1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16
17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
24
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44
45 static void ice_vsi_release_all(struct ice_pf *pf);
46
47 /**
48 * ice_get_tx_pending - returns number of Tx descriptors not processed
49 * @ring: the ring of descriptors
50 */
ice_get_tx_pending(struct ice_ring * ring)51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 u16 head, tail;
54
55 head = ring->next_to_clean;
56 tail = ring->next_to_use;
57
58 if (head != tail)
59 return (head < tail) ?
60 tail - head : (tail + ring->count - head);
61 return 0;
62 }
63
64 /**
65 * ice_check_for_hang_subtask - check for and recover hung queues
66 * @pf: pointer to PF struct
67 */
ice_check_for_hang_subtask(struct ice_pf * pf)68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 struct ice_vsi *vsi = NULL;
71 struct ice_hw *hw;
72 unsigned int i;
73 int packets;
74 u32 v;
75
76 ice_for_each_vsi(pf, v)
77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 vsi = pf->vsi[v];
79 break;
80 }
81
82 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 return;
84
85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 return;
87
88 hw = &vsi->back->hw;
89
90 for (i = 0; i < vsi->num_txq; i++) {
91 struct ice_ring *tx_ring = vsi->tx_rings[i];
92
93 if (tx_ring && tx_ring->desc) {
94 /* If packet counter has not changed the queue is
95 * likely stalled, so force an interrupt for this
96 * queue.
97 *
98 * prev_pkt would be negative if there was no
99 * pending work.
100 */
101 packets = tx_ring->stats.pkts & INT_MAX;
102 if (tx_ring->tx_stats.prev_pkt == packets) {
103 /* Trigger sw interrupt to revive the queue */
104 ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 continue;
106 }
107
108 /* Memory barrier between read of packet count and call
109 * to ice_get_tx_pending()
110 */
111 smp_rmb();
112 tx_ring->tx_stats.prev_pkt =
113 ice_get_tx_pending(tx_ring) ? packets : -1;
114 }
115 }
116 }
117
118 /**
119 * ice_init_mac_fltr - Set initial MAC filters
120 * @pf: board private structure
121 *
122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
123 * address and broadcast address. If an error is encountered, netdevice will be
124 * unregistered.
125 */
ice_init_mac_fltr(struct ice_pf * pf)126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 enum ice_status status;
129 struct ice_vsi *vsi;
130 u8 *perm_addr;
131
132 vsi = ice_get_main_vsi(pf);
133 if (!vsi)
134 return -EINVAL;
135
136 perm_addr = vsi->port_info->mac.perm_addr;
137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 if (!status)
139 return 0;
140
141 /* We aren't useful with no MAC filters, so unregister if we
142 * had an error
143 */
144 if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 ice_stat_str(status));
147 unregister_netdev(vsi->netdev);
148 free_netdev(vsi->netdev);
149 vsi->netdev = NULL;
150 }
151
152 return -EIO;
153 }
154
155 /**
156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157 * @netdev: the net device on which the sync is happening
158 * @addr: MAC address to sync
159 *
160 * This is a callback function which is called by the in kernel device sync
161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163 * MAC filters from the hardware.
164 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 struct ice_netdev_priv *np = netdev_priv(netdev);
168 struct ice_vsi *vsi = np->vsi;
169
170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 ICE_FWD_TO_VSI))
172 return -EINVAL;
173
174 return 0;
175 }
176
177 /**
178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179 * @netdev: the net device on which the unsync is happening
180 * @addr: MAC address to unsync
181 *
182 * This is a callback function which is called by the in kernel device unsync
183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185 * delete the MAC filters from the hardware.
186 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 struct ice_netdev_priv *np = netdev_priv(netdev);
190 struct ice_vsi *vsi = np->vsi;
191
192 /* Under some circumstances, we might receive a request to delete our
193 * own device address from our uc list. Because we store the device
194 * address in the VSI's MAC filter list, we need to ignore such
195 * requests and not delete our device address from this list.
196 */
197 if (ether_addr_equal(addr, netdev->dev_addr))
198 return 0;
199
200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
201 ICE_FWD_TO_VSI))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /**
208 * ice_vsi_fltr_changed - check if filter state changed
209 * @vsi: VSI to be checked
210 *
211 * returns true if filter state has changed, false otherwise.
212 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
214 {
215 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
216 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
217 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
218 }
219
220 /**
221 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
222 * @vsi: the VSI being configured
223 * @promisc_m: mask of promiscuous config bits
224 * @set_promisc: enable or disable promisc flag request
225 *
226 */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
228 {
229 struct ice_hw *hw = &vsi->back->hw;
230 enum ice_status status = 0;
231
232 if (vsi->type != ICE_VSI_PF)
233 return 0;
234
235 if (vsi->vlan_ena) {
236 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
237 set_promisc);
238 } else {
239 if (set_promisc)
240 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
241 0);
242 else
243 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
244 0);
245 }
246
247 if (status)
248 return -EIO;
249
250 return 0;
251 }
252
253 /**
254 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
255 * @vsi: ptr to the VSI
256 *
257 * Push any outstanding VSI filter changes through the AdminQ.
258 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
260 {
261 struct device *dev = ice_pf_to_dev(vsi->back);
262 struct net_device *netdev = vsi->netdev;
263 bool promisc_forced_on = false;
264 struct ice_pf *pf = vsi->back;
265 struct ice_hw *hw = &pf->hw;
266 enum ice_status status = 0;
267 u32 changed_flags = 0;
268 u8 promisc_m;
269 int err = 0;
270
271 if (!vsi->netdev)
272 return -EINVAL;
273
274 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
275 usleep_range(1000, 2000);
276
277 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
278 vsi->current_netdev_flags = vsi->netdev->flags;
279
280 INIT_LIST_HEAD(&vsi->tmp_sync_list);
281 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
282
283 if (ice_vsi_fltr_changed(vsi)) {
284 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
285 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
286 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
287
288 /* grab the netdev's addr_list_lock */
289 netif_addr_lock_bh(netdev);
290 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
291 ice_add_mac_to_unsync_list);
292 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
293 ice_add_mac_to_unsync_list);
294 /* our temp lists are populated. release lock */
295 netif_addr_unlock_bh(netdev);
296 }
297
298 /* Remove MAC addresses in the unsync list */
299 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
300 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
301 if (status) {
302 netdev_err(netdev, "Failed to delete MAC filters\n");
303 /* if we failed because of alloc failures, just bail */
304 if (status == ICE_ERR_NO_MEMORY) {
305 err = -ENOMEM;
306 goto out;
307 }
308 }
309
310 /* Add MAC addresses in the sync list */
311 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
312 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
313 /* If filter is added successfully or already exists, do not go into
314 * 'if' condition and report it as error. Instead continue processing
315 * rest of the function.
316 */
317 if (status && status != ICE_ERR_ALREADY_EXISTS) {
318 netdev_err(netdev, "Failed to add MAC filters\n");
319 /* If there is no more space for new umac filters, VSI
320 * should go into promiscuous mode. There should be some
321 * space reserved for promiscuous filters.
322 */
323 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
324 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
325 vsi->state)) {
326 promisc_forced_on = true;
327 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
328 vsi->vsi_num);
329 } else {
330 err = -EIO;
331 goto out;
332 }
333 }
334 /* check for changes in promiscuous modes */
335 if (changed_flags & IFF_ALLMULTI) {
336 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
337 if (vsi->vlan_ena)
338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 else
340 promisc_m = ICE_MCAST_PROMISC_BITS;
341
342 err = ice_cfg_promisc(vsi, promisc_m, true);
343 if (err) {
344 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
345 vsi->vsi_num);
346 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
347 goto out_promisc;
348 }
349 } else {
350 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
351 if (vsi->vlan_ena)
352 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
353 else
354 promisc_m = ICE_MCAST_PROMISC_BITS;
355
356 err = ice_cfg_promisc(vsi, promisc_m, false);
357 if (err) {
358 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
359 vsi->vsi_num);
360 vsi->current_netdev_flags |= IFF_ALLMULTI;
361 goto out_promisc;
362 }
363 }
364 }
365
366 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
367 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
368 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
369 if (vsi->current_netdev_flags & IFF_PROMISC) {
370 /* Apply Rx filter rule to get traffic from wire */
371 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
372 err = ice_set_dflt_vsi(pf->first_sw, vsi);
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
375 err, vsi->vsi_num);
376 vsi->current_netdev_flags &=
377 ~IFF_PROMISC;
378 goto out_promisc;
379 }
380 ice_cfg_vlan_pruning(vsi, false, false);
381 }
382 } else {
383 /* Clear Rx filter to remove traffic from wire */
384 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
385 err = ice_clear_dflt_vsi(pf->first_sw);
386 if (err) {
387 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
388 err, vsi->vsi_num);
389 vsi->current_netdev_flags |=
390 IFF_PROMISC;
391 goto out_promisc;
392 }
393 if (vsi->num_vlan > 1)
394 ice_cfg_vlan_pruning(vsi, true, false);
395 }
396 }
397 }
398 goto exit;
399
400 out_promisc:
401 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
402 goto exit;
403 out:
404 /* if something went wrong then set the changed flag so we try again */
405 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
406 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
407 exit:
408 clear_bit(__ICE_CFG_BUSY, vsi->state);
409 return err;
410 }
411
412 /**
413 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
414 * @pf: board private structure
415 */
ice_sync_fltr_subtask(struct ice_pf * pf)416 static void ice_sync_fltr_subtask(struct ice_pf *pf)
417 {
418 int v;
419
420 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
421 return;
422
423 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
424
425 ice_for_each_vsi(pf, v)
426 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
427 ice_vsi_sync_fltr(pf->vsi[v])) {
428 /* come back and try again later */
429 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 break;
431 }
432 }
433
434 /**
435 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
436 * @pf: the PF
437 * @locked: is the rtnl_lock already held
438 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)439 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
440 {
441 int v;
442
443 ice_for_each_vsi(pf, v)
444 if (pf->vsi[v])
445 ice_dis_vsi(pf->vsi[v], locked);
446 }
447
448 /**
449 * ice_prepare_for_reset - prep for the core to reset
450 * @pf: board private structure
451 *
452 * Inform or close all dependent features in prep for reset.
453 */
454 static void
ice_prepare_for_reset(struct ice_pf * pf)455 ice_prepare_for_reset(struct ice_pf *pf)
456 {
457 struct ice_hw *hw = &pf->hw;
458 unsigned int i;
459
460 /* already prepared for reset */
461 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
462 return;
463
464 /* Notify VFs of impending reset */
465 if (ice_check_sq_alive(hw, &hw->mailboxq))
466 ice_vc_notify_reset(pf);
467
468 /* Disable VFs until reset is completed */
469 ice_for_each_vf(pf, i)
470 ice_set_vf_state_qs_dis(&pf->vf[i]);
471
472 /* clear SW filtering DB */
473 ice_clear_hw_tbls(hw);
474 /* disable the VSIs and their queues that are not already DOWN */
475 ice_pf_dis_all_vsi(pf, false);
476
477 if (hw->port_info)
478 ice_sched_clear_port(hw->port_info);
479
480 ice_shutdown_all_ctrlq(hw);
481
482 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
483 }
484
485 /**
486 * ice_do_reset - Initiate one of many types of resets
487 * @pf: board private structure
488 * @reset_type: reset type requested
489 * before this function was called.
490 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
492 {
493 struct device *dev = ice_pf_to_dev(pf);
494 struct ice_hw *hw = &pf->hw;
495
496 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
497
498 ice_prepare_for_reset(pf);
499
500 /* trigger the reset */
501 if (ice_reset(hw, reset_type)) {
502 dev_err(dev, "reset %d failed\n", reset_type);
503 set_bit(__ICE_RESET_FAILED, pf->state);
504 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
505 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
506 clear_bit(__ICE_PFR_REQ, pf->state);
507 clear_bit(__ICE_CORER_REQ, pf->state);
508 clear_bit(__ICE_GLOBR_REQ, pf->state);
509 return;
510 }
511
512 /* PFR is a bit of a special case because it doesn't result in an OICR
513 * interrupt. So for PFR, rebuild after the reset and clear the reset-
514 * associated state bits.
515 */
516 if (reset_type == ICE_RESET_PFR) {
517 pf->pfr_count++;
518 ice_rebuild(pf, reset_type);
519 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
520 clear_bit(__ICE_PFR_REQ, pf->state);
521 ice_reset_all_vfs(pf, true);
522 }
523 }
524
525 /**
526 * ice_reset_subtask - Set up for resetting the device and driver
527 * @pf: board private structure
528 */
ice_reset_subtask(struct ice_pf * pf)529 static void ice_reset_subtask(struct ice_pf *pf)
530 {
531 enum ice_reset_req reset_type = ICE_RESET_INVAL;
532
533 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
534 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
535 * of reset is pending and sets bits in pf->state indicating the reset
536 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
537 * prepare for pending reset if not already (for PF software-initiated
538 * global resets the software should already be prepared for it as
539 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
540 * by firmware or software on other PFs, that bit is not set so prepare
541 * for the reset now), poll for reset done, rebuild and return.
542 */
543 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
544 /* Perform the largest reset requested */
545 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
546 reset_type = ICE_RESET_CORER;
547 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
548 reset_type = ICE_RESET_GLOBR;
549 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
550 reset_type = ICE_RESET_EMPR;
551 /* return if no valid reset type requested */
552 if (reset_type == ICE_RESET_INVAL)
553 return;
554 ice_prepare_for_reset(pf);
555
556 /* make sure we are ready to rebuild */
557 if (ice_check_reset(&pf->hw)) {
558 set_bit(__ICE_RESET_FAILED, pf->state);
559 } else {
560 /* done with reset. start rebuild */
561 pf->hw.reset_ongoing = false;
562 ice_rebuild(pf, reset_type);
563 /* clear bit to resume normal operations, but
564 * ICE_NEEDS_RESTART bit is set in case rebuild failed
565 */
566 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
567 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
568 clear_bit(__ICE_PFR_REQ, pf->state);
569 clear_bit(__ICE_CORER_REQ, pf->state);
570 clear_bit(__ICE_GLOBR_REQ, pf->state);
571 ice_reset_all_vfs(pf, true);
572 }
573
574 return;
575 }
576
577 /* No pending resets to finish processing. Check for new resets */
578 if (test_bit(__ICE_PFR_REQ, pf->state))
579 reset_type = ICE_RESET_PFR;
580 if (test_bit(__ICE_CORER_REQ, pf->state))
581 reset_type = ICE_RESET_CORER;
582 if (test_bit(__ICE_GLOBR_REQ, pf->state))
583 reset_type = ICE_RESET_GLOBR;
584 /* If no valid reset type requested just return */
585 if (reset_type == ICE_RESET_INVAL)
586 return;
587
588 /* reset if not already down or busy */
589 if (!test_bit(__ICE_DOWN, pf->state) &&
590 !test_bit(__ICE_CFG_BUSY, pf->state)) {
591 ice_do_reset(pf, reset_type);
592 }
593 }
594
595 /**
596 * ice_print_topo_conflict - print topology conflict message
597 * @vsi: the VSI whose topology status is being checked
598 */
ice_print_topo_conflict(struct ice_vsi * vsi)599 static void ice_print_topo_conflict(struct ice_vsi *vsi)
600 {
601 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
602 case ICE_AQ_LINK_TOPO_CONFLICT:
603 case ICE_AQ_LINK_MEDIA_CONFLICT:
604 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
605 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
606 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
607 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
608 break;
609 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
610 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
611 break;
612 default:
613 break;
614 }
615 }
616
617 /**
618 * ice_print_link_msg - print link up or down message
619 * @vsi: the VSI whose link status is being queried
620 * @isup: boolean for if the link is now up or down
621 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
623 {
624 struct ice_aqc_get_phy_caps_data *caps;
625 const char *an_advertised;
626 enum ice_status status;
627 const char *fec_req;
628 const char *speed;
629 const char *fec;
630 const char *fc;
631 const char *an;
632
633 if (!vsi)
634 return;
635
636 if (vsi->current_isup == isup)
637 return;
638
639 vsi->current_isup = isup;
640
641 if (!isup) {
642 netdev_info(vsi->netdev, "NIC Link is Down\n");
643 return;
644 }
645
646 switch (vsi->port_info->phy.link_info.link_speed) {
647 case ICE_AQ_LINK_SPEED_100GB:
648 speed = "100 G";
649 break;
650 case ICE_AQ_LINK_SPEED_50GB:
651 speed = "50 G";
652 break;
653 case ICE_AQ_LINK_SPEED_40GB:
654 speed = "40 G";
655 break;
656 case ICE_AQ_LINK_SPEED_25GB:
657 speed = "25 G";
658 break;
659 case ICE_AQ_LINK_SPEED_20GB:
660 speed = "20 G";
661 break;
662 case ICE_AQ_LINK_SPEED_10GB:
663 speed = "10 G";
664 break;
665 case ICE_AQ_LINK_SPEED_5GB:
666 speed = "5 G";
667 break;
668 case ICE_AQ_LINK_SPEED_2500MB:
669 speed = "2.5 G";
670 break;
671 case ICE_AQ_LINK_SPEED_1000MB:
672 speed = "1 G";
673 break;
674 case ICE_AQ_LINK_SPEED_100MB:
675 speed = "100 M";
676 break;
677 default:
678 speed = "Unknown";
679 break;
680 }
681
682 switch (vsi->port_info->fc.current_mode) {
683 case ICE_FC_FULL:
684 fc = "Rx/Tx";
685 break;
686 case ICE_FC_TX_PAUSE:
687 fc = "Tx";
688 break;
689 case ICE_FC_RX_PAUSE:
690 fc = "Rx";
691 break;
692 case ICE_FC_NONE:
693 fc = "None";
694 break;
695 default:
696 fc = "Unknown";
697 break;
698 }
699
700 /* Get FEC mode based on negotiated link info */
701 switch (vsi->port_info->phy.link_info.fec_info) {
702 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
703 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
704 fec = "RS-FEC";
705 break;
706 case ICE_AQ_LINK_25G_KR_FEC_EN:
707 fec = "FC-FEC/BASE-R";
708 break;
709 default:
710 fec = "NONE";
711 break;
712 }
713
714 /* check if autoneg completed, might be false due to not supported */
715 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
716 an = "True";
717 else
718 an = "False";
719
720 /* Get FEC mode requested based on PHY caps last SW configuration */
721 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
722 if (!caps) {
723 fec_req = "Unknown";
724 an_advertised = "Unknown";
725 goto done;
726 }
727
728 status = ice_aq_get_phy_caps(vsi->port_info, false,
729 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
730 if (status)
731 netdev_info(vsi->netdev, "Get phy capability failed.\n");
732
733 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
734
735 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
736 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
737 fec_req = "RS-FEC";
738 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
740 fec_req = "FC-FEC/BASE-R";
741 else
742 fec_req = "NONE";
743
744 kfree(caps);
745
746 done:
747 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
748 speed, fec_req, fec, an_advertised, an, fc);
749 ice_print_topo_conflict(vsi);
750 }
751
752 /**
753 * ice_vsi_link_event - update the VSI's netdev
754 * @vsi: the VSI on which the link event occurred
755 * @link_up: whether or not the VSI needs to be set up or down
756 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
758 {
759 if (!vsi)
760 return;
761
762 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
763 return;
764
765 if (vsi->type == ICE_VSI_PF) {
766 if (link_up == netif_carrier_ok(vsi->netdev))
767 return;
768
769 if (link_up) {
770 netif_carrier_on(vsi->netdev);
771 netif_tx_wake_all_queues(vsi->netdev);
772 } else {
773 netif_carrier_off(vsi->netdev);
774 netif_tx_stop_all_queues(vsi->netdev);
775 }
776 }
777 }
778
779 /**
780 * ice_set_dflt_mib - send a default config MIB to the FW
781 * @pf: private PF struct
782 *
783 * This function sends a default configuration MIB to the FW.
784 *
785 * If this function errors out at any point, the driver is still able to
786 * function. The main impact is that LFC may not operate as expected.
787 * Therefore an error state in this function should be treated with a DBG
788 * message and continue on with driver rebuild/reenable.
789 */
ice_set_dflt_mib(struct ice_pf * pf)790 static void ice_set_dflt_mib(struct ice_pf *pf)
791 {
792 struct device *dev = ice_pf_to_dev(pf);
793 u8 mib_type, *buf, *lldpmib = NULL;
794 u16 len, typelen, offset = 0;
795 struct ice_lldp_org_tlv *tlv;
796 struct ice_hw *hw;
797 u32 ouisubtype;
798
799 if (!pf) {
800 dev_dbg(dev, "%s NULL pf pointer\n", __func__);
801 return;
802 }
803
804 hw = &pf->hw;
805 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
806 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
807 if (!lldpmib) {
808 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
809 __func__);
810 return;
811 }
812
813 /* Add ETS CFG TLV */
814 tlv = (struct ice_lldp_org_tlv *)lldpmib;
815 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
816 ICE_IEEE_ETS_TLV_LEN);
817 tlv->typelen = htons(typelen);
818 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
819 ICE_IEEE_SUBTYPE_ETS_CFG);
820 tlv->ouisubtype = htonl(ouisubtype);
821
822 buf = tlv->tlvinfo;
823 buf[0] = 0;
824
825 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
826 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
827 * Octets 13 - 20 are TSA values - leave as zeros
828 */
829 buf[5] = 0x64;
830 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
831 offset += len + 2;
832 tlv = (struct ice_lldp_org_tlv *)
833 ((char *)tlv + sizeof(tlv->typelen) + len);
834
835 /* Add ETS REC TLV */
836 buf = tlv->tlvinfo;
837 tlv->typelen = htons(typelen);
838
839 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
840 ICE_IEEE_SUBTYPE_ETS_REC);
841 tlv->ouisubtype = htonl(ouisubtype);
842
843 /* First octet of buf is reserved
844 * Octets 1 - 4 map UP to TC - all UPs map to zero
845 * Octets 5 - 12 are BW values - set TC 0 to 100%.
846 * Octets 13 - 20 are TSA value - leave as zeros
847 */
848 buf[5] = 0x64;
849 offset += len + 2;
850 tlv = (struct ice_lldp_org_tlv *)
851 ((char *)tlv + sizeof(tlv->typelen) + len);
852
853 /* Add PFC CFG TLV */
854 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
855 ICE_IEEE_PFC_TLV_LEN);
856 tlv->typelen = htons(typelen);
857
858 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
859 ICE_IEEE_SUBTYPE_PFC_CFG);
860 tlv->ouisubtype = htonl(ouisubtype);
861
862 /* Octet 1 left as all zeros - PFC disabled */
863 buf[0] = 0x08;
864 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
865 offset += len + 2;
866
867 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
868 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
869
870 kfree(lldpmib);
871 }
872
873 /**
874 * ice_link_event - process the link event
875 * @pf: PF that the link event is associated with
876 * @pi: port_info for the port that the link event is associated with
877 * @link_up: true if the physical link is up and false if it is down
878 * @link_speed: current link speed received from the link event
879 *
880 * Returns 0 on success and negative on failure
881 */
882 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)883 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
884 u16 link_speed)
885 {
886 struct device *dev = ice_pf_to_dev(pf);
887 struct ice_phy_info *phy_info;
888 struct ice_vsi *vsi;
889 u16 old_link_speed;
890 bool old_link;
891 int result;
892
893 phy_info = &pi->phy;
894 phy_info->link_info_old = phy_info->link_info;
895
896 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
897 old_link_speed = phy_info->link_info_old.link_speed;
898
899 /* update the link info structures and re-enable link events,
900 * don't bail on failure due to other book keeping needed
901 */
902 result = ice_update_link_info(pi);
903 if (result)
904 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
905 pi->lport);
906
907 /* Check if the link state is up after updating link info, and treat
908 * this event as an UP event since the link is actually UP now.
909 */
910 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
911 link_up = true;
912
913 vsi = ice_get_main_vsi(pf);
914 if (!vsi || !vsi->port_info)
915 return -EINVAL;
916
917 /* turn off PHY if media was removed */
918 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
919 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
920 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
921
922 result = ice_aq_set_link_restart_an(pi, false, NULL);
923 if (result) {
924 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
925 vsi->vsi_num, result);
926 return result;
927 }
928 }
929
930 /* if the old link up/down and speed is the same as the new */
931 if (link_up == old_link && link_speed == old_link_speed)
932 return result;
933
934 if (ice_is_dcb_active(pf)) {
935 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
936 ice_dcb_rebuild(pf);
937 } else {
938 if (link_up)
939 ice_set_dflt_mib(pf);
940 }
941 ice_vsi_link_event(vsi, link_up);
942 ice_print_link_msg(vsi, link_up);
943
944 ice_vc_notify_link_state(pf);
945
946 return result;
947 }
948
949 /**
950 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
951 * @pf: board private structure
952 */
ice_watchdog_subtask(struct ice_pf * pf)953 static void ice_watchdog_subtask(struct ice_pf *pf)
954 {
955 int i;
956
957 /* if interface is down do nothing */
958 if (test_bit(__ICE_DOWN, pf->state) ||
959 test_bit(__ICE_CFG_BUSY, pf->state))
960 return;
961
962 /* make sure we don't do these things too often */
963 if (time_before(jiffies,
964 pf->serv_tmr_prev + pf->serv_tmr_period))
965 return;
966
967 pf->serv_tmr_prev = jiffies;
968
969 /* Update the stats for active netdevs so the network stack
970 * can look at updated numbers whenever it cares to
971 */
972 ice_update_pf_stats(pf);
973 ice_for_each_vsi(pf, i)
974 if (pf->vsi[i] && pf->vsi[i]->netdev)
975 ice_update_vsi_stats(pf->vsi[i]);
976 }
977
978 /**
979 * ice_init_link_events - enable/initialize link events
980 * @pi: pointer to the port_info instance
981 *
982 * Returns -EIO on failure, 0 on success
983 */
ice_init_link_events(struct ice_port_info * pi)984 static int ice_init_link_events(struct ice_port_info *pi)
985 {
986 u16 mask;
987
988 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
989 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
990
991 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
992 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
993 pi->lport);
994 return -EIO;
995 }
996
997 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
998 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
999 pi->lport);
1000 return -EIO;
1001 }
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * ice_handle_link_event - handle link event via ARQ
1008 * @pf: PF that the link event is associated with
1009 * @event: event structure containing link status info
1010 */
1011 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1012 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1013 {
1014 struct ice_aqc_get_link_status_data *link_data;
1015 struct ice_port_info *port_info;
1016 int status;
1017
1018 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1019 port_info = pf->hw.port_info;
1020 if (!port_info)
1021 return -EINVAL;
1022
1023 status = ice_link_event(pf, port_info,
1024 !!(link_data->link_info & ICE_AQ_LINK_UP),
1025 le16_to_cpu(link_data->link_speed));
1026 if (status)
1027 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1028 status);
1029
1030 return status;
1031 }
1032
1033 enum ice_aq_task_state {
1034 ICE_AQ_TASK_WAITING = 0,
1035 ICE_AQ_TASK_COMPLETE,
1036 ICE_AQ_TASK_CANCELED,
1037 };
1038
1039 struct ice_aq_task {
1040 struct hlist_node entry;
1041
1042 u16 opcode;
1043 struct ice_rq_event_info *event;
1044 enum ice_aq_task_state state;
1045 };
1046
1047 /**
1048 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1049 * @pf: pointer to the PF private structure
1050 * @opcode: the opcode to wait for
1051 * @timeout: how long to wait, in jiffies
1052 * @event: storage for the event info
1053 *
1054 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1055 * current thread will be put to sleep until the specified event occurs or
1056 * until the given timeout is reached.
1057 *
1058 * To obtain only the descriptor contents, pass an event without an allocated
1059 * msg_buf. If the complete data buffer is desired, allocate the
1060 * event->msg_buf with enough space ahead of time.
1061 *
1062 * Returns: zero on success, or a negative error code on failure.
1063 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1064 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1065 struct ice_rq_event_info *event)
1066 {
1067 struct device *dev = ice_pf_to_dev(pf);
1068 struct ice_aq_task *task;
1069 unsigned long start;
1070 long ret;
1071 int err;
1072
1073 task = kzalloc(sizeof(*task), GFP_KERNEL);
1074 if (!task)
1075 return -ENOMEM;
1076
1077 INIT_HLIST_NODE(&task->entry);
1078 task->opcode = opcode;
1079 task->event = event;
1080 task->state = ICE_AQ_TASK_WAITING;
1081
1082 spin_lock_bh(&pf->aq_wait_lock);
1083 hlist_add_head(&task->entry, &pf->aq_wait_list);
1084 spin_unlock_bh(&pf->aq_wait_lock);
1085
1086 start = jiffies;
1087
1088 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1089 timeout);
1090 switch (task->state) {
1091 case ICE_AQ_TASK_WAITING:
1092 err = ret < 0 ? ret : -ETIMEDOUT;
1093 break;
1094 case ICE_AQ_TASK_CANCELED:
1095 err = ret < 0 ? ret : -ECANCELED;
1096 break;
1097 case ICE_AQ_TASK_COMPLETE:
1098 err = ret < 0 ? ret : 0;
1099 break;
1100 default:
1101 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1102 err = -EINVAL;
1103 break;
1104 }
1105
1106 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1107 jiffies_to_msecs(jiffies - start),
1108 jiffies_to_msecs(timeout),
1109 opcode);
1110
1111 spin_lock_bh(&pf->aq_wait_lock);
1112 hlist_del(&task->entry);
1113 spin_unlock_bh(&pf->aq_wait_lock);
1114 kfree(task);
1115
1116 return err;
1117 }
1118
1119 /**
1120 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1121 * @pf: pointer to the PF private structure
1122 * @opcode: the opcode of the event
1123 * @event: the event to check
1124 *
1125 * Loops over the current list of pending threads waiting for an AdminQ event.
1126 * For each matching task, copy the contents of the event into the task
1127 * structure and wake up the thread.
1128 *
1129 * If multiple threads wait for the same opcode, they will all be woken up.
1130 *
1131 * Note that event->msg_buf will only be duplicated if the event has a buffer
1132 * with enough space already allocated. Otherwise, only the descriptor and
1133 * message length will be copied.
1134 *
1135 * Returns: true if an event was found, false otherwise
1136 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1137 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1138 struct ice_rq_event_info *event)
1139 {
1140 struct ice_rq_event_info *task_ev;
1141 struct ice_aq_task *task;
1142 bool found = false;
1143
1144 spin_lock_bh(&pf->aq_wait_lock);
1145 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1146 if (task->state || task->opcode != opcode)
1147 continue;
1148
1149 task_ev = task->event;
1150 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1151 task_ev->msg_len = event->msg_len;
1152
1153 /* Only copy the data buffer if a destination was set */
1154 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1155 memcpy(task_ev->msg_buf, event->msg_buf,
1156 event->buf_len);
1157 task_ev->buf_len = event->buf_len;
1158 }
1159
1160 task->state = ICE_AQ_TASK_COMPLETE;
1161 found = true;
1162 }
1163 spin_unlock_bh(&pf->aq_wait_lock);
1164
1165 if (found)
1166 wake_up(&pf->aq_wait_queue);
1167 }
1168
1169 /**
1170 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1171 * @pf: the PF private structure
1172 *
1173 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1174 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1175 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1176 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1177 {
1178 struct ice_aq_task *task;
1179
1180 spin_lock_bh(&pf->aq_wait_lock);
1181 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1182 task->state = ICE_AQ_TASK_CANCELED;
1183 spin_unlock_bh(&pf->aq_wait_lock);
1184
1185 wake_up(&pf->aq_wait_queue);
1186 }
1187
1188 /**
1189 * __ice_clean_ctrlq - helper function to clean controlq rings
1190 * @pf: ptr to struct ice_pf
1191 * @q_type: specific Control queue type
1192 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1193 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1194 {
1195 struct device *dev = ice_pf_to_dev(pf);
1196 struct ice_rq_event_info event;
1197 struct ice_hw *hw = &pf->hw;
1198 struct ice_ctl_q_info *cq;
1199 u16 pending, i = 0;
1200 const char *qtype;
1201 u32 oldval, val;
1202
1203 /* Do not clean control queue if/when PF reset fails */
1204 if (test_bit(__ICE_RESET_FAILED, pf->state))
1205 return 0;
1206
1207 switch (q_type) {
1208 case ICE_CTL_Q_ADMIN:
1209 cq = &hw->adminq;
1210 qtype = "Admin";
1211 break;
1212 case ICE_CTL_Q_MAILBOX:
1213 cq = &hw->mailboxq;
1214 qtype = "Mailbox";
1215 break;
1216 default:
1217 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1218 return 0;
1219 }
1220
1221 /* check for error indications - PF_xx_AxQLEN register layout for
1222 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1223 */
1224 val = rd32(hw, cq->rq.len);
1225 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1226 PF_FW_ARQLEN_ARQCRIT_M)) {
1227 oldval = val;
1228 if (val & PF_FW_ARQLEN_ARQVFE_M)
1229 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1230 qtype);
1231 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1232 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1233 qtype);
1234 }
1235 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1236 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1237 qtype);
1238 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1239 PF_FW_ARQLEN_ARQCRIT_M);
1240 if (oldval != val)
1241 wr32(hw, cq->rq.len, val);
1242 }
1243
1244 val = rd32(hw, cq->sq.len);
1245 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1246 PF_FW_ATQLEN_ATQCRIT_M)) {
1247 oldval = val;
1248 if (val & PF_FW_ATQLEN_ATQVFE_M)
1249 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1250 qtype);
1251 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1252 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1253 qtype);
1254 }
1255 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1256 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1257 qtype);
1258 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1259 PF_FW_ATQLEN_ATQCRIT_M);
1260 if (oldval != val)
1261 wr32(hw, cq->sq.len, val);
1262 }
1263
1264 event.buf_len = cq->rq_buf_size;
1265 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1266 if (!event.msg_buf)
1267 return 0;
1268
1269 do {
1270 enum ice_status ret;
1271 u16 opcode;
1272
1273 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1274 if (ret == ICE_ERR_AQ_NO_WORK)
1275 break;
1276 if (ret) {
1277 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1278 ice_stat_str(ret));
1279 break;
1280 }
1281
1282 opcode = le16_to_cpu(event.desc.opcode);
1283
1284 /* Notify any thread that might be waiting for this event */
1285 ice_aq_check_events(pf, opcode, &event);
1286
1287 switch (opcode) {
1288 case ice_aqc_opc_get_link_status:
1289 if (ice_handle_link_event(pf, &event))
1290 dev_err(dev, "Could not handle link event\n");
1291 break;
1292 case ice_aqc_opc_event_lan_overflow:
1293 ice_vf_lan_overflow_event(pf, &event);
1294 break;
1295 case ice_mbx_opc_send_msg_to_pf:
1296 ice_vc_process_vf_msg(pf, &event);
1297 break;
1298 case ice_aqc_opc_fw_logging:
1299 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1300 break;
1301 case ice_aqc_opc_lldp_set_mib_change:
1302 ice_dcb_process_lldp_set_mib_change(pf, &event);
1303 break;
1304 default:
1305 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1306 qtype, opcode);
1307 break;
1308 }
1309 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1310
1311 kfree(event.msg_buf);
1312
1313 return pending && (i == ICE_DFLT_IRQ_WORK);
1314 }
1315
1316 /**
1317 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1318 * @hw: pointer to hardware info
1319 * @cq: control queue information
1320 *
1321 * returns true if there are pending messages in a queue, false if there aren't
1322 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1323 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1324 {
1325 u16 ntu;
1326
1327 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1328 return cq->rq.next_to_clean != ntu;
1329 }
1330
1331 /**
1332 * ice_clean_adminq_subtask - clean the AdminQ rings
1333 * @pf: board private structure
1334 */
ice_clean_adminq_subtask(struct ice_pf * pf)1335 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1336 {
1337 struct ice_hw *hw = &pf->hw;
1338
1339 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1340 return;
1341
1342 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1343 return;
1344
1345 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1346
1347 /* There might be a situation where new messages arrive to a control
1348 * queue between processing the last message and clearing the
1349 * EVENT_PENDING bit. So before exiting, check queue head again (using
1350 * ice_ctrlq_pending) and process new messages if any.
1351 */
1352 if (ice_ctrlq_pending(hw, &hw->adminq))
1353 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1354
1355 ice_flush(hw);
1356 }
1357
1358 /**
1359 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1360 * @pf: board private structure
1361 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1362 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1363 {
1364 struct ice_hw *hw = &pf->hw;
1365
1366 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1367 return;
1368
1369 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1370 return;
1371
1372 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1373
1374 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1375 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1376
1377 ice_flush(hw);
1378 }
1379
1380 /**
1381 * ice_service_task_schedule - schedule the service task to wake up
1382 * @pf: board private structure
1383 *
1384 * If not already scheduled, this puts the task into the work queue.
1385 */
ice_service_task_schedule(struct ice_pf * pf)1386 void ice_service_task_schedule(struct ice_pf *pf)
1387 {
1388 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1389 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1390 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1391 queue_work(ice_wq, &pf->serv_task);
1392 }
1393
1394 /**
1395 * ice_service_task_complete - finish up the service task
1396 * @pf: board private structure
1397 */
ice_service_task_complete(struct ice_pf * pf)1398 static void ice_service_task_complete(struct ice_pf *pf)
1399 {
1400 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1401
1402 /* force memory (pf->state) to sync before next service task */
1403 smp_mb__before_atomic();
1404 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1405 }
1406
1407 /**
1408 * ice_service_task_stop - stop service task and cancel works
1409 * @pf: board private structure
1410 *
1411 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1412 * 1 otherwise.
1413 */
ice_service_task_stop(struct ice_pf * pf)1414 static int ice_service_task_stop(struct ice_pf *pf)
1415 {
1416 int ret;
1417
1418 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1419
1420 if (pf->serv_tmr.function)
1421 del_timer_sync(&pf->serv_tmr);
1422 if (pf->serv_task.func)
1423 cancel_work_sync(&pf->serv_task);
1424
1425 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1426 return ret;
1427 }
1428
1429 /**
1430 * ice_service_task_restart - restart service task and schedule works
1431 * @pf: board private structure
1432 *
1433 * This function is needed for suspend and resume works (e.g WoL scenario)
1434 */
ice_service_task_restart(struct ice_pf * pf)1435 static void ice_service_task_restart(struct ice_pf *pf)
1436 {
1437 clear_bit(__ICE_SERVICE_DIS, pf->state);
1438 ice_service_task_schedule(pf);
1439 }
1440
1441 /**
1442 * ice_service_timer - timer callback to schedule service task
1443 * @t: pointer to timer_list
1444 */
ice_service_timer(struct timer_list * t)1445 static void ice_service_timer(struct timer_list *t)
1446 {
1447 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1448
1449 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1450 ice_service_task_schedule(pf);
1451 }
1452
1453 /**
1454 * ice_handle_mdd_event - handle malicious driver detect event
1455 * @pf: pointer to the PF structure
1456 *
1457 * Called from service task. OICR interrupt handler indicates MDD event.
1458 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1459 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1460 * disable the queue, the PF can be configured to reset the VF using ethtool
1461 * private flag mdd-auto-reset-vf.
1462 */
ice_handle_mdd_event(struct ice_pf * pf)1463 static void ice_handle_mdd_event(struct ice_pf *pf)
1464 {
1465 struct device *dev = ice_pf_to_dev(pf);
1466 struct ice_hw *hw = &pf->hw;
1467 unsigned int i;
1468 u32 reg;
1469
1470 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1471 /* Since the VF MDD event logging is rate limited, check if
1472 * there are pending MDD events.
1473 */
1474 ice_print_vfs_mdd_events(pf);
1475 return;
1476 }
1477
1478 /* find what triggered an MDD event */
1479 reg = rd32(hw, GL_MDET_TX_PQM);
1480 if (reg & GL_MDET_TX_PQM_VALID_M) {
1481 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1482 GL_MDET_TX_PQM_PF_NUM_S;
1483 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1484 GL_MDET_TX_PQM_VF_NUM_S;
1485 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1486 GL_MDET_TX_PQM_MAL_TYPE_S;
1487 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1488 GL_MDET_TX_PQM_QNUM_S);
1489
1490 if (netif_msg_tx_err(pf))
1491 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492 event, queue, pf_num, vf_num);
1493 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1494 }
1495
1496 reg = rd32(hw, GL_MDET_TX_TCLAN);
1497 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1498 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1499 GL_MDET_TX_TCLAN_PF_NUM_S;
1500 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1501 GL_MDET_TX_TCLAN_VF_NUM_S;
1502 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1503 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1504 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1505 GL_MDET_TX_TCLAN_QNUM_S);
1506
1507 if (netif_msg_tx_err(pf))
1508 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1509 event, queue, pf_num, vf_num);
1510 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1511 }
1512
1513 reg = rd32(hw, GL_MDET_RX);
1514 if (reg & GL_MDET_RX_VALID_M) {
1515 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1516 GL_MDET_RX_PF_NUM_S;
1517 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1518 GL_MDET_RX_VF_NUM_S;
1519 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1520 GL_MDET_RX_MAL_TYPE_S;
1521 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1522 GL_MDET_RX_QNUM_S);
1523
1524 if (netif_msg_rx_err(pf))
1525 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1526 event, queue, pf_num, vf_num);
1527 wr32(hw, GL_MDET_RX, 0xffffffff);
1528 }
1529
1530 /* check to see if this PF caused an MDD event */
1531 reg = rd32(hw, PF_MDET_TX_PQM);
1532 if (reg & PF_MDET_TX_PQM_VALID_M) {
1533 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1534 if (netif_msg_tx_err(pf))
1535 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1536 }
1537
1538 reg = rd32(hw, PF_MDET_TX_TCLAN);
1539 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1540 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1541 if (netif_msg_tx_err(pf))
1542 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1543 }
1544
1545 reg = rd32(hw, PF_MDET_RX);
1546 if (reg & PF_MDET_RX_VALID_M) {
1547 wr32(hw, PF_MDET_RX, 0xFFFF);
1548 if (netif_msg_rx_err(pf))
1549 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1550 }
1551
1552 /* Check to see if one of the VFs caused an MDD event, and then
1553 * increment counters and set print pending
1554 */
1555 ice_for_each_vf(pf, i) {
1556 struct ice_vf *vf = &pf->vf[i];
1557
1558 reg = rd32(hw, VP_MDET_TX_PQM(i));
1559 if (reg & VP_MDET_TX_PQM_VALID_M) {
1560 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1561 vf->mdd_tx_events.count++;
1562 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1563 if (netif_msg_tx_err(pf))
1564 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1565 i);
1566 }
1567
1568 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1569 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1570 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1571 vf->mdd_tx_events.count++;
1572 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1573 if (netif_msg_tx_err(pf))
1574 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1575 i);
1576 }
1577
1578 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1579 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1580 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1581 vf->mdd_tx_events.count++;
1582 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1583 if (netif_msg_tx_err(pf))
1584 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1585 i);
1586 }
1587
1588 reg = rd32(hw, VP_MDET_RX(i));
1589 if (reg & VP_MDET_RX_VALID_M) {
1590 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1591 vf->mdd_rx_events.count++;
1592 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1593 if (netif_msg_rx_err(pf))
1594 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1595 i);
1596
1597 /* Since the queue is disabled on VF Rx MDD events, the
1598 * PF can be configured to reset the VF through ethtool
1599 * private flag mdd-auto-reset-vf.
1600 */
1601 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1602 /* VF MDD event counters will be cleared by
1603 * reset, so print the event prior to reset.
1604 */
1605 ice_print_vf_rx_mdd_event(vf);
1606 mutex_lock(&pf->vf[i].cfg_lock);
1607 ice_reset_vf(&pf->vf[i], false);
1608 mutex_unlock(&pf->vf[i].cfg_lock);
1609 }
1610 }
1611 }
1612
1613 ice_print_vfs_mdd_events(pf);
1614 }
1615
1616 /**
1617 * ice_force_phys_link_state - Force the physical link state
1618 * @vsi: VSI to force the physical link state to up/down
1619 * @link_up: true/false indicates to set the physical link to up/down
1620 *
1621 * Force the physical link state by getting the current PHY capabilities from
1622 * hardware and setting the PHY config based on the determined capabilities. If
1623 * link changes a link event will be triggered because both the Enable Automatic
1624 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1625 *
1626 * Returns 0 on success, negative on failure
1627 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1628 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1629 {
1630 struct ice_aqc_get_phy_caps_data *pcaps;
1631 struct ice_aqc_set_phy_cfg_data *cfg;
1632 struct ice_port_info *pi;
1633 struct device *dev;
1634 int retcode;
1635
1636 if (!vsi || !vsi->port_info || !vsi->back)
1637 return -EINVAL;
1638 if (vsi->type != ICE_VSI_PF)
1639 return 0;
1640
1641 dev = ice_pf_to_dev(vsi->back);
1642
1643 pi = vsi->port_info;
1644
1645 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1646 if (!pcaps)
1647 return -ENOMEM;
1648
1649 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1650 NULL);
1651 if (retcode) {
1652 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1653 vsi->vsi_num, retcode);
1654 retcode = -EIO;
1655 goto out;
1656 }
1657
1658 /* No change in link */
1659 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1660 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1661 goto out;
1662
1663 /* Use the current user PHY configuration. The current user PHY
1664 * configuration is initialized during probe from PHY capabilities
1665 * software mode, and updated on set PHY configuration.
1666 */
1667 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1668 if (!cfg) {
1669 retcode = -ENOMEM;
1670 goto out;
1671 }
1672
1673 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1674 if (link_up)
1675 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1676 else
1677 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1678
1679 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1680 if (retcode) {
1681 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1682 vsi->vsi_num, retcode);
1683 retcode = -EIO;
1684 }
1685
1686 kfree(cfg);
1687 out:
1688 kfree(pcaps);
1689 return retcode;
1690 }
1691
1692 /**
1693 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1694 * @pi: port info structure
1695 *
1696 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1697 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1698 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1699 {
1700 struct ice_aqc_get_phy_caps_data *pcaps;
1701 struct ice_pf *pf = pi->hw->back;
1702 enum ice_status status;
1703 int err = 0;
1704
1705 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1706 if (!pcaps)
1707 return -ENOMEM;
1708
1709 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1710 NULL);
1711
1712 if (status) {
1713 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1714 err = -EIO;
1715 goto out;
1716 }
1717
1718 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1719 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1720
1721 out:
1722 kfree(pcaps);
1723 return err;
1724 }
1725
1726 /**
1727 * ice_init_link_dflt_override - Initialize link default override
1728 * @pi: port info structure
1729 *
1730 * Initialize link default override and PHY total port shutdown during probe
1731 */
ice_init_link_dflt_override(struct ice_port_info * pi)1732 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1733 {
1734 struct ice_link_default_override_tlv *ldo;
1735 struct ice_pf *pf = pi->hw->back;
1736
1737 ldo = &pf->link_dflt_override;
1738 if (ice_get_link_default_override(ldo, pi))
1739 return;
1740
1741 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1742 return;
1743
1744 /* Enable Total Port Shutdown (override/replace link-down-on-close
1745 * ethtool private flag) for ports with Port Disable bit set.
1746 */
1747 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1748 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1749 }
1750
1751 /**
1752 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1753 * @pi: port info structure
1754 *
1755 * If default override is enabled, initialized the user PHY cfg speed and FEC
1756 * settings using the default override mask from the NVM.
1757 *
1758 * The PHY should only be configured with the default override settings the
1759 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1760 * is used to indicate that the user PHY cfg default override is initialized
1761 * and the PHY has not been configured with the default override settings. The
1762 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1763 * configured.
1764 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1765 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1766 {
1767 struct ice_link_default_override_tlv *ldo;
1768 struct ice_aqc_set_phy_cfg_data *cfg;
1769 struct ice_phy_info *phy = &pi->phy;
1770 struct ice_pf *pf = pi->hw->back;
1771
1772 ldo = &pf->link_dflt_override;
1773
1774 /* If link default override is enabled, use to mask NVM PHY capabilities
1775 * for speed and FEC default configuration.
1776 */
1777 cfg = &phy->curr_user_phy_cfg;
1778
1779 if (ldo->phy_type_low || ldo->phy_type_high) {
1780 cfg->phy_type_low = pf->nvm_phy_type_lo &
1781 cpu_to_le64(ldo->phy_type_low);
1782 cfg->phy_type_high = pf->nvm_phy_type_hi &
1783 cpu_to_le64(ldo->phy_type_high);
1784 }
1785 cfg->link_fec_opt = ldo->fec_options;
1786 phy->curr_user_fec_req = ICE_FEC_AUTO;
1787
1788 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1789 }
1790
1791 /**
1792 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1793 * @pi: port info structure
1794 *
1795 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1796 * mode to default. The PHY defaults are from get PHY capabilities topology
1797 * with media so call when media is first available. An error is returned if
1798 * called when media is not available. The PHY initialization completed state is
1799 * set here.
1800 *
1801 * These configurations are used when setting PHY
1802 * configuration. The user PHY configuration is updated on set PHY
1803 * configuration. Returns 0 on success, negative on failure
1804 */
ice_init_phy_user_cfg(struct ice_port_info * pi)1805 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1806 {
1807 struct ice_aqc_get_phy_caps_data *pcaps;
1808 struct ice_phy_info *phy = &pi->phy;
1809 struct ice_pf *pf = pi->hw->back;
1810 enum ice_status status;
1811 struct ice_vsi *vsi;
1812 int err = 0;
1813
1814 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1815 return -EIO;
1816
1817 vsi = ice_get_main_vsi(pf);
1818 if (!vsi)
1819 return -EINVAL;
1820
1821 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1822 if (!pcaps)
1823 return -ENOMEM;
1824
1825 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1826 NULL);
1827 if (status) {
1828 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1829 err = -EIO;
1830 goto err_out;
1831 }
1832
1833 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1834
1835 /* check if lenient mode is supported and enabled */
1836 if (ice_fw_supports_link_override(&vsi->back->hw) &&
1837 !(pcaps->module_compliance_enforcement &
1838 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1839 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1840
1841 /* if link default override is enabled, initialize user PHY
1842 * configuration with link default override values
1843 */
1844 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1845 ice_init_phy_cfg_dflt_override(pi);
1846 goto out;
1847 }
1848 }
1849
1850 /* if link default override is not enabled, initialize PHY using
1851 * topology with media
1852 */
1853 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1854 pcaps->link_fec_options);
1855 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1856
1857 out:
1858 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1859 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1860 err_out:
1861 kfree(pcaps);
1862 return err;
1863 }
1864
1865 /**
1866 * ice_configure_phy - configure PHY
1867 * @vsi: VSI of PHY
1868 *
1869 * Set the PHY configuration. If the current PHY configuration is the same as
1870 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1871 * configure the based get PHY capabilities for topology with media.
1872 */
ice_configure_phy(struct ice_vsi * vsi)1873 static int ice_configure_phy(struct ice_vsi *vsi)
1874 {
1875 struct device *dev = ice_pf_to_dev(vsi->back);
1876 struct ice_aqc_get_phy_caps_data *pcaps;
1877 struct ice_aqc_set_phy_cfg_data *cfg;
1878 struct ice_port_info *pi;
1879 enum ice_status status;
1880 int err = 0;
1881
1882 pi = vsi->port_info;
1883 if (!pi)
1884 return -EINVAL;
1885
1886 /* Ensure we have media as we cannot configure a medialess port */
1887 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1888 return -EPERM;
1889
1890 ice_print_topo_conflict(vsi);
1891
1892 if (vsi->port_info->phy.link_info.topo_media_conflict ==
1893 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1894 return -EPERM;
1895
1896 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1897 return ice_force_phys_link_state(vsi, true);
1898
1899 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1900 if (!pcaps)
1901 return -ENOMEM;
1902
1903 /* Get current PHY config */
1904 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1905 NULL);
1906 if (status) {
1907 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1908 vsi->vsi_num, ice_stat_str(status));
1909 err = -EIO;
1910 goto done;
1911 }
1912
1913 /* If PHY enable link is configured and configuration has not changed,
1914 * there's nothing to do
1915 */
1916 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1917 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1918 goto done;
1919
1920 /* Use PHY topology as baseline for configuration */
1921 memset(pcaps, 0, sizeof(*pcaps));
1922 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1923 NULL);
1924 if (status) {
1925 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1926 vsi->vsi_num, ice_stat_str(status));
1927 err = -EIO;
1928 goto done;
1929 }
1930
1931 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1932 if (!cfg) {
1933 err = -ENOMEM;
1934 goto done;
1935 }
1936
1937 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1938
1939 /* Speed - If default override pending, use curr_user_phy_cfg set in
1940 * ice_init_phy_user_cfg_ldo.
1941 */
1942 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1943 vsi->back->state)) {
1944 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1945 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1946 } else {
1947 u64 phy_low = 0, phy_high = 0;
1948
1949 ice_update_phy_type(&phy_low, &phy_high,
1950 pi->phy.curr_user_speed_req);
1951 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1952 cfg->phy_type_high = pcaps->phy_type_high &
1953 cpu_to_le64(phy_high);
1954 }
1955
1956 /* Can't provide what was requested; use PHY capabilities */
1957 if (!cfg->phy_type_low && !cfg->phy_type_high) {
1958 cfg->phy_type_low = pcaps->phy_type_low;
1959 cfg->phy_type_high = pcaps->phy_type_high;
1960 }
1961
1962 /* FEC */
1963 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1964
1965 /* Can't provide what was requested; use PHY capabilities */
1966 if (cfg->link_fec_opt !=
1967 (cfg->link_fec_opt & pcaps->link_fec_options)) {
1968 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1969 cfg->link_fec_opt = pcaps->link_fec_options;
1970 }
1971
1972 /* Flow Control - always supported; no need to check against
1973 * capabilities
1974 */
1975 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1976
1977 /* Enable link and link update */
1978 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1979
1980 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1981 if (status) {
1982 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1983 vsi->vsi_num, ice_stat_str(status));
1984 err = -EIO;
1985 }
1986
1987 kfree(cfg);
1988 done:
1989 kfree(pcaps);
1990 return err;
1991 }
1992
1993 /**
1994 * ice_check_media_subtask - Check for media
1995 * @pf: pointer to PF struct
1996 *
1997 * If media is available, then initialize PHY user configuration if it is not
1998 * been, and configure the PHY if the interface is up.
1999 */
ice_check_media_subtask(struct ice_pf * pf)2000 static void ice_check_media_subtask(struct ice_pf *pf)
2001 {
2002 struct ice_port_info *pi;
2003 struct ice_vsi *vsi;
2004 int err;
2005
2006 /* No need to check for media if it's already present */
2007 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2008 return;
2009
2010 vsi = ice_get_main_vsi(pf);
2011 if (!vsi)
2012 return;
2013
2014 /* Refresh link info and check if media is present */
2015 pi = vsi->port_info;
2016 err = ice_update_link_info(pi);
2017 if (err)
2018 return;
2019
2020 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2021 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2022 ice_init_phy_user_cfg(pi);
2023
2024 /* PHY settings are reset on media insertion, reconfigure
2025 * PHY to preserve settings.
2026 */
2027 if (test_bit(__ICE_DOWN, vsi->state) &&
2028 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2029 return;
2030
2031 err = ice_configure_phy(vsi);
2032 if (!err)
2033 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2034
2035 /* A Link Status Event will be generated; the event handler
2036 * will complete bringing the interface up
2037 */
2038 }
2039 }
2040
2041 /**
2042 * ice_service_task - manage and run subtasks
2043 * @work: pointer to work_struct contained by the PF struct
2044 */
ice_service_task(struct work_struct * work)2045 static void ice_service_task(struct work_struct *work)
2046 {
2047 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2048 unsigned long start_time = jiffies;
2049
2050 /* subtasks */
2051
2052 /* process reset requests first */
2053 ice_reset_subtask(pf);
2054
2055 /* bail if a reset/recovery cycle is pending or rebuild failed */
2056 if (ice_is_reset_in_progress(pf->state) ||
2057 test_bit(__ICE_SUSPENDED, pf->state) ||
2058 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2059 ice_service_task_complete(pf);
2060 return;
2061 }
2062
2063 ice_clean_adminq_subtask(pf);
2064 ice_check_media_subtask(pf);
2065 ice_check_for_hang_subtask(pf);
2066 ice_sync_fltr_subtask(pf);
2067 ice_handle_mdd_event(pf);
2068 ice_watchdog_subtask(pf);
2069
2070 if (ice_is_safe_mode(pf)) {
2071 ice_service_task_complete(pf);
2072 return;
2073 }
2074
2075 ice_process_vflr_event(pf);
2076 ice_clean_mailboxq_subtask(pf);
2077 ice_sync_arfs_fltrs(pf);
2078 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2079 ice_service_task_complete(pf);
2080
2081 /* If the tasks have taken longer than one service timer period
2082 * or there is more work to be done, reset the service timer to
2083 * schedule the service task now.
2084 */
2085 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2086 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2087 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2088 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2089 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2090 mod_timer(&pf->serv_tmr, jiffies);
2091 }
2092
2093 /**
2094 * ice_set_ctrlq_len - helper function to set controlq length
2095 * @hw: pointer to the HW instance
2096 */
ice_set_ctrlq_len(struct ice_hw * hw)2097 static void ice_set_ctrlq_len(struct ice_hw *hw)
2098 {
2099 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2100 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2101 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2102 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2103 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2104 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2105 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2106 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2107 }
2108
2109 /**
2110 * ice_schedule_reset - schedule a reset
2111 * @pf: board private structure
2112 * @reset: reset being requested
2113 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2114 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2115 {
2116 struct device *dev = ice_pf_to_dev(pf);
2117
2118 /* bail out if earlier reset has failed */
2119 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2120 dev_dbg(dev, "earlier reset has failed\n");
2121 return -EIO;
2122 }
2123 /* bail if reset/recovery already in progress */
2124 if (ice_is_reset_in_progress(pf->state)) {
2125 dev_dbg(dev, "Reset already in progress\n");
2126 return -EBUSY;
2127 }
2128
2129 switch (reset) {
2130 case ICE_RESET_PFR:
2131 set_bit(__ICE_PFR_REQ, pf->state);
2132 break;
2133 case ICE_RESET_CORER:
2134 set_bit(__ICE_CORER_REQ, pf->state);
2135 break;
2136 case ICE_RESET_GLOBR:
2137 set_bit(__ICE_GLOBR_REQ, pf->state);
2138 break;
2139 default:
2140 return -EINVAL;
2141 }
2142
2143 ice_service_task_schedule(pf);
2144 return 0;
2145 }
2146
2147 /**
2148 * ice_irq_affinity_notify - Callback for affinity changes
2149 * @notify: context as to what irq was changed
2150 * @mask: the new affinity mask
2151 *
2152 * This is a callback function used by the irq_set_affinity_notifier function
2153 * so that we may register to receive changes to the irq affinity masks.
2154 */
2155 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2156 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2157 const cpumask_t *mask)
2158 {
2159 struct ice_q_vector *q_vector =
2160 container_of(notify, struct ice_q_vector, affinity_notify);
2161
2162 cpumask_copy(&q_vector->affinity_mask, mask);
2163 }
2164
2165 /**
2166 * ice_irq_affinity_release - Callback for affinity notifier release
2167 * @ref: internal core kernel usage
2168 *
2169 * This is a callback function used by the irq_set_affinity_notifier function
2170 * to inform the current notification subscriber that they will no longer
2171 * receive notifications.
2172 */
ice_irq_affinity_release(struct kref __always_unused * ref)2173 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2174
2175 /**
2176 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2177 * @vsi: the VSI being configured
2178 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2179 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2180 {
2181 struct ice_hw *hw = &vsi->back->hw;
2182 int i;
2183
2184 ice_for_each_q_vector(vsi, i)
2185 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2186
2187 ice_flush(hw);
2188 return 0;
2189 }
2190
2191 /**
2192 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2193 * @vsi: the VSI being configured
2194 * @basename: name for the vector
2195 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2196 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2197 {
2198 int q_vectors = vsi->num_q_vectors;
2199 struct ice_pf *pf = vsi->back;
2200 int base = vsi->base_vector;
2201 struct device *dev;
2202 int rx_int_idx = 0;
2203 int tx_int_idx = 0;
2204 int vector, err;
2205 int irq_num;
2206
2207 dev = ice_pf_to_dev(pf);
2208 for (vector = 0; vector < q_vectors; vector++) {
2209 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2210
2211 irq_num = pf->msix_entries[base + vector].vector;
2212
2213 if (q_vector->tx.ring && q_vector->rx.ring) {
2214 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2215 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2216 tx_int_idx++;
2217 } else if (q_vector->rx.ring) {
2218 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2219 "%s-%s-%d", basename, "rx", rx_int_idx++);
2220 } else if (q_vector->tx.ring) {
2221 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2222 "%s-%s-%d", basename, "tx", tx_int_idx++);
2223 } else {
2224 /* skip this unused q_vector */
2225 continue;
2226 }
2227 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2228 q_vector->name, q_vector);
2229 if (err) {
2230 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2231 err);
2232 goto free_q_irqs;
2233 }
2234
2235 /* register for affinity change notifications */
2236 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2237 struct irq_affinity_notify *affinity_notify;
2238
2239 affinity_notify = &q_vector->affinity_notify;
2240 affinity_notify->notify = ice_irq_affinity_notify;
2241 affinity_notify->release = ice_irq_affinity_release;
2242 irq_set_affinity_notifier(irq_num, affinity_notify);
2243 }
2244
2245 /* assign the mask for this irq */
2246 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2247 }
2248
2249 vsi->irqs_ready = true;
2250 return 0;
2251
2252 free_q_irqs:
2253 while (vector) {
2254 vector--;
2255 irq_num = pf->msix_entries[base + vector].vector;
2256 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2257 irq_set_affinity_notifier(irq_num, NULL);
2258 irq_set_affinity_hint(irq_num, NULL);
2259 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2260 }
2261 return err;
2262 }
2263
2264 /**
2265 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2266 * @vsi: VSI to setup Tx rings used by XDP
2267 *
2268 * Return 0 on success and negative value on error
2269 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2270 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2271 {
2272 struct device *dev = ice_pf_to_dev(vsi->back);
2273 int i;
2274
2275 for (i = 0; i < vsi->num_xdp_txq; i++) {
2276 u16 xdp_q_idx = vsi->alloc_txq + i;
2277 struct ice_ring *xdp_ring;
2278
2279 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2280
2281 if (!xdp_ring)
2282 goto free_xdp_rings;
2283
2284 xdp_ring->q_index = xdp_q_idx;
2285 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2286 xdp_ring->ring_active = false;
2287 xdp_ring->vsi = vsi;
2288 xdp_ring->netdev = NULL;
2289 xdp_ring->dev = dev;
2290 xdp_ring->count = vsi->num_tx_desc;
2291 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2292 if (ice_setup_tx_ring(xdp_ring))
2293 goto free_xdp_rings;
2294 ice_set_ring_xdp(xdp_ring);
2295 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2296 }
2297
2298 return 0;
2299
2300 free_xdp_rings:
2301 for (; i >= 0; i--)
2302 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2303 ice_free_tx_ring(vsi->xdp_rings[i]);
2304 return -ENOMEM;
2305 }
2306
2307 /**
2308 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2309 * @vsi: VSI to set the bpf prog on
2310 * @prog: the bpf prog pointer
2311 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2312 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2313 {
2314 struct bpf_prog *old_prog;
2315 int i;
2316
2317 old_prog = xchg(&vsi->xdp_prog, prog);
2318 if (old_prog)
2319 bpf_prog_put(old_prog);
2320
2321 ice_for_each_rxq(vsi, i)
2322 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2323 }
2324
2325 /**
2326 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2327 * @vsi: VSI to bring up Tx rings used by XDP
2328 * @prog: bpf program that will be assigned to VSI
2329 *
2330 * Return 0 on success and negative value on error
2331 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2332 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2333 {
2334 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2335 int xdp_rings_rem = vsi->num_xdp_txq;
2336 struct ice_pf *pf = vsi->back;
2337 struct ice_qs_cfg xdp_qs_cfg = {
2338 .qs_mutex = &pf->avail_q_mutex,
2339 .pf_map = pf->avail_txqs,
2340 .pf_map_size = pf->max_pf_txqs,
2341 .q_count = vsi->num_xdp_txq,
2342 .scatter_count = ICE_MAX_SCATTER_TXQS,
2343 .vsi_map = vsi->txq_map,
2344 .vsi_map_offset = vsi->alloc_txq,
2345 .mapping_mode = ICE_VSI_MAP_CONTIG
2346 };
2347 enum ice_status status;
2348 struct device *dev;
2349 int i, v_idx;
2350
2351 dev = ice_pf_to_dev(pf);
2352 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2353 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2354 if (!vsi->xdp_rings)
2355 return -ENOMEM;
2356
2357 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2358 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2359 goto err_map_xdp;
2360
2361 if (ice_xdp_alloc_setup_rings(vsi))
2362 goto clear_xdp_rings;
2363
2364 /* follow the logic from ice_vsi_map_rings_to_vectors */
2365 ice_for_each_q_vector(vsi, v_idx) {
2366 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2367 int xdp_rings_per_v, q_id, q_base;
2368
2369 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2370 vsi->num_q_vectors - v_idx);
2371 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2372
2373 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2374 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2375
2376 xdp_ring->q_vector = q_vector;
2377 xdp_ring->next = q_vector->tx.ring;
2378 q_vector->tx.ring = xdp_ring;
2379 }
2380 xdp_rings_rem -= xdp_rings_per_v;
2381 }
2382
2383 /* omit the scheduler update if in reset path; XDP queues will be
2384 * taken into account at the end of ice_vsi_rebuild, where
2385 * ice_cfg_vsi_lan is being called
2386 */
2387 if (ice_is_reset_in_progress(pf->state))
2388 return 0;
2389
2390 /* tell the Tx scheduler that right now we have
2391 * additional queues
2392 */
2393 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2394 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2395
2396 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2397 max_txqs);
2398 if (status) {
2399 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2400 ice_stat_str(status));
2401 goto clear_xdp_rings;
2402 }
2403
2404 /* assign the prog only when it's not already present on VSI;
2405 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2406 * VSI rebuild that happens under ethtool -L can expose us to
2407 * the bpf_prog refcount issues as we would be swapping same
2408 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2409 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2410 * this is not harmful as dev_xdp_install bumps the refcount
2411 * before calling the op exposed by the driver;
2412 */
2413 if (!ice_is_xdp_ena_vsi(vsi))
2414 ice_vsi_assign_bpf_prog(vsi, prog);
2415
2416 return 0;
2417 clear_xdp_rings:
2418 for (i = 0; i < vsi->num_xdp_txq; i++)
2419 if (vsi->xdp_rings[i]) {
2420 kfree_rcu(vsi->xdp_rings[i], rcu);
2421 vsi->xdp_rings[i] = NULL;
2422 }
2423
2424 err_map_xdp:
2425 mutex_lock(&pf->avail_q_mutex);
2426 for (i = 0; i < vsi->num_xdp_txq; i++) {
2427 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2428 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2429 }
2430 mutex_unlock(&pf->avail_q_mutex);
2431
2432 devm_kfree(dev, vsi->xdp_rings);
2433 return -ENOMEM;
2434 }
2435
2436 /**
2437 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2438 * @vsi: VSI to remove XDP rings
2439 *
2440 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2441 * resources
2442 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2443 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2444 {
2445 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2446 struct ice_pf *pf = vsi->back;
2447 int i, v_idx;
2448
2449 /* q_vectors are freed in reset path so there's no point in detaching
2450 * rings; in case of rebuild being triggered not from reset bits
2451 * in pf->state won't be set, so additionally check first q_vector
2452 * against NULL
2453 */
2454 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2455 goto free_qmap;
2456
2457 ice_for_each_q_vector(vsi, v_idx) {
2458 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2459 struct ice_ring *ring;
2460
2461 ice_for_each_ring(ring, q_vector->tx)
2462 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2463 break;
2464
2465 /* restore the value of last node prior to XDP setup */
2466 q_vector->tx.ring = ring;
2467 }
2468
2469 free_qmap:
2470 mutex_lock(&pf->avail_q_mutex);
2471 for (i = 0; i < vsi->num_xdp_txq; i++) {
2472 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2473 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2474 }
2475 mutex_unlock(&pf->avail_q_mutex);
2476
2477 for (i = 0; i < vsi->num_xdp_txq; i++)
2478 if (vsi->xdp_rings[i]) {
2479 if (vsi->xdp_rings[i]->desc) {
2480 synchronize_rcu();
2481 ice_free_tx_ring(vsi->xdp_rings[i]);
2482 }
2483 kfree_rcu(vsi->xdp_rings[i], rcu);
2484 vsi->xdp_rings[i] = NULL;
2485 }
2486
2487 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2488 vsi->xdp_rings = NULL;
2489
2490 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2491 return 0;
2492
2493 ice_vsi_assign_bpf_prog(vsi, NULL);
2494
2495 /* notify Tx scheduler that we destroyed XDP queues and bring
2496 * back the old number of child nodes
2497 */
2498 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2499 max_txqs[i] = vsi->num_txq;
2500
2501 /* change number of XDP Tx queues to 0 */
2502 vsi->num_xdp_txq = 0;
2503
2504 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2505 max_txqs);
2506 }
2507
2508 /**
2509 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2510 * @vsi: VSI to setup XDP for
2511 * @prog: XDP program
2512 * @extack: netlink extended ack
2513 */
2514 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2515 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2516 struct netlink_ext_ack *extack)
2517 {
2518 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2519 bool if_running = netif_running(vsi->netdev);
2520 int ret = 0, xdp_ring_err = 0;
2521
2522 if (frame_size > vsi->rx_buf_len) {
2523 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2524 return -EOPNOTSUPP;
2525 }
2526
2527 /* need to stop netdev while setting up the program for Rx rings */
2528 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2529 ret = ice_down(vsi);
2530 if (ret) {
2531 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2532 return ret;
2533 }
2534 }
2535
2536 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2537 vsi->num_xdp_txq = vsi->alloc_rxq;
2538 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2539 if (xdp_ring_err)
2540 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2541 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2542 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2543 if (xdp_ring_err)
2544 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2545 } else {
2546 /* safe to call even when prog == vsi->xdp_prog as
2547 * dev_xdp_install in net/core/dev.c incremented prog's
2548 * refcount so corresponding bpf_prog_put won't cause
2549 * underflow
2550 */
2551 ice_vsi_assign_bpf_prog(vsi, prog);
2552 }
2553
2554 if (if_running)
2555 ret = ice_up(vsi);
2556
2557 if (!ret && prog && vsi->xsk_pools) {
2558 int i;
2559
2560 ice_for_each_rxq(vsi, i) {
2561 struct ice_ring *rx_ring = vsi->rx_rings[i];
2562
2563 if (rx_ring->xsk_pool)
2564 napi_schedule(&rx_ring->q_vector->napi);
2565 }
2566 }
2567
2568 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2569 }
2570
2571 /**
2572 * ice_xdp_safe_mode - XDP handler for safe mode
2573 * @dev: netdevice
2574 * @xdp: XDP command
2575 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2576 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2577 struct netdev_bpf *xdp)
2578 {
2579 NL_SET_ERR_MSG_MOD(xdp->extack,
2580 "Please provide working DDP firmware package in order to use XDP\n"
2581 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2582 return -EOPNOTSUPP;
2583 }
2584
2585 /**
2586 * ice_xdp - implements XDP handler
2587 * @dev: netdevice
2588 * @xdp: XDP command
2589 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2590 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2591 {
2592 struct ice_netdev_priv *np = netdev_priv(dev);
2593 struct ice_vsi *vsi = np->vsi;
2594
2595 if (vsi->type != ICE_VSI_PF) {
2596 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2597 return -EINVAL;
2598 }
2599
2600 switch (xdp->command) {
2601 case XDP_SETUP_PROG:
2602 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2603 case XDP_SETUP_XSK_POOL:
2604 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2605 xdp->xsk.queue_id);
2606 default:
2607 return -EINVAL;
2608 }
2609 }
2610
2611 /**
2612 * ice_ena_misc_vector - enable the non-queue interrupts
2613 * @pf: board private structure
2614 */
ice_ena_misc_vector(struct ice_pf * pf)2615 static void ice_ena_misc_vector(struct ice_pf *pf)
2616 {
2617 struct ice_hw *hw = &pf->hw;
2618 u32 val;
2619
2620 /* Disable anti-spoof detection interrupt to prevent spurious event
2621 * interrupts during a function reset. Anti-spoof functionally is
2622 * still supported.
2623 */
2624 val = rd32(hw, GL_MDCK_TX_TDPU);
2625 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2626 wr32(hw, GL_MDCK_TX_TDPU, val);
2627
2628 /* clear things first */
2629 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2630 rd32(hw, PFINT_OICR); /* read to clear */
2631
2632 val = (PFINT_OICR_ECC_ERR_M |
2633 PFINT_OICR_MAL_DETECT_M |
2634 PFINT_OICR_GRST_M |
2635 PFINT_OICR_PCI_EXCEPTION_M |
2636 PFINT_OICR_VFLR_M |
2637 PFINT_OICR_HMC_ERR_M |
2638 PFINT_OICR_PE_CRITERR_M);
2639
2640 wr32(hw, PFINT_OICR_ENA, val);
2641
2642 /* SW_ITR_IDX = 0, but don't change INTENA */
2643 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2644 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2645 }
2646
2647 /**
2648 * ice_misc_intr - misc interrupt handler
2649 * @irq: interrupt number
2650 * @data: pointer to a q_vector
2651 */
ice_misc_intr(int __always_unused irq,void * data)2652 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2653 {
2654 struct ice_pf *pf = (struct ice_pf *)data;
2655 struct ice_hw *hw = &pf->hw;
2656 irqreturn_t ret = IRQ_NONE;
2657 struct device *dev;
2658 u32 oicr, ena_mask;
2659
2660 dev = ice_pf_to_dev(pf);
2661 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2662 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2663
2664 oicr = rd32(hw, PFINT_OICR);
2665 ena_mask = rd32(hw, PFINT_OICR_ENA);
2666
2667 if (oicr & PFINT_OICR_SWINT_M) {
2668 ena_mask &= ~PFINT_OICR_SWINT_M;
2669 pf->sw_int_count++;
2670 }
2671
2672 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2673 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2674 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2675 }
2676 if (oicr & PFINT_OICR_VFLR_M) {
2677 /* disable any further VFLR event notifications */
2678 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2679 u32 reg = rd32(hw, PFINT_OICR_ENA);
2680
2681 reg &= ~PFINT_OICR_VFLR_M;
2682 wr32(hw, PFINT_OICR_ENA, reg);
2683 } else {
2684 ena_mask &= ~PFINT_OICR_VFLR_M;
2685 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2686 }
2687 }
2688
2689 if (oicr & PFINT_OICR_GRST_M) {
2690 u32 reset;
2691
2692 /* we have a reset warning */
2693 ena_mask &= ~PFINT_OICR_GRST_M;
2694 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2695 GLGEN_RSTAT_RESET_TYPE_S;
2696
2697 if (reset == ICE_RESET_CORER)
2698 pf->corer_count++;
2699 else if (reset == ICE_RESET_GLOBR)
2700 pf->globr_count++;
2701 else if (reset == ICE_RESET_EMPR)
2702 pf->empr_count++;
2703 else
2704 dev_dbg(dev, "Invalid reset type %d\n", reset);
2705
2706 /* If a reset cycle isn't already in progress, we set a bit in
2707 * pf->state so that the service task can start a reset/rebuild.
2708 * We also make note of which reset happened so that peer
2709 * devices/drivers can be informed.
2710 */
2711 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2712 if (reset == ICE_RESET_CORER)
2713 set_bit(__ICE_CORER_RECV, pf->state);
2714 else if (reset == ICE_RESET_GLOBR)
2715 set_bit(__ICE_GLOBR_RECV, pf->state);
2716 else
2717 set_bit(__ICE_EMPR_RECV, pf->state);
2718
2719 /* There are couple of different bits at play here.
2720 * hw->reset_ongoing indicates whether the hardware is
2721 * in reset. This is set to true when a reset interrupt
2722 * is received and set back to false after the driver
2723 * has determined that the hardware is out of reset.
2724 *
2725 * __ICE_RESET_OICR_RECV in pf->state indicates
2726 * that a post reset rebuild is required before the
2727 * driver is operational again. This is set above.
2728 *
2729 * As this is the start of the reset/rebuild cycle, set
2730 * both to indicate that.
2731 */
2732 hw->reset_ongoing = true;
2733 }
2734 }
2735
2736 if (oicr & PFINT_OICR_HMC_ERR_M) {
2737 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2738 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2739 rd32(hw, PFHMC_ERRORINFO),
2740 rd32(hw, PFHMC_ERRORDATA));
2741 }
2742
2743 /* Report any remaining unexpected interrupts */
2744 oicr &= ena_mask;
2745 if (oicr) {
2746 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2747 /* If a critical error is pending there is no choice but to
2748 * reset the device.
2749 */
2750 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2751 PFINT_OICR_PCI_EXCEPTION_M |
2752 PFINT_OICR_ECC_ERR_M)) {
2753 set_bit(__ICE_PFR_REQ, pf->state);
2754 ice_service_task_schedule(pf);
2755 }
2756 }
2757 ret = IRQ_HANDLED;
2758
2759 ice_service_task_schedule(pf);
2760 ice_irq_dynamic_ena(hw, NULL, NULL);
2761
2762 return ret;
2763 }
2764
2765 /**
2766 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2767 * @hw: pointer to HW structure
2768 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2769 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2770 {
2771 /* disable Admin queue Interrupt causes */
2772 wr32(hw, PFINT_FW_CTL,
2773 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2774
2775 /* disable Mailbox queue Interrupt causes */
2776 wr32(hw, PFINT_MBX_CTL,
2777 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2778
2779 /* disable Control queue Interrupt causes */
2780 wr32(hw, PFINT_OICR_CTL,
2781 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2782
2783 ice_flush(hw);
2784 }
2785
2786 /**
2787 * ice_free_irq_msix_misc - Unroll misc vector setup
2788 * @pf: board private structure
2789 */
ice_free_irq_msix_misc(struct ice_pf * pf)2790 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2791 {
2792 struct ice_hw *hw = &pf->hw;
2793
2794 ice_dis_ctrlq_interrupts(hw);
2795
2796 /* disable OICR interrupt */
2797 wr32(hw, PFINT_OICR_ENA, 0);
2798 ice_flush(hw);
2799
2800 if (pf->msix_entries) {
2801 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2802 devm_free_irq(ice_pf_to_dev(pf),
2803 pf->msix_entries[pf->oicr_idx].vector, pf);
2804 }
2805
2806 pf->num_avail_sw_msix += 1;
2807 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2808 }
2809
2810 /**
2811 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2812 * @hw: pointer to HW structure
2813 * @reg_idx: HW vector index to associate the control queue interrupts with
2814 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2815 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2816 {
2817 u32 val;
2818
2819 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2820 PFINT_OICR_CTL_CAUSE_ENA_M);
2821 wr32(hw, PFINT_OICR_CTL, val);
2822
2823 /* enable Admin queue Interrupt causes */
2824 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2825 PFINT_FW_CTL_CAUSE_ENA_M);
2826 wr32(hw, PFINT_FW_CTL, val);
2827
2828 /* enable Mailbox queue Interrupt causes */
2829 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2830 PFINT_MBX_CTL_CAUSE_ENA_M);
2831 wr32(hw, PFINT_MBX_CTL, val);
2832
2833 ice_flush(hw);
2834 }
2835
2836 /**
2837 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2838 * @pf: board private structure
2839 *
2840 * This sets up the handler for MSIX 0, which is used to manage the
2841 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2842 * when in MSI or Legacy interrupt mode.
2843 */
ice_req_irq_msix_misc(struct ice_pf * pf)2844 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2845 {
2846 struct device *dev = ice_pf_to_dev(pf);
2847 struct ice_hw *hw = &pf->hw;
2848 int oicr_idx, err = 0;
2849
2850 if (!pf->int_name[0])
2851 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2852 dev_driver_string(dev), dev_name(dev));
2853
2854 /* Do not request IRQ but do enable OICR interrupt since settings are
2855 * lost during reset. Note that this function is called only during
2856 * rebuild path and not while reset is in progress.
2857 */
2858 if (ice_is_reset_in_progress(pf->state))
2859 goto skip_req_irq;
2860
2861 /* reserve one vector in irq_tracker for misc interrupts */
2862 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2863 if (oicr_idx < 0)
2864 return oicr_idx;
2865
2866 pf->num_avail_sw_msix -= 1;
2867 pf->oicr_idx = (u16)oicr_idx;
2868
2869 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2870 ice_misc_intr, 0, pf->int_name, pf);
2871 if (err) {
2872 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2873 pf->int_name, err);
2874 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2875 pf->num_avail_sw_msix += 1;
2876 return err;
2877 }
2878
2879 skip_req_irq:
2880 ice_ena_misc_vector(pf);
2881
2882 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2883 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2884 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2885
2886 ice_flush(hw);
2887 ice_irq_dynamic_ena(hw, NULL, NULL);
2888
2889 return 0;
2890 }
2891
2892 /**
2893 * ice_napi_add - register NAPI handler for the VSI
2894 * @vsi: VSI for which NAPI handler is to be registered
2895 *
2896 * This function is only called in the driver's load path. Registering the NAPI
2897 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2898 * reset/rebuild, etc.)
2899 */
ice_napi_add(struct ice_vsi * vsi)2900 static void ice_napi_add(struct ice_vsi *vsi)
2901 {
2902 int v_idx;
2903
2904 if (!vsi->netdev)
2905 return;
2906
2907 ice_for_each_q_vector(vsi, v_idx)
2908 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2909 ice_napi_poll, NAPI_POLL_WEIGHT);
2910 }
2911
2912 /**
2913 * ice_set_ops - set netdev and ethtools ops for the given netdev
2914 * @netdev: netdev instance
2915 */
ice_set_ops(struct net_device * netdev)2916 static void ice_set_ops(struct net_device *netdev)
2917 {
2918 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2919
2920 if (ice_is_safe_mode(pf)) {
2921 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2922 ice_set_ethtool_safe_mode_ops(netdev);
2923 return;
2924 }
2925
2926 netdev->netdev_ops = &ice_netdev_ops;
2927 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2928 ice_set_ethtool_ops(netdev);
2929 }
2930
2931 /**
2932 * ice_set_netdev_features - set features for the given netdev
2933 * @netdev: netdev instance
2934 */
ice_set_netdev_features(struct net_device * netdev)2935 static void ice_set_netdev_features(struct net_device *netdev)
2936 {
2937 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2938 netdev_features_t csumo_features;
2939 netdev_features_t vlano_features;
2940 netdev_features_t dflt_features;
2941 netdev_features_t tso_features;
2942
2943 if (ice_is_safe_mode(pf)) {
2944 /* safe mode */
2945 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2946 netdev->hw_features = netdev->features;
2947 return;
2948 }
2949
2950 dflt_features = NETIF_F_SG |
2951 NETIF_F_HIGHDMA |
2952 NETIF_F_NTUPLE |
2953 NETIF_F_RXHASH;
2954
2955 csumo_features = NETIF_F_RXCSUM |
2956 NETIF_F_IP_CSUM |
2957 NETIF_F_SCTP_CRC |
2958 NETIF_F_IPV6_CSUM;
2959
2960 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2961 NETIF_F_HW_VLAN_CTAG_TX |
2962 NETIF_F_HW_VLAN_CTAG_RX;
2963
2964 tso_features = NETIF_F_TSO |
2965 NETIF_F_TSO_ECN |
2966 NETIF_F_TSO6 |
2967 NETIF_F_GSO_GRE |
2968 NETIF_F_GSO_UDP_TUNNEL |
2969 NETIF_F_GSO_GRE_CSUM |
2970 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2971 NETIF_F_GSO_PARTIAL |
2972 NETIF_F_GSO_IPXIP4 |
2973 NETIF_F_GSO_IPXIP6 |
2974 NETIF_F_GSO_UDP_L4;
2975
2976 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2977 NETIF_F_GSO_GRE_CSUM;
2978 /* set features that user can change */
2979 netdev->hw_features = dflt_features | csumo_features |
2980 vlano_features | tso_features;
2981
2982 /* add support for HW_CSUM on packets with MPLS header */
2983 netdev->mpls_features = NETIF_F_HW_CSUM;
2984
2985 /* enable features */
2986 netdev->features |= netdev->hw_features;
2987 /* encap and VLAN devices inherit default, csumo and tso features */
2988 netdev->hw_enc_features |= dflt_features | csumo_features |
2989 tso_features;
2990 netdev->vlan_features |= dflt_features | csumo_features |
2991 tso_features;
2992 }
2993
2994 /**
2995 * ice_cfg_netdev - Allocate, configure and register a netdev
2996 * @vsi: the VSI associated with the new netdev
2997 *
2998 * Returns 0 on success, negative value on failure
2999 */
ice_cfg_netdev(struct ice_vsi * vsi)3000 static int ice_cfg_netdev(struct ice_vsi *vsi)
3001 {
3002 struct ice_pf *pf = vsi->back;
3003 struct ice_netdev_priv *np;
3004 struct net_device *netdev;
3005 u8 mac_addr[ETH_ALEN];
3006 int err;
3007
3008 err = ice_devlink_create_port(vsi);
3009 if (err)
3010 return err;
3011
3012 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3013 vsi->alloc_rxq);
3014 if (!netdev) {
3015 err = -ENOMEM;
3016 goto err_destroy_devlink_port;
3017 }
3018
3019 vsi->netdev = netdev;
3020 np = netdev_priv(netdev);
3021 np->vsi = vsi;
3022
3023 ice_set_netdev_features(netdev);
3024
3025 ice_set_ops(netdev);
3026
3027 if (vsi->type == ICE_VSI_PF) {
3028 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3029 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3030 ether_addr_copy(netdev->dev_addr, mac_addr);
3031 ether_addr_copy(netdev->perm_addr, mac_addr);
3032 }
3033
3034 netdev->priv_flags |= IFF_UNICAST_FLT;
3035
3036 /* Setup netdev TC information */
3037 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3038
3039 /* setup watchdog timeout value to be 5 second */
3040 netdev->watchdog_timeo = 5 * HZ;
3041
3042 netdev->min_mtu = ETH_MIN_MTU;
3043 netdev->max_mtu = ICE_MAX_MTU;
3044
3045 err = register_netdev(vsi->netdev);
3046 if (err)
3047 goto err_free_netdev;
3048
3049 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3050
3051 netif_carrier_off(vsi->netdev);
3052
3053 /* make sure transmit queues start off as stopped */
3054 netif_tx_stop_all_queues(vsi->netdev);
3055
3056 return 0;
3057
3058 err_free_netdev:
3059 free_netdev(vsi->netdev);
3060 vsi->netdev = NULL;
3061 err_destroy_devlink_port:
3062 ice_devlink_destroy_port(vsi);
3063 return err;
3064 }
3065
3066 /**
3067 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3068 * @lut: Lookup table
3069 * @rss_table_size: Lookup table size
3070 * @rss_size: Range of queue number for hashing
3071 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3072 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3073 {
3074 u16 i;
3075
3076 for (i = 0; i < rss_table_size; i++)
3077 lut[i] = i % rss_size;
3078 }
3079
3080 /**
3081 * ice_pf_vsi_setup - Set up a PF VSI
3082 * @pf: board private structure
3083 * @pi: pointer to the port_info instance
3084 *
3085 * Returns pointer to the successfully allocated VSI software struct
3086 * on success, otherwise returns NULL on failure.
3087 */
3088 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3089 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3090 {
3091 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3092 }
3093
3094 /**
3095 * ice_ctrl_vsi_setup - Set up a control VSI
3096 * @pf: board private structure
3097 * @pi: pointer to the port_info instance
3098 *
3099 * Returns pointer to the successfully allocated VSI software struct
3100 * on success, otherwise returns NULL on failure.
3101 */
3102 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3103 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3104 {
3105 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3106 }
3107
3108 /**
3109 * ice_lb_vsi_setup - Set up a loopback VSI
3110 * @pf: board private structure
3111 * @pi: pointer to the port_info instance
3112 *
3113 * Returns pointer to the successfully allocated VSI software struct
3114 * on success, otherwise returns NULL on failure.
3115 */
3116 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3117 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3118 {
3119 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3120 }
3121
3122 /**
3123 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3124 * @netdev: network interface to be adjusted
3125 * @proto: unused protocol
3126 * @vid: VLAN ID to be added
3127 *
3128 * net_device_ops implementation for adding VLAN IDs
3129 */
3130 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3131 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3132 u16 vid)
3133 {
3134 struct ice_netdev_priv *np = netdev_priv(netdev);
3135 struct ice_vsi *vsi = np->vsi;
3136 int ret;
3137
3138 if (vid >= VLAN_N_VID) {
3139 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3140 vid, VLAN_N_VID);
3141 return -EINVAL;
3142 }
3143
3144 if (vsi->info.pvid)
3145 return -EINVAL;
3146
3147 /* VLAN 0 is added by default during load/reset */
3148 if (!vid)
3149 return 0;
3150
3151 /* Enable VLAN pruning when a VLAN other than 0 is added */
3152 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3153 ret = ice_cfg_vlan_pruning(vsi, true, false);
3154 if (ret)
3155 return ret;
3156 }
3157
3158 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3159 * packets aren't pruned by the device's internal switch on Rx
3160 */
3161 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3162 if (!ret) {
3163 vsi->vlan_ena = true;
3164 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3165 }
3166
3167 return ret;
3168 }
3169
3170 /**
3171 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3172 * @netdev: network interface to be adjusted
3173 * @proto: unused protocol
3174 * @vid: VLAN ID to be removed
3175 *
3176 * net_device_ops implementation for removing VLAN IDs
3177 */
3178 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3179 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3180 u16 vid)
3181 {
3182 struct ice_netdev_priv *np = netdev_priv(netdev);
3183 struct ice_vsi *vsi = np->vsi;
3184 int ret;
3185
3186 if (vsi->info.pvid)
3187 return -EINVAL;
3188
3189 /* don't allow removal of VLAN 0 */
3190 if (!vid)
3191 return 0;
3192
3193 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3194 * information
3195 */
3196 ret = ice_vsi_kill_vlan(vsi, vid);
3197 if (ret)
3198 return ret;
3199
3200 /* Disable pruning when VLAN 0 is the only VLAN rule */
3201 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3202 ret = ice_cfg_vlan_pruning(vsi, false, false);
3203
3204 vsi->vlan_ena = false;
3205 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3206 return ret;
3207 }
3208
3209 /**
3210 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3211 * @pf: board private structure
3212 *
3213 * Returns 0 on success, negative value on failure
3214 */
ice_setup_pf_sw(struct ice_pf * pf)3215 static int ice_setup_pf_sw(struct ice_pf *pf)
3216 {
3217 struct ice_vsi *vsi;
3218 int status = 0;
3219
3220 if (ice_is_reset_in_progress(pf->state))
3221 return -EBUSY;
3222
3223 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3224 if (!vsi)
3225 return -ENOMEM;
3226
3227 status = ice_cfg_netdev(vsi);
3228 if (status) {
3229 status = -ENODEV;
3230 goto unroll_vsi_setup;
3231 }
3232 /* netdev has to be configured before setting frame size */
3233 ice_vsi_cfg_frame_size(vsi);
3234
3235 /* Setup DCB netlink interface */
3236 ice_dcbnl_setup(vsi);
3237
3238 /* registering the NAPI handler requires both the queues and
3239 * netdev to be created, which are done in ice_pf_vsi_setup()
3240 * and ice_cfg_netdev() respectively
3241 */
3242 ice_napi_add(vsi);
3243
3244 status = ice_set_cpu_rx_rmap(vsi);
3245 if (status) {
3246 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3247 vsi->vsi_num, status);
3248 status = -EINVAL;
3249 goto unroll_napi_add;
3250 }
3251 status = ice_init_mac_fltr(pf);
3252 if (status)
3253 goto free_cpu_rx_map;
3254
3255 return status;
3256
3257 free_cpu_rx_map:
3258 ice_free_cpu_rx_rmap(vsi);
3259
3260 unroll_napi_add:
3261 if (vsi) {
3262 ice_napi_del(vsi);
3263 if (vsi->netdev) {
3264 if (vsi->netdev->reg_state == NETREG_REGISTERED)
3265 unregister_netdev(vsi->netdev);
3266 free_netdev(vsi->netdev);
3267 vsi->netdev = NULL;
3268 }
3269 }
3270
3271 unroll_vsi_setup:
3272 ice_vsi_release(vsi);
3273 return status;
3274 }
3275
3276 /**
3277 * ice_get_avail_q_count - Get count of queues in use
3278 * @pf_qmap: bitmap to get queue use count from
3279 * @lock: pointer to a mutex that protects access to pf_qmap
3280 * @size: size of the bitmap
3281 */
3282 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3283 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3284 {
3285 unsigned long bit;
3286 u16 count = 0;
3287
3288 mutex_lock(lock);
3289 for_each_clear_bit(bit, pf_qmap, size)
3290 count++;
3291 mutex_unlock(lock);
3292
3293 return count;
3294 }
3295
3296 /**
3297 * ice_get_avail_txq_count - Get count of Tx queues in use
3298 * @pf: pointer to an ice_pf instance
3299 */
ice_get_avail_txq_count(struct ice_pf * pf)3300 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3301 {
3302 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3303 pf->max_pf_txqs);
3304 }
3305
3306 /**
3307 * ice_get_avail_rxq_count - Get count of Rx queues in use
3308 * @pf: pointer to an ice_pf instance
3309 */
ice_get_avail_rxq_count(struct ice_pf * pf)3310 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3311 {
3312 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3313 pf->max_pf_rxqs);
3314 }
3315
3316 /**
3317 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3318 * @pf: board private structure to initialize
3319 */
ice_deinit_pf(struct ice_pf * pf)3320 static void ice_deinit_pf(struct ice_pf *pf)
3321 {
3322 ice_service_task_stop(pf);
3323 mutex_destroy(&pf->sw_mutex);
3324 mutex_destroy(&pf->tc_mutex);
3325 mutex_destroy(&pf->avail_q_mutex);
3326
3327 if (pf->avail_txqs) {
3328 bitmap_free(pf->avail_txqs);
3329 pf->avail_txqs = NULL;
3330 }
3331
3332 if (pf->avail_rxqs) {
3333 bitmap_free(pf->avail_rxqs);
3334 pf->avail_rxqs = NULL;
3335 }
3336 }
3337
3338 /**
3339 * ice_set_pf_caps - set PFs capability flags
3340 * @pf: pointer to the PF instance
3341 */
ice_set_pf_caps(struct ice_pf * pf)3342 static void ice_set_pf_caps(struct ice_pf *pf)
3343 {
3344 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3345
3346 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3347 if (func_caps->common_cap.dcb)
3348 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3349 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3350 if (func_caps->common_cap.sr_iov_1_1) {
3351 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3352 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3353 ICE_MAX_VF_COUNT);
3354 }
3355 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3356 if (func_caps->common_cap.rss_table_size)
3357 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3358
3359 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3360 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3361 u16 unused;
3362
3363 /* ctrl_vsi_idx will be set to a valid value when flow director
3364 * is setup by ice_init_fdir
3365 */
3366 pf->ctrl_vsi_idx = ICE_NO_VSI;
3367 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3368 /* force guaranteed filter pool for PF */
3369 ice_alloc_fd_guar_item(&pf->hw, &unused,
3370 func_caps->fd_fltr_guar);
3371 /* force shared filter pool for PF */
3372 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3373 func_caps->fd_fltr_best_effort);
3374 }
3375
3376 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3377 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3378 }
3379
3380 /**
3381 * ice_init_pf - Initialize general software structures (struct ice_pf)
3382 * @pf: board private structure to initialize
3383 */
ice_init_pf(struct ice_pf * pf)3384 static int ice_init_pf(struct ice_pf *pf)
3385 {
3386 ice_set_pf_caps(pf);
3387
3388 mutex_init(&pf->sw_mutex);
3389 mutex_init(&pf->tc_mutex);
3390
3391 INIT_HLIST_HEAD(&pf->aq_wait_list);
3392 spin_lock_init(&pf->aq_wait_lock);
3393 init_waitqueue_head(&pf->aq_wait_queue);
3394
3395 /* setup service timer and periodic service task */
3396 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3397 pf->serv_tmr_period = HZ;
3398 INIT_WORK(&pf->serv_task, ice_service_task);
3399 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3400
3401 mutex_init(&pf->avail_q_mutex);
3402 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3403 if (!pf->avail_txqs)
3404 return -ENOMEM;
3405
3406 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3407 if (!pf->avail_rxqs) {
3408 bitmap_free(pf->avail_txqs);
3409 pf->avail_txqs = NULL;
3410 return -ENOMEM;
3411 }
3412
3413 return 0;
3414 }
3415
3416 /**
3417 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3418 * @pf: board private structure
3419 *
3420 * compute the number of MSIX vectors required (v_budget) and request from
3421 * the OS. Return the number of vectors reserved or negative on failure
3422 */
ice_ena_msix_range(struct ice_pf * pf)3423 static int ice_ena_msix_range(struct ice_pf *pf)
3424 {
3425 struct device *dev = ice_pf_to_dev(pf);
3426 int v_left, v_actual, v_budget = 0;
3427 int needed, err, i;
3428
3429 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3430
3431 /* reserve one vector for miscellaneous handler */
3432 needed = 1;
3433 if (v_left < needed)
3434 goto no_hw_vecs_left_err;
3435 v_budget += needed;
3436 v_left -= needed;
3437
3438 /* reserve vectors for LAN traffic */
3439 needed = min_t(int, num_online_cpus(), v_left);
3440 if (v_left < needed)
3441 goto no_hw_vecs_left_err;
3442 pf->num_lan_msix = needed;
3443 v_budget += needed;
3444 v_left -= needed;
3445
3446 /* reserve one vector for flow director */
3447 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3448 needed = ICE_FDIR_MSIX;
3449 if (v_left < needed)
3450 goto no_hw_vecs_left_err;
3451 v_budget += needed;
3452 v_left -= needed;
3453 }
3454
3455 pf->msix_entries = devm_kcalloc(dev, v_budget,
3456 sizeof(*pf->msix_entries), GFP_KERNEL);
3457
3458 if (!pf->msix_entries) {
3459 err = -ENOMEM;
3460 goto exit_err;
3461 }
3462
3463 for (i = 0; i < v_budget; i++)
3464 pf->msix_entries[i].entry = i;
3465
3466 /* actually reserve the vectors */
3467 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3468 ICE_MIN_MSIX, v_budget);
3469
3470 if (v_actual < 0) {
3471 dev_err(dev, "unable to reserve MSI-X vectors\n");
3472 err = v_actual;
3473 goto msix_err;
3474 }
3475
3476 if (v_actual < v_budget) {
3477 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3478 v_budget, v_actual);
3479
3480 if (v_actual < ICE_MIN_MSIX) {
3481 /* error if we can't get minimum vectors */
3482 pci_disable_msix(pf->pdev);
3483 err = -ERANGE;
3484 goto msix_err;
3485 } else {
3486 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3487 }
3488 }
3489
3490 return v_actual;
3491
3492 msix_err:
3493 devm_kfree(dev, pf->msix_entries);
3494 goto exit_err;
3495
3496 no_hw_vecs_left_err:
3497 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3498 needed, v_left);
3499 err = -ERANGE;
3500 exit_err:
3501 pf->num_lan_msix = 0;
3502 return err;
3503 }
3504
3505 /**
3506 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3507 * @pf: board private structure
3508 */
ice_dis_msix(struct ice_pf * pf)3509 static void ice_dis_msix(struct ice_pf *pf)
3510 {
3511 pci_disable_msix(pf->pdev);
3512 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3513 pf->msix_entries = NULL;
3514 }
3515
3516 /**
3517 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3518 * @pf: board private structure
3519 */
ice_clear_interrupt_scheme(struct ice_pf * pf)3520 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3521 {
3522 ice_dis_msix(pf);
3523
3524 if (pf->irq_tracker) {
3525 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3526 pf->irq_tracker = NULL;
3527 }
3528 }
3529
3530 /**
3531 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3532 * @pf: board private structure to initialize
3533 */
ice_init_interrupt_scheme(struct ice_pf * pf)3534 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3535 {
3536 int vectors;
3537
3538 vectors = ice_ena_msix_range(pf);
3539
3540 if (vectors < 0)
3541 return vectors;
3542
3543 /* set up vector assignment tracking */
3544 pf->irq_tracker =
3545 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3546 (sizeof(u16) * vectors), GFP_KERNEL);
3547 if (!pf->irq_tracker) {
3548 ice_dis_msix(pf);
3549 return -ENOMEM;
3550 }
3551
3552 /* populate SW interrupts pool with number of OS granted IRQs. */
3553 pf->num_avail_sw_msix = (u16)vectors;
3554 pf->irq_tracker->num_entries = (u16)vectors;
3555 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3556
3557 return 0;
3558 }
3559
3560 /**
3561 * ice_is_wol_supported - check if WoL is supported
3562 * @hw: pointer to hardware info
3563 *
3564 * Check if WoL is supported based on the HW configuration.
3565 * Returns true if NVM supports and enables WoL for this port, false otherwise
3566 */
ice_is_wol_supported(struct ice_hw * hw)3567 bool ice_is_wol_supported(struct ice_hw *hw)
3568 {
3569 u16 wol_ctrl;
3570
3571 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3572 * word) indicates WoL is not supported on the corresponding PF ID.
3573 */
3574 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3575 return false;
3576
3577 return !(BIT(hw->port_info->lport) & wol_ctrl);
3578 }
3579
3580 /**
3581 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3582 * @vsi: VSI being changed
3583 * @new_rx: new number of Rx queues
3584 * @new_tx: new number of Tx queues
3585 *
3586 * Only change the number of queues if new_tx, or new_rx is non-0.
3587 *
3588 * Returns 0 on success.
3589 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3590 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3591 {
3592 struct ice_pf *pf = vsi->back;
3593 int err = 0, timeout = 50;
3594
3595 if (!new_rx && !new_tx)
3596 return -EINVAL;
3597
3598 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3599 timeout--;
3600 if (!timeout)
3601 return -EBUSY;
3602 usleep_range(1000, 2000);
3603 }
3604
3605 if (new_tx)
3606 vsi->req_txq = (u16)new_tx;
3607 if (new_rx)
3608 vsi->req_rxq = (u16)new_rx;
3609
3610 /* set for the next time the netdev is started */
3611 if (!netif_running(vsi->netdev)) {
3612 ice_vsi_rebuild(vsi, false);
3613 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3614 goto done;
3615 }
3616
3617 ice_vsi_close(vsi);
3618 ice_vsi_rebuild(vsi, false);
3619 ice_pf_dcb_recfg(pf);
3620 ice_vsi_open(vsi);
3621 done:
3622 clear_bit(__ICE_CFG_BUSY, pf->state);
3623 return err;
3624 }
3625
3626 /**
3627 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3628 * @pf: PF to configure
3629 *
3630 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3631 * VSI can still Tx/Rx VLAN tagged packets.
3632 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3633 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3634 {
3635 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3636 struct ice_vsi_ctx *ctxt;
3637 enum ice_status status;
3638 struct ice_hw *hw;
3639
3640 if (!vsi)
3641 return;
3642
3643 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3644 if (!ctxt)
3645 return;
3646
3647 hw = &pf->hw;
3648 ctxt->info = vsi->info;
3649
3650 ctxt->info.valid_sections =
3651 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3652 ICE_AQ_VSI_PROP_SECURITY_VALID |
3653 ICE_AQ_VSI_PROP_SW_VALID);
3654
3655 /* disable VLAN anti-spoof */
3656 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3657 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3658
3659 /* disable VLAN pruning and keep all other settings */
3660 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3661
3662 /* allow all VLANs on Tx and don't strip on Rx */
3663 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3664 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3665
3666 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3667 if (status) {
3668 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3669 ice_stat_str(status),
3670 ice_aq_str(hw->adminq.sq_last_status));
3671 } else {
3672 vsi->info.sec_flags = ctxt->info.sec_flags;
3673 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3674 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3675 }
3676
3677 kfree(ctxt);
3678 }
3679
3680 /**
3681 * ice_log_pkg_init - log result of DDP package load
3682 * @hw: pointer to hardware info
3683 * @status: status of package load
3684 */
3685 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3686 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3687 {
3688 struct ice_pf *pf = (struct ice_pf *)hw->back;
3689 struct device *dev = ice_pf_to_dev(pf);
3690
3691 switch (*status) {
3692 case ICE_SUCCESS:
3693 /* The package download AdminQ command returned success because
3694 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3695 * already a package loaded on the device.
3696 */
3697 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3698 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3699 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3700 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3701 !memcmp(hw->pkg_name, hw->active_pkg_name,
3702 sizeof(hw->pkg_name))) {
3703 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3704 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3705 hw->active_pkg_name,
3706 hw->active_pkg_ver.major,
3707 hw->active_pkg_ver.minor,
3708 hw->active_pkg_ver.update,
3709 hw->active_pkg_ver.draft);
3710 else
3711 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3712 hw->active_pkg_name,
3713 hw->active_pkg_ver.major,
3714 hw->active_pkg_ver.minor,
3715 hw->active_pkg_ver.update,
3716 hw->active_pkg_ver.draft);
3717 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3718 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3719 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3720 hw->active_pkg_name,
3721 hw->active_pkg_ver.major,
3722 hw->active_pkg_ver.minor,
3723 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3724 *status = ICE_ERR_NOT_SUPPORTED;
3725 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3726 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3727 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3728 hw->active_pkg_name,
3729 hw->active_pkg_ver.major,
3730 hw->active_pkg_ver.minor,
3731 hw->active_pkg_ver.update,
3732 hw->active_pkg_ver.draft,
3733 hw->pkg_name,
3734 hw->pkg_ver.major,
3735 hw->pkg_ver.minor,
3736 hw->pkg_ver.update,
3737 hw->pkg_ver.draft);
3738 } else {
3739 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3740 *status = ICE_ERR_NOT_SUPPORTED;
3741 }
3742 break;
3743 case ICE_ERR_FW_DDP_MISMATCH:
3744 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3745 break;
3746 case ICE_ERR_BUF_TOO_SHORT:
3747 case ICE_ERR_CFG:
3748 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3749 break;
3750 case ICE_ERR_NOT_SUPPORTED:
3751 /* Package File version not supported */
3752 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3753 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3754 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3755 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3756 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3757 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3758 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3759 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3760 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3761 break;
3762 case ICE_ERR_AQ_ERROR:
3763 switch (hw->pkg_dwnld_status) {
3764 case ICE_AQ_RC_ENOSEC:
3765 case ICE_AQ_RC_EBADSIG:
3766 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3767 return;
3768 case ICE_AQ_RC_ESVN:
3769 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3770 return;
3771 case ICE_AQ_RC_EBADMAN:
3772 case ICE_AQ_RC_EBADBUF:
3773 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3774 /* poll for reset to complete */
3775 if (ice_check_reset(hw))
3776 dev_err(dev, "Error resetting device. Please reload the driver\n");
3777 return;
3778 default:
3779 break;
3780 }
3781 fallthrough;
3782 default:
3783 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3784 *status);
3785 break;
3786 }
3787 }
3788
3789 /**
3790 * ice_load_pkg - load/reload the DDP Package file
3791 * @firmware: firmware structure when firmware requested or NULL for reload
3792 * @pf: pointer to the PF instance
3793 *
3794 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3795 * initialize HW tables.
3796 */
3797 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3798 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3799 {
3800 enum ice_status status = ICE_ERR_PARAM;
3801 struct device *dev = ice_pf_to_dev(pf);
3802 struct ice_hw *hw = &pf->hw;
3803
3804 /* Load DDP Package */
3805 if (firmware && !hw->pkg_copy) {
3806 status = ice_copy_and_init_pkg(hw, firmware->data,
3807 firmware->size);
3808 ice_log_pkg_init(hw, &status);
3809 } else if (!firmware && hw->pkg_copy) {
3810 /* Reload package during rebuild after CORER/GLOBR reset */
3811 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3812 ice_log_pkg_init(hw, &status);
3813 } else {
3814 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3815 }
3816
3817 if (status) {
3818 /* Safe Mode */
3819 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3820 return;
3821 }
3822
3823 /* Successful download package is the precondition for advanced
3824 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3825 */
3826 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3827 }
3828
3829 /**
3830 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3831 * @pf: pointer to the PF structure
3832 *
3833 * There is no error returned here because the driver should be able to handle
3834 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3835 * specifically with Tx.
3836 */
ice_verify_cacheline_size(struct ice_pf * pf)3837 static void ice_verify_cacheline_size(struct ice_pf *pf)
3838 {
3839 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3840 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3841 ICE_CACHE_LINE_BYTES);
3842 }
3843
3844 /**
3845 * ice_send_version - update firmware with driver version
3846 * @pf: PF struct
3847 *
3848 * Returns ICE_SUCCESS on success, else error code
3849 */
ice_send_version(struct ice_pf * pf)3850 static enum ice_status ice_send_version(struct ice_pf *pf)
3851 {
3852 struct ice_driver_ver dv;
3853
3854 dv.major_ver = 0xff;
3855 dv.minor_ver = 0xff;
3856 dv.build_ver = 0xff;
3857 dv.subbuild_ver = 0;
3858 strscpy((char *)dv.driver_string, UTS_RELEASE,
3859 sizeof(dv.driver_string));
3860 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3861 }
3862
3863 /**
3864 * ice_init_fdir - Initialize flow director VSI and configuration
3865 * @pf: pointer to the PF instance
3866 *
3867 * returns 0 on success, negative on error
3868 */
ice_init_fdir(struct ice_pf * pf)3869 static int ice_init_fdir(struct ice_pf *pf)
3870 {
3871 struct device *dev = ice_pf_to_dev(pf);
3872 struct ice_vsi *ctrl_vsi;
3873 int err;
3874
3875 /* Side Band Flow Director needs to have a control VSI.
3876 * Allocate it and store it in the PF.
3877 */
3878 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3879 if (!ctrl_vsi) {
3880 dev_dbg(dev, "could not create control VSI\n");
3881 return -ENOMEM;
3882 }
3883
3884 err = ice_vsi_open_ctrl(ctrl_vsi);
3885 if (err) {
3886 dev_dbg(dev, "could not open control VSI\n");
3887 goto err_vsi_open;
3888 }
3889
3890 mutex_init(&pf->hw.fdir_fltr_lock);
3891
3892 err = ice_fdir_create_dflt_rules(pf);
3893 if (err)
3894 goto err_fdir_rule;
3895
3896 return 0;
3897
3898 err_fdir_rule:
3899 ice_fdir_release_flows(&pf->hw);
3900 ice_vsi_close(ctrl_vsi);
3901 err_vsi_open:
3902 ice_vsi_release(ctrl_vsi);
3903 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3904 pf->vsi[pf->ctrl_vsi_idx] = NULL;
3905 pf->ctrl_vsi_idx = ICE_NO_VSI;
3906 }
3907 return err;
3908 }
3909
3910 /**
3911 * ice_get_opt_fw_name - return optional firmware file name or NULL
3912 * @pf: pointer to the PF instance
3913 */
ice_get_opt_fw_name(struct ice_pf * pf)3914 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3915 {
3916 /* Optional firmware name same as default with additional dash
3917 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3918 */
3919 struct pci_dev *pdev = pf->pdev;
3920 char *opt_fw_filename;
3921 u64 dsn;
3922
3923 /* Determine the name of the optional file using the DSN (two
3924 * dwords following the start of the DSN Capability).
3925 */
3926 dsn = pci_get_dsn(pdev);
3927 if (!dsn)
3928 return NULL;
3929
3930 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3931 if (!opt_fw_filename)
3932 return NULL;
3933
3934 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3935 ICE_DDP_PKG_PATH, dsn);
3936
3937 return opt_fw_filename;
3938 }
3939
3940 /**
3941 * ice_request_fw - Device initialization routine
3942 * @pf: pointer to the PF instance
3943 */
ice_request_fw(struct ice_pf * pf)3944 static void ice_request_fw(struct ice_pf *pf)
3945 {
3946 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3947 const struct firmware *firmware = NULL;
3948 struct device *dev = ice_pf_to_dev(pf);
3949 int err = 0;
3950
3951 /* optional device-specific DDP (if present) overrides the default DDP
3952 * package file. kernel logs a debug message if the file doesn't exist,
3953 * and warning messages for other errors.
3954 */
3955 if (opt_fw_filename) {
3956 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3957 if (err) {
3958 kfree(opt_fw_filename);
3959 goto dflt_pkg_load;
3960 }
3961
3962 /* request for firmware was successful. Download to device */
3963 ice_load_pkg(firmware, pf);
3964 kfree(opt_fw_filename);
3965 release_firmware(firmware);
3966 return;
3967 }
3968
3969 dflt_pkg_load:
3970 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3971 if (err) {
3972 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3973 return;
3974 }
3975
3976 /* request for firmware was successful. Download to device */
3977 ice_load_pkg(firmware, pf);
3978 release_firmware(firmware);
3979 }
3980
3981 /**
3982 * ice_print_wake_reason - show the wake up cause in the log
3983 * @pf: pointer to the PF struct
3984 */
ice_print_wake_reason(struct ice_pf * pf)3985 static void ice_print_wake_reason(struct ice_pf *pf)
3986 {
3987 u32 wus = pf->wakeup_reason;
3988 const char *wake_str;
3989
3990 /* if no wake event, nothing to print */
3991 if (!wus)
3992 return;
3993
3994 if (wus & PFPM_WUS_LNKC_M)
3995 wake_str = "Link\n";
3996 else if (wus & PFPM_WUS_MAG_M)
3997 wake_str = "Magic Packet\n";
3998 else if (wus & PFPM_WUS_MNG_M)
3999 wake_str = "Management\n";
4000 else if (wus & PFPM_WUS_FW_RST_WK_M)
4001 wake_str = "Firmware Reset\n";
4002 else
4003 wake_str = "Unknown\n";
4004
4005 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4006 }
4007
4008 /**
4009 * ice_probe - Device initialization routine
4010 * @pdev: PCI device information struct
4011 * @ent: entry in ice_pci_tbl
4012 *
4013 * Returns 0 on success, negative on failure
4014 */
4015 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4016 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4017 {
4018 struct device *dev = &pdev->dev;
4019 struct ice_pf *pf;
4020 struct ice_hw *hw;
4021 int i, err;
4022
4023 if (pdev->is_virtfn) {
4024 dev_err(dev, "can't probe a virtual function\n");
4025 return -EINVAL;
4026 }
4027
4028 /* this driver uses devres, see
4029 * Documentation/driver-api/driver-model/devres.rst
4030 */
4031 err = pcim_enable_device(pdev);
4032 if (err)
4033 return err;
4034
4035 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4036 if (err) {
4037 dev_err(dev, "BAR0 I/O map error %d\n", err);
4038 return err;
4039 }
4040
4041 pf = ice_allocate_pf(dev);
4042 if (!pf)
4043 return -ENOMEM;
4044
4045 /* set up for high or low DMA */
4046 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4047 if (err)
4048 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4049 if (err) {
4050 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4051 return err;
4052 }
4053
4054 pci_enable_pcie_error_reporting(pdev);
4055 pci_set_master(pdev);
4056
4057 pf->pdev = pdev;
4058 pci_set_drvdata(pdev, pf);
4059 set_bit(__ICE_DOWN, pf->state);
4060 /* Disable service task until DOWN bit is cleared */
4061 set_bit(__ICE_SERVICE_DIS, pf->state);
4062
4063 hw = &pf->hw;
4064 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4065 pci_save_state(pdev);
4066
4067 hw->back = pf;
4068 hw->vendor_id = pdev->vendor;
4069 hw->device_id = pdev->device;
4070 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4071 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4072 hw->subsystem_device_id = pdev->subsystem_device;
4073 hw->bus.device = PCI_SLOT(pdev->devfn);
4074 hw->bus.func = PCI_FUNC(pdev->devfn);
4075 ice_set_ctrlq_len(hw);
4076
4077 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4078
4079 err = ice_devlink_register(pf);
4080 if (err) {
4081 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4082 goto err_exit_unroll;
4083 }
4084
4085 #ifndef CONFIG_DYNAMIC_DEBUG
4086 if (debug < -1)
4087 hw->debug_mask = debug;
4088 #endif
4089
4090 err = ice_init_hw(hw);
4091 if (err) {
4092 dev_err(dev, "ice_init_hw failed: %d\n", err);
4093 err = -EIO;
4094 goto err_exit_unroll;
4095 }
4096
4097 ice_request_fw(pf);
4098
4099 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4100 * set in pf->state, which will cause ice_is_safe_mode to return
4101 * true
4102 */
4103 if (ice_is_safe_mode(pf)) {
4104 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4105 /* we already got function/device capabilities but these don't
4106 * reflect what the driver needs to do in safe mode. Instead of
4107 * adding conditional logic everywhere to ignore these
4108 * device/function capabilities, override them.
4109 */
4110 ice_set_safe_mode_caps(hw);
4111 }
4112
4113 err = ice_init_pf(pf);
4114 if (err) {
4115 dev_err(dev, "ice_init_pf failed: %d\n", err);
4116 goto err_init_pf_unroll;
4117 }
4118
4119 ice_devlink_init_regions(pf);
4120
4121 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4122 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4123 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4124 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4125 i = 0;
4126 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4127 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4128 pf->hw.tnl.valid_count[TNL_VXLAN];
4129 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4130 UDP_TUNNEL_TYPE_VXLAN;
4131 i++;
4132 }
4133 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4134 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4135 pf->hw.tnl.valid_count[TNL_GENEVE];
4136 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4137 UDP_TUNNEL_TYPE_GENEVE;
4138 i++;
4139 }
4140
4141 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4142 if (!pf->num_alloc_vsi) {
4143 err = -EIO;
4144 goto err_init_pf_unroll;
4145 }
4146 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4147 dev_warn(&pf->pdev->dev,
4148 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4149 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4150 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4151 }
4152
4153 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4154 GFP_KERNEL);
4155 if (!pf->vsi) {
4156 err = -ENOMEM;
4157 goto err_init_pf_unroll;
4158 }
4159
4160 err = ice_init_interrupt_scheme(pf);
4161 if (err) {
4162 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4163 err = -EIO;
4164 goto err_init_vsi_unroll;
4165 }
4166
4167 /* In case of MSIX we are going to setup the misc vector right here
4168 * to handle admin queue events etc. In case of legacy and MSI
4169 * the misc functionality and queue processing is combined in
4170 * the same vector and that gets setup at open.
4171 */
4172 err = ice_req_irq_msix_misc(pf);
4173 if (err) {
4174 dev_err(dev, "setup of misc vector failed: %d\n", err);
4175 goto err_init_interrupt_unroll;
4176 }
4177
4178 /* create switch struct for the switch element created by FW on boot */
4179 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4180 if (!pf->first_sw) {
4181 err = -ENOMEM;
4182 goto err_msix_misc_unroll;
4183 }
4184
4185 if (hw->evb_veb)
4186 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4187 else
4188 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4189
4190 pf->first_sw->pf = pf;
4191
4192 /* record the sw_id available for later use */
4193 pf->first_sw->sw_id = hw->port_info->sw_id;
4194
4195 err = ice_setup_pf_sw(pf);
4196 if (err) {
4197 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4198 goto err_alloc_sw_unroll;
4199 }
4200
4201 clear_bit(__ICE_SERVICE_DIS, pf->state);
4202
4203 /* tell the firmware we are up */
4204 err = ice_send_version(pf);
4205 if (err) {
4206 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4207 UTS_RELEASE, err);
4208 goto err_send_version_unroll;
4209 }
4210
4211 /* since everything is good, start the service timer */
4212 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4213
4214 err = ice_init_link_events(pf->hw.port_info);
4215 if (err) {
4216 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4217 goto err_send_version_unroll;
4218 }
4219
4220 /* not a fatal error if this fails */
4221 err = ice_init_nvm_phy_type(pf->hw.port_info);
4222 if (err)
4223 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4224
4225 /* not a fatal error if this fails */
4226 err = ice_update_link_info(pf->hw.port_info);
4227 if (err)
4228 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4229
4230 ice_init_link_dflt_override(pf->hw.port_info);
4231
4232 /* if media available, initialize PHY settings */
4233 if (pf->hw.port_info->phy.link_info.link_info &
4234 ICE_AQ_MEDIA_AVAILABLE) {
4235 /* not a fatal error if this fails */
4236 err = ice_init_phy_user_cfg(pf->hw.port_info);
4237 if (err)
4238 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4239
4240 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4241 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4242
4243 if (vsi)
4244 ice_configure_phy(vsi);
4245 }
4246 } else {
4247 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4248 }
4249
4250 ice_verify_cacheline_size(pf);
4251
4252 /* Save wakeup reason register for later use */
4253 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4254
4255 /* check for a power management event */
4256 ice_print_wake_reason(pf);
4257
4258 /* clear wake status, all bits */
4259 wr32(hw, PFPM_WUS, U32_MAX);
4260
4261 /* Disable WoL at init, wait for user to enable */
4262 device_set_wakeup_enable(dev, false);
4263
4264 if (ice_is_safe_mode(pf)) {
4265 ice_set_safe_mode_vlan_cfg(pf);
4266 goto probe_done;
4267 }
4268
4269 /* initialize DDP driven features */
4270
4271 /* Note: Flow director init failure is non-fatal to load */
4272 if (ice_init_fdir(pf))
4273 dev_err(dev, "could not initialize flow director\n");
4274
4275 /* Note: DCB init failure is non-fatal to load */
4276 if (ice_init_pf_dcb(pf, false)) {
4277 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4278 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4279 } else {
4280 ice_cfg_lldp_mib_change(&pf->hw, true);
4281 }
4282
4283 /* print PCI link speed and width */
4284 pcie_print_link_status(pf->pdev);
4285
4286 probe_done:
4287 /* ready to go, so clear down state bit */
4288 clear_bit(__ICE_DOWN, pf->state);
4289 return 0;
4290
4291 err_send_version_unroll:
4292 ice_vsi_release_all(pf);
4293 err_alloc_sw_unroll:
4294 set_bit(__ICE_SERVICE_DIS, pf->state);
4295 set_bit(__ICE_DOWN, pf->state);
4296 devm_kfree(dev, pf->first_sw);
4297 err_msix_misc_unroll:
4298 ice_free_irq_msix_misc(pf);
4299 err_init_interrupt_unroll:
4300 ice_clear_interrupt_scheme(pf);
4301 err_init_vsi_unroll:
4302 devm_kfree(dev, pf->vsi);
4303 err_init_pf_unroll:
4304 ice_deinit_pf(pf);
4305 ice_devlink_destroy_regions(pf);
4306 ice_deinit_hw(hw);
4307 err_exit_unroll:
4308 ice_devlink_unregister(pf);
4309 pci_disable_pcie_error_reporting(pdev);
4310 pci_disable_device(pdev);
4311 return err;
4312 }
4313
4314 /**
4315 * ice_set_wake - enable or disable Wake on LAN
4316 * @pf: pointer to the PF struct
4317 *
4318 * Simple helper for WoL control
4319 */
ice_set_wake(struct ice_pf * pf)4320 static void ice_set_wake(struct ice_pf *pf)
4321 {
4322 struct ice_hw *hw = &pf->hw;
4323 bool wol = pf->wol_ena;
4324
4325 /* clear wake state, otherwise new wake events won't fire */
4326 wr32(hw, PFPM_WUS, U32_MAX);
4327
4328 /* enable / disable APM wake up, no RMW needed */
4329 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4330
4331 /* set magic packet filter enabled */
4332 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4333 }
4334
4335 /**
4336 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4337 * @pf: pointer to the PF struct
4338 *
4339 * Issue firmware command to enable multicast magic wake, making
4340 * sure that any locally administered address (LAA) is used for
4341 * wake, and that PF reset doesn't undo the LAA.
4342 */
ice_setup_mc_magic_wake(struct ice_pf * pf)4343 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4344 {
4345 struct device *dev = ice_pf_to_dev(pf);
4346 struct ice_hw *hw = &pf->hw;
4347 enum ice_status status;
4348 u8 mac_addr[ETH_ALEN];
4349 struct ice_vsi *vsi;
4350 u8 flags;
4351
4352 if (!pf->wol_ena)
4353 return;
4354
4355 vsi = ice_get_main_vsi(pf);
4356 if (!vsi)
4357 return;
4358
4359 /* Get current MAC address in case it's an LAA */
4360 if (vsi->netdev)
4361 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4362 else
4363 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4364
4365 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4366 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4367 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4368
4369 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4370 if (status)
4371 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4372 ice_stat_str(status),
4373 ice_aq_str(hw->adminq.sq_last_status));
4374 }
4375
4376 /**
4377 * ice_remove - Device removal routine
4378 * @pdev: PCI device information struct
4379 */
ice_remove(struct pci_dev * pdev)4380 static void ice_remove(struct pci_dev *pdev)
4381 {
4382 struct ice_pf *pf = pci_get_drvdata(pdev);
4383 int i;
4384
4385 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4386 if (!ice_is_reset_in_progress(pf->state))
4387 break;
4388 msleep(100);
4389 }
4390
4391 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4392 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4393 ice_free_vfs(pf);
4394 }
4395
4396 set_bit(__ICE_DOWN, pf->state);
4397 ice_service_task_stop(pf);
4398
4399 ice_aq_cancel_waiting_tasks(pf);
4400
4401 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4402 if (!ice_is_safe_mode(pf))
4403 ice_remove_arfs(pf);
4404 ice_setup_mc_magic_wake(pf);
4405 ice_vsi_release_all(pf);
4406 ice_set_wake(pf);
4407 ice_free_irq_msix_misc(pf);
4408 ice_for_each_vsi(pf, i) {
4409 if (!pf->vsi[i])
4410 continue;
4411 ice_vsi_free_q_vectors(pf->vsi[i]);
4412 }
4413 ice_deinit_pf(pf);
4414 ice_devlink_destroy_regions(pf);
4415 ice_deinit_hw(&pf->hw);
4416 ice_devlink_unregister(pf);
4417
4418 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4419 * do it via ice_schedule_reset() since there is no need to rebuild
4420 * and the service task is already stopped.
4421 */
4422 ice_reset(&pf->hw, ICE_RESET_PFR);
4423 pci_wait_for_pending_transaction(pdev);
4424 ice_clear_interrupt_scheme(pf);
4425 pci_disable_pcie_error_reporting(pdev);
4426 pci_disable_device(pdev);
4427 }
4428
4429 /**
4430 * ice_shutdown - PCI callback for shutting down device
4431 * @pdev: PCI device information struct
4432 */
ice_shutdown(struct pci_dev * pdev)4433 static void ice_shutdown(struct pci_dev *pdev)
4434 {
4435 struct ice_pf *pf = pci_get_drvdata(pdev);
4436
4437 ice_remove(pdev);
4438
4439 if (system_state == SYSTEM_POWER_OFF) {
4440 pci_wake_from_d3(pdev, pf->wol_ena);
4441 pci_set_power_state(pdev, PCI_D3hot);
4442 }
4443 }
4444
4445 #ifdef CONFIG_PM
4446 /**
4447 * ice_prepare_for_shutdown - prep for PCI shutdown
4448 * @pf: board private structure
4449 *
4450 * Inform or close all dependent features in prep for PCI device shutdown
4451 */
ice_prepare_for_shutdown(struct ice_pf * pf)4452 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4453 {
4454 struct ice_hw *hw = &pf->hw;
4455 u32 v;
4456
4457 /* Notify VFs of impending reset */
4458 if (ice_check_sq_alive(hw, &hw->mailboxq))
4459 ice_vc_notify_reset(pf);
4460
4461 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4462
4463 /* disable the VSIs and their queues that are not already DOWN */
4464 ice_pf_dis_all_vsi(pf, false);
4465
4466 ice_for_each_vsi(pf, v)
4467 if (pf->vsi[v])
4468 pf->vsi[v]->vsi_num = 0;
4469
4470 ice_shutdown_all_ctrlq(hw);
4471 }
4472
4473 /**
4474 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4475 * @pf: board private structure to reinitialize
4476 *
4477 * This routine reinitialize interrupt scheme that was cleared during
4478 * power management suspend callback.
4479 *
4480 * This should be called during resume routine to re-allocate the q_vectors
4481 * and reacquire interrupts.
4482 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4483 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4484 {
4485 struct device *dev = ice_pf_to_dev(pf);
4486 int ret, v;
4487
4488 /* Since we clear MSIX flag during suspend, we need to
4489 * set it back during resume...
4490 */
4491
4492 ret = ice_init_interrupt_scheme(pf);
4493 if (ret) {
4494 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4495 return ret;
4496 }
4497
4498 /* Remap vectors and rings, after successful re-init interrupts */
4499 ice_for_each_vsi(pf, v) {
4500 if (!pf->vsi[v])
4501 continue;
4502
4503 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4504 if (ret)
4505 goto err_reinit;
4506 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4507 }
4508
4509 ret = ice_req_irq_msix_misc(pf);
4510 if (ret) {
4511 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4512 ret);
4513 goto err_reinit;
4514 }
4515
4516 return 0;
4517
4518 err_reinit:
4519 while (v--)
4520 if (pf->vsi[v])
4521 ice_vsi_free_q_vectors(pf->vsi[v]);
4522
4523 return ret;
4524 }
4525
4526 /**
4527 * ice_suspend
4528 * @dev: generic device information structure
4529 *
4530 * Power Management callback to quiesce the device and prepare
4531 * for D3 transition.
4532 */
ice_suspend(struct device * dev)4533 static int __maybe_unused ice_suspend(struct device *dev)
4534 {
4535 struct pci_dev *pdev = to_pci_dev(dev);
4536 struct ice_pf *pf;
4537 int disabled, v;
4538
4539 pf = pci_get_drvdata(pdev);
4540
4541 if (!ice_pf_state_is_nominal(pf)) {
4542 dev_err(dev, "Device is not ready, no need to suspend it\n");
4543 return -EBUSY;
4544 }
4545
4546 /* Stop watchdog tasks until resume completion.
4547 * Even though it is most likely that the service task is
4548 * disabled if the device is suspended or down, the service task's
4549 * state is controlled by a different state bit, and we should
4550 * store and honor whatever state that bit is in at this point.
4551 */
4552 disabled = ice_service_task_stop(pf);
4553
4554 /* Already suspended?, then there is nothing to do */
4555 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4556 if (!disabled)
4557 ice_service_task_restart(pf);
4558 return 0;
4559 }
4560
4561 if (test_bit(__ICE_DOWN, pf->state) ||
4562 ice_is_reset_in_progress(pf->state)) {
4563 dev_err(dev, "can't suspend device in reset or already down\n");
4564 if (!disabled)
4565 ice_service_task_restart(pf);
4566 return 0;
4567 }
4568
4569 ice_setup_mc_magic_wake(pf);
4570
4571 ice_prepare_for_shutdown(pf);
4572
4573 ice_set_wake(pf);
4574
4575 /* Free vectors, clear the interrupt scheme and release IRQs
4576 * for proper hibernation, especially with large number of CPUs.
4577 * Otherwise hibernation might fail when mapping all the vectors back
4578 * to CPU0.
4579 */
4580 ice_free_irq_msix_misc(pf);
4581 ice_for_each_vsi(pf, v) {
4582 if (!pf->vsi[v])
4583 continue;
4584 ice_vsi_free_q_vectors(pf->vsi[v]);
4585 }
4586 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4587 ice_clear_interrupt_scheme(pf);
4588
4589 pci_save_state(pdev);
4590 pci_wake_from_d3(pdev, pf->wol_ena);
4591 pci_set_power_state(pdev, PCI_D3hot);
4592 return 0;
4593 }
4594
4595 /**
4596 * ice_resume - PM callback for waking up from D3
4597 * @dev: generic device information structure
4598 */
ice_resume(struct device * dev)4599 static int __maybe_unused ice_resume(struct device *dev)
4600 {
4601 struct pci_dev *pdev = to_pci_dev(dev);
4602 enum ice_reset_req reset_type;
4603 struct ice_pf *pf;
4604 struct ice_hw *hw;
4605 int ret;
4606
4607 pci_set_power_state(pdev, PCI_D0);
4608 pci_restore_state(pdev);
4609 pci_save_state(pdev);
4610
4611 if (!pci_device_is_present(pdev))
4612 return -ENODEV;
4613
4614 ret = pci_enable_device_mem(pdev);
4615 if (ret) {
4616 dev_err(dev, "Cannot enable device after suspend\n");
4617 return ret;
4618 }
4619
4620 pf = pci_get_drvdata(pdev);
4621 hw = &pf->hw;
4622
4623 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4624 ice_print_wake_reason(pf);
4625
4626 /* We cleared the interrupt scheme when we suspended, so we need to
4627 * restore it now to resume device functionality.
4628 */
4629 ret = ice_reinit_interrupt_scheme(pf);
4630 if (ret)
4631 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4632
4633 clear_bit(__ICE_DOWN, pf->state);
4634 /* Now perform PF reset and rebuild */
4635 reset_type = ICE_RESET_PFR;
4636 /* re-enable service task for reset, but allow reset to schedule it */
4637 clear_bit(__ICE_SERVICE_DIS, pf->state);
4638
4639 if (ice_schedule_reset(pf, reset_type))
4640 dev_err(dev, "Reset during resume failed.\n");
4641
4642 clear_bit(__ICE_SUSPENDED, pf->state);
4643 ice_service_task_restart(pf);
4644
4645 /* Restart the service task */
4646 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4647
4648 return 0;
4649 }
4650 #endif /* CONFIG_PM */
4651
4652 /**
4653 * ice_pci_err_detected - warning that PCI error has been detected
4654 * @pdev: PCI device information struct
4655 * @err: the type of PCI error
4656 *
4657 * Called to warn that something happened on the PCI bus and the error handling
4658 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4659 */
4660 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4661 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4662 {
4663 struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665 if (!pf) {
4666 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4667 __func__, err);
4668 return PCI_ERS_RESULT_DISCONNECT;
4669 }
4670
4671 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4672 ice_service_task_stop(pf);
4673
4674 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4675 set_bit(__ICE_PFR_REQ, pf->state);
4676 ice_prepare_for_reset(pf);
4677 }
4678 }
4679
4680 return PCI_ERS_RESULT_NEED_RESET;
4681 }
4682
4683 /**
4684 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4685 * @pdev: PCI device information struct
4686 *
4687 * Called to determine if the driver can recover from the PCI slot reset by
4688 * using a register read to determine if the device is recoverable.
4689 */
ice_pci_err_slot_reset(struct pci_dev * pdev)4690 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4691 {
4692 struct ice_pf *pf = pci_get_drvdata(pdev);
4693 pci_ers_result_t result;
4694 int err;
4695 u32 reg;
4696
4697 err = pci_enable_device_mem(pdev);
4698 if (err) {
4699 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4700 err);
4701 result = PCI_ERS_RESULT_DISCONNECT;
4702 } else {
4703 pci_set_master(pdev);
4704 pci_restore_state(pdev);
4705 pci_save_state(pdev);
4706 pci_wake_from_d3(pdev, false);
4707
4708 /* Check for life */
4709 reg = rd32(&pf->hw, GLGEN_RTRIG);
4710 if (!reg)
4711 result = PCI_ERS_RESULT_RECOVERED;
4712 else
4713 result = PCI_ERS_RESULT_DISCONNECT;
4714 }
4715
4716 err = pci_aer_clear_nonfatal_status(pdev);
4717 if (err)
4718 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4719 err);
4720 /* non-fatal, continue */
4721
4722 return result;
4723 }
4724
4725 /**
4726 * ice_pci_err_resume - restart operations after PCI error recovery
4727 * @pdev: PCI device information struct
4728 *
4729 * Called to allow the driver to bring things back up after PCI error and/or
4730 * reset recovery have finished
4731 */
ice_pci_err_resume(struct pci_dev * pdev)4732 static void ice_pci_err_resume(struct pci_dev *pdev)
4733 {
4734 struct ice_pf *pf = pci_get_drvdata(pdev);
4735
4736 if (!pf) {
4737 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4738 __func__);
4739 return;
4740 }
4741
4742 if (test_bit(__ICE_SUSPENDED, pf->state)) {
4743 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4744 __func__);
4745 return;
4746 }
4747
4748 ice_restore_all_vfs_msi_state(pdev);
4749
4750 ice_do_reset(pf, ICE_RESET_PFR);
4751 ice_service_task_restart(pf);
4752 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4753 }
4754
4755 /**
4756 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4757 * @pdev: PCI device information struct
4758 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4759 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4760 {
4761 struct ice_pf *pf = pci_get_drvdata(pdev);
4762
4763 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4764 ice_service_task_stop(pf);
4765
4766 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4767 set_bit(__ICE_PFR_REQ, pf->state);
4768 ice_prepare_for_reset(pf);
4769 }
4770 }
4771 }
4772
4773 /**
4774 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4775 * @pdev: PCI device information struct
4776 */
ice_pci_err_reset_done(struct pci_dev * pdev)4777 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4778 {
4779 ice_pci_err_resume(pdev);
4780 }
4781
4782 /* ice_pci_tbl - PCI Device ID Table
4783 *
4784 * Wildcard entries (PCI_ANY_ID) should come last
4785 * Last entry must be all 0s
4786 *
4787 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4788 * Class, Class Mask, private data (not used) }
4789 */
4790 static const struct pci_device_id ice_pci_tbl[] = {
4791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4805 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4816 /* required last entry */
4817 { 0, }
4818 };
4819 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4820
4821 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4822
4823 static const struct pci_error_handlers ice_pci_err_handler = {
4824 .error_detected = ice_pci_err_detected,
4825 .slot_reset = ice_pci_err_slot_reset,
4826 .reset_prepare = ice_pci_err_reset_prepare,
4827 .reset_done = ice_pci_err_reset_done,
4828 .resume = ice_pci_err_resume
4829 };
4830
4831 static struct pci_driver ice_driver = {
4832 .name = KBUILD_MODNAME,
4833 .id_table = ice_pci_tbl,
4834 .probe = ice_probe,
4835 .remove = ice_remove,
4836 #ifdef CONFIG_PM
4837 .driver.pm = &ice_pm_ops,
4838 #endif /* CONFIG_PM */
4839 .shutdown = ice_shutdown,
4840 .sriov_configure = ice_sriov_configure,
4841 .err_handler = &ice_pci_err_handler
4842 };
4843
4844 /**
4845 * ice_module_init - Driver registration routine
4846 *
4847 * ice_module_init is the first routine called when the driver is
4848 * loaded. All it does is register with the PCI subsystem.
4849 */
ice_module_init(void)4850 static int __init ice_module_init(void)
4851 {
4852 int status;
4853
4854 pr_info("%s\n", ice_driver_string);
4855 pr_info("%s\n", ice_copyright);
4856
4857 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
4858 if (!ice_wq) {
4859 pr_err("Failed to create workqueue\n");
4860 return -ENOMEM;
4861 }
4862
4863 status = pci_register_driver(&ice_driver);
4864 if (status) {
4865 pr_err("failed to register PCI driver, err %d\n", status);
4866 destroy_workqueue(ice_wq);
4867 }
4868
4869 return status;
4870 }
4871 module_init(ice_module_init);
4872
4873 /**
4874 * ice_module_exit - Driver exit cleanup routine
4875 *
4876 * ice_module_exit is called just before the driver is removed
4877 * from memory.
4878 */
ice_module_exit(void)4879 static void __exit ice_module_exit(void)
4880 {
4881 pci_unregister_driver(&ice_driver);
4882 destroy_workqueue(ice_wq);
4883 pr_info("module unloaded\n");
4884 }
4885 module_exit(ice_module_exit);
4886
4887 /**
4888 * ice_set_mac_address - NDO callback to set MAC address
4889 * @netdev: network interface device structure
4890 * @pi: pointer to an address structure
4891 *
4892 * Returns 0 on success, negative on failure
4893 */
ice_set_mac_address(struct net_device * netdev,void * pi)4894 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4895 {
4896 struct ice_netdev_priv *np = netdev_priv(netdev);
4897 struct ice_vsi *vsi = np->vsi;
4898 struct ice_pf *pf = vsi->back;
4899 struct ice_hw *hw = &pf->hw;
4900 struct sockaddr *addr = pi;
4901 enum ice_status status;
4902 u8 old_mac[ETH_ALEN];
4903 u8 flags = 0;
4904 int err = 0;
4905 u8 *mac;
4906
4907 mac = (u8 *)addr->sa_data;
4908
4909 if (!is_valid_ether_addr(mac))
4910 return -EADDRNOTAVAIL;
4911
4912 if (ether_addr_equal(netdev->dev_addr, mac)) {
4913 netdev_dbg(netdev, "already using mac %pM\n", mac);
4914 return 0;
4915 }
4916
4917 if (test_bit(__ICE_DOWN, pf->state) ||
4918 ice_is_reset_in_progress(pf->state)) {
4919 netdev_err(netdev, "can't set mac %pM. device not ready\n",
4920 mac);
4921 return -EBUSY;
4922 }
4923
4924 netif_addr_lock_bh(netdev);
4925 ether_addr_copy(old_mac, netdev->dev_addr);
4926 /* change the netdev's MAC address */
4927 memcpy(netdev->dev_addr, mac, netdev->addr_len);
4928 netif_addr_unlock_bh(netdev);
4929
4930 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
4931 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4932 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4933 err = -EADDRNOTAVAIL;
4934 goto err_update_filters;
4935 }
4936
4937 /* Add filter for new MAC. If filter exists, return success */
4938 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4939 if (status == ICE_ERR_ALREADY_EXISTS)
4940 /* Although this MAC filter is already present in hardware it's
4941 * possible in some cases (e.g. bonding) that dev_addr was
4942 * modified outside of the driver and needs to be restored back
4943 * to this value.
4944 */
4945 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4946 else if (status)
4947 /* error if the new filter addition failed */
4948 err = -EADDRNOTAVAIL;
4949
4950 err_update_filters:
4951 if (err) {
4952 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4953 mac);
4954 netif_addr_lock_bh(netdev);
4955 ether_addr_copy(netdev->dev_addr, old_mac);
4956 netif_addr_unlock_bh(netdev);
4957 return err;
4958 }
4959
4960 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4961 netdev->dev_addr);
4962
4963 /* write new MAC address to the firmware */
4964 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4965 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4966 if (status) {
4967 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4968 mac, ice_stat_str(status));
4969 }
4970 return 0;
4971 }
4972
4973 /**
4974 * ice_set_rx_mode - NDO callback to set the netdev filters
4975 * @netdev: network interface device structure
4976 */
ice_set_rx_mode(struct net_device * netdev)4977 static void ice_set_rx_mode(struct net_device *netdev)
4978 {
4979 struct ice_netdev_priv *np = netdev_priv(netdev);
4980 struct ice_vsi *vsi = np->vsi;
4981
4982 if (!vsi)
4983 return;
4984
4985 /* Set the flags to synchronize filters
4986 * ndo_set_rx_mode may be triggered even without a change in netdev
4987 * flags
4988 */
4989 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4990 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4991 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4992
4993 /* schedule our worker thread which will take care of
4994 * applying the new filter changes
4995 */
4996 ice_service_task_schedule(vsi->back);
4997 }
4998
4999 /**
5000 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5001 * @netdev: network interface device structure
5002 * @queue_index: Queue ID
5003 * @maxrate: maximum bandwidth in Mbps
5004 */
5005 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5006 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5007 {
5008 struct ice_netdev_priv *np = netdev_priv(netdev);
5009 struct ice_vsi *vsi = np->vsi;
5010 enum ice_status status;
5011 u16 q_handle;
5012 u8 tc;
5013
5014 /* Validate maxrate requested is within permitted range */
5015 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5016 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5017 maxrate, queue_index);
5018 return -EINVAL;
5019 }
5020
5021 q_handle = vsi->tx_rings[queue_index]->q_handle;
5022 tc = ice_dcb_get_tc(vsi, queue_index);
5023
5024 /* Set BW back to default, when user set maxrate to 0 */
5025 if (!maxrate)
5026 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5027 q_handle, ICE_MAX_BW);
5028 else
5029 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5030 q_handle, ICE_MAX_BW, maxrate * 1000);
5031 if (status) {
5032 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5033 ice_stat_str(status));
5034 return -EIO;
5035 }
5036
5037 return 0;
5038 }
5039
5040 /**
5041 * ice_fdb_add - add an entry to the hardware database
5042 * @ndm: the input from the stack
5043 * @tb: pointer to array of nladdr (unused)
5044 * @dev: the net device pointer
5045 * @addr: the MAC address entry being added
5046 * @vid: VLAN ID
5047 * @flags: instructions from stack about fdb operation
5048 * @extack: netlink extended ack
5049 */
5050 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5051 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5052 struct net_device *dev, const unsigned char *addr, u16 vid,
5053 u16 flags, struct netlink_ext_ack __always_unused *extack)
5054 {
5055 int err;
5056
5057 if (vid) {
5058 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5059 return -EINVAL;
5060 }
5061 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5062 netdev_err(dev, "FDB only supports static addresses\n");
5063 return -EINVAL;
5064 }
5065
5066 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5067 err = dev_uc_add_excl(dev, addr);
5068 else if (is_multicast_ether_addr(addr))
5069 err = dev_mc_add_excl(dev, addr);
5070 else
5071 err = -EINVAL;
5072
5073 /* Only return duplicate errors if NLM_F_EXCL is set */
5074 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5075 err = 0;
5076
5077 return err;
5078 }
5079
5080 /**
5081 * ice_fdb_del - delete an entry from the hardware database
5082 * @ndm: the input from the stack
5083 * @tb: pointer to array of nladdr (unused)
5084 * @dev: the net device pointer
5085 * @addr: the MAC address entry being added
5086 * @vid: VLAN ID
5087 */
5088 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5089 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5090 struct net_device *dev, const unsigned char *addr,
5091 __always_unused u16 vid)
5092 {
5093 int err;
5094
5095 if (ndm->ndm_state & NUD_PERMANENT) {
5096 netdev_err(dev, "FDB only supports static addresses\n");
5097 return -EINVAL;
5098 }
5099
5100 if (is_unicast_ether_addr(addr))
5101 err = dev_uc_del(dev, addr);
5102 else if (is_multicast_ether_addr(addr))
5103 err = dev_mc_del(dev, addr);
5104 else
5105 err = -EINVAL;
5106
5107 return err;
5108 }
5109
5110 /**
5111 * ice_set_features - set the netdev feature flags
5112 * @netdev: ptr to the netdev being adjusted
5113 * @features: the feature set that the stack is suggesting
5114 */
5115 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5116 ice_set_features(struct net_device *netdev, netdev_features_t features)
5117 {
5118 struct ice_netdev_priv *np = netdev_priv(netdev);
5119 struct ice_vsi *vsi = np->vsi;
5120 struct ice_pf *pf = vsi->back;
5121 int ret = 0;
5122
5123 /* Don't set any netdev advanced features with device in Safe Mode */
5124 if (ice_is_safe_mode(vsi->back)) {
5125 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5126 return ret;
5127 }
5128
5129 /* Do not change setting during reset */
5130 if (ice_is_reset_in_progress(pf->state)) {
5131 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5132 return -EBUSY;
5133 }
5134
5135 /* Multiple features can be changed in one call so keep features in
5136 * separate if/else statements to guarantee each feature is checked
5137 */
5138 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5139 ret = ice_vsi_manage_rss_lut(vsi, true);
5140 else if (!(features & NETIF_F_RXHASH) &&
5141 netdev->features & NETIF_F_RXHASH)
5142 ret = ice_vsi_manage_rss_lut(vsi, false);
5143
5144 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5145 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5146 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5147 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5148 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5149 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5150
5151 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5152 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5153 ret = ice_vsi_manage_vlan_insertion(vsi);
5154 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5155 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5156 ret = ice_vsi_manage_vlan_insertion(vsi);
5157
5158 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5159 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5160 ret = ice_cfg_vlan_pruning(vsi, true, false);
5161 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5162 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5163 ret = ice_cfg_vlan_pruning(vsi, false, false);
5164
5165 if ((features & NETIF_F_NTUPLE) &&
5166 !(netdev->features & NETIF_F_NTUPLE)) {
5167 ice_vsi_manage_fdir(vsi, true);
5168 ice_init_arfs(vsi);
5169 } else if (!(features & NETIF_F_NTUPLE) &&
5170 (netdev->features & NETIF_F_NTUPLE)) {
5171 ice_vsi_manage_fdir(vsi, false);
5172 ice_clear_arfs(vsi);
5173 }
5174
5175 return ret;
5176 }
5177
5178 /**
5179 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5180 * @vsi: VSI to setup VLAN properties for
5181 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5182 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5183 {
5184 int ret = 0;
5185
5186 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5187 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5188 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5189 ret = ice_vsi_manage_vlan_insertion(vsi);
5190
5191 return ret;
5192 }
5193
5194 /**
5195 * ice_vsi_cfg - Setup the VSI
5196 * @vsi: the VSI being configured
5197 *
5198 * Return 0 on success and negative value on error
5199 */
ice_vsi_cfg(struct ice_vsi * vsi)5200 int ice_vsi_cfg(struct ice_vsi *vsi)
5201 {
5202 int err;
5203
5204 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
5205 ice_set_rx_mode(vsi->netdev);
5206
5207 err = ice_vsi_vlan_setup(vsi);
5208 if (err)
5209 return err;
5210 }
5211 ice_vsi_cfg_dcb_rings(vsi);
5212
5213 err = ice_vsi_cfg_lan_txqs(vsi);
5214 if (!err && ice_is_xdp_ena_vsi(vsi))
5215 err = ice_vsi_cfg_xdp_txqs(vsi);
5216 if (!err)
5217 err = ice_vsi_cfg_rxqs(vsi);
5218
5219 return err;
5220 }
5221
5222 /**
5223 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5224 * @vsi: the VSI being configured
5225 */
ice_napi_enable_all(struct ice_vsi * vsi)5226 static void ice_napi_enable_all(struct ice_vsi *vsi)
5227 {
5228 int q_idx;
5229
5230 if (!vsi->netdev)
5231 return;
5232
5233 ice_for_each_q_vector(vsi, q_idx) {
5234 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5235
5236 if (q_vector->rx.ring || q_vector->tx.ring)
5237 napi_enable(&q_vector->napi);
5238 }
5239 }
5240
5241 /**
5242 * ice_up_complete - Finish the last steps of bringing up a connection
5243 * @vsi: The VSI being configured
5244 *
5245 * Return 0 on success and negative value on error
5246 */
ice_up_complete(struct ice_vsi * vsi)5247 static int ice_up_complete(struct ice_vsi *vsi)
5248 {
5249 struct ice_pf *pf = vsi->back;
5250 int err;
5251
5252 ice_vsi_cfg_msix(vsi);
5253
5254 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5255 * Tx queue group list was configured and the context bits were
5256 * programmed using ice_vsi_cfg_txqs
5257 */
5258 err = ice_vsi_start_all_rx_rings(vsi);
5259 if (err)
5260 return err;
5261
5262 clear_bit(__ICE_DOWN, vsi->state);
5263 ice_napi_enable_all(vsi);
5264 ice_vsi_ena_irq(vsi);
5265
5266 if (vsi->port_info &&
5267 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5268 vsi->netdev && vsi->type == ICE_VSI_PF) {
5269 ice_print_link_msg(vsi, true);
5270 netif_tx_start_all_queues(vsi->netdev);
5271 netif_carrier_on(vsi->netdev);
5272 }
5273
5274 /* Perform an initial read of the statistics registers now to
5275 * set the baseline so counters are ready when interface is up
5276 */
5277 ice_update_eth_stats(vsi);
5278
5279 if (vsi->type == ICE_VSI_PF)
5280 ice_service_task_schedule(pf);
5281
5282 return 0;
5283 }
5284
5285 /**
5286 * ice_up - Bring the connection back up after being down
5287 * @vsi: VSI being configured
5288 */
ice_up(struct ice_vsi * vsi)5289 int ice_up(struct ice_vsi *vsi)
5290 {
5291 int err;
5292
5293 err = ice_vsi_cfg(vsi);
5294 if (!err)
5295 err = ice_up_complete(vsi);
5296
5297 return err;
5298 }
5299
5300 /**
5301 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5302 * @ring: Tx or Rx ring to read stats from
5303 * @pkts: packets stats counter
5304 * @bytes: bytes stats counter
5305 *
5306 * This function fetches stats from the ring considering the atomic operations
5307 * that needs to be performed to read u64 values in 32 bit machine.
5308 */
5309 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5310 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5311 {
5312 unsigned int start;
5313 *pkts = 0;
5314 *bytes = 0;
5315
5316 if (!ring)
5317 return;
5318 do {
5319 start = u64_stats_fetch_begin_irq(&ring->syncp);
5320 *pkts = ring->stats.pkts;
5321 *bytes = ring->stats.bytes;
5322 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5323 }
5324
5325 /**
5326 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5327 * @vsi: the VSI to be updated
5328 * @rings: rings to work on
5329 * @count: number of rings
5330 */
5331 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5332 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5333 u16 count)
5334 {
5335 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5336 u16 i;
5337
5338 for (i = 0; i < count; i++) {
5339 struct ice_ring *ring;
5340 u64 pkts, bytes;
5341
5342 ring = READ_ONCE(rings[i]);
5343 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5344 vsi_stats->tx_packets += pkts;
5345 vsi_stats->tx_bytes += bytes;
5346 vsi->tx_restart += ring->tx_stats.restart_q;
5347 vsi->tx_busy += ring->tx_stats.tx_busy;
5348 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5349 }
5350 }
5351
5352 /**
5353 * ice_update_vsi_ring_stats - Update VSI stats counters
5354 * @vsi: the VSI to be updated
5355 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5356 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5357 {
5358 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5359 struct ice_ring *ring;
5360 u64 pkts, bytes;
5361 int i;
5362
5363 /* reset netdev stats */
5364 vsi_stats->tx_packets = 0;
5365 vsi_stats->tx_bytes = 0;
5366 vsi_stats->rx_packets = 0;
5367 vsi_stats->rx_bytes = 0;
5368
5369 /* reset non-netdev (extended) stats */
5370 vsi->tx_restart = 0;
5371 vsi->tx_busy = 0;
5372 vsi->tx_linearize = 0;
5373 vsi->rx_buf_failed = 0;
5374 vsi->rx_page_failed = 0;
5375 vsi->rx_gro_dropped = 0;
5376
5377 rcu_read_lock();
5378
5379 /* update Tx rings counters */
5380 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5381
5382 /* update Rx rings counters */
5383 ice_for_each_rxq(vsi, i) {
5384 ring = READ_ONCE(vsi->rx_rings[i]);
5385 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5386 vsi_stats->rx_packets += pkts;
5387 vsi_stats->rx_bytes += bytes;
5388 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5389 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5390 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5391 }
5392
5393 /* update XDP Tx rings counters */
5394 if (ice_is_xdp_ena_vsi(vsi))
5395 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5396 vsi->num_xdp_txq);
5397
5398 rcu_read_unlock();
5399 }
5400
5401 /**
5402 * ice_update_vsi_stats - Update VSI stats counters
5403 * @vsi: the VSI to be updated
5404 */
ice_update_vsi_stats(struct ice_vsi * vsi)5405 void ice_update_vsi_stats(struct ice_vsi *vsi)
5406 {
5407 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5408 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5409 struct ice_pf *pf = vsi->back;
5410
5411 if (test_bit(__ICE_DOWN, vsi->state) ||
5412 test_bit(__ICE_CFG_BUSY, pf->state))
5413 return;
5414
5415 /* get stats as recorded by Tx/Rx rings */
5416 ice_update_vsi_ring_stats(vsi);
5417
5418 /* get VSI stats as recorded by the hardware */
5419 ice_update_eth_stats(vsi);
5420
5421 cur_ns->tx_errors = cur_es->tx_errors;
5422 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5423 cur_ns->tx_dropped = cur_es->tx_discards;
5424 cur_ns->multicast = cur_es->rx_multicast;
5425
5426 /* update some more netdev stats if this is main VSI */
5427 if (vsi->type == ICE_VSI_PF) {
5428 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5429 cur_ns->rx_errors = pf->stats.crc_errors +
5430 pf->stats.illegal_bytes +
5431 pf->stats.rx_len_errors +
5432 pf->stats.rx_undersize +
5433 pf->hw_csum_rx_error +
5434 pf->stats.rx_jabber +
5435 pf->stats.rx_fragments +
5436 pf->stats.rx_oversize;
5437 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5438 /* record drops from the port level */
5439 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5440 }
5441 }
5442
5443 /**
5444 * ice_update_pf_stats - Update PF port stats counters
5445 * @pf: PF whose stats needs to be updated
5446 */
ice_update_pf_stats(struct ice_pf * pf)5447 void ice_update_pf_stats(struct ice_pf *pf)
5448 {
5449 struct ice_hw_port_stats *prev_ps, *cur_ps;
5450 struct ice_hw *hw = &pf->hw;
5451 u16 fd_ctr_base;
5452 u8 port;
5453
5454 port = hw->port_info->lport;
5455 prev_ps = &pf->stats_prev;
5456 cur_ps = &pf->stats;
5457
5458 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5459 &prev_ps->eth.rx_bytes,
5460 &cur_ps->eth.rx_bytes);
5461
5462 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5463 &prev_ps->eth.rx_unicast,
5464 &cur_ps->eth.rx_unicast);
5465
5466 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5467 &prev_ps->eth.rx_multicast,
5468 &cur_ps->eth.rx_multicast);
5469
5470 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5471 &prev_ps->eth.rx_broadcast,
5472 &cur_ps->eth.rx_broadcast);
5473
5474 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5475 &prev_ps->eth.rx_discards,
5476 &cur_ps->eth.rx_discards);
5477
5478 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5479 &prev_ps->eth.tx_bytes,
5480 &cur_ps->eth.tx_bytes);
5481
5482 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5483 &prev_ps->eth.tx_unicast,
5484 &cur_ps->eth.tx_unicast);
5485
5486 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5487 &prev_ps->eth.tx_multicast,
5488 &cur_ps->eth.tx_multicast);
5489
5490 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5491 &prev_ps->eth.tx_broadcast,
5492 &cur_ps->eth.tx_broadcast);
5493
5494 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5495 &prev_ps->tx_dropped_link_down,
5496 &cur_ps->tx_dropped_link_down);
5497
5498 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5499 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5500
5501 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5502 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5503
5504 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5505 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5506
5507 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5508 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5509
5510 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5511 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5512
5513 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5514 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5515
5516 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5517 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5518
5519 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5520 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5521
5522 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5523 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5524
5525 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5526 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5527
5528 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5529 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5530
5531 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5532 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5533
5534 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5535 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5536
5537 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5538 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5539
5540 fd_ctr_base = hw->fd_ctr_base;
5541
5542 ice_stat_update40(hw,
5543 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5544 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5545 &cur_ps->fd_sb_match);
5546 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5547 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5548
5549 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5550 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5551
5552 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5553 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5554
5555 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5556 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5557
5558 ice_update_dcb_stats(pf);
5559
5560 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5561 &prev_ps->crc_errors, &cur_ps->crc_errors);
5562
5563 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5564 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5565
5566 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5567 &prev_ps->mac_local_faults,
5568 &cur_ps->mac_local_faults);
5569
5570 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5571 &prev_ps->mac_remote_faults,
5572 &cur_ps->mac_remote_faults);
5573
5574 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5575 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5576
5577 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5578 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5579
5580 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5581 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5582
5583 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5584 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5585
5586 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5587 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5588
5589 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5590
5591 pf->stat_prev_loaded = true;
5592 }
5593
5594 /**
5595 * ice_get_stats64 - get statistics for network device structure
5596 * @netdev: network interface device structure
5597 * @stats: main device statistics structure
5598 */
5599 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5600 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5601 {
5602 struct ice_netdev_priv *np = netdev_priv(netdev);
5603 struct rtnl_link_stats64 *vsi_stats;
5604 struct ice_vsi *vsi = np->vsi;
5605
5606 vsi_stats = &vsi->net_stats;
5607
5608 if (!vsi->num_txq || !vsi->num_rxq)
5609 return;
5610
5611 /* netdev packet/byte stats come from ring counter. These are obtained
5612 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5613 * But, only call the update routine and read the registers if VSI is
5614 * not down.
5615 */
5616 if (!test_bit(__ICE_DOWN, vsi->state))
5617 ice_update_vsi_ring_stats(vsi);
5618 stats->tx_packets = vsi_stats->tx_packets;
5619 stats->tx_bytes = vsi_stats->tx_bytes;
5620 stats->rx_packets = vsi_stats->rx_packets;
5621 stats->rx_bytes = vsi_stats->rx_bytes;
5622
5623 /* The rest of the stats can be read from the hardware but instead we
5624 * just return values that the watchdog task has already obtained from
5625 * the hardware.
5626 */
5627 stats->multicast = vsi_stats->multicast;
5628 stats->tx_errors = vsi_stats->tx_errors;
5629 stats->tx_dropped = vsi_stats->tx_dropped;
5630 stats->rx_errors = vsi_stats->rx_errors;
5631 stats->rx_dropped = vsi_stats->rx_dropped;
5632 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5633 stats->rx_length_errors = vsi_stats->rx_length_errors;
5634 }
5635
5636 /**
5637 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5638 * @vsi: VSI having NAPI disabled
5639 */
ice_napi_disable_all(struct ice_vsi * vsi)5640 static void ice_napi_disable_all(struct ice_vsi *vsi)
5641 {
5642 int q_idx;
5643
5644 if (!vsi->netdev)
5645 return;
5646
5647 ice_for_each_q_vector(vsi, q_idx) {
5648 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5649
5650 if (q_vector->rx.ring || q_vector->tx.ring)
5651 napi_disable(&q_vector->napi);
5652 }
5653 }
5654
5655 /**
5656 * ice_down - Shutdown the connection
5657 * @vsi: The VSI being stopped
5658 */
ice_down(struct ice_vsi * vsi)5659 int ice_down(struct ice_vsi *vsi)
5660 {
5661 int i, tx_err, rx_err, link_err = 0;
5662
5663 /* Caller of this function is expected to set the
5664 * vsi->state __ICE_DOWN bit
5665 */
5666 if (vsi->netdev) {
5667 netif_carrier_off(vsi->netdev);
5668 netif_tx_disable(vsi->netdev);
5669 }
5670
5671 ice_vsi_dis_irq(vsi);
5672
5673 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5674 if (tx_err)
5675 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5676 vsi->vsi_num, tx_err);
5677 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5678 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5679 if (tx_err)
5680 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5681 vsi->vsi_num, tx_err);
5682 }
5683
5684 rx_err = ice_vsi_stop_all_rx_rings(vsi);
5685 if (rx_err)
5686 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5687 vsi->vsi_num, rx_err);
5688
5689 ice_napi_disable_all(vsi);
5690
5691 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5692 link_err = ice_force_phys_link_state(vsi, false);
5693 if (link_err)
5694 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5695 vsi->vsi_num, link_err);
5696 }
5697
5698 ice_for_each_txq(vsi, i)
5699 ice_clean_tx_ring(vsi->tx_rings[i]);
5700
5701 ice_for_each_rxq(vsi, i)
5702 ice_clean_rx_ring(vsi->rx_rings[i]);
5703
5704 if (tx_err || rx_err || link_err) {
5705 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5706 vsi->vsi_num, vsi->vsw->sw_id);
5707 return -EIO;
5708 }
5709
5710 return 0;
5711 }
5712
5713 /**
5714 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5715 * @vsi: VSI having resources allocated
5716 *
5717 * Return 0 on success, negative on failure
5718 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5719 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5720 {
5721 int i, err = 0;
5722
5723 if (!vsi->num_txq) {
5724 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5725 vsi->vsi_num);
5726 return -EINVAL;
5727 }
5728
5729 ice_for_each_txq(vsi, i) {
5730 struct ice_ring *ring = vsi->tx_rings[i];
5731
5732 if (!ring)
5733 return -EINVAL;
5734
5735 ring->netdev = vsi->netdev;
5736 err = ice_setup_tx_ring(ring);
5737 if (err)
5738 break;
5739 }
5740
5741 return err;
5742 }
5743
5744 /**
5745 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5746 * @vsi: VSI having resources allocated
5747 *
5748 * Return 0 on success, negative on failure
5749 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5750 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5751 {
5752 int i, err = 0;
5753
5754 if (!vsi->num_rxq) {
5755 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5756 vsi->vsi_num);
5757 return -EINVAL;
5758 }
5759
5760 ice_for_each_rxq(vsi, i) {
5761 struct ice_ring *ring = vsi->rx_rings[i];
5762
5763 if (!ring)
5764 return -EINVAL;
5765
5766 ring->netdev = vsi->netdev;
5767 err = ice_setup_rx_ring(ring);
5768 if (err)
5769 break;
5770 }
5771
5772 return err;
5773 }
5774
5775 /**
5776 * ice_vsi_open_ctrl - open control VSI for use
5777 * @vsi: the VSI to open
5778 *
5779 * Initialization of the Control VSI
5780 *
5781 * Returns 0 on success, negative value on error
5782 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5783 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5784 {
5785 char int_name[ICE_INT_NAME_STR_LEN];
5786 struct ice_pf *pf = vsi->back;
5787 struct device *dev;
5788 int err;
5789
5790 dev = ice_pf_to_dev(pf);
5791 /* allocate descriptors */
5792 err = ice_vsi_setup_tx_rings(vsi);
5793 if (err)
5794 goto err_setup_tx;
5795
5796 err = ice_vsi_setup_rx_rings(vsi);
5797 if (err)
5798 goto err_setup_rx;
5799
5800 err = ice_vsi_cfg(vsi);
5801 if (err)
5802 goto err_setup_rx;
5803
5804 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5805 dev_driver_string(dev), dev_name(dev));
5806 err = ice_vsi_req_irq_msix(vsi, int_name);
5807 if (err)
5808 goto err_setup_rx;
5809
5810 ice_vsi_cfg_msix(vsi);
5811
5812 err = ice_vsi_start_all_rx_rings(vsi);
5813 if (err)
5814 goto err_up_complete;
5815
5816 clear_bit(__ICE_DOWN, vsi->state);
5817 ice_vsi_ena_irq(vsi);
5818
5819 return 0;
5820
5821 err_up_complete:
5822 ice_down(vsi);
5823 err_setup_rx:
5824 ice_vsi_free_rx_rings(vsi);
5825 err_setup_tx:
5826 ice_vsi_free_tx_rings(vsi);
5827
5828 return err;
5829 }
5830
5831 /**
5832 * ice_vsi_open - Called when a network interface is made active
5833 * @vsi: the VSI to open
5834 *
5835 * Initialization of the VSI
5836 *
5837 * Returns 0 on success, negative value on error
5838 */
ice_vsi_open(struct ice_vsi * vsi)5839 static int ice_vsi_open(struct ice_vsi *vsi)
5840 {
5841 char int_name[ICE_INT_NAME_STR_LEN];
5842 struct ice_pf *pf = vsi->back;
5843 int err;
5844
5845 /* allocate descriptors */
5846 err = ice_vsi_setup_tx_rings(vsi);
5847 if (err)
5848 goto err_setup_tx;
5849
5850 err = ice_vsi_setup_rx_rings(vsi);
5851 if (err)
5852 goto err_setup_rx;
5853
5854 err = ice_vsi_cfg(vsi);
5855 if (err)
5856 goto err_setup_rx;
5857
5858 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5859 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5860 err = ice_vsi_req_irq_msix(vsi, int_name);
5861 if (err)
5862 goto err_setup_rx;
5863
5864 /* Notify the stack of the actual queue counts. */
5865 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5866 if (err)
5867 goto err_set_qs;
5868
5869 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5870 if (err)
5871 goto err_set_qs;
5872
5873 err = ice_up_complete(vsi);
5874 if (err)
5875 goto err_up_complete;
5876
5877 return 0;
5878
5879 err_up_complete:
5880 ice_down(vsi);
5881 err_set_qs:
5882 ice_vsi_free_irq(vsi);
5883 err_setup_rx:
5884 ice_vsi_free_rx_rings(vsi);
5885 err_setup_tx:
5886 ice_vsi_free_tx_rings(vsi);
5887
5888 return err;
5889 }
5890
5891 /**
5892 * ice_vsi_release_all - Delete all VSIs
5893 * @pf: PF from which all VSIs are being removed
5894 */
ice_vsi_release_all(struct ice_pf * pf)5895 static void ice_vsi_release_all(struct ice_pf *pf)
5896 {
5897 int err, i;
5898
5899 if (!pf->vsi)
5900 return;
5901
5902 ice_for_each_vsi(pf, i) {
5903 if (!pf->vsi[i])
5904 continue;
5905
5906 err = ice_vsi_release(pf->vsi[i]);
5907 if (err)
5908 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5909 i, err, pf->vsi[i]->vsi_num);
5910 }
5911 }
5912
5913 /**
5914 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5915 * @pf: pointer to the PF instance
5916 * @type: VSI type to rebuild
5917 *
5918 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5919 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5920 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5921 {
5922 struct device *dev = ice_pf_to_dev(pf);
5923 enum ice_status status;
5924 int i, err;
5925
5926 ice_for_each_vsi(pf, i) {
5927 struct ice_vsi *vsi = pf->vsi[i];
5928
5929 if (!vsi || vsi->type != type)
5930 continue;
5931
5932 /* rebuild the VSI */
5933 err = ice_vsi_rebuild(vsi, true);
5934 if (err) {
5935 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5936 err, vsi->idx, ice_vsi_type_str(type));
5937 return err;
5938 }
5939
5940 /* replay filters for the VSI */
5941 status = ice_replay_vsi(&pf->hw, vsi->idx);
5942 if (status) {
5943 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5944 ice_stat_str(status), vsi->idx,
5945 ice_vsi_type_str(type));
5946 return -EIO;
5947 }
5948
5949 /* Re-map HW VSI number, using VSI handle that has been
5950 * previously validated in ice_replay_vsi() call above
5951 */
5952 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5953
5954 /* enable the VSI */
5955 err = ice_ena_vsi(vsi, false);
5956 if (err) {
5957 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5958 err, vsi->idx, ice_vsi_type_str(type));
5959 return err;
5960 }
5961
5962 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5963 ice_vsi_type_str(type));
5964 }
5965
5966 return 0;
5967 }
5968
5969 /**
5970 * ice_update_pf_netdev_link - Update PF netdev link status
5971 * @pf: pointer to the PF instance
5972 */
ice_update_pf_netdev_link(struct ice_pf * pf)5973 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5974 {
5975 bool link_up;
5976 int i;
5977
5978 ice_for_each_vsi(pf, i) {
5979 struct ice_vsi *vsi = pf->vsi[i];
5980
5981 if (!vsi || vsi->type != ICE_VSI_PF)
5982 return;
5983
5984 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5985 if (link_up) {
5986 netif_carrier_on(pf->vsi[i]->netdev);
5987 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5988 } else {
5989 netif_carrier_off(pf->vsi[i]->netdev);
5990 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5991 }
5992 }
5993 }
5994
5995 /**
5996 * ice_rebuild - rebuild after reset
5997 * @pf: PF to rebuild
5998 * @reset_type: type of reset
5999 *
6000 * Do not rebuild VF VSI in this flow because that is already handled via
6001 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6002 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6003 * to reset/rebuild all the VF VSI twice.
6004 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6005 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6006 {
6007 struct device *dev = ice_pf_to_dev(pf);
6008 struct ice_hw *hw = &pf->hw;
6009 enum ice_status ret;
6010 int err;
6011
6012 if (test_bit(__ICE_DOWN, pf->state))
6013 goto clear_recovery;
6014
6015 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6016
6017 ret = ice_init_all_ctrlq(hw);
6018 if (ret) {
6019 dev_err(dev, "control queues init failed %s\n",
6020 ice_stat_str(ret));
6021 goto err_init_ctrlq;
6022 }
6023
6024 /* if DDP was previously loaded successfully */
6025 if (!ice_is_safe_mode(pf)) {
6026 /* reload the SW DB of filter tables */
6027 if (reset_type == ICE_RESET_PFR)
6028 ice_fill_blk_tbls(hw);
6029 else
6030 /* Reload DDP Package after CORER/GLOBR reset */
6031 ice_load_pkg(NULL, pf);
6032 }
6033
6034 ret = ice_clear_pf_cfg(hw);
6035 if (ret) {
6036 dev_err(dev, "clear PF configuration failed %s\n",
6037 ice_stat_str(ret));
6038 goto err_init_ctrlq;
6039 }
6040
6041 if (pf->first_sw->dflt_vsi_ena)
6042 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6043 /* clear the default VSI configuration if it exists */
6044 pf->first_sw->dflt_vsi = NULL;
6045 pf->first_sw->dflt_vsi_ena = false;
6046
6047 ice_clear_pxe_mode(hw);
6048
6049 ret = ice_get_caps(hw);
6050 if (ret) {
6051 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6052 goto err_init_ctrlq;
6053 }
6054
6055 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6056 if (ret) {
6057 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6058 goto err_init_ctrlq;
6059 }
6060
6061 err = ice_sched_init_port(hw->port_info);
6062 if (err)
6063 goto err_sched_init_port;
6064
6065 /* start misc vector */
6066 err = ice_req_irq_msix_misc(pf);
6067 if (err) {
6068 dev_err(dev, "misc vector setup failed: %d\n", err);
6069 goto err_sched_init_port;
6070 }
6071
6072 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6073 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6074 if (!rd32(hw, PFQF_FD_SIZE)) {
6075 u16 unused, guar, b_effort;
6076
6077 guar = hw->func_caps.fd_fltr_guar;
6078 b_effort = hw->func_caps.fd_fltr_best_effort;
6079
6080 /* force guaranteed filter pool for PF */
6081 ice_alloc_fd_guar_item(hw, &unused, guar);
6082 /* force shared filter pool for PF */
6083 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6084 }
6085 }
6086
6087 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6088 ice_dcb_rebuild(pf);
6089
6090 /* rebuild PF VSI */
6091 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6092 if (err) {
6093 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6094 goto err_vsi_rebuild;
6095 }
6096
6097 /* If Flow Director is active */
6098 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6099 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6100 if (err) {
6101 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6102 goto err_vsi_rebuild;
6103 }
6104
6105 /* replay HW Flow Director recipes */
6106 if (hw->fdir_prof)
6107 ice_fdir_replay_flows(hw);
6108
6109 /* replay Flow Director filters */
6110 ice_fdir_replay_fltrs(pf);
6111
6112 ice_rebuild_arfs(pf);
6113 }
6114
6115 ice_update_pf_netdev_link(pf);
6116
6117 /* tell the firmware we are up */
6118 ret = ice_send_version(pf);
6119 if (ret) {
6120 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6121 ice_stat_str(ret));
6122 goto err_vsi_rebuild;
6123 }
6124
6125 ice_replay_post(hw);
6126
6127 /* if we get here, reset flow is successful */
6128 clear_bit(__ICE_RESET_FAILED, pf->state);
6129 return;
6130
6131 err_vsi_rebuild:
6132 err_sched_init_port:
6133 ice_sched_cleanup_all(hw);
6134 err_init_ctrlq:
6135 ice_shutdown_all_ctrlq(hw);
6136 set_bit(__ICE_RESET_FAILED, pf->state);
6137 clear_recovery:
6138 /* set this bit in PF state to control service task scheduling */
6139 set_bit(__ICE_NEEDS_RESTART, pf->state);
6140 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6141 }
6142
6143 /**
6144 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6145 * @vsi: Pointer to VSI structure
6146 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6147 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6148 {
6149 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6150 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6151 else
6152 return ICE_RXBUF_3072;
6153 }
6154
6155 /**
6156 * ice_change_mtu - NDO callback to change the MTU
6157 * @netdev: network interface device structure
6158 * @new_mtu: new value for maximum frame size
6159 *
6160 * Returns 0 on success, negative on failure
6161 */
ice_change_mtu(struct net_device * netdev,int new_mtu)6162 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6163 {
6164 struct ice_netdev_priv *np = netdev_priv(netdev);
6165 struct ice_vsi *vsi = np->vsi;
6166 struct ice_pf *pf = vsi->back;
6167 u8 count = 0;
6168
6169 if (new_mtu == (int)netdev->mtu) {
6170 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6171 return 0;
6172 }
6173
6174 if (ice_is_xdp_ena_vsi(vsi)) {
6175 int frame_size = ice_max_xdp_frame_size(vsi);
6176
6177 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6178 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6179 frame_size - ICE_ETH_PKT_HDR_PAD);
6180 return -EINVAL;
6181 }
6182 }
6183
6184 if (new_mtu < (int)netdev->min_mtu) {
6185 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6186 netdev->min_mtu);
6187 return -EINVAL;
6188 } else if (new_mtu > (int)netdev->max_mtu) {
6189 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6190 netdev->min_mtu);
6191 return -EINVAL;
6192 }
6193 /* if a reset is in progress, wait for some time for it to complete */
6194 do {
6195 if (ice_is_reset_in_progress(pf->state)) {
6196 count++;
6197 usleep_range(1000, 2000);
6198 } else {
6199 break;
6200 }
6201
6202 } while (count < 100);
6203
6204 if (count == 100) {
6205 netdev_err(netdev, "can't change MTU. Device is busy\n");
6206 return -EBUSY;
6207 }
6208
6209 netdev->mtu = (unsigned int)new_mtu;
6210
6211 /* if VSI is up, bring it down and then back up */
6212 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6213 int err;
6214
6215 err = ice_down(vsi);
6216 if (err) {
6217 netdev_err(netdev, "change MTU if_up err %d\n", err);
6218 return err;
6219 }
6220
6221 err = ice_up(vsi);
6222 if (err) {
6223 netdev_err(netdev, "change MTU if_up err %d\n", err);
6224 return err;
6225 }
6226 }
6227
6228 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6229 return 0;
6230 }
6231
6232 /**
6233 * ice_aq_str - convert AQ err code to a string
6234 * @aq_err: the AQ error code to convert
6235 */
ice_aq_str(enum ice_aq_err aq_err)6236 const char *ice_aq_str(enum ice_aq_err aq_err)
6237 {
6238 switch (aq_err) {
6239 case ICE_AQ_RC_OK:
6240 return "OK";
6241 case ICE_AQ_RC_EPERM:
6242 return "ICE_AQ_RC_EPERM";
6243 case ICE_AQ_RC_ENOENT:
6244 return "ICE_AQ_RC_ENOENT";
6245 case ICE_AQ_RC_ENOMEM:
6246 return "ICE_AQ_RC_ENOMEM";
6247 case ICE_AQ_RC_EBUSY:
6248 return "ICE_AQ_RC_EBUSY";
6249 case ICE_AQ_RC_EEXIST:
6250 return "ICE_AQ_RC_EEXIST";
6251 case ICE_AQ_RC_EINVAL:
6252 return "ICE_AQ_RC_EINVAL";
6253 case ICE_AQ_RC_ENOSPC:
6254 return "ICE_AQ_RC_ENOSPC";
6255 case ICE_AQ_RC_ENOSYS:
6256 return "ICE_AQ_RC_ENOSYS";
6257 case ICE_AQ_RC_EMODE:
6258 return "ICE_AQ_RC_EMODE";
6259 case ICE_AQ_RC_ENOSEC:
6260 return "ICE_AQ_RC_ENOSEC";
6261 case ICE_AQ_RC_EBADSIG:
6262 return "ICE_AQ_RC_EBADSIG";
6263 case ICE_AQ_RC_ESVN:
6264 return "ICE_AQ_RC_ESVN";
6265 case ICE_AQ_RC_EBADMAN:
6266 return "ICE_AQ_RC_EBADMAN";
6267 case ICE_AQ_RC_EBADBUF:
6268 return "ICE_AQ_RC_EBADBUF";
6269 }
6270
6271 return "ICE_AQ_RC_UNKNOWN";
6272 }
6273
6274 /**
6275 * ice_stat_str - convert status err code to a string
6276 * @stat_err: the status error code to convert
6277 */
ice_stat_str(enum ice_status stat_err)6278 const char *ice_stat_str(enum ice_status stat_err)
6279 {
6280 switch (stat_err) {
6281 case ICE_SUCCESS:
6282 return "OK";
6283 case ICE_ERR_PARAM:
6284 return "ICE_ERR_PARAM";
6285 case ICE_ERR_NOT_IMPL:
6286 return "ICE_ERR_NOT_IMPL";
6287 case ICE_ERR_NOT_READY:
6288 return "ICE_ERR_NOT_READY";
6289 case ICE_ERR_NOT_SUPPORTED:
6290 return "ICE_ERR_NOT_SUPPORTED";
6291 case ICE_ERR_BAD_PTR:
6292 return "ICE_ERR_BAD_PTR";
6293 case ICE_ERR_INVAL_SIZE:
6294 return "ICE_ERR_INVAL_SIZE";
6295 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6296 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6297 case ICE_ERR_RESET_FAILED:
6298 return "ICE_ERR_RESET_FAILED";
6299 case ICE_ERR_FW_API_VER:
6300 return "ICE_ERR_FW_API_VER";
6301 case ICE_ERR_NO_MEMORY:
6302 return "ICE_ERR_NO_MEMORY";
6303 case ICE_ERR_CFG:
6304 return "ICE_ERR_CFG";
6305 case ICE_ERR_OUT_OF_RANGE:
6306 return "ICE_ERR_OUT_OF_RANGE";
6307 case ICE_ERR_ALREADY_EXISTS:
6308 return "ICE_ERR_ALREADY_EXISTS";
6309 case ICE_ERR_NVM_CHECKSUM:
6310 return "ICE_ERR_NVM_CHECKSUM";
6311 case ICE_ERR_BUF_TOO_SHORT:
6312 return "ICE_ERR_BUF_TOO_SHORT";
6313 case ICE_ERR_NVM_BLANK_MODE:
6314 return "ICE_ERR_NVM_BLANK_MODE";
6315 case ICE_ERR_IN_USE:
6316 return "ICE_ERR_IN_USE";
6317 case ICE_ERR_MAX_LIMIT:
6318 return "ICE_ERR_MAX_LIMIT";
6319 case ICE_ERR_RESET_ONGOING:
6320 return "ICE_ERR_RESET_ONGOING";
6321 case ICE_ERR_HW_TABLE:
6322 return "ICE_ERR_HW_TABLE";
6323 case ICE_ERR_DOES_NOT_EXIST:
6324 return "ICE_ERR_DOES_NOT_EXIST";
6325 case ICE_ERR_FW_DDP_MISMATCH:
6326 return "ICE_ERR_FW_DDP_MISMATCH";
6327 case ICE_ERR_AQ_ERROR:
6328 return "ICE_ERR_AQ_ERROR";
6329 case ICE_ERR_AQ_TIMEOUT:
6330 return "ICE_ERR_AQ_TIMEOUT";
6331 case ICE_ERR_AQ_FULL:
6332 return "ICE_ERR_AQ_FULL";
6333 case ICE_ERR_AQ_NO_WORK:
6334 return "ICE_ERR_AQ_NO_WORK";
6335 case ICE_ERR_AQ_EMPTY:
6336 return "ICE_ERR_AQ_EMPTY";
6337 case ICE_ERR_AQ_FW_CRITICAL:
6338 return "ICE_ERR_AQ_FW_CRITICAL";
6339 }
6340
6341 return "ICE_ERR_UNKNOWN";
6342 }
6343
6344 /**
6345 * ice_set_rss - Set RSS keys and lut
6346 * @vsi: Pointer to VSI structure
6347 * @seed: RSS hash seed
6348 * @lut: Lookup table
6349 * @lut_size: Lookup table size
6350 *
6351 * Returns 0 on success, negative on failure
6352 */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6353 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6354 {
6355 struct ice_pf *pf = vsi->back;
6356 struct ice_hw *hw = &pf->hw;
6357 enum ice_status status;
6358 struct device *dev;
6359
6360 dev = ice_pf_to_dev(pf);
6361 if (seed) {
6362 struct ice_aqc_get_set_rss_keys *buf =
6363 (struct ice_aqc_get_set_rss_keys *)seed;
6364
6365 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6366
6367 if (status) {
6368 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6369 ice_stat_str(status),
6370 ice_aq_str(hw->adminq.sq_last_status));
6371 return -EIO;
6372 }
6373 }
6374
6375 if (lut) {
6376 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6377 lut, lut_size);
6378 if (status) {
6379 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6380 ice_stat_str(status),
6381 ice_aq_str(hw->adminq.sq_last_status));
6382 return -EIO;
6383 }
6384 }
6385
6386 return 0;
6387 }
6388
6389 /**
6390 * ice_get_rss - Get RSS keys and lut
6391 * @vsi: Pointer to VSI structure
6392 * @seed: Buffer to store the keys
6393 * @lut: Buffer to store the lookup table entries
6394 * @lut_size: Size of buffer to store the lookup table entries
6395 *
6396 * Returns 0 on success, negative on failure
6397 */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6398 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6399 {
6400 struct ice_pf *pf = vsi->back;
6401 struct ice_hw *hw = &pf->hw;
6402 enum ice_status status;
6403 struct device *dev;
6404
6405 dev = ice_pf_to_dev(pf);
6406 if (seed) {
6407 struct ice_aqc_get_set_rss_keys *buf =
6408 (struct ice_aqc_get_set_rss_keys *)seed;
6409
6410 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6411 if (status) {
6412 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6413 ice_stat_str(status),
6414 ice_aq_str(hw->adminq.sq_last_status));
6415 return -EIO;
6416 }
6417 }
6418
6419 if (lut) {
6420 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6421 lut, lut_size);
6422 if (status) {
6423 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6424 ice_stat_str(status),
6425 ice_aq_str(hw->adminq.sq_last_status));
6426 return -EIO;
6427 }
6428 }
6429
6430 return 0;
6431 }
6432
6433 /**
6434 * ice_bridge_getlink - Get the hardware bridge mode
6435 * @skb: skb buff
6436 * @pid: process ID
6437 * @seq: RTNL message seq
6438 * @dev: the netdev being configured
6439 * @filter_mask: filter mask passed in
6440 * @nlflags: netlink flags passed in
6441 *
6442 * Return the bridge mode (VEB/VEPA)
6443 */
6444 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6445 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6446 struct net_device *dev, u32 filter_mask, int nlflags)
6447 {
6448 struct ice_netdev_priv *np = netdev_priv(dev);
6449 struct ice_vsi *vsi = np->vsi;
6450 struct ice_pf *pf = vsi->back;
6451 u16 bmode;
6452
6453 bmode = pf->first_sw->bridge_mode;
6454
6455 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6456 filter_mask, NULL);
6457 }
6458
6459 /**
6460 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6461 * @vsi: Pointer to VSI structure
6462 * @bmode: Hardware bridge mode (VEB/VEPA)
6463 *
6464 * Returns 0 on success, negative on failure
6465 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6466 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6467 {
6468 struct ice_aqc_vsi_props *vsi_props;
6469 struct ice_hw *hw = &vsi->back->hw;
6470 struct ice_vsi_ctx *ctxt;
6471 enum ice_status status;
6472 int ret = 0;
6473
6474 vsi_props = &vsi->info;
6475
6476 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6477 if (!ctxt)
6478 return -ENOMEM;
6479
6480 ctxt->info = vsi->info;
6481
6482 if (bmode == BRIDGE_MODE_VEB)
6483 /* change from VEPA to VEB mode */
6484 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6485 else
6486 /* change from VEB to VEPA mode */
6487 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6488 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6489
6490 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6491 if (status) {
6492 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6493 bmode, ice_stat_str(status),
6494 ice_aq_str(hw->adminq.sq_last_status));
6495 ret = -EIO;
6496 goto out;
6497 }
6498 /* Update sw flags for book keeping */
6499 vsi_props->sw_flags = ctxt->info.sw_flags;
6500
6501 out:
6502 kfree(ctxt);
6503 return ret;
6504 }
6505
6506 /**
6507 * ice_bridge_setlink - Set the hardware bridge mode
6508 * @dev: the netdev being configured
6509 * @nlh: RTNL message
6510 * @flags: bridge setlink flags
6511 * @extack: netlink extended ack
6512 *
6513 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6514 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6515 * not already set for all VSIs connected to this switch. And also update the
6516 * unicast switch filter rules for the corresponding switch of the netdev.
6517 */
6518 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6519 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6520 u16 __always_unused flags,
6521 struct netlink_ext_ack __always_unused *extack)
6522 {
6523 struct ice_netdev_priv *np = netdev_priv(dev);
6524 struct ice_pf *pf = np->vsi->back;
6525 struct nlattr *attr, *br_spec;
6526 struct ice_hw *hw = &pf->hw;
6527 enum ice_status status;
6528 struct ice_sw *pf_sw;
6529 int rem, v, err = 0;
6530
6531 pf_sw = pf->first_sw;
6532 /* find the attribute in the netlink message */
6533 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6534
6535 nla_for_each_nested(attr, br_spec, rem) {
6536 __u16 mode;
6537
6538 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6539 continue;
6540 mode = nla_get_u16(attr);
6541 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6542 return -EINVAL;
6543 /* Continue if bridge mode is not being flipped */
6544 if (mode == pf_sw->bridge_mode)
6545 continue;
6546 /* Iterates through the PF VSI list and update the loopback
6547 * mode of the VSI
6548 */
6549 ice_for_each_vsi(pf, v) {
6550 if (!pf->vsi[v])
6551 continue;
6552 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6553 if (err)
6554 return err;
6555 }
6556
6557 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6558 /* Update the unicast switch filter rules for the corresponding
6559 * switch of the netdev
6560 */
6561 status = ice_update_sw_rule_bridge_mode(hw);
6562 if (status) {
6563 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6564 mode, ice_stat_str(status),
6565 ice_aq_str(hw->adminq.sq_last_status));
6566 /* revert hw->evb_veb */
6567 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6568 return -EIO;
6569 }
6570
6571 pf_sw->bridge_mode = mode;
6572 }
6573
6574 return 0;
6575 }
6576
6577 /**
6578 * ice_tx_timeout - Respond to a Tx Hang
6579 * @netdev: network interface device structure
6580 * @txqueue: Tx queue
6581 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6582 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6583 {
6584 struct ice_netdev_priv *np = netdev_priv(netdev);
6585 struct ice_ring *tx_ring = NULL;
6586 struct ice_vsi *vsi = np->vsi;
6587 struct ice_pf *pf = vsi->back;
6588 u32 i;
6589
6590 pf->tx_timeout_count++;
6591
6592 /* Check if PFC is enabled for the TC to which the queue belongs
6593 * to. If yes then Tx timeout is not caused by a hung queue, no
6594 * need to reset and rebuild
6595 */
6596 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6597 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6598 txqueue);
6599 return;
6600 }
6601
6602 /* now that we have an index, find the tx_ring struct */
6603 for (i = 0; i < vsi->num_txq; i++)
6604 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6605 if (txqueue == vsi->tx_rings[i]->q_index) {
6606 tx_ring = vsi->tx_rings[i];
6607 break;
6608 }
6609
6610 /* Reset recovery level if enough time has elapsed after last timeout.
6611 * Also ensure no new reset action happens before next timeout period.
6612 */
6613 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6614 pf->tx_timeout_recovery_level = 1;
6615 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6616 netdev->watchdog_timeo)))
6617 return;
6618
6619 if (tx_ring) {
6620 struct ice_hw *hw = &pf->hw;
6621 u32 head, val = 0;
6622
6623 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6624 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6625 /* Read interrupt register */
6626 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6627
6628 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6629 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6630 head, tx_ring->next_to_use, val);
6631 }
6632
6633 pf->tx_timeout_last_recovery = jiffies;
6634 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6635 pf->tx_timeout_recovery_level, txqueue);
6636
6637 switch (pf->tx_timeout_recovery_level) {
6638 case 1:
6639 set_bit(__ICE_PFR_REQ, pf->state);
6640 break;
6641 case 2:
6642 set_bit(__ICE_CORER_REQ, pf->state);
6643 break;
6644 case 3:
6645 set_bit(__ICE_GLOBR_REQ, pf->state);
6646 break;
6647 default:
6648 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6649 set_bit(__ICE_DOWN, pf->state);
6650 set_bit(__ICE_NEEDS_RESTART, vsi->state);
6651 set_bit(__ICE_SERVICE_DIS, pf->state);
6652 break;
6653 }
6654
6655 ice_service_task_schedule(pf);
6656 pf->tx_timeout_recovery_level++;
6657 }
6658
6659 /**
6660 * ice_open - Called when a network interface becomes active
6661 * @netdev: network interface device structure
6662 *
6663 * The open entry point is called when a network interface is made
6664 * active by the system (IFF_UP). At this point all resources needed
6665 * for transmit and receive operations are allocated, the interrupt
6666 * handler is registered with the OS, the netdev watchdog is enabled,
6667 * and the stack is notified that the interface is ready.
6668 *
6669 * Returns 0 on success, negative value on failure
6670 */
ice_open(struct net_device * netdev)6671 int ice_open(struct net_device *netdev)
6672 {
6673 struct ice_netdev_priv *np = netdev_priv(netdev);
6674 struct ice_pf *pf = np->vsi->back;
6675
6676 if (ice_is_reset_in_progress(pf->state)) {
6677 netdev_err(netdev, "can't open net device while reset is in progress");
6678 return -EBUSY;
6679 }
6680
6681 return ice_open_internal(netdev);
6682 }
6683
6684 /**
6685 * ice_open_internal - Called when a network interface becomes active
6686 * @netdev: network interface device structure
6687 *
6688 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6689 * handling routine
6690 *
6691 * Returns 0 on success, negative value on failure
6692 */
ice_open_internal(struct net_device * netdev)6693 int ice_open_internal(struct net_device *netdev)
6694 {
6695 struct ice_netdev_priv *np = netdev_priv(netdev);
6696 struct ice_vsi *vsi = np->vsi;
6697 struct ice_pf *pf = vsi->back;
6698 struct ice_port_info *pi;
6699 int err;
6700
6701 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6702 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6703 return -EIO;
6704 }
6705
6706 if (test_bit(__ICE_DOWN, pf->state)) {
6707 netdev_err(netdev, "device is not ready yet\n");
6708 return -EBUSY;
6709 }
6710
6711 netif_carrier_off(netdev);
6712
6713 pi = vsi->port_info;
6714 err = ice_update_link_info(pi);
6715 if (err) {
6716 netdev_err(netdev, "Failed to get link info, error %d\n",
6717 err);
6718 return err;
6719 }
6720
6721 /* Set PHY if there is media, otherwise, turn off PHY */
6722 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6723 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6724 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6725 err = ice_init_phy_user_cfg(pi);
6726 if (err) {
6727 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6728 err);
6729 return err;
6730 }
6731 }
6732
6733 err = ice_configure_phy(vsi);
6734 if (err) {
6735 netdev_err(netdev, "Failed to set physical link up, error %d\n",
6736 err);
6737 return err;
6738 }
6739 } else {
6740 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6741 err = ice_aq_set_link_restart_an(pi, false, NULL);
6742 if (err) {
6743 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6744 vsi->vsi_num, err);
6745 return err;
6746 }
6747 }
6748
6749 err = ice_vsi_open(vsi);
6750 if (err)
6751 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6752 vsi->vsi_num, vsi->vsw->sw_id);
6753
6754 /* Update existing tunnels information */
6755 udp_tunnel_get_rx_info(netdev);
6756
6757 return err;
6758 }
6759
6760 /**
6761 * ice_stop - Disables a network interface
6762 * @netdev: network interface device structure
6763 *
6764 * The stop entry point is called when an interface is de-activated by the OS,
6765 * and the netdevice enters the DOWN state. The hardware is still under the
6766 * driver's control, but the netdev interface is disabled.
6767 *
6768 * Returns success only - not allowed to fail
6769 */
ice_stop(struct net_device * netdev)6770 int ice_stop(struct net_device *netdev)
6771 {
6772 struct ice_netdev_priv *np = netdev_priv(netdev);
6773 struct ice_vsi *vsi = np->vsi;
6774 struct ice_pf *pf = vsi->back;
6775
6776 if (ice_is_reset_in_progress(pf->state)) {
6777 netdev_err(netdev, "can't stop net device while reset is in progress");
6778 return -EBUSY;
6779 }
6780
6781 ice_vsi_close(vsi);
6782
6783 return 0;
6784 }
6785
6786 /**
6787 * ice_features_check - Validate encapsulated packet conforms to limits
6788 * @skb: skb buffer
6789 * @netdev: This port's netdev
6790 * @features: Offload features that the stack believes apply
6791 */
6792 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6793 ice_features_check(struct sk_buff *skb,
6794 struct net_device __always_unused *netdev,
6795 netdev_features_t features)
6796 {
6797 size_t len;
6798
6799 /* No point in doing any of this if neither checksum nor GSO are
6800 * being requested for this frame. We can rule out both by just
6801 * checking for CHECKSUM_PARTIAL
6802 */
6803 if (skb->ip_summed != CHECKSUM_PARTIAL)
6804 return features;
6805
6806 /* We cannot support GSO if the MSS is going to be less than
6807 * 64 bytes. If it is then we need to drop support for GSO.
6808 */
6809 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6810 features &= ~NETIF_F_GSO_MASK;
6811
6812 len = skb_network_header(skb) - skb->data;
6813 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6814 goto out_rm_features;
6815
6816 len = skb_transport_header(skb) - skb_network_header(skb);
6817 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6818 goto out_rm_features;
6819
6820 if (skb->encapsulation) {
6821 len = skb_inner_network_header(skb) - skb_transport_header(skb);
6822 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6823 goto out_rm_features;
6824
6825 len = skb_inner_transport_header(skb) -
6826 skb_inner_network_header(skb);
6827 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6828 goto out_rm_features;
6829 }
6830
6831 return features;
6832 out_rm_features:
6833 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6834 }
6835
6836 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6837 .ndo_open = ice_open,
6838 .ndo_stop = ice_stop,
6839 .ndo_start_xmit = ice_start_xmit,
6840 .ndo_set_mac_address = ice_set_mac_address,
6841 .ndo_validate_addr = eth_validate_addr,
6842 .ndo_change_mtu = ice_change_mtu,
6843 .ndo_get_stats64 = ice_get_stats64,
6844 .ndo_tx_timeout = ice_tx_timeout,
6845 .ndo_bpf = ice_xdp_safe_mode,
6846 };
6847
6848 static const struct net_device_ops ice_netdev_ops = {
6849 .ndo_open = ice_open,
6850 .ndo_stop = ice_stop,
6851 .ndo_start_xmit = ice_start_xmit,
6852 .ndo_features_check = ice_features_check,
6853 .ndo_set_rx_mode = ice_set_rx_mode,
6854 .ndo_set_mac_address = ice_set_mac_address,
6855 .ndo_validate_addr = eth_validate_addr,
6856 .ndo_change_mtu = ice_change_mtu,
6857 .ndo_get_stats64 = ice_get_stats64,
6858 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
6859 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6860 .ndo_set_vf_mac = ice_set_vf_mac,
6861 .ndo_get_vf_config = ice_get_vf_cfg,
6862 .ndo_set_vf_trust = ice_set_vf_trust,
6863 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
6864 .ndo_set_vf_link_state = ice_set_vf_link_state,
6865 .ndo_get_vf_stats = ice_get_vf_stats,
6866 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6867 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6868 .ndo_set_features = ice_set_features,
6869 .ndo_bridge_getlink = ice_bridge_getlink,
6870 .ndo_bridge_setlink = ice_bridge_setlink,
6871 .ndo_fdb_add = ice_fdb_add,
6872 .ndo_fdb_del = ice_fdb_del,
6873 #ifdef CONFIG_RFS_ACCEL
6874 .ndo_rx_flow_steer = ice_rx_flow_steer,
6875 #endif
6876 .ndo_tx_timeout = ice_tx_timeout,
6877 .ndo_bpf = ice_xdp,
6878 .ndo_xdp_xmit = ice_xdp_xmit,
6879 .ndo_xsk_wakeup = ice_xsk_wakeup,
6880 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6881 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6882 };
6883