync(nandc, true);
1573
1574 for (i = 0; i < cw_cnt; i++) {
1575 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1576
1577 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1578 return -EIO;
1579 }
1580
1581 return 0;
1582 }
1583
1584 /* performs raw read for one codeword */
1585 static int
qcom_nandc_read_cw_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,int page,int cw)1586 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1587 u8 *data_buf, u8 *oob_buf, int page, int cw)
1588 {
1589 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1590 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1591 struct nand_ecc_ctrl *ecc = &chip->ecc;
1592 int data_size1, data_size2, oob_size1, oob_size2;
1593 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1594
1595 nand_read_page_op(chip, page, 0, NULL, 0);
1596 host->use_ecc = false;
1597
1598 clear_bam_transaction(nandc);
1599 set_address(host, host->cw_size * cw, page);
1600 update_rw_regs(host, 1, true);
1601 config_nand_page_read(nandc);
1602
1603 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1604 oob_size1 = host->bbm_size;
1605
1606 if (cw == (ecc->steps - 1)) {
1607 data_size2 = ecc->size - data_size1 -
1608 ((ecc->steps - 1) * 4);
1609 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1610 host->spare_bytes;
1611 } else {
1612 data_size2 = host->cw_data - data_size1;
1613 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1614 }
1615
1616 if (nandc->props->is_bam) {
1617 nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1618 read_loc += data_size1;
1619
1620 nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1621 read_loc += oob_size1;
1622
1623 nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1624 read_loc += data_size2;
1625
1626 nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1627 }
1628
1629 config_nand_cw_read(nandc, false);
1630
1631 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1632 reg_off += data_size1;
1633
1634 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1635 reg_off += oob_size1;
1636
1637 read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1638 reg_off += data_size2;
1639
1640 read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1641
1642 ret = submit_descs(nandc);
1643 free_descs(nandc);
1644 if (ret) {
1645 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1646 return ret;
1647 }
1648
1649 return check_flash_errors(host, 1);
1650 }
1651
1652 /*
1653 * Bitflips can happen in erased codewords also so this function counts the
1654 * number of 0 in each CW for which ECC engine returns the uncorrectable
1655 * error. The page will be assumed as erased if this count is less than or
1656 * equal to the ecc->strength for each CW.
1657 *
1658 * 1. Both DATA and OOB need to be checked for number of 0. The
1659 * top-level API can be called with only data buf or OOB buf so use
1660 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1661 * is null for copying the raw bytes.
1662 * 2. Perform raw read for all the CW which has uncorrectable errors.
1663 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1664 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1665 * the number of bitflips in this area.
1666 */
1667 static int
check_for_erased_page(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,unsigned long uncorrectable_cws,int page,unsigned int max_bitflips)1668 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1669 u8 *oob_buf, unsigned long uncorrectable_cws,
1670 int page, unsigned int max_bitflips)
1671 {
1672 struct nand_chip *chip = &host->chip;
1673 struct mtd_info *mtd = nand_to_mtd(chip);
1674 struct nand_ecc_ctrl *ecc = &chip->ecc;
1675 u8 *cw_data_buf, *cw_oob_buf;
1676 int cw, data_size, oob_size, ret = 0;
1677
1678 if (!data_buf)
1679 data_buf = nand_get_data_buf(chip);
1680
1681 if (!oob_buf) {
1682 nand_get_data_buf(chip);
1683 oob_buf = chip->oob_poi;
1684 }
1685
1686 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1687 if (cw == (ecc->steps - 1)) {
1688 data_size = ecc->size - ((ecc->steps - 1) * 4);
1689 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1690 } else {
1691 data_size = host->cw_data;
1692 oob_size = host->ecc_bytes_hw;
1693 }
1694
1695 /* determine starting buffer address for current CW */
1696 cw_data_buf = data_buf + (cw * host->cw_data);
1697 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1698
1699 ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1700 cw_oob_buf, page, cw);
1701 if (ret)
1702 return ret;
1703
1704 /*
1705 * make sure it isn't an erased page reported
1706 * as not-erased by HW because of a few bitflips
1707 */
1708 ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1709 cw_oob_buf + host->bbm_size,
1710 oob_size, NULL,
1711 0, ecc->strength);
1712 if (ret < 0) {
1713 mtd->ecc_stats.failed++;
1714 } else {
1715 mtd->ecc_stats.corrected += ret;
1716 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1717 }
1718 }
1719
1720 return max_bitflips;
1721 }
1722
1723 /*
1724 * reads back status registers set by the controller to notify page read
1725 * errors. this is equivalent to what 'ecc->correct()' would do.
1726 */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1727 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1728 u8 *oob_buf, int page)
1729 {
1730 struct nand_chip *chip = &host->chip;
1731 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1732 struct mtd_info *mtd = nand_to_mtd(chip);
1733 struct nand_ecc_ctrl *ecc = &chip->ecc;
1734 unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1735 struct read_stats *buf;
1736 bool flash_op_err = false, erased;
1737 int i;
1738 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1739
1740 buf = (struct read_stats *)nandc->reg_read_buf;
1741 nandc_read_buffer_sync(nandc, true);
1742
1743 for (i = 0; i < ecc->steps; i++, buf++) {
1744 u32 flash, buffer, erased_cw;
1745 int data_len, oob_len;
1746
1747 if (i == (ecc->steps - 1)) {
1748 data_len = ecc->size - ((ecc->steps - 1) << 2);
1749 oob_len = ecc->steps << 2;
1750 } else {
1751 data_len = host->cw_data;
1752 oob_len = 0;
1753 }
1754
1755 flash = le32_to_cpu(buf->flash);
1756 buffer = le32_to_cpu(buf->buffer);
1757 erased_cw = le32_to_cpu(buf->erased_cw);
1758
1759 /*
1760 * Check ECC failure for each codeword. ECC failure can
1761 * happen in either of the following conditions
1762 * 1. If number of bitflips are greater than ECC engine
1763 * capability.
1764 * 2. If this codeword contains all 0xff for which erased
1765 * codeword detection check will be done.
1766 */
1767 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1768 /*
1769 * For BCH ECC, ignore erased codeword errors, if
1770 * ERASED_CW bits are set.
1771 */
1772 if (host->bch_enabled) {
1773 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1774 true : false;
1775 /*
1776 * For RS ECC, HW reports the erased CW by placing
1777 * special characters at certain offsets in the buffer.
1778 * These special characters will be valid only if
1779 * complete page is read i.e. data_buf is not NULL.
1780 */
1781 } else if (data_buf) {
1782 erased = erased_chunk_check_and_fixup(data_buf,
1783 data_len);
1784 } else {
1785 erased = false;
1786 }
1787
1788 if (!erased)
1789 uncorrectable_cws |= BIT(i);
1790 /*
1791 * Check if MPU or any other operational error (timeout,
1792 * device failure, etc.) happened for this codeword and
1793 * make flash_op_err true. If flash_op_err is set, then
1794 * EIO will be returned for page read.
1795 */
1796 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1797 flash_op_err = true;
1798 /*
1799 * No ECC or operational errors happened. Check the number of
1800 * bits corrected and update the ecc_stats.corrected.
1801 */
1802 } else {
1803 unsigned int stat;
1804
1805 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1806 mtd->ecc_stats.corrected += stat;
1807 max_bitflips = max(max_bitflips, stat);
1808 }
1809
1810 if (data_buf)
1811 data_buf += data_len;
1812 if (oob_buf)
1813 oob_buf += oob_len + ecc->bytes;
1814 }
1815
1816 if (flash_op_err)
1817 return -EIO;
1818
1819 if (!uncorrectable_cws)
1820 return max_bitflips;
1821
1822 return check_for_erased_page(host, data_buf_start, oob_buf_start,
1823 uncorrectable_cws, page,
1824 max_bitflips);
1825 }
1826
1827 /*
1828 * helper to perform the actual page read operation, used by ecc->read_page(),
1829 * ecc->read_oob()
1830 */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1831 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1832 u8 *oob_buf, int page)
1833 {
1834 struct nand_chip *chip = &host->chip;
1835 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1836 struct nand_ecc_ctrl *ecc = &chip->ecc;
1837 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1838 int i, ret;
1839
1840 config_nand_page_read(nandc);
1841
1842 /* queue cmd descs for each codeword */
1843 for (i = 0; i < ecc->steps; i++) {
1844 int data_size, oob_size;
1845
1846 if (i == (ecc->steps - 1)) {
1847 data_size = ecc->size - ((ecc->steps - 1) << 2);
1848 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1849 host->spare_bytes;
1850 } else {
1851 data_size = host->cw_data;
1852 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1853 }
1854
1855 if (nandc->props->is_bam) {
1856 if (data_buf && oob_buf) {
1857 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1858 nandc_set_read_loc(nandc, 1, data_size,
1859 oob_size, 1);
1860 } else if (data_buf) {
1861 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1862 } else {
1863 nandc_set_read_loc(nandc, 0, data_size,
1864 oob_size, 1);
1865 }
1866 }
1867
1868 config_nand_cw_read(nandc, true);
1869
1870 if (data_buf)
1871 read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1872 data_size, 0);
1873
1874 /*
1875 * when ecc is enabled, the controller doesn't read the real
1876 * or dummy bad block markers in each chunk. To maintain a
1877 * consistent layout across RAW and ECC reads, we just
1878 * leave the real/dummy BBM offsets empty (i.e, filled with
1879 * 0xffs)
1880 */
1881 if (oob_buf) {
1882 int j;
1883
1884 for (j = 0; j < host->bbm_size; j++)
1885 *oob_buf++ = 0xff;
1886
1887 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1888 oob_buf, oob_size, 0);
1889 }
1890
1891 if (data_buf)
1892 data_buf += data_size;
1893 if (oob_buf)
1894 oob_buf += oob_size;
1895 }
1896
1897 ret = submit_descs(nandc);
1898 free_descs(nandc);
1899
1900 if (ret) {
1901 dev_err(nandc->dev, "failure to read page/oob\n");
1902 return ret;
1903 }
1904
1905 return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1906 }
1907
1908 /*
1909 * a helper that copies the last step/codeword of a page (containing free oob)
1910 * into our local buffer
1911 */
copy_last_cw(struct qcom_nand_host * host,int page)1912 static int copy_last_cw(struct qcom_nand_host *host, int page)
1913 {
1914 struct nand_chip *chip = &host->chip;
1915 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1916 struct nand_ecc_ctrl *ecc = &chip->ecc;
1917 int size;
1918 int ret;
1919
1920 clear_read_regs(nandc);
1921
1922 size = host->use_ecc ? host->cw_data : host->cw_size;
1923
1924 /* prepare a clean read buffer */
1925 memset(nandc->data_buffer, 0xff, size);
1926
1927 set_address(host, host->cw_size * (ecc->steps - 1), page);
1928 update_rw_regs(host, 1, true);
1929
1930 config_nand_single_cw_page_read(nandc, host->use_ecc);
1931
1932 read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1933
1934 ret = submit_descs(nandc);
1935 if (ret)
1936 dev_err(nandc->dev, "failed to copy last codeword\n");
1937
1938 free_descs(nandc);
1939
1940 return ret;
1941 }
1942
1943 /* implements ecc->read_page() */
qcom_nandc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1944 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1945 int oob_required, int page)
1946 {
1947 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1948 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1949 u8 *data_buf, *oob_buf = NULL;
1950
1951 nand_read_page_op(chip, page, 0, NULL, 0);
1952 data_buf = buf;
1953 oob_buf = oob_required ? chip->oob_poi : NULL;
1954
1955 clear_bam_transaction(nandc);
1956
1957 return read_page_ecc(host, data_buf, oob_buf, page);
1958 }
1959
1960 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1961 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1962 int oob_required, int page)
1963 {
1964 struct mtd_info *mtd = nand_to_mtd(chip);
1965 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1966 struct nand_ecc_ctrl *ecc = &chip->ecc;
1967 int cw, ret;
1968 u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1969
1970 for (cw = 0; cw < ecc->steps; cw++) {
1971 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1972 page, cw);
1973 if (ret)
1974 return ret;
1975
1976 data_buf += host->cw_data;
1977 oob_buf += ecc->bytes;
1978 }
1979
1980 return 0;
1981 }
1982
1983 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct nand_chip * chip,int page)1984 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1985 {
1986 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1987 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1988 struct nand_ecc_ctrl *ecc = &chip->ecc;
1989
1990 clear_read_regs(nandc);
1991 clear_bam_transaction(nandc);
1992
1993 host->use_ecc = true;
1994 set_address(host, 0, page);
1995 update_rw_regs(host, ecc->steps, true);
1996
1997 return read_page_ecc(host, NULL, chip->oob_poi, page);
1998 }
1999
2000 /* implements ecc->write_page() */
qcom_nandc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2001 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2002 int oob_required, int page)
2003 {
2004 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2005 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2006 struct nand_ecc_ctrl *ecc = &chip->ecc;
2007 u8 *data_buf, *oob_buf;
2008 int i, ret;
2009
2010 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2011
2012 clear_read_regs(nandc);
2013 clear_bam_transaction(nandc);
2014
2015 data_buf = (u8 *)buf;
2016 oob_buf = chip->oob_poi;
2017
2018 host->use_ecc = true;
2019 update_rw_regs(host, ecc->steps, false);
2020 config_nand_page_write(nandc);
2021
2022 for (i = 0; i < ecc->steps; i++) {
2023 int data_size, oob_size;
2024
2025 if (i == (ecc->steps - 1)) {
2026 data_size = ecc->size - ((ecc->steps - 1) << 2);
2027 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2028 host->spare_bytes;
2029 } else {
2030 data_size = host->cw_data;
2031 oob_size = ecc->bytes;
2032 }
2033
2034
2035 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2036 i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2037
2038 /*
2039 * when ECC is enabled, we don't really need to write anything
2040 * to oob for the first n - 1 codewords since these oob regions
2041 * just contain ECC bytes that's written by the controller
2042 * itself. For the last codeword, we skip the bbm positions and
2043 * write to the free oob area.
2044 */
2045 if (i == (ecc->steps - 1)) {
2046 oob_buf += host->bbm_size;
2047
2048 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2049 oob_buf, oob_size, 0);
2050 }
2051
2052 config_nand_cw_write(nandc);
2053
2054 data_buf += data_size;
2055 oob_buf += oob_size;
2056 }
2057
2058 ret = submit_descs(nandc);
2059 if (ret)
2060 dev_err(nandc->dev, "failure to write page\n");
2061
2062 free_descs(nandc);
2063
2064 if (!ret)
2065 ret = nand_prog_page_end_op(chip);
2066
2067 return ret;
2068 }
2069
2070 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2071 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2072 const uint8_t *buf, int oob_required,
2073 int page)
2074 {
2075 struct mtd_info *mtd = nand_to_mtd(chip);
2076 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2077 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2078 struct nand_ecc_ctrl *ecc = &chip->ecc;
2079 u8 *data_buf, *oob_buf;
2080 int i, ret;
2081
2082 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2083 clear_read_regs(nandc);
2084 clear_bam_transaction(nandc);
2085
2086 data_buf = (u8 *)buf;
2087 oob_buf = chip->oob_poi;
2088
2089 host->use_ecc = false;
2090 update_rw_regs(host, ecc->steps, false);
2091 config_nand_page_write(nandc);
2092
2093 for (i = 0; i < ecc->steps; i++) {
2094 int data_size1, data_size2, oob_size1, oob_size2;
2095 int reg_off = FLASH_BUF_ACC;
2096
2097 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2098 oob_size1 = host->bbm_size;
2099
2100 if (i == (ecc->steps - 1)) {
2101 data_size2 = ecc->size - data_size1 -
2102 ((ecc->steps - 1) << 2);
2103 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2104 host->spare_bytes;
2105 } else {
2106 data_size2 = host->cw_data - data_size1;
2107 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2108 }
2109
2110 write_data_dma(nandc, reg_off, data_buf, data_size1,
2111 NAND_BAM_NO_EOT);
2112 reg_off += data_size1;
2113 data_buf += data_size1;
2114
2115 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2116 NAND_BAM_NO_EOT);
2117 reg_off += oob_size1;
2118 oob_buf += oob_size1;
2119
2120 write_data_dma(nandc, reg_off, data_buf, data_size2,
2121 NAND_BAM_NO_EOT);
2122 reg_off += data_size2;
2123 data_buf += data_size2;
2124
2125 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2126 oob_buf += oob_size2;
2127
2128 config_nand_cw_write(nandc);
2129 }
2130
2131 ret = submit_descs(nandc);
2132 if (ret)
2133 dev_err(nandc->dev, "failure to write raw page\n");
2134
2135 free_descs(nandc);
2136
2137 if (!ret)
2138 ret = nand_prog_page_end_op(chip);
2139
2140 return ret;
2141 }
2142
2143 /*
2144 * implements ecc->write_oob()
2145 *
2146 * the NAND controller cannot write only data or only OOB within a codeword
2147 * since ECC is calculated for the combined codeword. So update the OOB from
2148 * chip->oob_poi, and pad the data area with OxFF before writing.
2149 */
qcom_nandc_write_oob(struct nand_chip * chip,int page)2150 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2151 {
2152 struct mtd_info *mtd = nand_to_mtd(chip);
2153 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2154 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2155 struct nand_ecc_ctrl *ecc = &chip->ecc;
2156 u8 *oob = chip->oob_poi;
2157 int data_size, oob_size;
2158 int ret;
2159
2160 host->use_ecc = true;
2161 clear_bam_transaction(nandc);
2162
2163 /* calculate the data and oob size for the last codeword/step */
2164 data_size = ecc->size - ((ecc->steps - 1) << 2);
2165 oob_size = mtd->oobavail;
2166
2167 memset(nandc->data_buffer, 0xff, host->cw_data);
2168 /* override new oob content to last codeword */
2169 mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2170 0, mtd->oobavail);
2171
2172 set_address(host, host->cw_size * (ecc->steps - 1), page);
2173 update_rw_regs(host, 1, false);
2174
2175 config_nand_page_write(nandc);
2176 write_data_dma(nandc, FLASH_BUF_ACC,
2177 nandc->data_buffer, data_size + oob_size, 0);
2178 config_nand_cw_write(nandc);
2179
2180 ret = submit_descs(nandc);
2181
2182 free_descs(nandc);
2183
2184 if (ret) {
2185 dev_err(nandc->dev, "failure to write oob\n");
2186 return -EIO;
2187 }
2188
2189 return nand_prog_page_end_op(chip);
2190 }
2191
qcom_nandc_block_bad(struct nand_chip * chip,loff_t ofs)2192 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2193 {
2194 struct mtd_info *mtd = nand_to_mtd(chip);
2195 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2196 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2197 struct nand_ecc_ctrl *ecc = &chip->ecc;
2198 int page, ret, bbpos, bad = 0;
2199
2200 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2201
2202 /*
2203 * configure registers for a raw sub page read, the address is set to
2204 * the beginning of the last codeword, we don't care about reading ecc
2205 * portion of oob. we just want the first few bytes from this codeword
2206 * that contains the BBM
2207 */
2208 host->use_ecc = false;
2209
2210 clear_bam_transaction(nandc);
2211 ret = copy_last_cw(host, page);
2212 if (ret)
2213 goto err;
2214
2215 if (check_flash_errors(host, 1)) {
2216 dev_warn(nandc->dev, "error when trying to read BBM\n");
2217 goto err;
2218 }
2219
2220 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2221
2222 bad = nandc->data_buffer[bbpos] != 0xff;
2223
2224 if (chip->options & NAND_BUSWIDTH_16)
2225 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2226 err:
2227 return bad;
2228 }
2229
qcom_nandc_block_markbad(struct nand_chip * chip,loff_t ofs)2230 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2231 {
2232 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2233 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2234 struct nand_ecc_ctrl *ecc = &chip->ecc;
2235 int page, ret;
2236
2237 clear_read_regs(nandc);
2238 clear_bam_transaction(nandc);
2239
2240 /*
2241 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2242 * we don't care about the rest of the content in the codeword since
2243 * we aren't going to use this block again
2244 */
2245 memset(nandc->data_buffer, 0x00, host->cw_size);
2246
2247 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2248
2249 /* prepare write */
2250 host->use_ecc = false;
2251 set_address(host, host->cw_size * (ecc->steps - 1), page);
2252 update_rw_regs(host, 1, false);
2253
2254 config_nand_page_write(nandc);
2255 write_data_dma(nandc, FLASH_BUF_ACC,
2256 nandc->data_buffer, host->cw_size, 0);
2257 config_nand_cw_write(nandc);
2258
2259 ret = submit_descs(nandc);
2260
2261 free_descs(nandc);
2262
2263 if (ret) {
2264 dev_err(nandc->dev, "failure to update BBM\n");
2265 return -EIO;
2266 }
2267
2268 return nand_prog_page_end_op(chip);
2269 }
2270
2271 /*
2272 * the three functions below implement chip->legacy.read_byte(),
2273 * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2274 * aren't used for reading/writing page data, they are used for smaller data
2275 * like reading id, status etc
2276 */
qcom_nandc_read_byte(struct nand_chip * chip)2277 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2278 {
2279 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2280 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2281 u8 *buf = nandc->data_buffer;
2282 u8 ret = 0x0;
2283
2284 if (host->last_command == NAND_CMD_STATUS) {
2285 ret = host->status;
2286
2287 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2288
2289 return ret;
2290 }
2291
2292 if (nandc->buf_start < nandc->buf_count)
2293 ret = buf[nandc->buf_start++];
2294
2295 return ret;
2296 }
2297
qcom_nandc_read_buf(struct nand_chip * chip,uint8_t * buf,int len)2298 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2299 {
2300 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2301 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2302
2303 memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2304 nandc->buf_start += real_len;
2305 }
2306
qcom_nandc_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)2307 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2308 int len)
2309 {
2310 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2311 int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2312
2313 memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2314
2315 nandc->buf_start += real_len;
2316 }
2317
2318 /* we support only one external chip for now */
qcom_nandc_select_chip(struct nand_chip * chip,int chipnr)2319 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2320 {
2321 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2322
2323 if (chipnr <= 0)
2324 return;
2325
2326 dev_warn(nandc->dev, "invalid chip select\n");
2327 }
2328
2329 /*
2330 * NAND controller page layout info
2331 *
2332 * Layout with ECC enabled:
2333 *
2334 * |----------------------| |---------------------------------|
2335 * | xx.......yy| | *********xx.......yy|
2336 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2337 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2338 * | xx.......yy| | *********xx.......yy|
2339 * |----------------------| |---------------------------------|
2340 * codeword 1,2..n-1 codeword n
2341 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2342 *
2343 * n = Number of codewords in the page
2344 * . = ECC bytes
2345 * * = Spare/free bytes
2346 * x = Unused byte(s)
2347 * y = Reserved byte(s)
2348 *
2349 * 2K page: n = 4, spare = 16 bytes
2350 * 4K page: n = 8, spare = 32 bytes
2351 * 8K page: n = 16, spare = 64 bytes
2352 *
2353 * the qcom nand controller operates at a sub page/codeword level. each
2354 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2355 * the number of ECC bytes vary based on the ECC strength and the bus width.
2356 *
2357 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2358 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2359 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2360 *
2361 * When we access a page with ECC enabled, the reserved bytes(s) are not
2362 * accessible at all. When reading, we fill up these unreadable positions
2363 * with 0xffs. When writing, the controller skips writing the inaccessible
2364 * bytes.
2365 *
2366 * Layout with ECC disabled:
2367 *
2368 * |------------------------------| |---------------------------------------|
2369 * | yy xx.......| | bb *********xx.......|
2370 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2371 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2372 * | yy xx.......| | bb *********xx.......|
2373 * |------------------------------| |---------------------------------------|
2374 * codeword 1,2..n-1 codeword n
2375 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2376 *
2377 * n = Number of codewords in the page
2378 * . = ECC bytes
2379 * * = Spare/free bytes
2380 * x = Unused byte(s)
2381 * y = Dummy Bad Bock byte(s)
2382 * b = Real Bad Block byte(s)
2383 * size1/size2 = function of codeword size and 'n'
2384 *
2385 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2386 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2387 * Block Markers. In the last codeword, this position contains the real BBM
2388 *
2389 * In order to have a consistent layout between RAW and ECC modes, we assume
2390 * the following OOB layout arrangement:
2391 *
2392 * |-----------| |--------------------|
2393 * |yyxx.......| |bb*********xx.......|
2394 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2395 * |yyxx.......| |bb*********xx.......|
2396 * |yyxx.......| |bb*********xx.......|
2397 * |-----------| |--------------------|
2398 * first n - 1 nth OOB region
2399 * OOB regions
2400 *
2401 * n = Number of codewords in the page
2402 * . = ECC bytes
2403 * * = FREE OOB bytes
2404 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2405 * x = Unused byte(s)
2406 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2407 *
2408 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2409 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2410 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2411 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2412 * the sum of the three).
2413 */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2414 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2415 struct mtd_oob_region *oobregion)
2416 {
2417 struct nand_chip *chip = mtd_to_nand(mtd);
2418 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2419 struct nand_ecc_ctrl *ecc = &chip->ecc;
2420
2421 if (section > 1)
2422 return -ERANGE;
2423
2424 if (!section) {
2425 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2426 host->bbm_size;
2427 oobregion->offset = 0;
2428 } else {
2429 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2430 oobregion->offset = mtd->oobsize - oobregion->length;
2431 }
2432
2433 return 0;
2434 }
2435
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2436 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2437 struct mtd_oob_region *oobregion)
2438 {
2439 struct nand_chip *chip = mtd_to_nand(mtd);
2440 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2441 struct nand_ecc_ctrl *ecc = &chip->ecc;
2442
2443 if (section)
2444 return -ERANGE;
2445
2446 oobregion->length = ecc->steps * 4;
2447 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2448
2449 return 0;
2450 }
2451
2452 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2453 .ecc = qcom_nand_ooblayout_ecc,
2454 .free = qcom_nand_ooblayout_free,
2455 };
2456
2457 static int
qcom_nandc_calc_ecc_bytes(int step_size,int strength)2458 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2459 {
2460 return strength == 4 ? 12 : 16;
2461 }
2462 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2463 NANDC_STEP_SIZE, 4, 8);
2464
qcom_nand_attach_chip(struct nand_chip * chip)2465 static int qcom_nand_attach_chip(struct nand_chip *chip)
2466 {
2467 struct mtd_info *mtd = nand_to_mtd(chip);
2468 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2469 struct nand_ecc_ctrl *ecc = &chip->ecc;
2470 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2471 int cwperpage, bad_block_byte, ret;
2472 bool wide_bus;
2473 int ecc_mode = 1;
2474
2475 /* controller only supports 512 bytes data steps */
2476 ecc->size = NANDC_STEP_SIZE;
2477 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2478 cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2479
2480 /*
2481 * Each CW has 4 available OOB bytes which will be protected with ECC
2482 * so remaining bytes can be used for ECC.
2483 */
2484 ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2485 mtd->oobsize - (cwperpage * 4));
2486 if (ret) {
2487 dev_err(nandc->dev, "No valid ECC settings possible\n");
2488 return ret;
2489 }
2490
2491 if (ecc->strength >= 8) {
2492 /* 8 bit ECC defaults to BCH ECC on all platforms */
2493 host->bch_enabled = true;
2494 ecc_mode = 1;
2495
2496 if (wide_bus) {
2497 host->ecc_bytes_hw = 14;
2498 host->spare_bytes = 0;
2499 host->bbm_size = 2;
2500 } else {
2501 host->ecc_bytes_hw = 13;
2502 host->spare_bytes = 2;
2503 host->bbm_size = 1;
2504 }
2505 } else {
2506 /*
2507 * if the controller supports BCH for 4 bit ECC, the controller
2508 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2509 * always 10 bytes
2510 */
2511 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2512 /* BCH */
2513 host->bch_enabled = true;
2514 ecc_mode = 0;
2515
2516 if (wide_bus) {
2517 host->ecc_bytes_hw = 8;
2518 host->spare_bytes = 2;
2519 host->bbm_size = 2;
2520 } else {
2521 host->ecc_bytes_hw = 7;
2522 host->spare_bytes = 4;
2523 host->bbm_size = 1;
2524 }
2525 } else {
2526 /* RS */
2527 host->ecc_bytes_hw = 10;
2528
2529 if (wide_bus) {
2530 host->spare_bytes = 0;
2531 host->bbm_size = 2;
2532 } else {
2533 host->spare_bytes = 1;
2534 host->bbm_size = 1;
2535 }
2536 }
2537 }
2538
2539 /*
2540 * we consider ecc->bytes as the sum of all the non-data content in a
2541 * step. It gives us a clean representation of the oob area (even if
2542 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2543 * ECC and 12 bytes for 4 bit ECC
2544 */
2545 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2546
2547 ecc->read_page = qcom_nandc_read_page;
2548 ecc->read_page_raw = qcom_nandc_read_page_raw;
2549 ecc->read_oob = qcom_nandc_read_oob;
2550 ecc->write_page = qcom_nandc_write_page;
2551 ecc->write_page_raw = qcom_nandc_write_page_raw;
2552 ecc->write_oob = qcom_nandc_write_oob;
2553
2554 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2555
2556 mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2557
2558 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2559 cwperpage);
2560
2561 /*
2562 * DATA_UD_BYTES varies based on whether the read/write command protects
2563 * spare data with ECC too. We protect spare data by default, so we set
2564 * it to main + spare data, which are 512 and 4 bytes respectively.
2565 */
2566 host->cw_data = 516;
2567
2568 /*
2569 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2570 * for 8 bit ECC
2571 */
2572 host->cw_size = host->cw_data + ecc->bytes;
2573 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2574
2575 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2576 | host->cw_data << UD_SIZE_BYTES
2577 | 0 << DISABLE_STATUS_AFTER_WRITE
2578 | 5 << NUM_ADDR_CYCLES
2579 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2580 | 0 << STATUS_BFR_READ
2581 | 1 << SET_RD_MODE_AFTER_STATUS
2582 | host->spare_bytes << SPARE_SIZE_BYTES;
2583
2584 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2585 | 0 << CS_ACTIVE_BSY
2586 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2587 | 0 << BAD_BLOCK_IN_SPARE_AREA
2588 | 2 << WR_RD_BSY_GAP
2589 | wide_bus << WIDE_FLASH
2590 | host->bch_enabled << ENABLE_BCH_ECC;
2591
2592 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2593 | host->cw_size << UD_SIZE_BYTES
2594 | 5 << NUM_ADDR_CYCLES
2595 | 0 << SPARE_SIZE_BYTES;
2596
2597 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2598 | 0 << CS_ACTIVE_BSY
2599 | 17 << BAD_BLOCK_BYTE_NUM
2600 | 1 << BAD_BLOCK_IN_SPARE_AREA
2601 | 2 << WR_RD_BSY_GAP
2602 | wide_bus << WIDE_FLASH
2603 | 1 << DEV0_CFG1_ECC_DISABLE;
2604
2605 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2606 | 0 << ECC_SW_RESET
2607 | host->cw_data << ECC_NUM_DATA_BYTES
2608 | 1 << ECC_FORCE_CLK_OPEN
2609 | ecc_mode << ECC_MODE
2610 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2611
2612 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2613
2614 host->clrflashstatus = FS_READY_BSY_N;
2615 host->clrreadstatus = 0xc0;
2616 nandc->regs->erased_cw_detect_cfg_clr =
2617 cpu_to_le32(CLR_ERASED_PAGE_DET);
2618 nandc->regs->erased_cw_detect_cfg_set =
2619 cpu_to_le32(SET_ERASED_PAGE_DET);
2620
2621 dev_dbg(nandc->dev,
2622 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2623 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2624 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2625 cwperpage);
2626
2627 return 0;
2628 }
2629
2630 static const struct nand_controller_ops qcom_nandc_ops = {
2631 .attach_chip = qcom_nand_attach_chip,
2632 };
2633
qcom_nandc_unalloc(struct qcom_nand_controller * nandc)2634 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2635 {
2636 if (nandc->props->is_bam) {
2637 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2638 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2639 MAX_REG_RD *
2640 sizeof(*nandc->reg_read_buf),
2641 DMA_FROM_DEVICE);
2642
2643 if (nandc->tx_chan)
2644 dma_release_channel(nandc->tx_chan);
2645
2646 if (nandc->rx_chan)
2647 dma_release_channel(nandc->rx_chan);
2648
2649 if (nandc->cmd_chan)
2650 dma_release_channel(nandc->cmd_chan);
2651 } else {
2652 if (nandc->chan)
2653 dma_release_channel(nandc->chan);
2654 }
2655 }
2656
qcom_nandc_alloc(struct qcom_nand_controller * nandc)2657 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2658 {
2659 int ret;
2660
2661 ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2662 if (ret) {
2663 dev_err(nandc->dev, "failed to set DMA mask\n");
2664 return ret;
2665 }
2666
2667 /*
2668 * we use the internal buffer for reading ONFI params, reading small
2669 * data like ID and status, and preforming read-copy-write operations
2670 * when writing to a codeword partially. 532 is the maximum possible
2671 * size of a codeword for our nand controller
2672 */
2673 nandc->buf_size = 532;
2674
2675 nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2676 GFP_KERNEL);
2677 if (!nandc->data_buffer)
2678 return -ENOMEM;
2679
2680 nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2681 GFP_KERNEL);
2682 if (!nandc->regs)
2683 return -ENOMEM;
2684
2685 nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2686 MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2687 GFP_KERNEL);
2688 if (!nandc->reg_read_buf)
2689 return -ENOMEM;
2690
2691 if (nandc->props->is_bam) {
2692 nandc->reg_read_dma =
2693 dma_map_single(nandc->dev, nandc->reg_read_buf,
2694 MAX_REG_RD *
2695 sizeof(*nandc->reg_read_buf),
2696 DMA_FROM_DEVICE);
2697 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2698 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2699 return -EIO;
2700 }
2701
2702 nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2703 if (IS_ERR(nandc->tx_chan)) {
2704 ret = PTR_ERR(nandc->tx_chan);
2705 nandc->tx_chan = NULL;
2706 dev_err_probe(nandc->dev, ret,
2707 "tx DMA channel request failed\n");
2708 goto unalloc;
2709 }
2710
2711 nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2712 if (IS_ERR(nandc->rx_chan)) {
2713 ret = PTR_ERR(nandc->rx_chan);
2714 nandc->rx_chan = NULL;
2715 dev_err_probe(nandc->dev, ret,
2716 "rx DMA channel request failed\n");
2717 goto unalloc;
2718 }
2719
2720 nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2721 if (IS_ERR(nandc->cmd_chan)) {
2722 ret = PTR_ERR(nandc->cmd_chan);
2723 nandc->cmd_chan = NULL;
2724 dev_err_probe(nandc->dev, ret,
2725 "cmd DMA channel request failed\n");
2726 goto unalloc;
2727 }
2728
2729 /*
2730 * Initially allocate BAM transaction to read ONFI param page.
2731 * After detecting all the devices, this BAM transaction will
2732 * be freed and the next BAM tranasction will be allocated with
2733 * maximum codeword size
2734 */
2735 nandc->max_cwperpage = 1;
2736 nandc->bam_txn = alloc_bam_transaction(nandc);
2737 if (!nandc->bam_txn) {
2738 dev_err(nandc->dev,
2739 "failed to allocate bam transaction\n");
2740 ret = -ENOMEM;
2741 goto unalloc;
2742 }
2743 } else {
2744 nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2745 if (IS_ERR(nandc->chan)) {
2746 ret = PTR_ERR(nandc->chan);
2747 nandc->chan = NULL;
2748 dev_err_probe(nandc->dev, ret,
2749 "rxtx DMA channel request failed\n");
2750 return ret;
2751 }
2752 }
2753
2754 INIT_LIST_HEAD(&nandc->desc_list);
2755 INIT_LIST_HEAD(&nandc->host_list);
2756
2757 nand_controller_init(&nandc->controller);
2758 nandc->controller.ops = &qcom_nandc_ops;
2759
2760 return 0;
2761 unalloc:
2762 qcom_nandc_unalloc(nandc);
2763 return ret;
2764 }
2765
2766 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)2767 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2768 {
2769 u32 nand_ctrl;
2770
2771 /* kill onenand */
2772 if (!nandc->props->is_qpic)
2773 nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2774 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2775 NAND_DEV_CMD_VLD_VAL);
2776
2777 /* enable ADM or BAM DMA */
2778 if (nandc->props->is_bam) {
2779 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2780
2781 /*
2782 *NAND_CTRL is an operational registers, and CPU
2783 * access to operational registers are read only
2784 * in BAM mode. So update the NAND_CTRL register
2785 * only if it is not in BAM mode. In most cases BAM
2786 * mode will be enabled in bootloader
2787 */
2788 if (!(nand_ctrl & BAM_MODE_EN))
2789 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2790 } else {
2791 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2792 }
2793
2794 /* save the original values of these registers */
2795 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2796 nandc->vld = NAND_DEV_CMD_VLD_VAL;
2797
2798 return 0;
2799 }
2800
qcom_nand_host_init_and_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2801 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2802 struct qcom_nand_host *host,
2803 struct device_node *dn)
2804 {
2805 struct nand_chip *chip = &host->chip;
2806 struct mtd_info *mtd = nand_to_mtd(chip);
2807 struct device *dev = nandc->dev;
2808 int ret;
2809
2810 ret = of_property_read_u32(dn, "reg", &host->cs);
2811 if (ret) {
2812 dev_err(dev, "can't get chip-select\n");
2813 return -ENXIO;
2814 }
2815
2816 nand_set_flash_node(chip, dn);
2817 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2818 if (!mtd->name)
2819 return -ENOMEM;
2820
2821 mtd->owner = THIS_MODULE;
2822 mtd->dev.parent = dev;
2823
2824 chip->legacy.cmdfunc = qcom_nandc_command;
2825 chip->legacy.select_chip = qcom_nandc_select_chip;
2826 chip->legacy.read_byte = qcom_nandc_read_byte;
2827 chip->legacy.read_buf = qcom_nandc_read_buf;
2828 chip->legacy.write_buf = qcom_nandc_write_buf;
2829 chip->legacy.set_features = nand_get_set_features_notsupp;
2830 chip->legacy.get_features = nand_get_set_features_notsupp;
2831
2832 /*
2833 * the bad block marker is readable only when we read the last codeword
2834 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2835 * helpers don't allow us to read BB from a nand chip with ECC
2836 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2837 * and block_markbad helpers until we permanently switch to using
2838 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2839 */
2840 chip->legacy.block_bad = qcom_nandc_block_bad;
2841 chip->legacy.block_markbad = qcom_nandc_block_markbad;
2842
2843 chip->controller = &nandc->controller;
2844 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2845 NAND_SKIP_BBTSCAN;
2846
2847 /* set up initial status value */
2848 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2849
2850 ret = nand_scan(chip, 1);
2851 if (ret)
2852 return ret;
2853
2854 if (nandc->props->is_bam) {
2855 free_bam_transaction(nandc);
2856 nandc->bam_txn = alloc_bam_transaction(nandc);
2857 if (!nandc->bam_txn) {
2858 dev_err(nandc->dev,
2859 "failed to allocate bam transaction\n");
2860 return -ENOMEM;
2861 }
2862 }
2863
2864 ret = mtd_device_register(mtd, NULL, 0);
2865 if (ret)
2866 nand_cleanup(chip);
2867
2868 return ret;
2869 }
2870
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)2871 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2872 {
2873 struct device *dev = nandc->dev;
2874 struct device_node *dn = dev->of_node, *child;
2875 struct qcom_nand_host *host;
2876 int ret = -ENODEV;
2877
2878 for_each_available_child_of_node(dn, child) {
2879 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2880 if (!host) {
2881 of_node_put(child);
2882 return -ENOMEM;
2883 }
2884
2885 ret = qcom_nand_host_init_and_register(nandc, host, child);
2886 if (ret) {
2887 devm_kfree(dev, host);
2888 continue;
2889 }
2890
2891 list_add_tail(&host->node, &nandc->host_list);
2892 }
2893
2894 return ret;
2895 }
2896
2897 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)2898 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2899 {
2900 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2901 struct device_node *np = nandc->dev->of_node;
2902 int ret;
2903
2904 if (!nandc->props->is_bam) {
2905 ret = of_property_read_u32(np, "qcom,cmd-crci",
2906 &nandc->cmd_crci);
2907 if (ret) {
2908 dev_err(nandc->dev, "command CRCI unspecified\n");
2909 return ret;
2910 }
2911
2912 ret = of_property_read_u32(np, "qcom,data-crci",
2913 &nandc->data_crci);
2914 if (ret) {
2915 dev_err(nandc->dev, "data CRCI unspecified\n");
2916 return ret;
2917 }
2918 }
2919
2920 return 0;
2921 }
2922
qcom_nandc_probe(struct platform_device * pdev)2923 static int qcom_nandc_probe(struct platform_device *pdev)
2924 {
2925 struct qcom_nand_controller *nandc;
2926 const void *dev_data;
2927 struct device *dev = &pdev->dev;
2928 struct resource *res;
2929 int ret;
2930
2931 nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2932 if (!nandc)
2933 return -ENOMEM;
2934
2935 platform_set_drvdata(pdev, nandc);
2936 nandc->dev = dev;
2937
2938 dev_data = of_device_get_match_data(dev);
2939 if (!dev_data) {
2940 dev_err(&pdev->dev, "failed to get device data\n");
2941 return -ENODEV;
2942 }
2943
2944 nandc->props = dev_data;
2945
2946 nandc->core_clk = devm_clk_get(dev, "core");
2947 if (IS_ERR(nandc->core_clk))
2948 return PTR_ERR(nandc->core_clk);
2949
2950 nandc->aon_clk = devm_clk_get(dev, "aon");
2951 if (IS_ERR(nandc->aon_clk))
2952 return PTR_ERR(nandc->aon_clk);
2953
2954 ret = qcom_nandc_parse_dt(pdev);
2955 if (ret)
2956 return ret;
2957
2958 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2959 nandc->base = devm_ioremap_resource(dev, res);
2960 if (IS_ERR(nandc->base))
2961 return PTR_ERR(nandc->base);
2962
2963 nandc->base_phys = res->start;
2964 nandc->base_dma = dma_map_resource(dev, res->start,
2965 resource_size(res),
2966 DMA_BIDIRECTIONAL, 0);
2967 if (!nandc->base_dma)
2968 return -ENXIO;
2969
2970 ret = clk_prepare_enable(nandc->core_clk);
2971 if (ret)
2972 goto err_core_clk;
2973
2974 ret = clk_prepare_enable(nandc->aon_clk);
2975 if (ret)
2976 goto err_aon_clk;
2977
2978 ret = qcom_nandc_alloc(nandc);
2979 if (ret)
2980 goto err_nandc_alloc;
2981
2982 ret = qcom_nandc_setup(nandc);
2983 if (ret)
2984 goto err_setup;
2985
2986 ret = qcom_probe_nand_devices(nandc);
2987 if (ret)
2988 goto err_setup;
2989
2990 return 0;
2991
2992 err_setup:
2993 qcom_nandc_unalloc(nandc);
2994 err_nandc_alloc:
2995 clk_disable_unprepare(nandc->aon_clk);
2996 err_aon_clk:
2997 clk_disable_unprepare(nandc->core_clk);
2998 err_core_clk:
2999 dma_unmap_resource(dev, res->start, resource_size(res),
3000 DMA_BIDIRECTIONAL, 0);
3001 return ret;
3002 }
3003
qcom_nandc_remove(struct platform_device * pdev)3004 static int qcom_nandc_remove(struct platform_device *pdev)
3005 {
3006 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3007 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3008 struct qcom_nand_host *host;
3009 struct nand_chip *chip;
3010 int ret;
3011
3012 list_for_each_entry(host, &nandc->host_list, node) {
3013 chip = &host->chip;
3014 ret = mtd_device_unregister(nand_to_mtd(chip));
3015 WARN_ON(ret);
3016 nand_cleanup(chip);
3017 }
3018
3019 qcom_nandc_unalloc(nandc);
3020
3021 clk_disable_unprepare(nandc->aon_clk);
3022 clk_disable_unprepare(nandc->core_clk);
3023
3024 dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3025 DMA_BIDIRECTIONAL, 0);
3026
3027 return 0;
3028 }
3029
3030 static const struct qcom_nandc_props ipq806x_nandc_props = {
3031 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3032 .is_bam = false,
3033 .dev_cmd_reg_start = 0x0,
3034 };
3035
3036 static const struct qcom_nandc_props ipq4019_nandc_props = {
3037 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3038 .is_bam = true,
3039 .is_qpic = true,
3040 .dev_cmd_reg_start = 0x0,
3041 };
3042
3043 static const struct qcom_nandc_props ipq8074_nandc_props = {
3044 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3045 .is_bam = true,
3046 .is_qpic = true,
3047 .dev_cmd_reg_start = 0x7000,
3048 };
3049
3050 /*
3051 * data will hold a struct pointer containing more differences once we support
3052 * more controller variants
3053 */
3054 static const struct of_device_id qcom_nandc_of_match[] = {
3055 {
3056 .compatible = "qcom,ipq806x-nand",
3057 .data = &ipq806x_nandc_props,
3058 },
3059 {
3060 .compatible = "qcom,ipq4019-nand",
3061 .data = &ipq4019_nandc_props,
3062 },
3063 {
3064 .compatible = "qcom,ipq8074-nand",
3065 .data = &ipq8074_nandc_props,
3066 },
3067 {}
3068 };
3069 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3070
3071 static struct platform_driver qcom_nandc_driver = {
3072 .driver = {
3073 .name = "qcom-nandc",
3074 .of_match_table = qcom_nandc_of_match,
3075 },
3076 .probe = qcom_nandc_probe,
3077 .remove = qcom_nandc_remove,
3078 };
3079 module_platform_driver(qcom_nandc_driver);
3080
3081 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3082 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3083 MODULE_LICENSE("GPL v2");
3084