• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 #include <linux/clk.h>
6 #include <linux/slab.h>
7 #include <linux/bitops.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/mtd/rawnand.h>
12 #include <linux/mtd/partitions.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma/qcom_bam_dma.h>
17 
18 /* NANDc reg offsets */
19 #define	NAND_FLASH_CMD			0x00
20 #define	NAND_ADDR0			0x04
21 #define	NAND_ADDR1			0x08
22 #define	NAND_FLASH_CHIP_SELECT		0x0c
23 #define	NAND_EXEC_CMD			0x10
24 #define	NAND_FLASH_STATUS		0x14
25 #define	NAND_BUFFER_STATUS		0x18
26 #define	NAND_DEV0_CFG0			0x20
27 #define	NAND_DEV0_CFG1			0x24
28 #define	NAND_DEV0_ECC_CFG		0x28
29 #define	NAND_DEV1_ECC_CFG		0x2c
30 #define	NAND_DEV1_CFG0			0x30
31 #define	NAND_DEV1_CFG1			0x34
32 #define	NAND_READ_ID			0x40
33 #define	NAND_READ_STATUS		0x44
34 #define	NAND_DEV_CMD0			0xa0
35 #define	NAND_DEV_CMD1			0xa4
36 #define	NAND_DEV_CMD2			0xa8
37 #define	NAND_DEV_CMD_VLD		0xac
38 #define	SFLASHC_BURST_CFG		0xe0
39 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
40 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
41 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
42 #define	FLASH_BUF_ACC			0x100
43 
44 #define	NAND_CTRL			0xf00
45 #define	NAND_VERSION			0xf08
46 #define	NAND_READ_LOCATION_0		0xf20
47 #define	NAND_READ_LOCATION_1		0xf24
48 #define	NAND_READ_LOCATION_2		0xf28
49 #define	NAND_READ_LOCATION_3		0xf2c
50 
51 /* dummy register offsets, used by write_reg_dma */
52 #define	NAND_DEV_CMD1_RESTORE		0xdead
53 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
54 
55 /* NAND_FLASH_CMD bits */
56 #define	PAGE_ACC			BIT(4)
57 #define	LAST_PAGE			BIT(5)
58 
59 /* NAND_FLASH_CHIP_SELECT bits */
60 #define	NAND_DEV_SEL			0
61 #define	DM_EN				BIT(2)
62 
63 /* NAND_FLASH_STATUS bits */
64 #define	FS_OP_ERR			BIT(4)
65 #define	FS_READY_BSY_N			BIT(5)
66 #define	FS_MPU_ERR			BIT(8)
67 #define	FS_DEVICE_STS_ERR		BIT(16)
68 #define	FS_DEVICE_WP			BIT(23)
69 
70 /* NAND_BUFFER_STATUS bits */
71 #define	BS_UNCORRECTABLE_BIT		BIT(8)
72 #define	BS_CORRECTABLE_ERR_MSK		0x1f
73 
74 /* NAND_DEVn_CFG0 bits */
75 #define	DISABLE_STATUS_AFTER_WRITE	4
76 #define	CW_PER_PAGE			6
77 #define	UD_SIZE_BYTES			9
78 #define	ECC_PARITY_SIZE_BYTES_RS	19
79 #define	SPARE_SIZE_BYTES		23
80 #define	NUM_ADDR_CYCLES			27
81 #define	STATUS_BFR_READ			30
82 #define	SET_RD_MODE_AFTER_STATUS	31
83 
84 /* NAND_DEVn_CFG0 bits */
85 #define	DEV0_CFG1_ECC_DISABLE		0
86 #define	WIDE_FLASH			1
87 #define	NAND_RECOVERY_CYCLES		2
88 #define	CS_ACTIVE_BSY			5
89 #define	BAD_BLOCK_BYTE_NUM		6
90 #define	BAD_BLOCK_IN_SPARE_AREA		16
91 #define	WR_RD_BSY_GAP			17
92 #define	ENABLE_BCH_ECC			27
93 
94 /* NAND_DEV0_ECC_CFG bits */
95 #define	ECC_CFG_ECC_DISABLE		0
96 #define	ECC_SW_RESET			1
97 #define	ECC_MODE			4
98 #define	ECC_PARITY_SIZE_BYTES_BCH	8
99 #define	ECC_NUM_DATA_BYTES		16
100 #define	ECC_FORCE_CLK_OPEN		30
101 
102 /* NAND_DEV_CMD1 bits */
103 #define	READ_ADDR			0
104 
105 /* NAND_DEV_CMD_VLD bits */
106 #define	READ_START_VLD			BIT(0)
107 #define	READ_STOP_VLD			BIT(1)
108 #define	WRITE_START_VLD			BIT(2)
109 #define	ERASE_START_VLD			BIT(3)
110 #define	SEQ_READ_START_VLD		BIT(4)
111 
112 /* NAND_EBI2_ECC_BUF_CFG bits */
113 #define	NUM_STEPS			0
114 
115 /* NAND_ERASED_CW_DETECT_CFG bits */
116 #define	ERASED_CW_ECC_MASK		1
117 #define	AUTO_DETECT_RES			0
118 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
119 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
120 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
121 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
122 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
123 
124 /* NAND_ERASED_CW_DETECT_STATUS bits */
125 #define	PAGE_ALL_ERASED			BIT(7)
126 #define	CODEWORD_ALL_ERASED		BIT(6)
127 #define	PAGE_ERASED			BIT(5)
128 #define	CODEWORD_ERASED			BIT(4)
129 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
130 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
131 
132 /* NAND_READ_LOCATION_n bits */
133 #define READ_LOCATION_OFFSET		0
134 #define READ_LOCATION_SIZE		16
135 #define READ_LOCATION_LAST		31
136 
137 /* Version Mask */
138 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
139 #define	NAND_VERSION_MAJOR_SHIFT	28
140 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
141 #define	NAND_VERSION_MINOR_SHIFT	16
142 
143 /* NAND OP_CMDs */
144 #define	OP_PAGE_READ			0x2
145 #define	OP_PAGE_READ_WITH_ECC		0x3
146 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
147 #define	OP_PROGRAM_PAGE			0x6
148 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
149 #define	OP_PROGRAM_PAGE_SPARE		0x9
150 #define	OP_BLOCK_ERASE			0xa
151 #define	OP_FETCH_ID			0xb
152 #define	OP_RESET_DEVICE			0xd
153 
154 /* Default Value for NAND_DEV_CMD_VLD */
155 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
156 					 ERASE_START_VLD | SEQ_READ_START_VLD)
157 
158 /* NAND_CTRL bits */
159 #define	BAM_MODE_EN			BIT(0)
160 
161 /*
162  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
163  * the driver calls the chunks 'step' or 'codeword' interchangeably
164  */
165 #define	NANDC_STEP_SIZE			512
166 
167 /*
168  * the largest page size we support is 8K, this will have 16 steps/codewords
169  * of 512 bytes each
170  */
171 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
172 
173 /* we read at most 3 registers per codeword scan */
174 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
175 
176 /* ECC modes supported by the controller */
177 #define	ECC_NONE	BIT(0)
178 #define	ECC_RS_4BIT	BIT(1)
179 #define	ECC_BCH_4BIT	BIT(2)
180 #define	ECC_BCH_8BIT	BIT(3)
181 
182 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
183 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
184 	      ((offset) << READ_LOCATION_OFFSET) |		\
185 	      ((size) << READ_LOCATION_SIZE) |			\
186 	      ((is_last) << READ_LOCATION_LAST))
187 
188 /*
189  * Returns the actual register address for all NAND_DEV_ registers
190  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
191  */
192 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
193 
194 /* Returns the NAND register physical address */
195 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
196 
197 /* Returns the dma address for reg read buffer */
198 #define reg_buf_dma_addr(chip, vaddr) \
199 	((chip)->reg_read_dma + \
200 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
201 
202 #define QPIC_PER_CW_CMD_ELEMENTS	32
203 #define QPIC_PER_CW_CMD_SGL		32
204 #define QPIC_PER_CW_DATA_SGL		8
205 
206 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
207 
208 /*
209  * Flags used in DMA descriptor preparation helper functions
210  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
211  */
212 /* Don't set the EOT in current tx BAM sgl */
213 #define NAND_BAM_NO_EOT			BIT(0)
214 /* Set the NWD flag in current BAM sgl */
215 #define NAND_BAM_NWD			BIT(1)
216 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
217 #define NAND_BAM_NEXT_SGL		BIT(2)
218 /*
219  * Erased codeword status is being used two times in single transfer so this
220  * flag will determine the current value of erased codeword status register
221  */
222 #define NAND_ERASED_CW_SET		BIT(4)
223 
224 /*
225  * This data type corresponds to the BAM transaction which will be used for all
226  * NAND transfers.
227  * @bam_ce - the array of BAM command elements
228  * @cmd_sgl - sgl for NAND BAM command pipe
229  * @data_sgl - sgl for NAND BAM consumer/producer pipe
230  * @bam_ce_pos - the index in bam_ce which is available for next sgl
231  * @bam_ce_start - the index in bam_ce which marks the start position ce
232  *		   for current sgl. It will be used for size calculation
233  *		   for current sgl
234  * @cmd_sgl_pos - current index in command sgl.
235  * @cmd_sgl_start - start index in command sgl.
236  * @tx_sgl_pos - current index in data sgl for tx.
237  * @tx_sgl_start - start index in data sgl for tx.
238  * @rx_sgl_pos - current index in data sgl for rx.
239  * @rx_sgl_start - start index in data sgl for rx.
240  * @wait_second_completion - wait for second DMA desc completion before making
241  *			     the NAND transfer completion.
242  * @txn_done - completion for NAND transfer.
243  * @last_data_desc - last DMA desc in data channel (tx/rx).
244  * @last_cmd_desc - last DMA desc in command channel.
245  */
246 struct bam_transaction {
247 	struct bam_cmd_element *bam_ce;
248 	struct scatterlist *cmd_sgl;
249 	struct scatterlist *data_sgl;
250 	u32 bam_ce_pos;
251 	u32 bam_ce_start;
252 	u32 cmd_sgl_pos;
253 	u32 cmd_sgl_start;
254 	u32 tx_sgl_pos;
255 	u32 tx_sgl_start;
256 	u32 rx_sgl_pos;
257 	u32 rx_sgl_start;
258 	bool wait_second_completion;
259 	struct completion txn_done;
260 	struct dma_async_tx_descriptor *last_data_desc;
261 	struct dma_async_tx_descriptor *last_cmd_desc;
262 };
263 
264 /*
265  * This data type corresponds to the nand dma descriptor
266  * @list - list for desc_info
267  * @dir - DMA transfer direction
268  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
269  *	      ADM
270  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
271  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
272  * @dma_desc - low level DMA engine descriptor
273  */
274 struct desc_info {
275 	struct list_head node;
276 
277 	enum dma_data_direction dir;
278 	union {
279 		struct scatterlist adm_sgl;
280 		struct {
281 			struct scatterlist *bam_sgl;
282 			int sgl_cnt;
283 		};
284 	};
285 	struct dma_async_tx_descriptor *dma_desc;
286 };
287 
288 /*
289  * holds the current register values that we want to write. acts as a contiguous
290  * chunk of memory which we use to write the controller registers through DMA.
291  */
292 struct nandc_regs {
293 	__le32 cmd;
294 	__le32 addr0;
295 	__le32 addr1;
296 	__le32 chip_sel;
297 	__le32 exec;
298 
299 	__le32 cfg0;
300 	__le32 cfg1;
301 	__le32 ecc_bch_cfg;
302 
303 	__le32 clrflashstatus;
304 	__le32 clrreadstatus;
305 
306 	__le32 cmd1;
307 	__le32 vld;
308 
309 	__le32 orig_cmd1;
310 	__le32 orig_vld;
311 
312 	__le32 ecc_buf_cfg;
313 	__le32 read_location0;
314 	__le32 read_location1;
315 	__le32 read_location2;
316 	__le32 read_location3;
317 
318 	__le32 erased_cw_detect_cfg_clr;
319 	__le32 erased_cw_detect_cfg_set;
320 };
321 
322 /*
323  * NAND controller data struct
324  *
325  * @controller:			base controller structure
326  * @host_list:			list containing all the chips attached to the
327  *				controller
328  * @dev:			parent device
329  * @base:			MMIO base
330  * @base_phys:			physical base address of controller registers
331  * @base_dma:			dma base address of controller registers
332  * @core_clk:			controller clock
333  * @aon_clk:			another controller clock
334  *
335  * @chan:			dma channel
336  * @cmd_crci:			ADM DMA CRCI for command flow control
337  * @data_crci:			ADM DMA CRCI for data flow control
338  * @desc_list:			DMA descriptor list (list of desc_infos)
339  *
340  * @data_buffer:		our local DMA buffer for page read/writes,
341  *				used when we can't use the buffer provided
342  *				by upper layers directly
343  * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
344  *				functions
345  * @reg_read_buf:		local buffer for reading back registers via DMA
346  * @reg_read_dma:		contains dma address for register read buffer
347  * @reg_read_pos:		marker for data read in reg_read_buf
348  *
349  * @regs:			a contiguous chunk of memory for DMA register
350  *				writes. contains the register values to be
351  *				written to controller
352  * @cmd1/vld:			some fixed controller register values
353  * @props:			properties of current NAND controller,
354  *				initialized via DT match data
355  * @max_cwperpage:		maximum QPIC codewords required. calculated
356  *				from all connected NAND devices pagesize
357  */
358 struct qcom_nand_controller {
359 	struct nand_controller controller;
360 	struct list_head host_list;
361 
362 	struct device *dev;
363 
364 	void __iomem *base;
365 	phys_addr_t base_phys;
366 	dma_addr_t base_dma;
367 
368 	struct clk *core_clk;
369 	struct clk *aon_clk;
370 
371 	union {
372 		/* will be used only by QPIC for BAM DMA */
373 		struct {
374 			struct dma_chan *tx_chan;
375 			struct dma_chan *rx_chan;
376 			struct dma_chan *cmd_chan;
377 		};
378 
379 		/* will be used only by EBI2 for ADM DMA */
380 		struct {
381 			struct dma_chan *chan;
382 			unsigned int cmd_crci;
383 			unsigned int data_crci;
384 		};
385 	};
386 
387 	struct list_head desc_list;
388 	struct bam_transaction *bam_txn;
389 
390 	u8		*data_buffer;
391 	int		buf_size;
392 	int		buf_count;
393 	int		buf_start;
394 	unsigned int	max_cwperpage;
395 
396 	__le32 *reg_read_buf;
397 	dma_addr_t reg_read_dma;
398 	int reg_read_pos;
399 
400 	struct nandc_regs *regs;
401 
402 	u32 cmd1, vld;
403 	const struct qcom_nandc_props *props;
404 };
405 
406 /*
407  * NAND chip structure
408  *
409  * @chip:			base NAND chip structure
410  * @node:			list node to add itself to host_list in
411  *				qcom_nand_controller
412  *
413  * @cs:				chip select value for this chip
414  * @cw_size:			the number of bytes in a single step/codeword
415  *				of a page, consisting of all data, ecc, spare
416  *				and reserved bytes
417  * @cw_data:			the number of bytes within a codeword protected
418  *				by ECC
419  * @use_ecc:			request the controller to use ECC for the
420  *				upcoming read/write
421  * @bch_enabled:		flag to tell whether BCH ECC mode is used
422  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
423  *				chip
424  * @status:			value to be returned if NAND_CMD_STATUS command
425  *				is executed
426  * @last_command:		keeps track of last command on this chip. used
427  *				for reading correct status
428  *
429  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
430  *				ecc/non-ecc mode for the current nand flash
431  *				device
432  */
433 struct qcom_nand_host {
434 	struct nand_chip chip;
435 	struct list_head node;
436 
437 	int cs;
438 	int cw_size;
439 	int cw_data;
440 	bool use_ecc;
441 	bool bch_enabled;
442 	int ecc_bytes_hw;
443 	int spare_bytes;
444 	int bbm_size;
445 	u8 status;
446 	int last_command;
447 
448 	u32 cfg0, cfg1;
449 	u32 cfg0_raw, cfg1_raw;
450 	u32 ecc_buf_cfg;
451 	u32 ecc_bch_cfg;
452 	u32 clrflashstatus;
453 	u32 clrreadstatus;
454 };
455 
456 /*
457  * This data type corresponds to the NAND controller properties which varies
458  * among different NAND controllers.
459  * @ecc_modes - ecc mode for NAND
460  * @is_bam - whether NAND controller is using BAM
461  * @is_qpic - whether NAND CTRL is part of qpic IP
462  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
463  */
464 struct qcom_nandc_props {
465 	u32 ecc_modes;
466 	bool is_bam;
467 	bool is_qpic;
468 	u32 dev_cmd_reg_start;
469 };
470 
471 /* Frees the BAM transaction memory */
free_bam_transaction(struct qcom_nand_controller * nandc)472 static void free_bam_transaction(struct qcom_nand_controller *nandc)
473 {
474 	struct bam_transaction *bam_txn = nandc->bam_txn;
475 
476 	devm_kfree(nandc->dev, bam_txn);
477 }
478 
479 /* Allocates and Initializes the BAM transaction */
480 static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller * nandc)481 alloc_bam_transaction(struct qcom_nand_controller *nandc)
482 {
483 	struct bam_transaction *bam_txn;
484 	size_t bam_txn_size;
485 	unsigned int num_cw = nandc->max_cwperpage;
486 	void *bam_txn_buf;
487 
488 	bam_txn_size =
489 		sizeof(*bam_txn) + num_cw *
490 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
491 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
492 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
493 
494 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
495 	if (!bam_txn_buf)
496 		return NULL;
497 
498 	bam_txn = bam_txn_buf;
499 	bam_txn_buf += sizeof(*bam_txn);
500 
501 	bam_txn->bam_ce = bam_txn_buf;
502 	bam_txn_buf +=
503 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
504 
505 	bam_txn->cmd_sgl = bam_txn_buf;
506 	bam_txn_buf +=
507 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
508 
509 	bam_txn->data_sgl = bam_txn_buf;
510 
511 	init_completion(&bam_txn->txn_done);
512 
513 	return bam_txn;
514 }
515 
516 /* Clears the BAM transaction indexes */
clear_bam_transaction(struct qcom_nand_controller * nandc)517 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
518 {
519 	struct bam_transaction *bam_txn = nandc->bam_txn;
520 
521 	if (!nandc->props->is_bam)
522 		return;
523 
524 	bam_txn->bam_ce_pos = 0;
525 	bam_txn->bam_ce_start = 0;
526 	bam_txn->cmd_sgl_pos = 0;
527 	bam_txn->cmd_sgl_start = 0;
528 	bam_txn->tx_sgl_pos = 0;
529 	bam_txn->tx_sgl_start = 0;
530 	bam_txn->rx_sgl_pos = 0;
531 	bam_txn->rx_sgl_start = 0;
532 	bam_txn->last_data_desc = NULL;
533 	bam_txn->wait_second_completion = false;
534 
535 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
536 		      QPIC_PER_CW_CMD_SGL);
537 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
538 		      QPIC_PER_CW_DATA_SGL);
539 
540 	reinit_completion(&bam_txn->txn_done);
541 }
542 
543 /* Callback for DMA descriptor completion */
qpic_bam_dma_done(void * data)544 static void qpic_bam_dma_done(void *data)
545 {
546 	struct bam_transaction *bam_txn = data;
547 
548 	/*
549 	 * In case of data transfer with NAND, 2 callbacks will be generated.
550 	 * One for command channel and another one for data channel.
551 	 * If current transaction has data descriptors
552 	 * (i.e. wait_second_completion is true), then set this to false
553 	 * and wait for second DMA descriptor completion.
554 	 */
555 	if (bam_txn->wait_second_completion)
556 		bam_txn->wait_second_completion = false;
557 	else
558 		complete(&bam_txn->txn_done);
559 }
560 
to_qcom_nand_host(struct nand_chip * chip)561 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
562 {
563 	return container_of(chip, struct qcom_nand_host, chip);
564 }
565 
566 static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)567 get_qcom_nand_controller(struct nand_chip *chip)
568 {
569 	return container_of(chip->controller, struct qcom_nand_controller,
570 			    controller);
571 }
572 
nandc_read(struct qcom_nand_controller * nandc,int offset)573 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
574 {
575 	return ioread32(nandc->base + offset);
576 }
577 
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)578 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
579 			       u32 val)
580 {
581 	iowrite32(val, nandc->base + offset);
582 }
583 
nandc_read_buffer_sync(struct qcom_nand_controller * nandc,bool is_cpu)584 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
585 					  bool is_cpu)
586 {
587 	if (!nandc->props->is_bam)
588 		return;
589 
590 	if (is_cpu)
591 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
592 					MAX_REG_RD *
593 					sizeof(*nandc->reg_read_buf),
594 					DMA_FROM_DEVICE);
595 	else
596 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
597 					   MAX_REG_RD *
598 					   sizeof(*nandc->reg_read_buf),
599 					   DMA_FROM_DEVICE);
600 }
601 
offset_to_nandc_reg(struct nandc_regs * regs,int offset)602 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
603 {
604 	switch (offset) {
605 	case NAND_FLASH_CMD:
606 		return &regs->cmd;
607 	case NAND_ADDR0:
608 		return &regs->addr0;
609 	case NAND_ADDR1:
610 		return &regs->addr1;
611 	case NAND_FLASH_CHIP_SELECT:
612 		return &regs->chip_sel;
613 	case NAND_EXEC_CMD:
614 		return &regs->exec;
615 	case NAND_FLASH_STATUS:
616 		return &regs->clrflashstatus;
617 	case NAND_DEV0_CFG0:
618 		return &regs->cfg0;
619 	case NAND_DEV0_CFG1:
620 		return &regs->cfg1;
621 	case NAND_DEV0_ECC_CFG:
622 		return &regs->ecc_bch_cfg;
623 	case NAND_READ_STATUS:
624 		return &regs->clrreadstatus;
625 	case NAND_DEV_CMD1:
626 		return &regs->cmd1;
627 	case NAND_DEV_CMD1_RESTORE:
628 		return &regs->orig_cmd1;
629 	case NAND_DEV_CMD_VLD:
630 		return &regs->vld;
631 	case NAND_DEV_CMD_VLD_RESTORE:
632 		return &regs->orig_vld;
633 	case NAND_EBI2_ECC_BUF_CFG:
634 		return &regs->ecc_buf_cfg;
635 	case NAND_READ_LOCATION_0:
636 		return &regs->read_location0;
637 	case NAND_READ_LOCATION_1:
638 		return &regs->read_location1;
639 	case NAND_READ_LOCATION_2:
640 		return &regs->read_location2;
641 	case NAND_READ_LOCATION_3:
642 		return &regs->read_location3;
643 	default:
644 		return NULL;
645 	}
646 }
647 
nandc_set_reg(struct qcom_nand_controller * nandc,int offset,u32 val)648 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
649 			  u32 val)
650 {
651 	struct nandc_regs *regs = nandc->regs;
652 	__le32 *reg;
653 
654 	reg = offset_to_nandc_reg(regs, offset);
655 
656 	if (reg)
657 		*reg = cpu_to_le32(val);
658 }
659 
660 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)661 static void set_address(struct qcom_nand_host *host, u16 column, int page)
662 {
663 	struct nand_chip *chip = &host->chip;
664 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
665 
666 	if (chip->options & NAND_BUSWIDTH_16)
667 		column >>= 1;
668 
669 	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
670 	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
671 }
672 
673 /*
674  * update_rw_regs:	set up read/write register values, these will be
675  *			written to the NAND controller registers via DMA
676  *
677  * @num_cw:		number of steps for the read/write operation
678  * @read:		read or write operation
679  */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read)680 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
681 {
682 	struct nand_chip *chip = &host->chip;
683 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
684 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
685 
686 	if (read) {
687 		if (host->use_ecc)
688 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
689 		else
690 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
691 	} else {
692 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
693 	}
694 
695 	if (host->use_ecc) {
696 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
697 				(num_cw - 1) << CW_PER_PAGE;
698 
699 		cfg1 = host->cfg1;
700 		ecc_bch_cfg = host->ecc_bch_cfg;
701 	} else {
702 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
703 				(num_cw - 1) << CW_PER_PAGE;
704 
705 		cfg1 = host->cfg1_raw;
706 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
707 	}
708 
709 	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
710 	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
711 	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
712 	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
713 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
714 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
715 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
716 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
717 
718 	if (read)
719 		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
720 				   host->cw_data : host->cw_size, 1);
721 }
722 
723 /*
724  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
725  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
726  * which will be submitted to DMA engine.
727  */
prepare_bam_async_desc(struct qcom_nand_controller * nandc,struct dma_chan * chan,unsigned long flags)728 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
729 				  struct dma_chan *chan,
730 				  unsigned long flags)
731 {
732 	struct desc_info *desc;
733 	struct scatterlist *sgl;
734 	unsigned int sgl_cnt;
735 	int ret;
736 	struct bam_transaction *bam_txn = nandc->bam_txn;
737 	enum dma_transfer_direction dir_eng;
738 	struct dma_async_tx_descriptor *dma_desc;
739 
740 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
741 	if (!desc)
742 		return -ENOMEM;
743 
744 	if (chan == nandc->cmd_chan) {
745 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
746 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
747 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
748 		dir_eng = DMA_MEM_TO_DEV;
749 		desc->dir = DMA_TO_DEVICE;
750 	} else if (chan == nandc->tx_chan) {
751 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
752 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
753 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
754 		dir_eng = DMA_MEM_TO_DEV;
755 		desc->dir = DMA_TO_DEVICE;
756 	} else {
757 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
758 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
759 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
760 		dir_eng = DMA_DEV_TO_MEM;
761 		desc->dir = DMA_FROM_DEVICE;
762 	}
763 
764 	sg_mark_end(sgl + sgl_cnt - 1);
765 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
766 	if (ret == 0) {
767 		dev_err(nandc->dev, "failure in mapping desc\n");
768 		kfree(desc);
769 		return -ENOMEM;
770 	}
771 
772 	desc->sgl_cnt = sgl_cnt;
773 	desc->bam_sgl = sgl;
774 
775 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
776 					   flags);
777 
778 	if (!dma_desc) {
779 		dev_err(nandc->dev, "failure in prep desc\n");
780 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
781 		kfree(desc);
782 		return -EINVAL;
783 	}
784 
785 	desc->dma_desc = dma_desc;
786 
787 	/* update last data/command descriptor */
788 	if (chan == nandc->cmd_chan)
789 		bam_txn->last_cmd_desc = dma_desc;
790 	else
791 		bam_txn->last_data_desc = dma_desc;
792 
793 	list_add_tail(&desc->node, &nandc->desc_list);
794 
795 	return 0;
796 }
797 
798 /*
799  * Prepares the command descriptor for BAM DMA which will be used for NAND
800  * register reads and writes. The command descriptor requires the command
801  * to be formed in command element type so this function uses the command
802  * element from bam transaction ce array and fills the same with required
803  * data. A single SGL can contain multiple command elements so
804  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
805  * after the current command element.
806  */
prep_bam_dma_desc_cmd(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,unsigned int flags)807 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
808 				 int reg_off, const void *vaddr,
809 				 int size, unsigned int flags)
810 {
811 	int bam_ce_size;
812 	int i, ret;
813 	struct bam_cmd_element *bam_ce_buffer;
814 	struct bam_transaction *bam_txn = nandc->bam_txn;
815 
816 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
817 
818 	/* fill the command desc */
819 	for (i = 0; i < size; i++) {
820 		if (read)
821 			bam_prep_ce(&bam_ce_buffer[i],
822 				    nandc_reg_phys(nandc, reg_off + 4 * i),
823 				    BAM_READ_COMMAND,
824 				    reg_buf_dma_addr(nandc,
825 						     (__le32 *)vaddr + i));
826 		else
827 			bam_prep_ce_le32(&bam_ce_buffer[i],
828 					 nandc_reg_phys(nandc, reg_off + 4 * i),
829 					 BAM_WRITE_COMMAND,
830 					 *((__le32 *)vaddr + i));
831 	}
832 
833 	bam_txn->bam_ce_pos += size;
834 
835 	/* use the separate sgl after this command */
836 	if (flags & NAND_BAM_NEXT_SGL) {
837 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
838 		bam_ce_size = (bam_txn->bam_ce_pos -
839 				bam_txn->bam_ce_start) *
840 				sizeof(struct bam_cmd_element);
841 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
842 			   bam_ce_buffer, bam_ce_size);
843 		bam_txn->cmd_sgl_pos++;
844 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
845 
846 		if (flags & NAND_BAM_NWD) {
847 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
848 						     DMA_PREP_FENCE |
849 						     DMA_PREP_CMD);
850 			if (ret)
851 				return ret;
852 		}
853 	}
854 
855 	return 0;
856 }
857 
858 /*
859  * Prepares the data descriptor for BAM DMA which will be used for NAND
860  * data reads and writes.
861  */
prep_bam_dma_desc_data(struct qcom_nand_controller * nandc,bool read,const void * vaddr,int size,unsigned int flags)862 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
863 				  const void *vaddr,
864 				  int size, unsigned int flags)
865 {
866 	int ret;
867 	struct bam_transaction *bam_txn = nandc->bam_txn;
868 
869 	if (read) {
870 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
871 			   vaddr, size);
872 		bam_txn->rx_sgl_pos++;
873 	} else {
874 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
875 			   vaddr, size);
876 		bam_txn->tx_sgl_pos++;
877 
878 		/*
879 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
880 		 * is not set, form the DMA descriptor
881 		 */
882 		if (!(flags & NAND_BAM_NO_EOT)) {
883 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
884 						     DMA_PREP_INTERRUPT);
885 			if (ret)
886 				return ret;
887 		}
888 	}
889 
890 	return 0;
891 }
892 
prep_adm_dma_desc(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,bool flow_control)893 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
894 			     int reg_off, const void *vaddr, int size,
895 			     bool flow_control)
896 {
897 	struct desc_info *desc;
898 	struct dma_async_tx_descriptor *dma_desc;
899 	struct scatterlist *sgl;
900 	struct dma_slave_config slave_conf;
901 	enum dma_transfer_direction dir_eng;
902 	int ret;
903 
904 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
905 	if (!desc)
906 		return -ENOMEM;
907 
908 	sgl = &desc->adm_sgl;
909 
910 	sg_init_one(sgl, vaddr, size);
911 
912 	if (read) {
913 		dir_eng = DMA_DEV_TO_MEM;
914 		desc->dir = DMA_FROM_DEVICE;
915 	} else {
916 		dir_eng = DMA_MEM_TO_DEV;
917 		desc->dir = DMA_TO_DEVICE;
918 	}
919 
920 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
921 	if (ret == 0) {
922 		ret = -ENOMEM;
923 		goto err;
924 	}
925 
926 	memset(&slave_conf, 0x00, sizeof(slave_conf));
927 
928 	slave_conf.device_fc = flow_control;
929 	if (read) {
930 		slave_conf.src_maxburst = 16;
931 		slave_conf.src_addr = nandc->base_dma + reg_off;
932 		slave_conf.slave_id = nandc->data_crci;
933 	} else {
934 		slave_conf.dst_maxburst = 16;
935 		slave_conf.dst_addr = nandc->base_dma + reg_off;
936 		slave_conf.slave_id = nandc->cmd_crci;
937 	}
938 
939 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
940 	if (ret) {
941 		dev_err(nandc->dev, "failed to configure dma channel\n");
942 		goto err;
943 	}
944 
945 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
946 	if (!dma_desc) {
947 		dev_err(nandc->dev, "failed to prepare desc\n");
948 		ret = -EINVAL;
949 		goto err;
950 	}
951 
952 	desc->dma_desc = dma_desc;
953 
954 	list_add_tail(&desc->node, &nandc->desc_list);
955 
956 	return 0;
957 err:
958 	kfree(desc);
959 
960 	return ret;
961 }
962 
963 /*
964  * read_reg_dma:	prepares a descriptor to read a given number of
965  *			contiguous registers to the reg_read_buf pointer
966  *
967  * @first:		offset of the first register in the contiguous block
968  * @num_regs:		number of registers to read
969  * @flags:		flags to control DMA descriptor preparation
970  */
read_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)971 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
972 			int num_regs, unsigned int flags)
973 {
974 	bool flow_control = false;
975 	void *vaddr;
976 
977 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
978 	nandc->reg_read_pos += num_regs;
979 
980 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
981 		first = dev_cmd_reg_addr(nandc, first);
982 
983 	if (nandc->props->is_bam)
984 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
985 					     num_regs, flags);
986 
987 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
988 		flow_control = true;
989 
990 	return prep_adm_dma_desc(nandc, true, first, vaddr,
991 				 num_regs * sizeof(u32), flow_control);
992 }
993 
994 /*
995  * write_reg_dma:	prepares a descriptor to write a given number of
996  *			contiguous registers
997  *
998  * @first:		offset of the first register in the contiguous block
999  * @num_regs:		number of registers to write
1000  * @flags:		flags to control DMA descriptor preparation
1001  */
write_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)1002 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1003 			 int num_regs, unsigned int flags)
1004 {
1005 	bool flow_control = false;
1006 	struct nandc_regs *regs = nandc->regs;
1007 	void *vaddr;
1008 
1009 	vaddr = offset_to_nandc_reg(regs, first);
1010 
1011 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1012 		if (flags & NAND_ERASED_CW_SET)
1013 			vaddr = &regs->erased_cw_detect_cfg_set;
1014 		else
1015 			vaddr = &regs->erased_cw_detect_cfg_clr;
1016 	}
1017 
1018 	if (first == NAND_EXEC_CMD)
1019 		flags |= NAND_BAM_NWD;
1020 
1021 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1022 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1023 
1024 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1025 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1026 
1027 	if (nandc->props->is_bam)
1028 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1029 					     num_regs, flags);
1030 
1031 	if (first == NAND_FLASH_CMD)
1032 		flow_control = true;
1033 
1034 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1035 				 num_regs * sizeof(u32), flow_control);
1036 }
1037 
1038 /*
1039  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1040  *			controller's internal buffer to the buffer 'vaddr'
1041  *
1042  * @reg_off:		offset within the controller's data buffer
1043  * @vaddr:		virtual address of the buffer we want to write to
1044  * @size:		DMA transaction size in bytes
1045  * @flags:		flags to control DMA descriptor preparation
1046  */
read_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1047 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1048 			 const u8 *vaddr, int size, unsigned int flags)
1049 {
1050 	if (nandc->props->is_bam)
1051 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1052 
1053 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1054 }
1055 
1056 /*
1057  * write_data_dma:	prepares a DMA descriptor to transfer data from
1058  *			'vaddr' to the controller's internal buffer
1059  *
1060  * @reg_off:		offset within the controller's data buffer
1061  * @vaddr:		virtual address of the buffer we want to read from
1062  * @size:		DMA transaction size in bytes
1063  * @flags:		flags to control DMA descriptor preparation
1064  */
write_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1065 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1066 			  const u8 *vaddr, int size, unsigned int flags)
1067 {
1068 	if (nandc->props->is_bam)
1069 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1070 
1071 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1072 }
1073 
1074 /*
1075  * Helper to prepare DMA descriptors for configuring registers
1076  * before reading a NAND page.
1077  */
config_nand_page_read(struct qcom_nand_controller * nandc)1078 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1079 {
1080 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1081 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1082 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1083 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1084 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1085 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1086 }
1087 
1088 /*
1089  * Helper to prepare DMA descriptors for configuring registers
1090  * before reading each codeword in NAND page.
1091  */
1092 static void
config_nand_cw_read(struct qcom_nand_controller * nandc,bool use_ecc)1093 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1094 {
1095 	if (nandc->props->is_bam)
1096 		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1097 			      NAND_BAM_NEXT_SGL);
1098 
1099 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1100 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1101 
1102 	if (use_ecc) {
1103 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1104 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1105 			     NAND_BAM_NEXT_SGL);
1106 	} else {
1107 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1108 	}
1109 }
1110 
1111 /*
1112  * Helper to prepare dma descriptors to configure registers needed for reading a
1113  * single codeword in page
1114  */
1115 static void
config_nand_single_cw_page_read(struct qcom_nand_controller * nandc,bool use_ecc)1116 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1117 				bool use_ecc)
1118 {
1119 	config_nand_page_read(nandc);
1120 	config_nand_cw_read(nandc, use_ecc);
1121 }
1122 
1123 /*
1124  * Helper to prepare DMA descriptors used to configure registers needed for
1125  * before writing a NAND page.
1126  */
config_nand_page_write(struct qcom_nand_controller * nandc)1127 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1128 {
1129 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1130 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1131 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1132 		      NAND_BAM_NEXT_SGL);
1133 }
1134 
1135 /*
1136  * Helper to prepare DMA descriptors for configuring registers
1137  * before writing each codeword in NAND page.
1138  */
config_nand_cw_write(struct qcom_nand_controller * nandc)1139 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1140 {
1141 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1142 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1143 
1144 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1145 
1146 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1147 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1148 }
1149 
1150 /*
1151  * the following functions are used within chip->legacy.cmdfunc() to
1152  * perform different NAND_CMD_* commands
1153  */
1154 
1155 /* sets up descriptors for NAND_CMD_PARAM */
nandc_param(struct qcom_nand_host * host)1156 static int nandc_param(struct qcom_nand_host *host)
1157 {
1158 	struct nand_chip *chip = &host->chip;
1159 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1160 
1161 	/*
1162 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1163 	 * in use. we configure the controller to perform a raw read of 512
1164 	 * bytes to read onfi params
1165 	 */
1166 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1167 	nandc_set_reg(nandc, NAND_ADDR0, 0);
1168 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1169 	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1170 					| 512 << UD_SIZE_BYTES
1171 					| 5 << NUM_ADDR_CYCLES
1172 					| 0 << SPARE_SIZE_BYTES);
1173 	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1174 					| 0 << CS_ACTIVE_BSY
1175 					| 17 << BAD_BLOCK_BYTE_NUM
1176 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1177 					| 2 << WR_RD_BSY_GAP
1178 					| 0 << WIDE_FLASH
1179 					| 1 << DEV0_CFG1_ECC_DISABLE);
1180 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1181 
1182 	/* configure CMD1 and VLD for ONFI param probing */
1183 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1184 		      (nandc->vld & ~READ_START_VLD));
1185 	nandc_set_reg(nandc, NAND_DEV_CMD1,
1186 		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1187 		      | NAND_CMD_PARAM << READ_ADDR);
1188 
1189 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1190 
1191 	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1192 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1193 	nandc_set_read_loc(nandc, 0, 0, 512, 1);
1194 
1195 	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1196 	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1197 
1198 	nandc->buf_count = 512;
1199 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1200 
1201 	config_nand_single_cw_page_read(nandc, false);
1202 
1203 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1204 		      nandc->buf_count, 0);
1205 
1206 	/* restore CMD1 and VLD regs */
1207 	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1208 	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1209 
1210 	return 0;
1211 }
1212 
1213 /* sets up descriptors for NAND_CMD_ERASE1 */
erase_block(struct qcom_nand_host * host,int page_addr)1214 static int erase_block(struct qcom_nand_host *host, int page_addr)
1215 {
1216 	struct nand_chip *chip = &host->chip;
1217 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1218 
1219 	nandc_set_reg(nandc, NAND_FLASH_CMD,
1220 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1221 	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1222 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1223 	nandc_set_reg(nandc, NAND_DEV0_CFG0,
1224 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1225 	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1226 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1227 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1228 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1229 
1230 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1231 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1232 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1233 
1234 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1235 
1236 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1237 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1238 
1239 	return 0;
1240 }
1241 
1242 /* sets up descriptors for NAND_CMD_READID */
read_id(struct qcom_nand_host * host,int column)1243 static int read_id(struct qcom_nand_host *host, int column)
1244 {
1245 	struct nand_chip *chip = &host->chip;
1246 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1247 
1248 	if (column == -1)
1249 		return 0;
1250 
1251 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1252 	nandc_set_reg(nandc, NAND_ADDR0, column);
1253 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1254 	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1255 		      nandc->props->is_bam ? 0 : DM_EN);
1256 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1257 
1258 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1259 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1260 
1261 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1262 
1263 	return 0;
1264 }
1265 
1266 /* sets up descriptors for NAND_CMD_RESET */
reset(struct qcom_nand_host * host)1267 static int reset(struct qcom_nand_host *host)
1268 {
1269 	struct nand_chip *chip = &host->chip;
1270 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1271 
1272 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1273 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1274 
1275 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1276 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1277 
1278 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1279 
1280 	return 0;
1281 }
1282 
1283 /* helpers to submit/free our list of dma descriptors */
submit_descs(struct qcom_nand_controller * nandc)1284 static int submit_descs(struct qcom_nand_controller *nandc)
1285 {
1286 	struct desc_info *desc;
1287 	dma_cookie_t cookie = 0;
1288 	struct bam_transaction *bam_txn = nandc->bam_txn;
1289 	int r;
1290 
1291 	if (nandc->props->is_bam) {
1292 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1293 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1294 			if (r)
1295 				return r;
1296 		}
1297 
1298 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1299 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1300 						   DMA_PREP_INTERRUPT);
1301 			if (r)
1302 				return r;
1303 		}
1304 
1305 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1306 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1307 						   DMA_PREP_CMD);
1308 			if (r)
1309 				return r;
1310 		}
1311 	}
1312 
1313 	list_for_each_entry(desc, &nandc->desc_list, node)
1314 		cookie = dmaengine_submit(desc->dma_desc);
1315 
1316 	if (nandc->props->is_bam) {
1317 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1318 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1319 		if (bam_txn->last_data_desc) {
1320 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1321 			bam_txn->last_data_desc->callback_param = bam_txn;
1322 			bam_txn->wait_second_completion = true;
1323 		}
1324 
1325 		dma_async_issue_pending(nandc->tx_chan);
1326 		dma_async_issue_pending(nandc->rx_chan);
1327 		dma_async_issue_pending(nandc->cmd_chan);
1328 
1329 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1330 						 QPIC_NAND_COMPLETION_TIMEOUT))
1331 			return -ETIMEDOUT;
1332 	} else {
1333 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1334 			return -ETIMEDOUT;
1335 	}
1336 
1337 	return 0;
1338 }
1339 
free_descs(struct qcom_nand_controller * nandc)1340 static void free_descs(struct qcom_nand_controller *nandc)
1341 {
1342 	struct desc_info *desc, *n;
1343 
1344 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1345 		list_del(&desc->node);
1346 
1347 		if (nandc->props->is_bam)
1348 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1349 				     desc->sgl_cnt, desc->dir);
1350 		else
1351 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1352 				     desc->dir);
1353 
1354 		kfree(desc);
1355 	}
1356 }
1357 
1358 /* reset the register read buffer for next NAND operation */
clear_read_regs(struct qcom_nand_controller * nandc)1359 static void clear_read_regs(struct qcom_nand_controller *nandc)
1360 {
1361 	nandc->reg_read_pos = 0;
1362 	nandc_read_buffer_sync(nandc, false);
1363 }
1364 
pre_command(struct qcom_nand_host * host,int command)1365 static void pre_command(struct qcom_nand_host *host, int command)
1366 {
1367 	struct nand_chip *chip = &host->chip;
1368 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1369 
1370 	nandc->buf_count = 0;
1371 	nandc->buf_start = 0;
1372 	host->use_ecc = false;
1373 	host->last_command = command;
1374 
1375 	clear_read_regs(nandc);
1376 
1377 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1378 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1379 		clear_bam_transaction(nandc);
1380 }
1381 
1382 /*
1383  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1384  * privately maintained status byte, this status byte can be read after
1385  * NAND_CMD_STATUS is called
1386  */
parse_erase_write_errors(struct qcom_nand_host * host,int command)1387 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1388 {
1389 	struct nand_chip *chip = &host->chip;
1390 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1391 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1392 	int num_cw;
1393 	int i;
1394 
1395 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1396 	nandc_read_buffer_sync(nandc, true);
1397 
1398 	for (i = 0; i < num_cw; i++) {
1399 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1400 
1401 		if (flash_status & FS_MPU_ERR)
1402 			host->status &= ~NAND_STATUS_WP;
1403 
1404 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1405 						 (flash_status &
1406 						  FS_DEVICE_STS_ERR)))
1407 			host->status |= NAND_STATUS_FAIL;
1408 	}
1409 }
1410 
post_command(struct qcom_nand_host * host,int command)1411 static void post_command(struct qcom_nand_host *host, int command)
1412 {
1413 	struct nand_chip *chip = &host->chip;
1414 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1415 
1416 	switch (command) {
1417 	case NAND_CMD_READID:
1418 		nandc_read_buffer_sync(nandc, true);
1419 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1420 		       nandc->buf_count);
1421 		break;
1422 	case NAND_CMD_PAGEPROG:
1423 	case NAND_CMD_ERASE1:
1424 		parse_erase_write_errors(host, command);
1425 		break;
1426 	default:
1427 		break;
1428 	}
1429 }
1430 
1431 /*
1432  * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
1433  * commands. The rest of the commands wouldn't be called by upper layers.
1434  * For example, NAND_CMD_READOOB would never be called because we have our own
1435  * versions of read_oob ops for nand_ecc_ctrl.
1436  */
qcom_nandc_command(struct nand_chip * chip,unsigned int command,int column,int page_addr)1437 static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
1438 			       int column, int page_addr)
1439 {
1440 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1441 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1442 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1443 	bool wait = false;
1444 	int ret = 0;
1445 
1446 	pre_command(host, command);
1447 
1448 	switch (command) {
1449 	case NAND_CMD_RESET:
1450 		ret = reset(host);
1451 		wait = true;
1452 		break;
1453 
1454 	case NAND_CMD_READID:
1455 		nandc->buf_count = 4;
1456 		ret = read_id(host, column);
1457 		wait = true;
1458 		break;
1459 
1460 	case NAND_CMD_PARAM:
1461 		ret = nandc_param(host);
1462 		wait = true;
1463 		break;
1464 
1465 	case NAND_CMD_ERASE1:
1466 		ret = erase_block(host, page_addr);
1467 		wait = true;
1468 		break;
1469 
1470 	case NAND_CMD_READ0:
1471 		/* we read the entire page for now */
1472 		WARN_ON(column != 0);
1473 
1474 		host->use_ecc = true;
1475 		set_address(host, 0, page_addr);
1476 		update_rw_regs(host, ecc->steps, true);
1477 		break;
1478 
1479 	case NAND_CMD_SEQIN:
1480 		WARN_ON(column != 0);
1481 		set_address(host, 0, page_addr);
1482 		break;
1483 
1484 	case NAND_CMD_PAGEPROG:
1485 	case NAND_CMD_STATUS:
1486 	case NAND_CMD_NONE:
1487 	default:
1488 		break;
1489 	}
1490 
1491 	if (ret) {
1492 		dev_err(nandc->dev, "failure executing command %d\n",
1493 			command);
1494 		free_descs(nandc);
1495 		return;
1496 	}
1497 
1498 	if (wait) {
1499 		ret = submit_descs(nandc);
1500 		if (ret)
1501 			dev_err(nandc->dev,
1502 				"failure submitting descs for command %d\n",
1503 				command);
1504 	}
1505 
1506 	free_descs(nandc);
1507 
1508 	post_command(host, command);
1509 }
1510 
1511 /*
1512  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1513  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1514  *
1515  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1516  * but it notifies that it is an erased CW by placing special characters at
1517  * certain offsets in the buffer.
1518  *
1519  * verify if the page is erased or not, and fix up the page for RS ECC by
1520  * replacing the special characters with 0xff.
1521  */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)1522 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1523 {
1524 	u8 empty1, empty2;
1525 
1526 	/*
1527 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1528 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1529 	 * beginning of each codeword
1530 	 */
1531 
1532 	empty1 = data_buf[3];
1533 	empty2 = data_buf[175];
1534 
1535 	/*
1536 	 * if the erased codework markers, if they exist override them with
1537 	 * 0xffs
1538 	 */
1539 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1540 	    (empty1 == 0xff && empty2 == 0x54)) {
1541 		data_buf[3] = 0xff;
1542 		data_buf[175] = 0xff;
1543 	}
1544 
1545 	/*
1546 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1547 	 * restore the original values at the special offsets
1548 	 */
1549 	if (memchr_inv(data_buf, 0xff, data_len)) {
1550 		data_buf[3] = empty1;
1551 		data_buf[175] = empty2;
1552 
1553 		return false;
1554 	}
1555 
1556 	return true;
1557 }
1558 
1559 struct read_stats {
1560 	__le32 flash;
1561 	__le32 buffer;
1562 	__le32 erased_cw;
1563 };
1564 
1565 /* reads back FLASH_STATUS register set by the controller */
check_flash_errors(struct qcom_nand_host * host,int cw_cnt)1566 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1567 {
1568 	struct nand_chip *chip = &host->chip;
1569 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1570 	int i;
1571 
1572 	nandc_read_buffer_sync(nandc, true);
1573 
1574 	for (i = 0; i < cw_cnt; i++) {
1575 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1576 
1577 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1578 			return -EIO;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 /* performs raw read for one codeword */
1585 static int
qcom_nandc_read_cw_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,int page,int cw)1586 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1587 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1588 {
1589 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1590 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1591 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1592 	int data_size1, data_size2, oob_size1, oob_size2;
1593 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1594 
1595 	nand_read_page_op(chip, page, 0, NULL, 0);
1596 	host->use_ecc = false;
1597 
1598 	clear_bam_transaction(nandc);
1599 	set_address(host, host->cw_size * cw, page);
1600 	update_rw_regs(host, 1, true);
1601 	config_nand_page_read(nandc);
1602 
1603 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1604 	oob_size1 = host->bbm_size;
1605 
1606 	if (cw == (ecc->steps - 1)) {
1607 		data_size2 = ecc->size - data_size1 -
1608 			     ((ecc->steps - 1) * 4);
1609 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1610 			    host->spare_bytes;
1611 	} else {
1612 		data_size2 = host->cw_data - data_size1;
1613 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1614 	}
1615 
1616 	if (nandc->props->is_bam) {
1617 		nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1618 		read_loc += data_size1;
1619 
1620 		nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1621 		read_loc += oob_size1;
1622 
1623 		nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1624 		read_loc += data_size2;
1625 
1626 		nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1627 	}
1628 
1629 	config_nand_cw_read(nandc, false);
1630 
1631 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1632 	reg_off += data_size1;
1633 
1634 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1635 	reg_off += oob_size1;
1636 
1637 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1638 	reg_off += data_size2;
1639 
1640 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1641 
1642 	ret = submit_descs(nandc);
1643 	free_descs(nandc);
1644 	if (ret) {
1645 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1646 		return ret;
1647 	}
1648 
1649 	return check_flash_errors(host, 1);
1650 }
1651 
1652 /*
1653  * Bitflips can happen in erased codewords also so this function counts the
1654  * number of 0 in each CW for which ECC engine returns the uncorrectable
1655  * error. The page will be assumed as erased if this count is less than or
1656  * equal to the ecc->strength for each CW.
1657  *
1658  * 1. Both DATA and OOB need to be checked for number of 0. The
1659  *    top-level API can be called with only data buf or OOB buf so use
1660  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1661  *    is null for copying the raw bytes.
1662  * 2. Perform raw read for all the CW which has uncorrectable errors.
1663  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1664  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1665  *    the number of bitflips in this area.
1666  */
1667 static int
check_for_erased_page(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,unsigned long uncorrectable_cws,int page,unsigned int max_bitflips)1668 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1669 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1670 		      int page, unsigned int max_bitflips)
1671 {
1672 	struct nand_chip *chip = &host->chip;
1673 	struct mtd_info *mtd = nand_to_mtd(chip);
1674 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1675 	u8 *cw_data_buf, *cw_oob_buf;
1676 	int cw, data_size, oob_size, ret = 0;
1677 
1678 	if (!data_buf)
1679 		data_buf = nand_get_data_buf(chip);
1680 
1681 	if (!oob_buf) {
1682 		nand_get_data_buf(chip);
1683 		oob_buf = chip->oob_poi;
1684 	}
1685 
1686 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1687 		if (cw == (ecc->steps - 1)) {
1688 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1689 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1690 		} else {
1691 			data_size = host->cw_data;
1692 			oob_size = host->ecc_bytes_hw;
1693 		}
1694 
1695 		/* determine starting buffer address for current CW */
1696 		cw_data_buf = data_buf + (cw * host->cw_data);
1697 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1698 
1699 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1700 					     cw_oob_buf, page, cw);
1701 		if (ret)
1702 			return ret;
1703 
1704 		/*
1705 		 * make sure it isn't an erased page reported
1706 		 * as not-erased by HW because of a few bitflips
1707 		 */
1708 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1709 						  cw_oob_buf + host->bbm_size,
1710 						  oob_size, NULL,
1711 						  0, ecc->strength);
1712 		if (ret < 0) {
1713 			mtd->ecc_stats.failed++;
1714 		} else {
1715 			mtd->ecc_stats.corrected += ret;
1716 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1717 		}
1718 	}
1719 
1720 	return max_bitflips;
1721 }
1722 
1723 /*
1724  * reads back status registers set by the controller to notify page read
1725  * errors. this is equivalent to what 'ecc->correct()' would do.
1726  */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1727 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1728 			     u8 *oob_buf, int page)
1729 {
1730 	struct nand_chip *chip = &host->chip;
1731 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1732 	struct mtd_info *mtd = nand_to_mtd(chip);
1733 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1734 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1735 	struct read_stats *buf;
1736 	bool flash_op_err = false, erased;
1737 	int i;
1738 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1739 
1740 	buf = (struct read_stats *)nandc->reg_read_buf;
1741 	nandc_read_buffer_sync(nandc, true);
1742 
1743 	for (i = 0; i < ecc->steps; i++, buf++) {
1744 		u32 flash, buffer, erased_cw;
1745 		int data_len, oob_len;
1746 
1747 		if (i == (ecc->steps - 1)) {
1748 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1749 			oob_len = ecc->steps << 2;
1750 		} else {
1751 			data_len = host->cw_data;
1752 			oob_len = 0;
1753 		}
1754 
1755 		flash = le32_to_cpu(buf->flash);
1756 		buffer = le32_to_cpu(buf->buffer);
1757 		erased_cw = le32_to_cpu(buf->erased_cw);
1758 
1759 		/*
1760 		 * Check ECC failure for each codeword. ECC failure can
1761 		 * happen in either of the following conditions
1762 		 * 1. If number of bitflips are greater than ECC engine
1763 		 *    capability.
1764 		 * 2. If this codeword contains all 0xff for which erased
1765 		 *    codeword detection check will be done.
1766 		 */
1767 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1768 			/*
1769 			 * For BCH ECC, ignore erased codeword errors, if
1770 			 * ERASED_CW bits are set.
1771 			 */
1772 			if (host->bch_enabled) {
1773 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1774 					 true : false;
1775 			/*
1776 			 * For RS ECC, HW reports the erased CW by placing
1777 			 * special characters at certain offsets in the buffer.
1778 			 * These special characters will be valid only if
1779 			 * complete page is read i.e. data_buf is not NULL.
1780 			 */
1781 			} else if (data_buf) {
1782 				erased = erased_chunk_check_and_fixup(data_buf,
1783 								      data_len);
1784 			} else {
1785 				erased = false;
1786 			}
1787 
1788 			if (!erased)
1789 				uncorrectable_cws |= BIT(i);
1790 		/*
1791 		 * Check if MPU or any other operational error (timeout,
1792 		 * device failure, etc.) happened for this codeword and
1793 		 * make flash_op_err true. If flash_op_err is set, then
1794 		 * EIO will be returned for page read.
1795 		 */
1796 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1797 			flash_op_err = true;
1798 		/*
1799 		 * No ECC or operational errors happened. Check the number of
1800 		 * bits corrected and update the ecc_stats.corrected.
1801 		 */
1802 		} else {
1803 			unsigned int stat;
1804 
1805 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1806 			mtd->ecc_stats.corrected += stat;
1807 			max_bitflips = max(max_bitflips, stat);
1808 		}
1809 
1810 		if (data_buf)
1811 			data_buf += data_len;
1812 		if (oob_buf)
1813 			oob_buf += oob_len + ecc->bytes;
1814 	}
1815 
1816 	if (flash_op_err)
1817 		return -EIO;
1818 
1819 	if (!uncorrectable_cws)
1820 		return max_bitflips;
1821 
1822 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1823 				     uncorrectable_cws, page,
1824 				     max_bitflips);
1825 }
1826 
1827 /*
1828  * helper to perform the actual page read operation, used by ecc->read_page(),
1829  * ecc->read_oob()
1830  */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1831 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1832 			 u8 *oob_buf, int page)
1833 {
1834 	struct nand_chip *chip = &host->chip;
1835 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1836 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1837 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1838 	int i, ret;
1839 
1840 	config_nand_page_read(nandc);
1841 
1842 	/* queue cmd descs for each codeword */
1843 	for (i = 0; i < ecc->steps; i++) {
1844 		int data_size, oob_size;
1845 
1846 		if (i == (ecc->steps - 1)) {
1847 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1848 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1849 				   host->spare_bytes;
1850 		} else {
1851 			data_size = host->cw_data;
1852 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1853 		}
1854 
1855 		if (nandc->props->is_bam) {
1856 			if (data_buf && oob_buf) {
1857 				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1858 				nandc_set_read_loc(nandc, 1, data_size,
1859 						   oob_size, 1);
1860 			} else if (data_buf) {
1861 				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1862 			} else {
1863 				nandc_set_read_loc(nandc, 0, data_size,
1864 						   oob_size, 1);
1865 			}
1866 		}
1867 
1868 		config_nand_cw_read(nandc, true);
1869 
1870 		if (data_buf)
1871 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1872 				      data_size, 0);
1873 
1874 		/*
1875 		 * when ecc is enabled, the controller doesn't read the real
1876 		 * or dummy bad block markers in each chunk. To maintain a
1877 		 * consistent layout across RAW and ECC reads, we just
1878 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1879 		 * 0xffs)
1880 		 */
1881 		if (oob_buf) {
1882 			int j;
1883 
1884 			for (j = 0; j < host->bbm_size; j++)
1885 				*oob_buf++ = 0xff;
1886 
1887 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1888 				      oob_buf, oob_size, 0);
1889 		}
1890 
1891 		if (data_buf)
1892 			data_buf += data_size;
1893 		if (oob_buf)
1894 			oob_buf += oob_size;
1895 	}
1896 
1897 	ret = submit_descs(nandc);
1898 	free_descs(nandc);
1899 
1900 	if (ret) {
1901 		dev_err(nandc->dev, "failure to read page/oob\n");
1902 		return ret;
1903 	}
1904 
1905 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1906 }
1907 
1908 /*
1909  * a helper that copies the last step/codeword of a page (containing free oob)
1910  * into our local buffer
1911  */
copy_last_cw(struct qcom_nand_host * host,int page)1912 static int copy_last_cw(struct qcom_nand_host *host, int page)
1913 {
1914 	struct nand_chip *chip = &host->chip;
1915 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1916 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1917 	int size;
1918 	int ret;
1919 
1920 	clear_read_regs(nandc);
1921 
1922 	size = host->use_ecc ? host->cw_data : host->cw_size;
1923 
1924 	/* prepare a clean read buffer */
1925 	memset(nandc->data_buffer, 0xff, size);
1926 
1927 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1928 	update_rw_regs(host, 1, true);
1929 
1930 	config_nand_single_cw_page_read(nandc, host->use_ecc);
1931 
1932 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1933 
1934 	ret = submit_descs(nandc);
1935 	if (ret)
1936 		dev_err(nandc->dev, "failed to copy last codeword\n");
1937 
1938 	free_descs(nandc);
1939 
1940 	return ret;
1941 }
1942 
1943 /* implements ecc->read_page() */
qcom_nandc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1944 static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
1945 				int oob_required, int page)
1946 {
1947 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1948 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1949 	u8 *data_buf, *oob_buf = NULL;
1950 
1951 	nand_read_page_op(chip, page, 0, NULL, 0);
1952 	data_buf = buf;
1953 	oob_buf = oob_required ? chip->oob_poi : NULL;
1954 
1955 	clear_bam_transaction(nandc);
1956 
1957 	return read_page_ecc(host, data_buf, oob_buf, page);
1958 }
1959 
1960 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1961 static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1962 				    int oob_required, int page)
1963 {
1964 	struct mtd_info *mtd = nand_to_mtd(chip);
1965 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1966 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1967 	int cw, ret;
1968 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1969 
1970 	for (cw = 0; cw < ecc->steps; cw++) {
1971 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1972 					     page, cw);
1973 		if (ret)
1974 			return ret;
1975 
1976 		data_buf += host->cw_data;
1977 		oob_buf += ecc->bytes;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct nand_chip * chip,int page)1984 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1985 {
1986 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1987 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1988 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1989 
1990 	clear_read_regs(nandc);
1991 	clear_bam_transaction(nandc);
1992 
1993 	host->use_ecc = true;
1994 	set_address(host, 0, page);
1995 	update_rw_regs(host, ecc->steps, true);
1996 
1997 	return read_page_ecc(host, NULL, chip->oob_poi, page);
1998 }
1999 
2000 /* implements ecc->write_page() */
qcom_nandc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2001 static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
2002 				 int oob_required, int page)
2003 {
2004 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2005 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2006 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2007 	u8 *data_buf, *oob_buf;
2008 	int i, ret;
2009 
2010 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2011 
2012 	clear_read_regs(nandc);
2013 	clear_bam_transaction(nandc);
2014 
2015 	data_buf = (u8 *)buf;
2016 	oob_buf = chip->oob_poi;
2017 
2018 	host->use_ecc = true;
2019 	update_rw_regs(host, ecc->steps, false);
2020 	config_nand_page_write(nandc);
2021 
2022 	for (i = 0; i < ecc->steps; i++) {
2023 		int data_size, oob_size;
2024 
2025 		if (i == (ecc->steps - 1)) {
2026 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2027 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2028 				   host->spare_bytes;
2029 		} else {
2030 			data_size = host->cw_data;
2031 			oob_size = ecc->bytes;
2032 		}
2033 
2034 
2035 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2036 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2037 
2038 		/*
2039 		 * when ECC is enabled, we don't really need to write anything
2040 		 * to oob for the first n - 1 codewords since these oob regions
2041 		 * just contain ECC bytes that's written by the controller
2042 		 * itself. For the last codeword, we skip the bbm positions and
2043 		 * write to the free oob area.
2044 		 */
2045 		if (i == (ecc->steps - 1)) {
2046 			oob_buf += host->bbm_size;
2047 
2048 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2049 				       oob_buf, oob_size, 0);
2050 		}
2051 
2052 		config_nand_cw_write(nandc);
2053 
2054 		data_buf += data_size;
2055 		oob_buf += oob_size;
2056 	}
2057 
2058 	ret = submit_descs(nandc);
2059 	if (ret)
2060 		dev_err(nandc->dev, "failure to write page\n");
2061 
2062 	free_descs(nandc);
2063 
2064 	if (!ret)
2065 		ret = nand_prog_page_end_op(chip);
2066 
2067 	return ret;
2068 }
2069 
2070 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2071 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2072 				     const uint8_t *buf, int oob_required,
2073 				     int page)
2074 {
2075 	struct mtd_info *mtd = nand_to_mtd(chip);
2076 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2077 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2078 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2079 	u8 *data_buf, *oob_buf;
2080 	int i, ret;
2081 
2082 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2083 	clear_read_regs(nandc);
2084 	clear_bam_transaction(nandc);
2085 
2086 	data_buf = (u8 *)buf;
2087 	oob_buf = chip->oob_poi;
2088 
2089 	host->use_ecc = false;
2090 	update_rw_regs(host, ecc->steps, false);
2091 	config_nand_page_write(nandc);
2092 
2093 	for (i = 0; i < ecc->steps; i++) {
2094 		int data_size1, data_size2, oob_size1, oob_size2;
2095 		int reg_off = FLASH_BUF_ACC;
2096 
2097 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2098 		oob_size1 = host->bbm_size;
2099 
2100 		if (i == (ecc->steps - 1)) {
2101 			data_size2 = ecc->size - data_size1 -
2102 				     ((ecc->steps - 1) << 2);
2103 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2104 				    host->spare_bytes;
2105 		} else {
2106 			data_size2 = host->cw_data - data_size1;
2107 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2108 		}
2109 
2110 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2111 			       NAND_BAM_NO_EOT);
2112 		reg_off += data_size1;
2113 		data_buf += data_size1;
2114 
2115 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2116 			       NAND_BAM_NO_EOT);
2117 		reg_off += oob_size1;
2118 		oob_buf += oob_size1;
2119 
2120 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2121 			       NAND_BAM_NO_EOT);
2122 		reg_off += data_size2;
2123 		data_buf += data_size2;
2124 
2125 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2126 		oob_buf += oob_size2;
2127 
2128 		config_nand_cw_write(nandc);
2129 	}
2130 
2131 	ret = submit_descs(nandc);
2132 	if (ret)
2133 		dev_err(nandc->dev, "failure to write raw page\n");
2134 
2135 	free_descs(nandc);
2136 
2137 	if (!ret)
2138 		ret = nand_prog_page_end_op(chip);
2139 
2140 	return ret;
2141 }
2142 
2143 /*
2144  * implements ecc->write_oob()
2145  *
2146  * the NAND controller cannot write only data or only OOB within a codeword
2147  * since ECC is calculated for the combined codeword. So update the OOB from
2148  * chip->oob_poi, and pad the data area with OxFF before writing.
2149  */
qcom_nandc_write_oob(struct nand_chip * chip,int page)2150 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2151 {
2152 	struct mtd_info *mtd = nand_to_mtd(chip);
2153 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2154 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2155 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2156 	u8 *oob = chip->oob_poi;
2157 	int data_size, oob_size;
2158 	int ret;
2159 
2160 	host->use_ecc = true;
2161 	clear_bam_transaction(nandc);
2162 
2163 	/* calculate the data and oob size for the last codeword/step */
2164 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2165 	oob_size = mtd->oobavail;
2166 
2167 	memset(nandc->data_buffer, 0xff, host->cw_data);
2168 	/* override new oob content to last codeword */
2169 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2170 				    0, mtd->oobavail);
2171 
2172 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2173 	update_rw_regs(host, 1, false);
2174 
2175 	config_nand_page_write(nandc);
2176 	write_data_dma(nandc, FLASH_BUF_ACC,
2177 		       nandc->data_buffer, data_size + oob_size, 0);
2178 	config_nand_cw_write(nandc);
2179 
2180 	ret = submit_descs(nandc);
2181 
2182 	free_descs(nandc);
2183 
2184 	if (ret) {
2185 		dev_err(nandc->dev, "failure to write oob\n");
2186 		return -EIO;
2187 	}
2188 
2189 	return nand_prog_page_end_op(chip);
2190 }
2191 
qcom_nandc_block_bad(struct nand_chip * chip,loff_t ofs)2192 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2193 {
2194 	struct mtd_info *mtd = nand_to_mtd(chip);
2195 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2196 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2197 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2198 	int page, ret, bbpos, bad = 0;
2199 
2200 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2201 
2202 	/*
2203 	 * configure registers for a raw sub page read, the address is set to
2204 	 * the beginning of the last codeword, we don't care about reading ecc
2205 	 * portion of oob. we just want the first few bytes from this codeword
2206 	 * that contains the BBM
2207 	 */
2208 	host->use_ecc = false;
2209 
2210 	clear_bam_transaction(nandc);
2211 	ret = copy_last_cw(host, page);
2212 	if (ret)
2213 		goto err;
2214 
2215 	if (check_flash_errors(host, 1)) {
2216 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2217 		goto err;
2218 	}
2219 
2220 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2221 
2222 	bad = nandc->data_buffer[bbpos] != 0xff;
2223 
2224 	if (chip->options & NAND_BUSWIDTH_16)
2225 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2226 err:
2227 	return bad;
2228 }
2229 
qcom_nandc_block_markbad(struct nand_chip * chip,loff_t ofs)2230 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2231 {
2232 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2233 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2234 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2235 	int page, ret;
2236 
2237 	clear_read_regs(nandc);
2238 	clear_bam_transaction(nandc);
2239 
2240 	/*
2241 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2242 	 * we don't care about the rest of the content in the codeword since
2243 	 * we aren't going to use this block again
2244 	 */
2245 	memset(nandc->data_buffer, 0x00, host->cw_size);
2246 
2247 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2248 
2249 	/* prepare write */
2250 	host->use_ecc = false;
2251 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2252 	update_rw_regs(host, 1, false);
2253 
2254 	config_nand_page_write(nandc);
2255 	write_data_dma(nandc, FLASH_BUF_ACC,
2256 		       nandc->data_buffer, host->cw_size, 0);
2257 	config_nand_cw_write(nandc);
2258 
2259 	ret = submit_descs(nandc);
2260 
2261 	free_descs(nandc);
2262 
2263 	if (ret) {
2264 		dev_err(nandc->dev, "failure to update BBM\n");
2265 		return -EIO;
2266 	}
2267 
2268 	return nand_prog_page_end_op(chip);
2269 }
2270 
2271 /*
2272  * the three functions below implement chip->legacy.read_byte(),
2273  * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
2274  * aren't used for reading/writing page data, they are used for smaller data
2275  * like reading	id, status etc
2276  */
qcom_nandc_read_byte(struct nand_chip * chip)2277 static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
2278 {
2279 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2280 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2281 	u8 *buf = nandc->data_buffer;
2282 	u8 ret = 0x0;
2283 
2284 	if (host->last_command == NAND_CMD_STATUS) {
2285 		ret = host->status;
2286 
2287 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2288 
2289 		return ret;
2290 	}
2291 
2292 	if (nandc->buf_start < nandc->buf_count)
2293 		ret = buf[nandc->buf_start++];
2294 
2295 	return ret;
2296 }
2297 
qcom_nandc_read_buf(struct nand_chip * chip,uint8_t * buf,int len)2298 static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
2299 {
2300 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2301 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2302 
2303 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2304 	nandc->buf_start += real_len;
2305 }
2306 
qcom_nandc_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)2307 static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
2308 				 int len)
2309 {
2310 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2311 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2312 
2313 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2314 
2315 	nandc->buf_start += real_len;
2316 }
2317 
2318 /* we support only one external chip for now */
qcom_nandc_select_chip(struct nand_chip * chip,int chipnr)2319 static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
2320 {
2321 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2322 
2323 	if (chipnr <= 0)
2324 		return;
2325 
2326 	dev_warn(nandc->dev, "invalid chip select\n");
2327 }
2328 
2329 /*
2330  * NAND controller page layout info
2331  *
2332  * Layout with ECC enabled:
2333  *
2334  * |----------------------|  |---------------------------------|
2335  * |           xx.......yy|  |             *********xx.......yy|
2336  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2337  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2338  * |           xx.......yy|  |             *********xx.......yy|
2339  * |----------------------|  |---------------------------------|
2340  *     codeword 1,2..n-1                  codeword n
2341  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2342  *
2343  * n = Number of codewords in the page
2344  * . = ECC bytes
2345  * * = Spare/free bytes
2346  * x = Unused byte(s)
2347  * y = Reserved byte(s)
2348  *
2349  * 2K page: n = 4, spare = 16 bytes
2350  * 4K page: n = 8, spare = 32 bytes
2351  * 8K page: n = 16, spare = 64 bytes
2352  *
2353  * the qcom nand controller operates at a sub page/codeword level. each
2354  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2355  * the number of ECC bytes vary based on the ECC strength and the bus width.
2356  *
2357  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2358  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2359  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2360  *
2361  * When we access a page with ECC enabled, the reserved bytes(s) are not
2362  * accessible at all. When reading, we fill up these unreadable positions
2363  * with 0xffs. When writing, the controller skips writing the inaccessible
2364  * bytes.
2365  *
2366  * Layout with ECC disabled:
2367  *
2368  * |------------------------------|  |---------------------------------------|
2369  * |         yy          xx.......|  |         bb          *********xx.......|
2370  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2371  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2372  * |         yy          xx.......|  |         bb          *********xx.......|
2373  * |------------------------------|  |---------------------------------------|
2374  *         codeword 1,2..n-1                        codeword n
2375  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2376  *
2377  * n = Number of codewords in the page
2378  * . = ECC bytes
2379  * * = Spare/free bytes
2380  * x = Unused byte(s)
2381  * y = Dummy Bad Bock byte(s)
2382  * b = Real Bad Block byte(s)
2383  * size1/size2 = function of codeword size and 'n'
2384  *
2385  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2386  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2387  * Block Markers. In the last codeword, this position contains the real BBM
2388  *
2389  * In order to have a consistent layout between RAW and ECC modes, we assume
2390  * the following OOB layout arrangement:
2391  *
2392  * |-----------|  |--------------------|
2393  * |yyxx.......|  |bb*********xx.......|
2394  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2395  * |yyxx.......|  |bb*********xx.......|
2396  * |yyxx.......|  |bb*********xx.......|
2397  * |-----------|  |--------------------|
2398  *  first n - 1       nth OOB region
2399  *  OOB regions
2400  *
2401  * n = Number of codewords in the page
2402  * . = ECC bytes
2403  * * = FREE OOB bytes
2404  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2405  * x = Unused byte(s)
2406  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2407  *
2408  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2409  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2410  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2411  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2412  * the sum of the three).
2413  */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2414 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2415 				   struct mtd_oob_region *oobregion)
2416 {
2417 	struct nand_chip *chip = mtd_to_nand(mtd);
2418 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2419 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2420 
2421 	if (section > 1)
2422 		return -ERANGE;
2423 
2424 	if (!section) {
2425 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2426 				    host->bbm_size;
2427 		oobregion->offset = 0;
2428 	} else {
2429 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2430 		oobregion->offset = mtd->oobsize - oobregion->length;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2436 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2437 				     struct mtd_oob_region *oobregion)
2438 {
2439 	struct nand_chip *chip = mtd_to_nand(mtd);
2440 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2441 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2442 
2443 	if (section)
2444 		return -ERANGE;
2445 
2446 	oobregion->length = ecc->steps * 4;
2447 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2448 
2449 	return 0;
2450 }
2451 
2452 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2453 	.ecc = qcom_nand_ooblayout_ecc,
2454 	.free = qcom_nand_ooblayout_free,
2455 };
2456 
2457 static int
qcom_nandc_calc_ecc_bytes(int step_size,int strength)2458 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2459 {
2460 	return strength == 4 ? 12 : 16;
2461 }
2462 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2463 		     NANDC_STEP_SIZE, 4, 8);
2464 
qcom_nand_attach_chip(struct nand_chip * chip)2465 static int qcom_nand_attach_chip(struct nand_chip *chip)
2466 {
2467 	struct mtd_info *mtd = nand_to_mtd(chip);
2468 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2469 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2470 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2471 	int cwperpage, bad_block_byte, ret;
2472 	bool wide_bus;
2473 	int ecc_mode = 1;
2474 
2475 	/* controller only supports 512 bytes data steps */
2476 	ecc->size = NANDC_STEP_SIZE;
2477 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2478 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2479 
2480 	/*
2481 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2482 	 * so remaining bytes can be used for ECC.
2483 	 */
2484 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2485 				   mtd->oobsize - (cwperpage * 4));
2486 	if (ret) {
2487 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2488 		return ret;
2489 	}
2490 
2491 	if (ecc->strength >= 8) {
2492 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2493 		host->bch_enabled = true;
2494 		ecc_mode = 1;
2495 
2496 		if (wide_bus) {
2497 			host->ecc_bytes_hw = 14;
2498 			host->spare_bytes = 0;
2499 			host->bbm_size = 2;
2500 		} else {
2501 			host->ecc_bytes_hw = 13;
2502 			host->spare_bytes = 2;
2503 			host->bbm_size = 1;
2504 		}
2505 	} else {
2506 		/*
2507 		 * if the controller supports BCH for 4 bit ECC, the controller
2508 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2509 		 * always 10 bytes
2510 		 */
2511 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2512 			/* BCH */
2513 			host->bch_enabled = true;
2514 			ecc_mode = 0;
2515 
2516 			if (wide_bus) {
2517 				host->ecc_bytes_hw = 8;
2518 				host->spare_bytes = 2;
2519 				host->bbm_size = 2;
2520 			} else {
2521 				host->ecc_bytes_hw = 7;
2522 				host->spare_bytes = 4;
2523 				host->bbm_size = 1;
2524 			}
2525 		} else {
2526 			/* RS */
2527 			host->ecc_bytes_hw = 10;
2528 
2529 			if (wide_bus) {
2530 				host->spare_bytes = 0;
2531 				host->bbm_size = 2;
2532 			} else {
2533 				host->spare_bytes = 1;
2534 				host->bbm_size = 1;
2535 			}
2536 		}
2537 	}
2538 
2539 	/*
2540 	 * we consider ecc->bytes as the sum of all the non-data content in a
2541 	 * step. It gives us a clean representation of the oob area (even if
2542 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2543 	 * ECC and 12 bytes for 4 bit ECC
2544 	 */
2545 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2546 
2547 	ecc->read_page		= qcom_nandc_read_page;
2548 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2549 	ecc->read_oob		= qcom_nandc_read_oob;
2550 	ecc->write_page		= qcom_nandc_write_page;
2551 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2552 	ecc->write_oob		= qcom_nandc_write_oob;
2553 
2554 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2555 
2556 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2557 
2558 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2559 				     cwperpage);
2560 
2561 	/*
2562 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2563 	 * spare data with ECC too. We protect spare data by default, so we set
2564 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2565 	 */
2566 	host->cw_data = 516;
2567 
2568 	/*
2569 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2570 	 * for 8 bit ECC
2571 	 */
2572 	host->cw_size = host->cw_data + ecc->bytes;
2573 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2574 
2575 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2576 				| host->cw_data << UD_SIZE_BYTES
2577 				| 0 << DISABLE_STATUS_AFTER_WRITE
2578 				| 5 << NUM_ADDR_CYCLES
2579 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2580 				| 0 << STATUS_BFR_READ
2581 				| 1 << SET_RD_MODE_AFTER_STATUS
2582 				| host->spare_bytes << SPARE_SIZE_BYTES;
2583 
2584 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2585 				| 0 <<  CS_ACTIVE_BSY
2586 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2587 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2588 				| 2 << WR_RD_BSY_GAP
2589 				| wide_bus << WIDE_FLASH
2590 				| host->bch_enabled << ENABLE_BCH_ECC;
2591 
2592 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2593 				| host->cw_size << UD_SIZE_BYTES
2594 				| 5 << NUM_ADDR_CYCLES
2595 				| 0 << SPARE_SIZE_BYTES;
2596 
2597 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2598 				| 0 << CS_ACTIVE_BSY
2599 				| 17 << BAD_BLOCK_BYTE_NUM
2600 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2601 				| 2 << WR_RD_BSY_GAP
2602 				| wide_bus << WIDE_FLASH
2603 				| 1 << DEV0_CFG1_ECC_DISABLE;
2604 
2605 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2606 				| 0 << ECC_SW_RESET
2607 				| host->cw_data << ECC_NUM_DATA_BYTES
2608 				| 1 << ECC_FORCE_CLK_OPEN
2609 				| ecc_mode << ECC_MODE
2610 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2611 
2612 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2613 
2614 	host->clrflashstatus = FS_READY_BSY_N;
2615 	host->clrreadstatus = 0xc0;
2616 	nandc->regs->erased_cw_detect_cfg_clr =
2617 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2618 	nandc->regs->erased_cw_detect_cfg_set =
2619 		cpu_to_le32(SET_ERASED_PAGE_DET);
2620 
2621 	dev_dbg(nandc->dev,
2622 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2623 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2624 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2625 		cwperpage);
2626 
2627 	return 0;
2628 }
2629 
2630 static const struct nand_controller_ops qcom_nandc_ops = {
2631 	.attach_chip = qcom_nand_attach_chip,
2632 };
2633 
qcom_nandc_unalloc(struct qcom_nand_controller * nandc)2634 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2635 {
2636 	if (nandc->props->is_bam) {
2637 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2638 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2639 					 MAX_REG_RD *
2640 					 sizeof(*nandc->reg_read_buf),
2641 					 DMA_FROM_DEVICE);
2642 
2643 		if (nandc->tx_chan)
2644 			dma_release_channel(nandc->tx_chan);
2645 
2646 		if (nandc->rx_chan)
2647 			dma_release_channel(nandc->rx_chan);
2648 
2649 		if (nandc->cmd_chan)
2650 			dma_release_channel(nandc->cmd_chan);
2651 	} else {
2652 		if (nandc->chan)
2653 			dma_release_channel(nandc->chan);
2654 	}
2655 }
2656 
qcom_nandc_alloc(struct qcom_nand_controller * nandc)2657 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2658 {
2659 	int ret;
2660 
2661 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2662 	if (ret) {
2663 		dev_err(nandc->dev, "failed to set DMA mask\n");
2664 		return ret;
2665 	}
2666 
2667 	/*
2668 	 * we use the internal buffer for reading ONFI params, reading small
2669 	 * data like ID and status, and preforming read-copy-write operations
2670 	 * when writing to a codeword partially. 532 is the maximum possible
2671 	 * size of a codeword for our nand controller
2672 	 */
2673 	nandc->buf_size = 532;
2674 
2675 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2676 					GFP_KERNEL);
2677 	if (!nandc->data_buffer)
2678 		return -ENOMEM;
2679 
2680 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2681 					GFP_KERNEL);
2682 	if (!nandc->regs)
2683 		return -ENOMEM;
2684 
2685 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2686 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2687 				GFP_KERNEL);
2688 	if (!nandc->reg_read_buf)
2689 		return -ENOMEM;
2690 
2691 	if (nandc->props->is_bam) {
2692 		nandc->reg_read_dma =
2693 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2694 				       MAX_REG_RD *
2695 				       sizeof(*nandc->reg_read_buf),
2696 				       DMA_FROM_DEVICE);
2697 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2698 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2699 			return -EIO;
2700 		}
2701 
2702 		nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
2703 		if (IS_ERR(nandc->tx_chan)) {
2704 			ret = PTR_ERR(nandc->tx_chan);
2705 			nandc->tx_chan = NULL;
2706 			dev_err_probe(nandc->dev, ret,
2707 				      "tx DMA channel request failed\n");
2708 			goto unalloc;
2709 		}
2710 
2711 		nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
2712 		if (IS_ERR(nandc->rx_chan)) {
2713 			ret = PTR_ERR(nandc->rx_chan);
2714 			nandc->rx_chan = NULL;
2715 			dev_err_probe(nandc->dev, ret,
2716 				      "rx DMA channel request failed\n");
2717 			goto unalloc;
2718 		}
2719 
2720 		nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
2721 		if (IS_ERR(nandc->cmd_chan)) {
2722 			ret = PTR_ERR(nandc->cmd_chan);
2723 			nandc->cmd_chan = NULL;
2724 			dev_err_probe(nandc->dev, ret,
2725 				      "cmd DMA channel request failed\n");
2726 			goto unalloc;
2727 		}
2728 
2729 		/*
2730 		 * Initially allocate BAM transaction to read ONFI param page.
2731 		 * After detecting all the devices, this BAM transaction will
2732 		 * be freed and the next BAM tranasction will be allocated with
2733 		 * maximum codeword size
2734 		 */
2735 		nandc->max_cwperpage = 1;
2736 		nandc->bam_txn = alloc_bam_transaction(nandc);
2737 		if (!nandc->bam_txn) {
2738 			dev_err(nandc->dev,
2739 				"failed to allocate bam transaction\n");
2740 			ret = -ENOMEM;
2741 			goto unalloc;
2742 		}
2743 	} else {
2744 		nandc->chan = dma_request_chan(nandc->dev, "rxtx");
2745 		if (IS_ERR(nandc->chan)) {
2746 			ret = PTR_ERR(nandc->chan);
2747 			nandc->chan = NULL;
2748 			dev_err_probe(nandc->dev, ret,
2749 				      "rxtx DMA channel request failed\n");
2750 			return ret;
2751 		}
2752 	}
2753 
2754 	INIT_LIST_HEAD(&nandc->desc_list);
2755 	INIT_LIST_HEAD(&nandc->host_list);
2756 
2757 	nand_controller_init(&nandc->controller);
2758 	nandc->controller.ops = &qcom_nandc_ops;
2759 
2760 	return 0;
2761 unalloc:
2762 	qcom_nandc_unalloc(nandc);
2763 	return ret;
2764 }
2765 
2766 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)2767 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2768 {
2769 	u32 nand_ctrl;
2770 
2771 	/* kill onenand */
2772 	if (!nandc->props->is_qpic)
2773 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2774 	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2775 		    NAND_DEV_CMD_VLD_VAL);
2776 
2777 	/* enable ADM or BAM DMA */
2778 	if (nandc->props->is_bam) {
2779 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2780 
2781 		/*
2782 		 *NAND_CTRL is an operational registers, and CPU
2783 		 * access to operational registers are read only
2784 		 * in BAM mode. So update the NAND_CTRL register
2785 		 * only if it is not in BAM mode. In most cases BAM
2786 		 * mode will be enabled in bootloader
2787 		 */
2788 		if (!(nand_ctrl & BAM_MODE_EN))
2789 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2790 	} else {
2791 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2792 	}
2793 
2794 	/* save the original values of these registers */
2795 	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2796 	nandc->vld = NAND_DEV_CMD_VLD_VAL;
2797 
2798 	return 0;
2799 }
2800 
qcom_nand_host_init_and_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2801 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2802 					    struct qcom_nand_host *host,
2803 					    struct device_node *dn)
2804 {
2805 	struct nand_chip *chip = &host->chip;
2806 	struct mtd_info *mtd = nand_to_mtd(chip);
2807 	struct device *dev = nandc->dev;
2808 	int ret;
2809 
2810 	ret = of_property_read_u32(dn, "reg", &host->cs);
2811 	if (ret) {
2812 		dev_err(dev, "can't get chip-select\n");
2813 		return -ENXIO;
2814 	}
2815 
2816 	nand_set_flash_node(chip, dn);
2817 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2818 	if (!mtd->name)
2819 		return -ENOMEM;
2820 
2821 	mtd->owner = THIS_MODULE;
2822 	mtd->dev.parent = dev;
2823 
2824 	chip->legacy.cmdfunc	= qcom_nandc_command;
2825 	chip->legacy.select_chip	= qcom_nandc_select_chip;
2826 	chip->legacy.read_byte	= qcom_nandc_read_byte;
2827 	chip->legacy.read_buf	= qcom_nandc_read_buf;
2828 	chip->legacy.write_buf	= qcom_nandc_write_buf;
2829 	chip->legacy.set_features	= nand_get_set_features_notsupp;
2830 	chip->legacy.get_features	= nand_get_set_features_notsupp;
2831 
2832 	/*
2833 	 * the bad block marker is readable only when we read the last codeword
2834 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2835 	 * helpers don't allow us to read BB from a nand chip with ECC
2836 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2837 	 * and block_markbad helpers until we permanently switch to using
2838 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2839 	 */
2840 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2841 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2842 
2843 	chip->controller = &nandc->controller;
2844 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2845 			 NAND_SKIP_BBTSCAN;
2846 
2847 	/* set up initial status value */
2848 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2849 
2850 	ret = nand_scan(chip, 1);
2851 	if (ret)
2852 		return ret;
2853 
2854 	if (nandc->props->is_bam) {
2855 		free_bam_transaction(nandc);
2856 		nandc->bam_txn = alloc_bam_transaction(nandc);
2857 		if (!nandc->bam_txn) {
2858 			dev_err(nandc->dev,
2859 				"failed to allocate bam transaction\n");
2860 			return -ENOMEM;
2861 		}
2862 	}
2863 
2864 	ret = mtd_device_register(mtd, NULL, 0);
2865 	if (ret)
2866 		nand_cleanup(chip);
2867 
2868 	return ret;
2869 }
2870 
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)2871 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2872 {
2873 	struct device *dev = nandc->dev;
2874 	struct device_node *dn = dev->of_node, *child;
2875 	struct qcom_nand_host *host;
2876 	int ret = -ENODEV;
2877 
2878 	for_each_available_child_of_node(dn, child) {
2879 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2880 		if (!host) {
2881 			of_node_put(child);
2882 			return -ENOMEM;
2883 		}
2884 
2885 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2886 		if (ret) {
2887 			devm_kfree(dev, host);
2888 			continue;
2889 		}
2890 
2891 		list_add_tail(&host->node, &nandc->host_list);
2892 	}
2893 
2894 	return ret;
2895 }
2896 
2897 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)2898 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2899 {
2900 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2901 	struct device_node *np = nandc->dev->of_node;
2902 	int ret;
2903 
2904 	if (!nandc->props->is_bam) {
2905 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2906 					   &nandc->cmd_crci);
2907 		if (ret) {
2908 			dev_err(nandc->dev, "command CRCI unspecified\n");
2909 			return ret;
2910 		}
2911 
2912 		ret = of_property_read_u32(np, "qcom,data-crci",
2913 					   &nandc->data_crci);
2914 		if (ret) {
2915 			dev_err(nandc->dev, "data CRCI unspecified\n");
2916 			return ret;
2917 		}
2918 	}
2919 
2920 	return 0;
2921 }
2922 
qcom_nandc_probe(struct platform_device * pdev)2923 static int qcom_nandc_probe(struct platform_device *pdev)
2924 {
2925 	struct qcom_nand_controller *nandc;
2926 	const void *dev_data;
2927 	struct device *dev = &pdev->dev;
2928 	struct resource *res;
2929 	int ret;
2930 
2931 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2932 	if (!nandc)
2933 		return -ENOMEM;
2934 
2935 	platform_set_drvdata(pdev, nandc);
2936 	nandc->dev = dev;
2937 
2938 	dev_data = of_device_get_match_data(dev);
2939 	if (!dev_data) {
2940 		dev_err(&pdev->dev, "failed to get device data\n");
2941 		return -ENODEV;
2942 	}
2943 
2944 	nandc->props = dev_data;
2945 
2946 	nandc->core_clk = devm_clk_get(dev, "core");
2947 	if (IS_ERR(nandc->core_clk))
2948 		return PTR_ERR(nandc->core_clk);
2949 
2950 	nandc->aon_clk = devm_clk_get(dev, "aon");
2951 	if (IS_ERR(nandc->aon_clk))
2952 		return PTR_ERR(nandc->aon_clk);
2953 
2954 	ret = qcom_nandc_parse_dt(pdev);
2955 	if (ret)
2956 		return ret;
2957 
2958 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2959 	nandc->base = devm_ioremap_resource(dev, res);
2960 	if (IS_ERR(nandc->base))
2961 		return PTR_ERR(nandc->base);
2962 
2963 	nandc->base_phys = res->start;
2964 	nandc->base_dma = dma_map_resource(dev, res->start,
2965 					   resource_size(res),
2966 					   DMA_BIDIRECTIONAL, 0);
2967 	if (!nandc->base_dma)
2968 		return -ENXIO;
2969 
2970 	ret = clk_prepare_enable(nandc->core_clk);
2971 	if (ret)
2972 		goto err_core_clk;
2973 
2974 	ret = clk_prepare_enable(nandc->aon_clk);
2975 	if (ret)
2976 		goto err_aon_clk;
2977 
2978 	ret = qcom_nandc_alloc(nandc);
2979 	if (ret)
2980 		goto err_nandc_alloc;
2981 
2982 	ret = qcom_nandc_setup(nandc);
2983 	if (ret)
2984 		goto err_setup;
2985 
2986 	ret = qcom_probe_nand_devices(nandc);
2987 	if (ret)
2988 		goto err_setup;
2989 
2990 	return 0;
2991 
2992 err_setup:
2993 	qcom_nandc_unalloc(nandc);
2994 err_nandc_alloc:
2995 	clk_disable_unprepare(nandc->aon_clk);
2996 err_aon_clk:
2997 	clk_disable_unprepare(nandc->core_clk);
2998 err_core_clk:
2999 	dma_unmap_resource(dev, res->start, resource_size(res),
3000 			   DMA_BIDIRECTIONAL, 0);
3001 	return ret;
3002 }
3003 
qcom_nandc_remove(struct platform_device * pdev)3004 static int qcom_nandc_remove(struct platform_device *pdev)
3005 {
3006 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3007 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3008 	struct qcom_nand_host *host;
3009 	struct nand_chip *chip;
3010 	int ret;
3011 
3012 	list_for_each_entry(host, &nandc->host_list, node) {
3013 		chip = &host->chip;
3014 		ret = mtd_device_unregister(nand_to_mtd(chip));
3015 		WARN_ON(ret);
3016 		nand_cleanup(chip);
3017 	}
3018 
3019 	qcom_nandc_unalloc(nandc);
3020 
3021 	clk_disable_unprepare(nandc->aon_clk);
3022 	clk_disable_unprepare(nandc->core_clk);
3023 
3024 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3025 			   DMA_BIDIRECTIONAL, 0);
3026 
3027 	return 0;
3028 }
3029 
3030 static const struct qcom_nandc_props ipq806x_nandc_props = {
3031 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3032 	.is_bam = false,
3033 	.dev_cmd_reg_start = 0x0,
3034 };
3035 
3036 static const struct qcom_nandc_props ipq4019_nandc_props = {
3037 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3038 	.is_bam = true,
3039 	.is_qpic = true,
3040 	.dev_cmd_reg_start = 0x0,
3041 };
3042 
3043 static const struct qcom_nandc_props ipq8074_nandc_props = {
3044 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3045 	.is_bam = true,
3046 	.is_qpic = true,
3047 	.dev_cmd_reg_start = 0x7000,
3048 };
3049 
3050 /*
3051  * data will hold a struct pointer containing more differences once we support
3052  * more controller variants
3053  */
3054 static const struct of_device_id qcom_nandc_of_match[] = {
3055 	{
3056 		.compatible = "qcom,ipq806x-nand",
3057 		.data = &ipq806x_nandc_props,
3058 	},
3059 	{
3060 		.compatible = "qcom,ipq4019-nand",
3061 		.data = &ipq4019_nandc_props,
3062 	},
3063 	{
3064 		.compatible = "qcom,ipq8074-nand",
3065 		.data = &ipq8074_nandc_props,
3066 	},
3067 	{}
3068 };
3069 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3070 
3071 static struct platform_driver qcom_nandc_driver = {
3072 	.driver = {
3073 		.name = "qcom-nandc",
3074 		.of_match_table = qcom_nandc_of_match,
3075 	},
3076 	.probe   = qcom_nandc_probe,
3077 	.remove  = qcom_nandc_remove,
3078 };
3079 module_platform_driver(qcom_nandc_driver);
3080 
3081 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3082 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3083 MODULE_LICENSE("GPL v2");
3084