• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 
17 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20 
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
24 
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29 
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37 
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42 
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44 
45 static void ice_vsi_release_all(struct ice_pf *pf);
46 
47 /**
48  * ice_get_tx_pending - returns number of Tx descriptors not processed
49  * @ring: the ring of descriptors
50  */
ice_get_tx_pending(struct ice_ring * ring)51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 	u16 head, tail;
54 
55 	head = ring->next_to_clean;
56 	tail = ring->next_to_use;
57 
58 	if (head != tail)
59 		return (head < tail) ?
60 			tail - head : (tail + ring->count - head);
61 	return 0;
62 }
63 
64 /**
65  * ice_check_for_hang_subtask - check for and recover hung queues
66  * @pf: pointer to PF struct
67  */
ice_check_for_hang_subtask(struct ice_pf * pf)68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 	struct ice_vsi *vsi = NULL;
71 	struct ice_hw *hw;
72 	unsigned int i;
73 	int packets;
74 	u32 v;
75 
76 	ice_for_each_vsi(pf, v)
77 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 			vsi = pf->vsi[v];
79 			break;
80 		}
81 
82 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 		return;
84 
85 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 		return;
87 
88 	hw = &vsi->back->hw;
89 
90 	for (i = 0; i < vsi->num_txq; i++) {
91 		struct ice_ring *tx_ring = vsi->tx_rings[i];
92 
93 		if (tx_ring && tx_ring->desc) {
94 			/* If packet counter has not changed the queue is
95 			 * likely stalled, so force an interrupt for this
96 			 * queue.
97 			 *
98 			 * prev_pkt would be negative if there was no
99 			 * pending work.
100 			 */
101 			packets = tx_ring->stats.pkts & INT_MAX;
102 			if (tx_ring->tx_stats.prev_pkt == packets) {
103 				/* Trigger sw interrupt to revive the queue */
104 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 				continue;
106 			}
107 
108 			/* Memory barrier between read of packet count and call
109 			 * to ice_get_tx_pending()
110 			 */
111 			smp_rmb();
112 			tx_ring->tx_stats.prev_pkt =
113 			    ice_get_tx_pending(tx_ring) ? packets : -1;
114 		}
115 	}
116 }
117 
118 /**
119  * ice_init_mac_fltr - Set initial MAC filters
120  * @pf: board private structure
121  *
122  * Set initial set of MAC filters for PF VSI; configure filters for permanent
123  * address and broadcast address. If an error is encountered, netdevice will be
124  * unregistered.
125  */
ice_init_mac_fltr(struct ice_pf * pf)126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 	enum ice_status status;
129 	struct ice_vsi *vsi;
130 	u8 *perm_addr;
131 
132 	vsi = ice_get_main_vsi(pf);
133 	if (!vsi)
134 		return -EINVAL;
135 
136 	perm_addr = vsi->port_info->mac.perm_addr;
137 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 	if (!status)
139 		return 0;
140 
141 	/* We aren't useful with no MAC filters, so unregister if we
142 	 * had an error
143 	 */
144 	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 			ice_stat_str(status));
147 		unregister_netdev(vsi->netdev);
148 		free_netdev(vsi->netdev);
149 		vsi->netdev = NULL;
150 	}
151 
152 	return -EIO;
153 }
154 
155 /**
156  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157  * @netdev: the net device on which the sync is happening
158  * @addr: MAC address to sync
159  *
160  * This is a callback function which is called by the in kernel device sync
161  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163  * MAC filters from the hardware.
164  */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 	struct ice_netdev_priv *np = netdev_priv(netdev);
168 	struct ice_vsi *vsi = np->vsi;
169 
170 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 				     ICE_FWD_TO_VSI))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 /**
178  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179  * @netdev: the net device on which the unsync is happening
180  * @addr: MAC address to unsync
181  *
182  * This is a callback function which is called by the in kernel device unsync
183  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185  * delete the MAC filters from the hardware.
186  */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 	struct ice_netdev_priv *np = netdev_priv(netdev);
190 	struct ice_vsi *vsi = np->vsi;
191 
192 	/* Under some circumstances, we might receive a request to delete our
193 	 * own device address from our uc list. Because we store the device
194 	 * address in the VSI's MAC filter list, we need to ignore such
195 	 * requests and not delete our device address from this list.
196 	 */
197 	if (ether_addr_equal(addr, netdev->dev_addr))
198 		return 0;
199 
200 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
201 				     ICE_FWD_TO_VSI))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 
207 /**
208  * ice_vsi_fltr_changed - check if filter state changed
209  * @vsi: VSI to be checked
210  *
211  * returns true if filter state has changed, false otherwise.
212  */
ice_vsi_fltr_changed(struct ice_vsi * vsi)213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
214 {
215 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
216 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
217 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
218 }
219 
220 /**
221  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
222  * @vsi: the VSI being configured
223  * @promisc_m: mask of promiscuous config bits
224  * @set_promisc: enable or disable promisc flag request
225  *
226  */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
228 {
229 	struct ice_hw *hw = &vsi->back->hw;
230 	enum ice_status status = 0;
231 
232 	if (vsi->type != ICE_VSI_PF)
233 		return 0;
234 
235 	if (vsi->vlan_ena) {
236 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
237 						  set_promisc);
238 	} else {
239 		if (set_promisc)
240 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
241 						     0);
242 		else
243 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
244 						       0);
245 	}
246 
247 	if (status)
248 		return -EIO;
249 
250 	return 0;
251 }
252 
253 /**
254  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
255  * @vsi: ptr to the VSI
256  *
257  * Push any outstanding VSI filter changes through the AdminQ.
258  */
ice_vsi_sync_fltr(struct ice_vsi * vsi)259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
260 {
261 	struct device *dev = ice_pf_to_dev(vsi->back);
262 	struct net_device *netdev = vsi->netdev;
263 	bool promisc_forced_on = false;
264 	struct ice_pf *pf = vsi->back;
265 	struct ice_hw *hw = &pf->hw;
266 	enum ice_status status = 0;
267 	u32 changed_flags = 0;
268 	u8 promisc_m;
269 	int err = 0;
270 
271 	if (!vsi->netdev)
272 		return -EINVAL;
273 
274 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
275 		usleep_range(1000, 2000);
276 
277 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
278 	vsi->current_netdev_flags = vsi->netdev->flags;
279 
280 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
281 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
282 
283 	if (ice_vsi_fltr_changed(vsi)) {
284 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
285 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
286 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
287 
288 		/* grab the netdev's addr_list_lock */
289 		netif_addr_lock_bh(netdev);
290 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
291 			      ice_add_mac_to_unsync_list);
292 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
293 			      ice_add_mac_to_unsync_list);
294 		/* our temp lists are populated. release lock */
295 		netif_addr_unlock_bh(netdev);
296 	}
297 
298 	/* Remove MAC addresses in the unsync list */
299 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
300 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
301 	if (status) {
302 		netdev_err(netdev, "Failed to delete MAC filters\n");
303 		/* if we failed because of alloc failures, just bail */
304 		if (status == ICE_ERR_NO_MEMORY) {
305 			err = -ENOMEM;
306 			goto out;
307 		}
308 	}
309 
310 	/* Add MAC addresses in the sync list */
311 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
312 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
313 	/* If filter is added successfully or already exists, do not go into
314 	 * 'if' condition and report it as error. Instead continue processing
315 	 * rest of the function.
316 	 */
317 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
318 		netdev_err(netdev, "Failed to add MAC filters\n");
319 		/* If there is no more space for new umac filters, VSI
320 		 * should go into promiscuous mode. There should be some
321 		 * space reserved for promiscuous filters.
322 		 */
323 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
324 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
325 				      vsi->state)) {
326 			promisc_forced_on = true;
327 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
328 				    vsi->vsi_num);
329 		} else {
330 			err = -EIO;
331 			goto out;
332 		}
333 	}
334 	/* check for changes in promiscuous modes */
335 	if (changed_flags & IFF_ALLMULTI) {
336 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
337 			if (vsi->vlan_ena)
338 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 			else
340 				promisc_m = ICE_MCAST_PROMISC_BITS;
341 
342 			err = ice_cfg_promisc(vsi, promisc_m, true);
343 			if (err) {
344 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
345 					   vsi->vsi_num);
346 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
347 				goto out_promisc;
348 			}
349 		} else {
350 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
351 			if (vsi->vlan_ena)
352 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
353 			else
354 				promisc_m = ICE_MCAST_PROMISC_BITS;
355 
356 			err = ice_cfg_promisc(vsi, promisc_m, false);
357 			if (err) {
358 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
359 					   vsi->vsi_num);
360 				vsi->current_netdev_flags |= IFF_ALLMULTI;
361 				goto out_promisc;
362 			}
363 		}
364 	}
365 
366 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
367 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
368 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
369 		if (vsi->current_netdev_flags & IFF_PROMISC) {
370 			/* Apply Rx filter rule to get traffic from wire */
371 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
372 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
373 				if (err && err != -EEXIST) {
374 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
375 						   err, vsi->vsi_num);
376 					vsi->current_netdev_flags &=
377 						~IFF_PROMISC;
378 					goto out_promisc;
379 				}
380 				ice_cfg_vlan_pruning(vsi, false, false);
381 			}
382 		} else {
383 			/* Clear Rx filter to remove traffic from wire */
384 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
385 				err = ice_clear_dflt_vsi(pf->first_sw);
386 				if (err) {
387 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
388 						   err, vsi->vsi_num);
389 					vsi->current_netdev_flags |=
390 						IFF_PROMISC;
391 					goto out_promisc;
392 				}
393 				if (vsi->num_vlan > 1)
394 					ice_cfg_vlan_pruning(vsi, true, false);
395 			}
396 		}
397 	}
398 	goto exit;
399 
400 out_promisc:
401 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
402 	goto exit;
403 out:
404 	/* if something went wrong then set the changed flag so we try again */
405 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
406 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
407 exit:
408 	clear_bit(__ICE_CFG_BUSY, vsi->state);
409 	return err;
410 }
411 
412 /**
413  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
414  * @pf: board private structure
415  */
ice_sync_fltr_subtask(struct ice_pf * pf)416 static void ice_sync_fltr_subtask(struct ice_pf *pf)
417 {
418 	int v;
419 
420 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
421 		return;
422 
423 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
424 
425 	ice_for_each_vsi(pf, v)
426 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
427 		    ice_vsi_sync_fltr(pf->vsi[v])) {
428 			/* come back and try again later */
429 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 			break;
431 		}
432 }
433 
434 /**
435  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
436  * @pf: the PF
437  * @locked: is the rtnl_lock already held
438  */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)439 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
440 {
441 	int v;
442 
443 	ice_for_each_vsi(pf, v)
444 		if (pf->vsi[v])
445 			ice_dis_vsi(pf->vsi[v], locked);
446 }
447 
448 /**
449  * ice_prepare_for_reset - prep for the core to reset
450  * @pf: board private structure
451  *
452  * Inform or close all dependent features in prep for reset.
453  */
454 static void
ice_prepare_for_reset(struct ice_pf * pf)455 ice_prepare_for_reset(struct ice_pf *pf)
456 {
457 	struct ice_hw *hw = &pf->hw;
458 	unsigned int i;
459 
460 	/* already prepared for reset */
461 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
462 		return;
463 
464 	/* Notify VFs of impending reset */
465 	if (ice_check_sq_alive(hw, &hw->mailboxq))
466 		ice_vc_notify_reset(pf);
467 
468 	/* Disable VFs until reset is completed */
469 	ice_for_each_vf(pf, i)
470 		ice_set_vf_state_qs_dis(&pf->vf[i]);
471 
472 	/* clear SW filtering DB */
473 	ice_clear_hw_tbls(hw);
474 	/* disable the VSIs and their queues that are not already DOWN */
475 	ice_pf_dis_all_vsi(pf, false);
476 
477 	if (hw->port_info)
478 		ice_sched_clear_port(hw->port_info);
479 
480 	ice_shutdown_all_ctrlq(hw);
481 
482 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
483 }
484 
485 /**
486  * ice_do_reset - Initiate one of many types of resets
487  * @pf: board private structure
488  * @reset_type: reset type requested
489  * before this function was called.
490  */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
492 {
493 	struct device *dev = ice_pf_to_dev(pf);
494 	struct ice_hw *hw = &pf->hw;
495 
496 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
497 
498 	ice_prepare_for_reset(pf);
499 
500 	/* trigger the reset */
501 	if (ice_reset(hw, reset_type)) {
502 		dev_err(dev, "reset %d failed\n", reset_type);
503 		set_bit(__ICE_RESET_FAILED, pf->state);
504 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
505 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
506 		clear_bit(__ICE_PFR_REQ, pf->state);
507 		clear_bit(__ICE_CORER_REQ, pf->state);
508 		clear_bit(__ICE_GLOBR_REQ, pf->state);
509 		return;
510 	}
511 
512 	/* PFR is a bit of a special case because it doesn't result in an OICR
513 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
514 	 * associated state bits.
515 	 */
516 	if (reset_type == ICE_RESET_PFR) {
517 		pf->pfr_count++;
518 		ice_rebuild(pf, reset_type);
519 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
520 		clear_bit(__ICE_PFR_REQ, pf->state);
521 		ice_reset_all_vfs(pf, true);
522 	}
523 }
524 
525 /**
526  * ice_reset_subtask - Set up for resetting the device and driver
527  * @pf: board private structure
528  */
ice_reset_subtask(struct ice_pf * pf)529 static void ice_reset_subtask(struct ice_pf *pf)
530 {
531 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
532 
533 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
534 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
535 	 * of reset is pending and sets bits in pf->state indicating the reset
536 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
537 	 * prepare for pending reset if not already (for PF software-initiated
538 	 * global resets the software should already be prepared for it as
539 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
540 	 * by firmware or software on other PFs, that bit is not set so prepare
541 	 * for the reset now), poll for reset done, rebuild and return.
542 	 */
543 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
544 		/* Perform the largest reset requested */
545 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
546 			reset_type = ICE_RESET_CORER;
547 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
548 			reset_type = ICE_RESET_GLOBR;
549 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
550 			reset_type = ICE_RESET_EMPR;
551 		/* return if no valid reset type requested */
552 		if (reset_type == ICE_RESET_INVAL)
553 			return;
554 		ice_prepare_for_reset(pf);
555 
556 		/* make sure we are ready to rebuild */
557 		if (ice_check_reset(&pf->hw)) {
558 			set_bit(__ICE_RESET_FAILED, pf->state);
559 		} else {
560 			/* done with reset. start rebuild */
561 			pf->hw.reset_ongoing = false;
562 			ice_rebuild(pf, reset_type);
563 			/* clear bit to resume normal operations, but
564 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
565 			 */
566 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
567 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
568 			clear_bit(__ICE_PFR_REQ, pf->state);
569 			clear_bit(__ICE_CORER_REQ, pf->state);
570 			clear_bit(__ICE_GLOBR_REQ, pf->state);
571 			ice_reset_all_vfs(pf, true);
572 		}
573 
574 		return;
575 	}
576 
577 	/* No pending resets to finish processing. Check for new resets */
578 	if (test_bit(__ICE_PFR_REQ, pf->state))
579 		reset_type = ICE_RESET_PFR;
580 	if (test_bit(__ICE_CORER_REQ, pf->state))
581 		reset_type = ICE_RESET_CORER;
582 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
583 		reset_type = ICE_RESET_GLOBR;
584 	/* If no valid reset type requested just return */
585 	if (reset_type == ICE_RESET_INVAL)
586 		return;
587 
588 	/* reset if not already down or busy */
589 	if (!test_bit(__ICE_DOWN, pf->state) &&
590 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
591 		ice_do_reset(pf, reset_type);
592 	}
593 }
594 
595 /**
596  * ice_print_topo_conflict - print topology conflict message
597  * @vsi: the VSI whose topology status is being checked
598  */
ice_print_topo_conflict(struct ice_vsi * vsi)599 static void ice_print_topo_conflict(struct ice_vsi *vsi)
600 {
601 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
602 	case ICE_AQ_LINK_TOPO_CONFLICT:
603 	case ICE_AQ_LINK_MEDIA_CONFLICT:
604 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
605 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
606 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
607 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
608 		break;
609 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
610 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
611 		break;
612 	default:
613 		break;
614 	}
615 }
616 
617 /**
618  * ice_print_link_msg - print link up or down message
619  * @vsi: the VSI whose link status is being queried
620  * @isup: boolean for if the link is now up or down
621  */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
623 {
624 	struct ice_aqc_get_phy_caps_data *caps;
625 	const char *an_advertised;
626 	enum ice_status status;
627 	const char *fec_req;
628 	const char *speed;
629 	const char *fec;
630 	const char *fc;
631 	const char *an;
632 
633 	if (!vsi)
634 		return;
635 
636 	if (vsi->current_isup == isup)
637 		return;
638 
639 	vsi->current_isup = isup;
640 
641 	if (!isup) {
642 		netdev_info(vsi->netdev, "NIC Link is Down\n");
643 		return;
644 	}
645 
646 	switch (vsi->port_info->phy.link_info.link_speed) {
647 	case ICE_AQ_LINK_SPEED_100GB:
648 		speed = "100 G";
649 		break;
650 	case ICE_AQ_LINK_SPEED_50GB:
651 		speed = "50 G";
652 		break;
653 	case ICE_AQ_LINK_SPEED_40GB:
654 		speed = "40 G";
655 		break;
656 	case ICE_AQ_LINK_SPEED_25GB:
657 		speed = "25 G";
658 		break;
659 	case ICE_AQ_LINK_SPEED_20GB:
660 		speed = "20 G";
661 		break;
662 	case ICE_AQ_LINK_SPEED_10GB:
663 		speed = "10 G";
664 		break;
665 	case ICE_AQ_LINK_SPEED_5GB:
666 		speed = "5 G";
667 		break;
668 	case ICE_AQ_LINK_SPEED_2500MB:
669 		speed = "2.5 G";
670 		break;
671 	case ICE_AQ_LINK_SPEED_1000MB:
672 		speed = "1 G";
673 		break;
674 	case ICE_AQ_LINK_SPEED_100MB:
675 		speed = "100 M";
676 		break;
677 	default:
678 		speed = "Unknown";
679 		break;
680 	}
681 
682 	switch (vsi->port_info->fc.current_mode) {
683 	case ICE_FC_FULL:
684 		fc = "Rx/Tx";
685 		break;
686 	case ICE_FC_TX_PAUSE:
687 		fc = "Tx";
688 		break;
689 	case ICE_FC_RX_PAUSE:
690 		fc = "Rx";
691 		break;
692 	case ICE_FC_NONE:
693 		fc = "None";
694 		break;
695 	default:
696 		fc = "Unknown";
697 		break;
698 	}
699 
700 	/* Get FEC mode based on negotiated link info */
701 	switch (vsi->port_info->phy.link_info.fec_info) {
702 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
703 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
704 		fec = "RS-FEC";
705 		break;
706 	case ICE_AQ_LINK_25G_KR_FEC_EN:
707 		fec = "FC-FEC/BASE-R";
708 		break;
709 	default:
710 		fec = "NONE";
711 		break;
712 	}
713 
714 	/* check if autoneg completed, might be false due to not supported */
715 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
716 		an = "True";
717 	else
718 		an = "False";
719 
720 	/* Get FEC mode requested based on PHY caps last SW configuration */
721 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
722 	if (!caps) {
723 		fec_req = "Unknown";
724 		an_advertised = "Unknown";
725 		goto done;
726 	}
727 
728 	status = ice_aq_get_phy_caps(vsi->port_info, false,
729 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
730 	if (status)
731 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
732 
733 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
734 
735 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
736 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
737 		fec_req = "RS-FEC";
738 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
739 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
740 		fec_req = "FC-FEC/BASE-R";
741 	else
742 		fec_req = "NONE";
743 
744 	kfree(caps);
745 
746 done:
747 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
748 		    speed, fec_req, fec, an_advertised, an, fc);
749 	ice_print_topo_conflict(vsi);
750 }
751 
752 /**
753  * ice_vsi_link_event - update the VSI's netdev
754  * @vsi: the VSI on which the link event occurred
755  * @link_up: whether or not the VSI needs to be set up or down
756  */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
758 {
759 	if (!vsi)
760 		return;
761 
762 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
763 		return;
764 
765 	if (vsi->type == ICE_VSI_PF) {
766 		if (link_up == netif_carrier_ok(vsi->netdev))
767 			return;
768 
769 		if (link_up) {
770 			netif_carrier_on(vsi->netdev);
771 			netif_tx_wake_all_queues(vsi->netdev);
772 		} else {
773 			netif_carrier_off(vsi->netdev);
774 			netif_tx_stop_all_queues(vsi->netdev);
775 		}
776 	}
777 }
778 
779 /**
780  * ice_set_dflt_mib - send a default config MIB to the FW
781  * @pf: private PF struct
782  *
783  * This function sends a default configuration MIB to the FW.
784  *
785  * If this function errors out at any point, the driver is still able to
786  * function.  The main impact is that LFC may not operate as expected.
787  * Therefore an error state in this function should be treated with a DBG
788  * message and continue on with driver rebuild/reenable.
789  */
ice_set_dflt_mib(struct ice_pf * pf)790 static void ice_set_dflt_mib(struct ice_pf *pf)
791 {
792 	struct device *dev = ice_pf_to_dev(pf);
793 	u8 mib_type, *buf, *lldpmib = NULL;
794 	u16 len, typelen, offset = 0;
795 	struct ice_lldp_org_tlv *tlv;
796 	struct ice_hw *hw;
797 	u32 ouisubtype;
798 
799 	if (!pf) {
800 		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
801 		return;
802 	}
803 
804 	hw = &pf->hw;
805 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
806 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
807 	if (!lldpmib) {
808 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
809 			__func__);
810 		return;
811 	}
812 
813 	/* Add ETS CFG TLV */
814 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
815 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
816 		   ICE_IEEE_ETS_TLV_LEN);
817 	tlv->typelen = htons(typelen);
818 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
819 		      ICE_IEEE_SUBTYPE_ETS_CFG);
820 	tlv->ouisubtype = htonl(ouisubtype);
821 
822 	buf = tlv->tlvinfo;
823 	buf[0] = 0;
824 
825 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
826 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
827 	 * Octets 13 - 20 are TSA values - leave as zeros
828 	 */
829 	buf[5] = 0x64;
830 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
831 	offset += len + 2;
832 	tlv = (struct ice_lldp_org_tlv *)
833 		((char *)tlv + sizeof(tlv->typelen) + len);
834 
835 	/* Add ETS REC TLV */
836 	buf = tlv->tlvinfo;
837 	tlv->typelen = htons(typelen);
838 
839 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
840 		      ICE_IEEE_SUBTYPE_ETS_REC);
841 	tlv->ouisubtype = htonl(ouisubtype);
842 
843 	/* First octet of buf is reserved
844 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
845 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
846 	 * Octets 13 - 20 are TSA value - leave as zeros
847 	 */
848 	buf[5] = 0x64;
849 	offset += len + 2;
850 	tlv = (struct ice_lldp_org_tlv *)
851 		((char *)tlv + sizeof(tlv->typelen) + len);
852 
853 	/* Add PFC CFG TLV */
854 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
855 		   ICE_IEEE_PFC_TLV_LEN);
856 	tlv->typelen = htons(typelen);
857 
858 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
859 		      ICE_IEEE_SUBTYPE_PFC_CFG);
860 	tlv->ouisubtype = htonl(ouisubtype);
861 
862 	/* Octet 1 left as all zeros - PFC disabled */
863 	buf[0] = 0x08;
864 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
865 	offset += len + 2;
866 
867 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
868 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
869 
870 	kfree(lldpmib);
871 }
872 
873 /**
874  * ice_link_event - process the link event
875  * @pf: PF that the link event is associated with
876  * @pi: port_info for the port that the link event is associated with
877  * @link_up: true if the physical link is up and false if it is down
878  * @link_speed: current link speed received from the link event
879  *
880  * Returns 0 on success and negative on failure
881  */
882 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)883 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
884 	       u16 link_speed)
885 {
886 	struct device *dev = ice_pf_to_dev(pf);
887 	struct ice_phy_info *phy_info;
888 	struct ice_vsi *vsi;
889 	u16 old_link_speed;
890 	bool old_link;
891 	int result;
892 
893 	phy_info = &pi->phy;
894 	phy_info->link_info_old = phy_info->link_info;
895 
896 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
897 	old_link_speed = phy_info->link_info_old.link_speed;
898 
899 	/* update the link info structures and re-enable link events,
900 	 * don't bail on failure due to other book keeping needed
901 	 */
902 	result = ice_update_link_info(pi);
903 	if (result)
904 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
905 			pi->lport);
906 
907 	/* Check if the link state is up after updating link info, and treat
908 	 * this event as an UP event since the link is actually UP now.
909 	 */
910 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
911 		link_up = true;
912 
913 	vsi = ice_get_main_vsi(pf);
914 	if (!vsi || !vsi->port_info)
915 		return -EINVAL;
916 
917 	/* turn off PHY if media was removed */
918 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
919 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
920 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
921 
922 		result = ice_aq_set_link_restart_an(pi, false, NULL);
923 		if (result) {
924 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
925 				vsi->vsi_num, result);
926 			return result;
927 		}
928 	}
929 
930 	/* if the old link up/down and speed is the same as the new */
931 	if (link_up == old_link && link_speed == old_link_speed)
932 		return result;
933 
934 	if (ice_is_dcb_active(pf)) {
935 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
936 			ice_dcb_rebuild(pf);
937 	} else {
938 		if (link_up)
939 			ice_set_dflt_mib(pf);
940 	}
941 	ice_vsi_link_event(vsi, link_up);
942 	ice_print_link_msg(vsi, link_up);
943 
944 	ice_vc_notify_link_state(pf);
945 
946 	return result;
947 }
948 
949 /**
950  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
951  * @pf: board private structure
952  */
ice_watchdog_subtask(struct ice_pf * pf)953 static void ice_watchdog_subtask(struct ice_pf *pf)
954 {
955 	int i;
956 
957 	/* if interface is down do nothing */
958 	if (test_bit(__ICE_DOWN, pf->state) ||
959 	    test_bit(__ICE_CFG_BUSY, pf->state))
960 		return;
961 
962 	/* make sure we don't do these things too often */
963 	if (time_before(jiffies,
964 			pf->serv_tmr_prev + pf->serv_tmr_period))
965 		return;
966 
967 	pf->serv_tmr_prev = jiffies;
968 
969 	/* Update the stats for active netdevs so the network stack
970 	 * can look at updated numbers whenever it cares to
971 	 */
972 	ice_update_pf_stats(pf);
973 	ice_for_each_vsi(pf, i)
974 		if (pf->vsi[i] && pf->vsi[i]->netdev)
975 			ice_update_vsi_stats(pf->vsi[i]);
976 }
977 
978 /**
979  * ice_init_link_events - enable/initialize link events
980  * @pi: pointer to the port_info instance
981  *
982  * Returns -EIO on failure, 0 on success
983  */
ice_init_link_events(struct ice_port_info * pi)984 static int ice_init_link_events(struct ice_port_info *pi)
985 {
986 	u16 mask;
987 
988 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
989 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
990 
991 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
992 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
993 			pi->lport);
994 		return -EIO;
995 	}
996 
997 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
998 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
999 			pi->lport);
1000 		return -EIO;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /**
1007  * ice_handle_link_event - handle link event via ARQ
1008  * @pf: PF that the link event is associated with
1009  * @event: event structure containing link status info
1010  */
1011 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1012 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1013 {
1014 	struct ice_aqc_get_link_status_data *link_data;
1015 	struct ice_port_info *port_info;
1016 	int status;
1017 
1018 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1019 	port_info = pf->hw.port_info;
1020 	if (!port_info)
1021 		return -EINVAL;
1022 
1023 	status = ice_link_event(pf, port_info,
1024 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1025 				le16_to_cpu(link_data->link_speed));
1026 	if (status)
1027 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1028 			status);
1029 
1030 	return status;
1031 }
1032 
1033 enum ice_aq_task_state {
1034 	ICE_AQ_TASK_WAITING = 0,
1035 	ICE_AQ_TASK_COMPLETE,
1036 	ICE_AQ_TASK_CANCELED,
1037 };
1038 
1039 struct ice_aq_task {
1040 	struct hlist_node entry;
1041 
1042 	u16 opcode;
1043 	struct ice_rq_event_info *event;
1044 	enum ice_aq_task_state state;
1045 };
1046 
1047 /**
1048  * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1049  * @pf: pointer to the PF private structure
1050  * @opcode: the opcode to wait for
1051  * @timeout: how long to wait, in jiffies
1052  * @event: storage for the event info
1053  *
1054  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1055  * current thread will be put to sleep until the specified event occurs or
1056  * until the given timeout is reached.
1057  *
1058  * To obtain only the descriptor contents, pass an event without an allocated
1059  * msg_buf. If the complete data buffer is desired, allocate the
1060  * event->msg_buf with enough space ahead of time.
1061  *
1062  * Returns: zero on success, or a negative error code on failure.
1063  */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1064 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1065 			  struct ice_rq_event_info *event)
1066 {
1067 	struct device *dev = ice_pf_to_dev(pf);
1068 	struct ice_aq_task *task;
1069 	unsigned long start;
1070 	long ret;
1071 	int err;
1072 
1073 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1074 	if (!task)
1075 		return -ENOMEM;
1076 
1077 	INIT_HLIST_NODE(&task->entry);
1078 	task->opcode = opcode;
1079 	task->event = event;
1080 	task->state = ICE_AQ_TASK_WAITING;
1081 
1082 	spin_lock_bh(&pf->aq_wait_lock);
1083 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1084 	spin_unlock_bh(&pf->aq_wait_lock);
1085 
1086 	start = jiffies;
1087 
1088 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1089 					       timeout);
1090 	switch (task->state) {
1091 	case ICE_AQ_TASK_WAITING:
1092 		err = ret < 0 ? ret : -ETIMEDOUT;
1093 		break;
1094 	case ICE_AQ_TASK_CANCELED:
1095 		err = ret < 0 ? ret : -ECANCELED;
1096 		break;
1097 	case ICE_AQ_TASK_COMPLETE:
1098 		err = ret < 0 ? ret : 0;
1099 		break;
1100 	default:
1101 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1102 		err = -EINVAL;
1103 		break;
1104 	}
1105 
1106 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1107 		jiffies_to_msecs(jiffies - start),
1108 		jiffies_to_msecs(timeout),
1109 		opcode);
1110 
1111 	spin_lock_bh(&pf->aq_wait_lock);
1112 	hlist_del(&task->entry);
1113 	spin_unlock_bh(&pf->aq_wait_lock);
1114 	kfree(task);
1115 
1116 	return err;
1117 }
1118 
1119 /**
1120  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1121  * @pf: pointer to the PF private structure
1122  * @opcode: the opcode of the event
1123  * @event: the event to check
1124  *
1125  * Loops over the current list of pending threads waiting for an AdminQ event.
1126  * For each matching task, copy the contents of the event into the task
1127  * structure and wake up the thread.
1128  *
1129  * If multiple threads wait for the same opcode, they will all be woken up.
1130  *
1131  * Note that event->msg_buf will only be duplicated if the event has a buffer
1132  * with enough space already allocated. Otherwise, only the descriptor and
1133  * message length will be copied.
1134  *
1135  * Returns: true if an event was found, false otherwise
1136  */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1137 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1138 				struct ice_rq_event_info *event)
1139 {
1140 	struct ice_rq_event_info *task_ev;
1141 	struct ice_aq_task *task;
1142 	bool found = false;
1143 
1144 	spin_lock_bh(&pf->aq_wait_lock);
1145 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1146 		if (task->state || task->opcode != opcode)
1147 			continue;
1148 
1149 		task_ev = task->event;
1150 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1151 		task_ev->msg_len = event->msg_len;
1152 
1153 		/* Only copy the data buffer if a destination was set */
1154 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1155 			memcpy(task_ev->msg_buf, event->msg_buf,
1156 			       event->buf_len);
1157 			task_ev->buf_len = event->buf_len;
1158 		}
1159 
1160 		task->state = ICE_AQ_TASK_COMPLETE;
1161 		found = true;
1162 	}
1163 	spin_unlock_bh(&pf->aq_wait_lock);
1164 
1165 	if (found)
1166 		wake_up(&pf->aq_wait_queue);
1167 }
1168 
1169 /**
1170  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1171  * @pf: the PF private structure
1172  *
1173  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1174  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1175  */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1176 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1177 {
1178 	struct ice_aq_task *task;
1179 
1180 	spin_lock_bh(&pf->aq_wait_lock);
1181 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1182 		task->state = ICE_AQ_TASK_CANCELED;
1183 	spin_unlock_bh(&pf->aq_wait_lock);
1184 
1185 	wake_up(&pf->aq_wait_queue);
1186 }
1187 
1188 /**
1189  * __ice_clean_ctrlq - helper function to clean controlq rings
1190  * @pf: ptr to struct ice_pf
1191  * @q_type: specific Control queue type
1192  */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1193 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1194 {
1195 	struct device *dev = ice_pf_to_dev(pf);
1196 	struct ice_rq_event_info event;
1197 	struct ice_hw *hw = &pf->hw;
1198 	struct ice_ctl_q_info *cq;
1199 	u16 pending, i = 0;
1200 	const char *qtype;
1201 	u32 oldval, val;
1202 
1203 	/* Do not clean control queue if/when PF reset fails */
1204 	if (test_bit(__ICE_RESET_FAILED, pf->state))
1205 		return 0;
1206 
1207 	switch (q_type) {
1208 	case ICE_CTL_Q_ADMIN:
1209 		cq = &hw->adminq;
1210 		qtype = "Admin";
1211 		break;
1212 	case ICE_CTL_Q_MAILBOX:
1213 		cq = &hw->mailboxq;
1214 		qtype = "Mailbox";
1215 		break;
1216 	default:
1217 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1218 		return 0;
1219 	}
1220 
1221 	/* check for error indications - PF_xx_AxQLEN register layout for
1222 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1223 	 */
1224 	val = rd32(hw, cq->rq.len);
1225 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1226 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1227 		oldval = val;
1228 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1229 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1230 				qtype);
1231 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1232 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1233 				qtype);
1234 		}
1235 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1236 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1237 				qtype);
1238 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1239 			 PF_FW_ARQLEN_ARQCRIT_M);
1240 		if (oldval != val)
1241 			wr32(hw, cq->rq.len, val);
1242 	}
1243 
1244 	val = rd32(hw, cq->sq.len);
1245 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1246 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1247 		oldval = val;
1248 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1249 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1250 				qtype);
1251 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1252 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1253 				qtype);
1254 		}
1255 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1256 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1257 				qtype);
1258 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1259 			 PF_FW_ATQLEN_ATQCRIT_M);
1260 		if (oldval != val)
1261 			wr32(hw, cq->sq.len, val);
1262 	}
1263 
1264 	event.buf_len = cq->rq_buf_size;
1265 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1266 	if (!event.msg_buf)
1267 		return 0;
1268 
1269 	do {
1270 		enum ice_status ret;
1271 		u16 opcode;
1272 
1273 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1274 		if (ret == ICE_ERR_AQ_NO_WORK)
1275 			break;
1276 		if (ret) {
1277 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1278 				ice_stat_str(ret));
1279 			break;
1280 		}
1281 
1282 		opcode = le16_to_cpu(event.desc.opcode);
1283 
1284 		/* Notify any thread that might be waiting for this event */
1285 		ice_aq_check_events(pf, opcode, &event);
1286 
1287 		switch (opcode) {
1288 		case ice_aqc_opc_get_link_status:
1289 			if (ice_handle_link_event(pf, &event))
1290 				dev_err(dev, "Could not handle link event\n");
1291 			break;
1292 		case ice_aqc_opc_event_lan_overflow:
1293 			ice_vf_lan_overflow_event(pf, &event);
1294 			break;
1295 		case ice_mbx_opc_send_msg_to_pf:
1296 			ice_vc_process_vf_msg(pf, &event);
1297 			break;
1298 		case ice_aqc_opc_fw_logging:
1299 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1300 			break;
1301 		case ice_aqc_opc_lldp_set_mib_change:
1302 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1303 			break;
1304 		default:
1305 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1306 				qtype, opcode);
1307 			break;
1308 		}
1309 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1310 
1311 	kfree(event.msg_buf);
1312 
1313 	return pending && (i == ICE_DFLT_IRQ_WORK);
1314 }
1315 
1316 /**
1317  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1318  * @hw: pointer to hardware info
1319  * @cq: control queue information
1320  *
1321  * returns true if there are pending messages in a queue, false if there aren't
1322  */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1323 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1324 {
1325 	u16 ntu;
1326 
1327 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1328 	return cq->rq.next_to_clean != ntu;
1329 }
1330 
1331 /**
1332  * ice_clean_adminq_subtask - clean the AdminQ rings
1333  * @pf: board private structure
1334  */
ice_clean_adminq_subtask(struct ice_pf * pf)1335 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1336 {
1337 	struct ice_hw *hw = &pf->hw;
1338 
1339 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1340 		return;
1341 
1342 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1343 		return;
1344 
1345 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1346 
1347 	/* There might be a situation where new messages arrive to a control
1348 	 * queue between processing the last message and clearing the
1349 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1350 	 * ice_ctrlq_pending) and process new messages if any.
1351 	 */
1352 	if (ice_ctrlq_pending(hw, &hw->adminq))
1353 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1354 
1355 	ice_flush(hw);
1356 }
1357 
1358 /**
1359  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1360  * @pf: board private structure
1361  */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1362 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1363 {
1364 	struct ice_hw *hw = &pf->hw;
1365 
1366 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1367 		return;
1368 
1369 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1370 		return;
1371 
1372 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1373 
1374 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1375 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1376 
1377 	ice_flush(hw);
1378 }
1379 
1380 /**
1381  * ice_service_task_schedule - schedule the service task to wake up
1382  * @pf: board private structure
1383  *
1384  * If not already scheduled, this puts the task into the work queue.
1385  */
ice_service_task_schedule(struct ice_pf * pf)1386 void ice_service_task_schedule(struct ice_pf *pf)
1387 {
1388 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1389 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1390 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1391 		queue_work(ice_wq, &pf->serv_task);
1392 }
1393 
1394 /**
1395  * ice_service_task_complete - finish up the service task
1396  * @pf: board private structure
1397  */
ice_service_task_complete(struct ice_pf * pf)1398 static void ice_service_task_complete(struct ice_pf *pf)
1399 {
1400 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1401 
1402 	/* force memory (pf->state) to sync before next service task */
1403 	smp_mb__before_atomic();
1404 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1405 }
1406 
1407 /**
1408  * ice_service_task_stop - stop service task and cancel works
1409  * @pf: board private structure
1410  *
1411  * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1412  * 1 otherwise.
1413  */
ice_service_task_stop(struct ice_pf * pf)1414 static int ice_service_task_stop(struct ice_pf *pf)
1415 {
1416 	int ret;
1417 
1418 	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1419 
1420 	if (pf->serv_tmr.function)
1421 		del_timer_sync(&pf->serv_tmr);
1422 	if (pf->serv_task.func)
1423 		cancel_work_sync(&pf->serv_task);
1424 
1425 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1426 	return ret;
1427 }
1428 
1429 /**
1430  * ice_service_task_restart - restart service task and schedule works
1431  * @pf: board private structure
1432  *
1433  * This function is needed for suspend and resume works (e.g WoL scenario)
1434  */
ice_service_task_restart(struct ice_pf * pf)1435 static void ice_service_task_restart(struct ice_pf *pf)
1436 {
1437 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1438 	ice_service_task_schedule(pf);
1439 }
1440 
1441 /**
1442  * ice_service_timer - timer callback to schedule service task
1443  * @t: pointer to timer_list
1444  */
ice_service_timer(struct timer_list * t)1445 static void ice_service_timer(struct timer_list *t)
1446 {
1447 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1448 
1449 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1450 	ice_service_task_schedule(pf);
1451 }
1452 
1453 /**
1454  * ice_handle_mdd_event - handle malicious driver detect event
1455  * @pf: pointer to the PF structure
1456  *
1457  * Called from service task. OICR interrupt handler indicates MDD event.
1458  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1459  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1460  * disable the queue, the PF can be configured to reset the VF using ethtool
1461  * private flag mdd-auto-reset-vf.
1462  */
ice_handle_mdd_event(struct ice_pf * pf)1463 static void ice_handle_mdd_event(struct ice_pf *pf)
1464 {
1465 	struct device *dev = ice_pf_to_dev(pf);
1466 	struct ice_hw *hw = &pf->hw;
1467 	unsigned int i;
1468 	u32 reg;
1469 
1470 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1471 		/* Since the VF MDD event logging is rate limited, check if
1472 		 * there are pending MDD events.
1473 		 */
1474 		ice_print_vfs_mdd_events(pf);
1475 		return;
1476 	}
1477 
1478 	/* find what triggered an MDD event */
1479 	reg = rd32(hw, GL_MDET_TX_PQM);
1480 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1481 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1482 				GL_MDET_TX_PQM_PF_NUM_S;
1483 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1484 				GL_MDET_TX_PQM_VF_NUM_S;
1485 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1486 				GL_MDET_TX_PQM_MAL_TYPE_S;
1487 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1488 				GL_MDET_TX_PQM_QNUM_S);
1489 
1490 		if (netif_msg_tx_err(pf))
1491 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492 				 event, queue, pf_num, vf_num);
1493 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1494 	}
1495 
1496 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1497 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1498 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1499 				GL_MDET_TX_TCLAN_PF_NUM_S;
1500 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1501 				GL_MDET_TX_TCLAN_VF_NUM_S;
1502 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1503 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1504 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1505 				GL_MDET_TX_TCLAN_QNUM_S);
1506 
1507 		if (netif_msg_tx_err(pf))
1508 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1509 				 event, queue, pf_num, vf_num);
1510 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1511 	}
1512 
1513 	reg = rd32(hw, GL_MDET_RX);
1514 	if (reg & GL_MDET_RX_VALID_M) {
1515 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1516 				GL_MDET_RX_PF_NUM_S;
1517 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1518 				GL_MDET_RX_VF_NUM_S;
1519 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1520 				GL_MDET_RX_MAL_TYPE_S;
1521 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1522 				GL_MDET_RX_QNUM_S);
1523 
1524 		if (netif_msg_rx_err(pf))
1525 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1526 				 event, queue, pf_num, vf_num);
1527 		wr32(hw, GL_MDET_RX, 0xffffffff);
1528 	}
1529 
1530 	/* check to see if this PF caused an MDD event */
1531 	reg = rd32(hw, PF_MDET_TX_PQM);
1532 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1533 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1534 		if (netif_msg_tx_err(pf))
1535 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1536 	}
1537 
1538 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1539 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1540 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1541 		if (netif_msg_tx_err(pf))
1542 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1543 	}
1544 
1545 	reg = rd32(hw, PF_MDET_RX);
1546 	if (reg & PF_MDET_RX_VALID_M) {
1547 		wr32(hw, PF_MDET_RX, 0xFFFF);
1548 		if (netif_msg_rx_err(pf))
1549 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1550 	}
1551 
1552 	/* Check to see if one of the VFs caused an MDD event, and then
1553 	 * increment counters and set print pending
1554 	 */
1555 	ice_for_each_vf(pf, i) {
1556 		struct ice_vf *vf = &pf->vf[i];
1557 
1558 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1559 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1560 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1561 			vf->mdd_tx_events.count++;
1562 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1563 			if (netif_msg_tx_err(pf))
1564 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1565 					 i);
1566 		}
1567 
1568 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1569 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1570 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1571 			vf->mdd_tx_events.count++;
1572 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1573 			if (netif_msg_tx_err(pf))
1574 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1575 					 i);
1576 		}
1577 
1578 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1579 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1580 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1581 			vf->mdd_tx_events.count++;
1582 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1583 			if (netif_msg_tx_err(pf))
1584 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1585 					 i);
1586 		}
1587 
1588 		reg = rd32(hw, VP_MDET_RX(i));
1589 		if (reg & VP_MDET_RX_VALID_M) {
1590 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1591 			vf->mdd_rx_events.count++;
1592 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1593 			if (netif_msg_rx_err(pf))
1594 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1595 					 i);
1596 
1597 			/* Since the queue is disabled on VF Rx MDD events, the
1598 			 * PF can be configured to reset the VF through ethtool
1599 			 * private flag mdd-auto-reset-vf.
1600 			 */
1601 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1602 				/* VF MDD event counters will be cleared by
1603 				 * reset, so print the event prior to reset.
1604 				 */
1605 				ice_print_vf_rx_mdd_event(vf);
1606 				mutex_lock(&pf->vf[i].cfg_lock);
1607 				ice_reset_vf(&pf->vf[i], false);
1608 				mutex_unlock(&pf->vf[i].cfg_lock);
1609 			}
1610 		}
1611 	}
1612 
1613 	ice_print_vfs_mdd_events(pf);
1614 }
1615 
1616 /**
1617  * ice_force_phys_link_state - Force the physical link state
1618  * @vsi: VSI to force the physical link state to up/down
1619  * @link_up: true/false indicates to set the physical link to up/down
1620  *
1621  * Force the physical link state by getting the current PHY capabilities from
1622  * hardware and setting the PHY config based on the determined capabilities. If
1623  * link changes a link event will be triggered because both the Enable Automatic
1624  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1625  *
1626  * Returns 0 on success, negative on failure
1627  */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1628 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1629 {
1630 	struct ice_aqc_get_phy_caps_data *pcaps;
1631 	struct ice_aqc_set_phy_cfg_data *cfg;
1632 	struct ice_port_info *pi;
1633 	struct device *dev;
1634 	int retcode;
1635 
1636 	if (!vsi || !vsi->port_info || !vsi->back)
1637 		return -EINVAL;
1638 	if (vsi->type != ICE_VSI_PF)
1639 		return 0;
1640 
1641 	dev = ice_pf_to_dev(vsi->back);
1642 
1643 	pi = vsi->port_info;
1644 
1645 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1646 	if (!pcaps)
1647 		return -ENOMEM;
1648 
1649 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1650 				      NULL);
1651 	if (retcode) {
1652 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1653 			vsi->vsi_num, retcode);
1654 		retcode = -EIO;
1655 		goto out;
1656 	}
1657 
1658 	/* No change in link */
1659 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1660 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1661 		goto out;
1662 
1663 	/* Use the current user PHY configuration. The current user PHY
1664 	 * configuration is initialized during probe from PHY capabilities
1665 	 * software mode, and updated on set PHY configuration.
1666 	 */
1667 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1668 	if (!cfg) {
1669 		retcode = -ENOMEM;
1670 		goto out;
1671 	}
1672 
1673 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1674 	if (link_up)
1675 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1676 	else
1677 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1678 
1679 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1680 	if (retcode) {
1681 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1682 			vsi->vsi_num, retcode);
1683 		retcode = -EIO;
1684 	}
1685 
1686 	kfree(cfg);
1687 out:
1688 	kfree(pcaps);
1689 	return retcode;
1690 }
1691 
1692 /**
1693  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1694  * @pi: port info structure
1695  *
1696  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1697  */
ice_init_nvm_phy_type(struct ice_port_info * pi)1698 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1699 {
1700 	struct ice_aqc_get_phy_caps_data *pcaps;
1701 	struct ice_pf *pf = pi->hw->back;
1702 	enum ice_status status;
1703 	int err = 0;
1704 
1705 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1706 	if (!pcaps)
1707 		return -ENOMEM;
1708 
1709 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1710 				     NULL);
1711 
1712 	if (status) {
1713 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1714 		err = -EIO;
1715 		goto out;
1716 	}
1717 
1718 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1719 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1720 
1721 out:
1722 	kfree(pcaps);
1723 	return err;
1724 }
1725 
1726 /**
1727  * ice_init_link_dflt_override - Initialize link default override
1728  * @pi: port info structure
1729  *
1730  * Initialize link default override and PHY total port shutdown during probe
1731  */
ice_init_link_dflt_override(struct ice_port_info * pi)1732 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1733 {
1734 	struct ice_link_default_override_tlv *ldo;
1735 	struct ice_pf *pf = pi->hw->back;
1736 
1737 	ldo = &pf->link_dflt_override;
1738 	if (ice_get_link_default_override(ldo, pi))
1739 		return;
1740 
1741 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1742 		return;
1743 
1744 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1745 	 * ethtool private flag) for ports with Port Disable bit set.
1746 	 */
1747 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1748 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1749 }
1750 
1751 /**
1752  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1753  * @pi: port info structure
1754  *
1755  * If default override is enabled, initialized the user PHY cfg speed and FEC
1756  * settings using the default override mask from the NVM.
1757  *
1758  * The PHY should only be configured with the default override settings the
1759  * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1760  * is used to indicate that the user PHY cfg default override is initialized
1761  * and the PHY has not been configured with the default override settings. The
1762  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1763  * configured.
1764  */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1765 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1766 {
1767 	struct ice_link_default_override_tlv *ldo;
1768 	struct ice_aqc_set_phy_cfg_data *cfg;
1769 	struct ice_phy_info *phy = &pi->phy;
1770 	struct ice_pf *pf = pi->hw->back;
1771 
1772 	ldo = &pf->link_dflt_override;
1773 
1774 	/* If link default override is enabled, use to mask NVM PHY capabilities
1775 	 * for speed and FEC default configuration.
1776 	 */
1777 	cfg = &phy->curr_user_phy_cfg;
1778 
1779 	if (ldo->phy_type_low || ldo->phy_type_high) {
1780 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1781 				    cpu_to_le64(ldo->phy_type_low);
1782 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1783 				     cpu_to_le64(ldo->phy_type_high);
1784 	}
1785 	cfg->link_fec_opt = ldo->fec_options;
1786 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1787 
1788 	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1789 }
1790 
1791 /**
1792  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1793  * @pi: port info structure
1794  *
1795  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1796  * mode to default. The PHY defaults are from get PHY capabilities topology
1797  * with media so call when media is first available. An error is returned if
1798  * called when media is not available. The PHY initialization completed state is
1799  * set here.
1800  *
1801  * These configurations are used when setting PHY
1802  * configuration. The user PHY configuration is updated on set PHY
1803  * configuration. Returns 0 on success, negative on failure
1804  */
ice_init_phy_user_cfg(struct ice_port_info * pi)1805 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1806 {
1807 	struct ice_aqc_get_phy_caps_data *pcaps;
1808 	struct ice_phy_info *phy = &pi->phy;
1809 	struct ice_pf *pf = pi->hw->back;
1810 	enum ice_status status;
1811 	struct ice_vsi *vsi;
1812 	int err = 0;
1813 
1814 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1815 		return -EIO;
1816 
1817 	vsi = ice_get_main_vsi(pf);
1818 	if (!vsi)
1819 		return -EINVAL;
1820 
1821 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1822 	if (!pcaps)
1823 		return -ENOMEM;
1824 
1825 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1826 				     NULL);
1827 	if (status) {
1828 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1829 		err = -EIO;
1830 		goto err_out;
1831 	}
1832 
1833 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1834 
1835 	/* check if lenient mode is supported and enabled */
1836 	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1837 	    !(pcaps->module_compliance_enforcement &
1838 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1839 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1840 
1841 		/* if link default override is enabled, initialize user PHY
1842 		 * configuration with link default override values
1843 		 */
1844 		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1845 			ice_init_phy_cfg_dflt_override(pi);
1846 			goto out;
1847 		}
1848 	}
1849 
1850 	/* if link default override is not enabled, initialize PHY using
1851 	 * topology with media
1852 	 */
1853 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1854 						      pcaps->link_fec_options);
1855 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1856 
1857 out:
1858 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1859 	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1860 err_out:
1861 	kfree(pcaps);
1862 	return err;
1863 }
1864 
1865 /**
1866  * ice_configure_phy - configure PHY
1867  * @vsi: VSI of PHY
1868  *
1869  * Set the PHY configuration. If the current PHY configuration is the same as
1870  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1871  * configure the based get PHY capabilities for topology with media.
1872  */
ice_configure_phy(struct ice_vsi * vsi)1873 static int ice_configure_phy(struct ice_vsi *vsi)
1874 {
1875 	struct device *dev = ice_pf_to_dev(vsi->back);
1876 	struct ice_aqc_get_phy_caps_data *pcaps;
1877 	struct ice_aqc_set_phy_cfg_data *cfg;
1878 	struct ice_port_info *pi;
1879 	enum ice_status status;
1880 	int err = 0;
1881 
1882 	pi = vsi->port_info;
1883 	if (!pi)
1884 		return -EINVAL;
1885 
1886 	/* Ensure we have media as we cannot configure a medialess port */
1887 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1888 		return -EPERM;
1889 
1890 	ice_print_topo_conflict(vsi);
1891 
1892 	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1893 	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1894 		return -EPERM;
1895 
1896 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1897 		return ice_force_phys_link_state(vsi, true);
1898 
1899 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1900 	if (!pcaps)
1901 		return -ENOMEM;
1902 
1903 	/* Get current PHY config */
1904 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1905 				     NULL);
1906 	if (status) {
1907 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1908 			vsi->vsi_num, ice_stat_str(status));
1909 		err = -EIO;
1910 		goto done;
1911 	}
1912 
1913 	/* If PHY enable link is configured and configuration has not changed,
1914 	 * there's nothing to do
1915 	 */
1916 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1917 	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1918 		goto done;
1919 
1920 	/* Use PHY topology as baseline for configuration */
1921 	memset(pcaps, 0, sizeof(*pcaps));
1922 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1923 				     NULL);
1924 	if (status) {
1925 		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1926 			vsi->vsi_num, ice_stat_str(status));
1927 		err = -EIO;
1928 		goto done;
1929 	}
1930 
1931 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1932 	if (!cfg) {
1933 		err = -ENOMEM;
1934 		goto done;
1935 	}
1936 
1937 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1938 
1939 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1940 	 * ice_init_phy_user_cfg_ldo.
1941 	 */
1942 	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1943 			       vsi->back->state)) {
1944 		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1945 		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1946 	} else {
1947 		u64 phy_low = 0, phy_high = 0;
1948 
1949 		ice_update_phy_type(&phy_low, &phy_high,
1950 				    pi->phy.curr_user_speed_req);
1951 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1952 		cfg->phy_type_high = pcaps->phy_type_high &
1953 				     cpu_to_le64(phy_high);
1954 	}
1955 
1956 	/* Can't provide what was requested; use PHY capabilities */
1957 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1958 		cfg->phy_type_low = pcaps->phy_type_low;
1959 		cfg->phy_type_high = pcaps->phy_type_high;
1960 	}
1961 
1962 	/* FEC */
1963 	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1964 
1965 	/* Can't provide what was requested; use PHY capabilities */
1966 	if (cfg->link_fec_opt !=
1967 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1968 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1969 		cfg->link_fec_opt = pcaps->link_fec_options;
1970 	}
1971 
1972 	/* Flow Control - always supported; no need to check against
1973 	 * capabilities
1974 	 */
1975 	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1976 
1977 	/* Enable link and link update */
1978 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1979 
1980 	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1981 	if (status) {
1982 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1983 			vsi->vsi_num, ice_stat_str(status));
1984 		err = -EIO;
1985 	}
1986 
1987 	kfree(cfg);
1988 done:
1989 	kfree(pcaps);
1990 	return err;
1991 }
1992 
1993 /**
1994  * ice_check_media_subtask - Check for media
1995  * @pf: pointer to PF struct
1996  *
1997  * If media is available, then initialize PHY user configuration if it is not
1998  * been, and configure the PHY if the interface is up.
1999  */
ice_check_media_subtask(struct ice_pf * pf)2000 static void ice_check_media_subtask(struct ice_pf *pf)
2001 {
2002 	struct ice_port_info *pi;
2003 	struct ice_vsi *vsi;
2004 	int err;
2005 
2006 	/* No need to check for media if it's already present */
2007 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2008 		return;
2009 
2010 	vsi = ice_get_main_vsi(pf);
2011 	if (!vsi)
2012 		return;
2013 
2014 	/* Refresh link info and check if media is present */
2015 	pi = vsi->port_info;
2016 	err = ice_update_link_info(pi);
2017 	if (err)
2018 		return;
2019 
2020 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2021 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2022 			ice_init_phy_user_cfg(pi);
2023 
2024 		/* PHY settings are reset on media insertion, reconfigure
2025 		 * PHY to preserve settings.
2026 		 */
2027 		if (test_bit(__ICE_DOWN, vsi->state) &&
2028 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2029 			return;
2030 
2031 		err = ice_configure_phy(vsi);
2032 		if (!err)
2033 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2034 
2035 		/* A Link Status Event will be generated; the event handler
2036 		 * will complete bringing the interface up
2037 		 */
2038 	}
2039 }
2040 
2041 /**
2042  * ice_service_task - manage and run subtasks
2043  * @work: pointer to work_struct contained by the PF struct
2044  */
ice_service_task(struct work_struct * work)2045 static void ice_service_task(struct work_struct *work)
2046 {
2047 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2048 	unsigned long start_time = jiffies;
2049 
2050 	/* subtasks */
2051 
2052 	/* process reset requests first */
2053 	ice_reset_subtask(pf);
2054 
2055 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2056 	if (ice_is_reset_in_progress(pf->state) ||
2057 	    test_bit(__ICE_SUSPENDED, pf->state) ||
2058 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2059 		ice_service_task_complete(pf);
2060 		return;
2061 	}
2062 
2063 	ice_clean_adminq_subtask(pf);
2064 	ice_check_media_subtask(pf);
2065 	ice_check_for_hang_subtask(pf);
2066 	ice_sync_fltr_subtask(pf);
2067 	ice_handle_mdd_event(pf);
2068 	ice_watchdog_subtask(pf);
2069 
2070 	if (ice_is_safe_mode(pf)) {
2071 		ice_service_task_complete(pf);
2072 		return;
2073 	}
2074 
2075 	ice_process_vflr_event(pf);
2076 	ice_clean_mailboxq_subtask(pf);
2077 	ice_sync_arfs_fltrs(pf);
2078 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2079 	ice_service_task_complete(pf);
2080 
2081 	/* If the tasks have taken longer than one service timer period
2082 	 * or there is more work to be done, reset the service timer to
2083 	 * schedule the service task now.
2084 	 */
2085 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2086 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2087 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2088 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2089 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2090 		mod_timer(&pf->serv_tmr, jiffies);
2091 }
2092 
2093 /**
2094  * ice_set_ctrlq_len - helper function to set controlq length
2095  * @hw: pointer to the HW instance
2096  */
ice_set_ctrlq_len(struct ice_hw * hw)2097 static void ice_set_ctrlq_len(struct ice_hw *hw)
2098 {
2099 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2100 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2101 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2102 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2103 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2104 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2105 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2106 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2107 }
2108 
2109 /**
2110  * ice_schedule_reset - schedule a reset
2111  * @pf: board private structure
2112  * @reset: reset being requested
2113  */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2114 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2115 {
2116 	struct device *dev = ice_pf_to_dev(pf);
2117 
2118 	/* bail out if earlier reset has failed */
2119 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2120 		dev_dbg(dev, "earlier reset has failed\n");
2121 		return -EIO;
2122 	}
2123 	/* bail if reset/recovery already in progress */
2124 	if (ice_is_reset_in_progress(pf->state)) {
2125 		dev_dbg(dev, "Reset already in progress\n");
2126 		return -EBUSY;
2127 	}
2128 
2129 	switch (reset) {
2130 	case ICE_RESET_PFR:
2131 		set_bit(__ICE_PFR_REQ, pf->state);
2132 		break;
2133 	case ICE_RESET_CORER:
2134 		set_bit(__ICE_CORER_REQ, pf->state);
2135 		break;
2136 	case ICE_RESET_GLOBR:
2137 		set_bit(__ICE_GLOBR_REQ, pf->state);
2138 		break;
2139 	default:
2140 		return -EINVAL;
2141 	}
2142 
2143 	ice_service_task_schedule(pf);
2144 	return 0;
2145 }
2146 
2147 /**
2148  * ice_irq_affinity_notify - Callback for affinity changes
2149  * @notify: context as to what irq was changed
2150  * @mask: the new affinity mask
2151  *
2152  * This is a callback function used by the irq_set_affinity_notifier function
2153  * so that we may register to receive changes to the irq affinity masks.
2154  */
2155 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2156 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2157 			const cpumask_t *mask)
2158 {
2159 	struct ice_q_vector *q_vector =
2160 		container_of(notify, struct ice_q_vector, affinity_notify);
2161 
2162 	cpumask_copy(&q_vector->affinity_mask, mask);
2163 }
2164 
2165 /**
2166  * ice_irq_affinity_release - Callback for affinity notifier release
2167  * @ref: internal core kernel usage
2168  *
2169  * This is a callback function used by the irq_set_affinity_notifier function
2170  * to inform the current notification subscriber that they will no longer
2171  * receive notifications.
2172  */
ice_irq_affinity_release(struct kref __always_unused * ref)2173 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2174 
2175 /**
2176  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2177  * @vsi: the VSI being configured
2178  */
ice_vsi_ena_irq(struct ice_vsi * vsi)2179 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2180 {
2181 	struct ice_hw *hw = &vsi->back->hw;
2182 	int i;
2183 
2184 	ice_for_each_q_vector(vsi, i)
2185 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2186 
2187 	ice_flush(hw);
2188 	return 0;
2189 }
2190 
2191 /**
2192  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2193  * @vsi: the VSI being configured
2194  * @basename: name for the vector
2195  */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2196 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2197 {
2198 	int q_vectors = vsi->num_q_vectors;
2199 	struct ice_pf *pf = vsi->back;
2200 	int base = vsi->base_vector;
2201 	struct device *dev;
2202 	int rx_int_idx = 0;
2203 	int tx_int_idx = 0;
2204 	int vector, err;
2205 	int irq_num;
2206 
2207 	dev = ice_pf_to_dev(pf);
2208 	for (vector = 0; vector < q_vectors; vector++) {
2209 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2210 
2211 		irq_num = pf->msix_entries[base + vector].vector;
2212 
2213 		if (q_vector->tx.ring && q_vector->rx.ring) {
2214 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2215 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2216 			tx_int_idx++;
2217 		} else if (q_vector->rx.ring) {
2218 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2219 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2220 		} else if (q_vector->tx.ring) {
2221 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2222 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2223 		} else {
2224 			/* skip this unused q_vector */
2225 			continue;
2226 		}
2227 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2228 				       q_vector->name, q_vector);
2229 		if (err) {
2230 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2231 				   err);
2232 			goto free_q_irqs;
2233 		}
2234 
2235 		/* register for affinity change notifications */
2236 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2237 			struct irq_affinity_notify *affinity_notify;
2238 
2239 			affinity_notify = &q_vector->affinity_notify;
2240 			affinity_notify->notify = ice_irq_affinity_notify;
2241 			affinity_notify->release = ice_irq_affinity_release;
2242 			irq_set_affinity_notifier(irq_num, affinity_notify);
2243 		}
2244 
2245 		/* assign the mask for this irq */
2246 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2247 	}
2248 
2249 	vsi->irqs_ready = true;
2250 	return 0;
2251 
2252 free_q_irqs:
2253 	while (vector) {
2254 		vector--;
2255 		irq_num = pf->msix_entries[base + vector].vector;
2256 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2257 			irq_set_affinity_notifier(irq_num, NULL);
2258 		irq_set_affinity_hint(irq_num, NULL);
2259 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2260 	}
2261 	return err;
2262 }
2263 
2264 /**
2265  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2266  * @vsi: VSI to setup Tx rings used by XDP
2267  *
2268  * Return 0 on success and negative value on error
2269  */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2270 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2271 {
2272 	struct device *dev = ice_pf_to_dev(vsi->back);
2273 	int i;
2274 
2275 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2276 		u16 xdp_q_idx = vsi->alloc_txq + i;
2277 		struct ice_ring *xdp_ring;
2278 
2279 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2280 
2281 		if (!xdp_ring)
2282 			goto free_xdp_rings;
2283 
2284 		xdp_ring->q_index = xdp_q_idx;
2285 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2286 		xdp_ring->ring_active = false;
2287 		xdp_ring->vsi = vsi;
2288 		xdp_ring->netdev = NULL;
2289 		xdp_ring->dev = dev;
2290 		xdp_ring->count = vsi->num_tx_desc;
2291 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2292 		if (ice_setup_tx_ring(xdp_ring))
2293 			goto free_xdp_rings;
2294 		ice_set_ring_xdp(xdp_ring);
2295 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2296 	}
2297 
2298 	return 0;
2299 
2300 free_xdp_rings:
2301 	for (; i >= 0; i--)
2302 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2303 			ice_free_tx_ring(vsi->xdp_rings[i]);
2304 	return -ENOMEM;
2305 }
2306 
2307 /**
2308  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2309  * @vsi: VSI to set the bpf prog on
2310  * @prog: the bpf prog pointer
2311  */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2312 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2313 {
2314 	struct bpf_prog *old_prog;
2315 	int i;
2316 
2317 	old_prog = xchg(&vsi->xdp_prog, prog);
2318 	if (old_prog)
2319 		bpf_prog_put(old_prog);
2320 
2321 	ice_for_each_rxq(vsi, i)
2322 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2323 }
2324 
2325 /**
2326  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2327  * @vsi: VSI to bring up Tx rings used by XDP
2328  * @prog: bpf program that will be assigned to VSI
2329  *
2330  * Return 0 on success and negative value on error
2331  */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2332 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2333 {
2334 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2335 	int xdp_rings_rem = vsi->num_xdp_txq;
2336 	struct ice_pf *pf = vsi->back;
2337 	struct ice_qs_cfg xdp_qs_cfg = {
2338 		.qs_mutex = &pf->avail_q_mutex,
2339 		.pf_map = pf->avail_txqs,
2340 		.pf_map_size = pf->max_pf_txqs,
2341 		.q_count = vsi->num_xdp_txq,
2342 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2343 		.vsi_map = vsi->txq_map,
2344 		.vsi_map_offset = vsi->alloc_txq,
2345 		.mapping_mode = ICE_VSI_MAP_CONTIG
2346 	};
2347 	enum ice_status status;
2348 	struct device *dev;
2349 	int i, v_idx;
2350 
2351 	dev = ice_pf_to_dev(pf);
2352 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2353 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2354 	if (!vsi->xdp_rings)
2355 		return -ENOMEM;
2356 
2357 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2358 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2359 		goto err_map_xdp;
2360 
2361 	if (ice_xdp_alloc_setup_rings(vsi))
2362 		goto clear_xdp_rings;
2363 
2364 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2365 	ice_for_each_q_vector(vsi, v_idx) {
2366 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2367 		int xdp_rings_per_v, q_id, q_base;
2368 
2369 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2370 					       vsi->num_q_vectors - v_idx);
2371 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2372 
2373 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2374 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2375 
2376 			xdp_ring->q_vector = q_vector;
2377 			xdp_ring->next = q_vector->tx.ring;
2378 			q_vector->tx.ring = xdp_ring;
2379 		}
2380 		xdp_rings_rem -= xdp_rings_per_v;
2381 	}
2382 
2383 	/* omit the scheduler update if in reset path; XDP queues will be
2384 	 * taken into account at the end of ice_vsi_rebuild, where
2385 	 * ice_cfg_vsi_lan is being called
2386 	 */
2387 	if (ice_is_reset_in_progress(pf->state))
2388 		return 0;
2389 
2390 	/* tell the Tx scheduler that right now we have
2391 	 * additional queues
2392 	 */
2393 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2394 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2395 
2396 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2397 				 max_txqs);
2398 	if (status) {
2399 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2400 			ice_stat_str(status));
2401 		goto clear_xdp_rings;
2402 	}
2403 
2404 	/* assign the prog only when it's not already present on VSI;
2405 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2406 	 * VSI rebuild that happens under ethtool -L can expose us to
2407 	 * the bpf_prog refcount issues as we would be swapping same
2408 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2409 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2410 	 * this is not harmful as dev_xdp_install bumps the refcount
2411 	 * before calling the op exposed by the driver;
2412 	 */
2413 	if (!ice_is_xdp_ena_vsi(vsi))
2414 		ice_vsi_assign_bpf_prog(vsi, prog);
2415 
2416 	return 0;
2417 clear_xdp_rings:
2418 	for (i = 0; i < vsi->num_xdp_txq; i++)
2419 		if (vsi->xdp_rings[i]) {
2420 			kfree_rcu(vsi->xdp_rings[i], rcu);
2421 			vsi->xdp_rings[i] = NULL;
2422 		}
2423 
2424 err_map_xdp:
2425 	mutex_lock(&pf->avail_q_mutex);
2426 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2427 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2428 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2429 	}
2430 	mutex_unlock(&pf->avail_q_mutex);
2431 
2432 	devm_kfree(dev, vsi->xdp_rings);
2433 	return -ENOMEM;
2434 }
2435 
2436 /**
2437  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2438  * @vsi: VSI to remove XDP rings
2439  *
2440  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2441  * resources
2442  */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2443 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2444 {
2445 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2446 	struct ice_pf *pf = vsi->back;
2447 	int i, v_idx;
2448 
2449 	/* q_vectors are freed in reset path so there's no point in detaching
2450 	 * rings; in case of rebuild being triggered not from reset bits
2451 	 * in pf->state won't be set, so additionally check first q_vector
2452 	 * against NULL
2453 	 */
2454 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2455 		goto free_qmap;
2456 
2457 	ice_for_each_q_vector(vsi, v_idx) {
2458 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2459 		struct ice_ring *ring;
2460 
2461 		ice_for_each_ring(ring, q_vector->tx)
2462 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2463 				break;
2464 
2465 		/* restore the value of last node prior to XDP setup */
2466 		q_vector->tx.ring = ring;
2467 	}
2468 
2469 free_qmap:
2470 	mutex_lock(&pf->avail_q_mutex);
2471 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2472 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2473 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2474 	}
2475 	mutex_unlock(&pf->avail_q_mutex);
2476 
2477 	for (i = 0; i < vsi->num_xdp_txq; i++)
2478 		if (vsi->xdp_rings[i]) {
2479 			if (vsi->xdp_rings[i]->desc) {
2480 				synchronize_rcu();
2481 				ice_free_tx_ring(vsi->xdp_rings[i]);
2482 			}
2483 			kfree_rcu(vsi->xdp_rings[i], rcu);
2484 			vsi->xdp_rings[i] = NULL;
2485 		}
2486 
2487 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2488 	vsi->xdp_rings = NULL;
2489 
2490 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2491 		return 0;
2492 
2493 	ice_vsi_assign_bpf_prog(vsi, NULL);
2494 
2495 	/* notify Tx scheduler that we destroyed XDP queues and bring
2496 	 * back the old number of child nodes
2497 	 */
2498 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2499 		max_txqs[i] = vsi->num_txq;
2500 
2501 	/* change number of XDP Tx queues to 0 */
2502 	vsi->num_xdp_txq = 0;
2503 
2504 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2505 			       max_txqs);
2506 }
2507 
2508 /**
2509  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2510  * @vsi: VSI to setup XDP for
2511  * @prog: XDP program
2512  * @extack: netlink extended ack
2513  */
2514 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2515 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2516 		   struct netlink_ext_ack *extack)
2517 {
2518 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2519 	bool if_running = netif_running(vsi->netdev);
2520 	int ret = 0, xdp_ring_err = 0;
2521 
2522 	if (frame_size > vsi->rx_buf_len) {
2523 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2524 		return -EOPNOTSUPP;
2525 	}
2526 
2527 	/* need to stop netdev while setting up the program for Rx rings */
2528 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2529 		ret = ice_down(vsi);
2530 		if (ret) {
2531 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2532 			return ret;
2533 		}
2534 	}
2535 
2536 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2537 		vsi->num_xdp_txq = vsi->alloc_rxq;
2538 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2539 		if (xdp_ring_err)
2540 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2541 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2542 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2543 		if (xdp_ring_err)
2544 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2545 	} else {
2546 		/* safe to call even when prog == vsi->xdp_prog as
2547 		 * dev_xdp_install in net/core/dev.c incremented prog's
2548 		 * refcount so corresponding bpf_prog_put won't cause
2549 		 * underflow
2550 		 */
2551 		ice_vsi_assign_bpf_prog(vsi, prog);
2552 	}
2553 
2554 	if (if_running)
2555 		ret = ice_up(vsi);
2556 
2557 	if (!ret && prog && vsi->xsk_pools) {
2558 		int i;
2559 
2560 		ice_for_each_rxq(vsi, i) {
2561 			struct ice_ring *rx_ring = vsi->rx_rings[i];
2562 
2563 			if (rx_ring->xsk_pool)
2564 				napi_schedule(&rx_ring->q_vector->napi);
2565 		}
2566 	}
2567 
2568 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2569 }
2570 
2571 /**
2572  * ice_xdp_safe_mode - XDP handler for safe mode
2573  * @dev: netdevice
2574  * @xdp: XDP command
2575  */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2576 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2577 			     struct netdev_bpf *xdp)
2578 {
2579 	NL_SET_ERR_MSG_MOD(xdp->extack,
2580 			   "Please provide working DDP firmware package in order to use XDP\n"
2581 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2582 	return -EOPNOTSUPP;
2583 }
2584 
2585 /**
2586  * ice_xdp - implements XDP handler
2587  * @dev: netdevice
2588  * @xdp: XDP command
2589  */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2590 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2591 {
2592 	struct ice_netdev_priv *np = netdev_priv(dev);
2593 	struct ice_vsi *vsi = np->vsi;
2594 
2595 	if (vsi->type != ICE_VSI_PF) {
2596 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2597 		return -EINVAL;
2598 	}
2599 
2600 	switch (xdp->command) {
2601 	case XDP_SETUP_PROG:
2602 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2603 	case XDP_SETUP_XSK_POOL:
2604 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2605 					  xdp->xsk.queue_id);
2606 	default:
2607 		return -EINVAL;
2608 	}
2609 }
2610 
2611 /**
2612  * ice_ena_misc_vector - enable the non-queue interrupts
2613  * @pf: board private structure
2614  */
ice_ena_misc_vector(struct ice_pf * pf)2615 static void ice_ena_misc_vector(struct ice_pf *pf)
2616 {
2617 	struct ice_hw *hw = &pf->hw;
2618 	u32 val;
2619 
2620 	/* Disable anti-spoof detection interrupt to prevent spurious event
2621 	 * interrupts during a function reset. Anti-spoof functionally is
2622 	 * still supported.
2623 	 */
2624 	val = rd32(hw, GL_MDCK_TX_TDPU);
2625 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2626 	wr32(hw, GL_MDCK_TX_TDPU, val);
2627 
2628 	/* clear things first */
2629 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2630 	rd32(hw, PFINT_OICR);		/* read to clear */
2631 
2632 	val = (PFINT_OICR_ECC_ERR_M |
2633 	       PFINT_OICR_MAL_DETECT_M |
2634 	       PFINT_OICR_GRST_M |
2635 	       PFINT_OICR_PCI_EXCEPTION_M |
2636 	       PFINT_OICR_VFLR_M |
2637 	       PFINT_OICR_HMC_ERR_M |
2638 	       PFINT_OICR_PE_CRITERR_M);
2639 
2640 	wr32(hw, PFINT_OICR_ENA, val);
2641 
2642 	/* SW_ITR_IDX = 0, but don't change INTENA */
2643 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2644 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2645 }
2646 
2647 /**
2648  * ice_misc_intr - misc interrupt handler
2649  * @irq: interrupt number
2650  * @data: pointer to a q_vector
2651  */
ice_misc_intr(int __always_unused irq,void * data)2652 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2653 {
2654 	struct ice_pf *pf = (struct ice_pf *)data;
2655 	struct ice_hw *hw = &pf->hw;
2656 	irqreturn_t ret = IRQ_NONE;
2657 	struct device *dev;
2658 	u32 oicr, ena_mask;
2659 
2660 	dev = ice_pf_to_dev(pf);
2661 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2662 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2663 
2664 	oicr = rd32(hw, PFINT_OICR);
2665 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2666 
2667 	if (oicr & PFINT_OICR_SWINT_M) {
2668 		ena_mask &= ~PFINT_OICR_SWINT_M;
2669 		pf->sw_int_count++;
2670 	}
2671 
2672 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2673 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2674 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2675 	}
2676 	if (oicr & PFINT_OICR_VFLR_M) {
2677 		/* disable any further VFLR event notifications */
2678 		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2679 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2680 
2681 			reg &= ~PFINT_OICR_VFLR_M;
2682 			wr32(hw, PFINT_OICR_ENA, reg);
2683 		} else {
2684 			ena_mask &= ~PFINT_OICR_VFLR_M;
2685 			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2686 		}
2687 	}
2688 
2689 	if (oicr & PFINT_OICR_GRST_M) {
2690 		u32 reset;
2691 
2692 		/* we have a reset warning */
2693 		ena_mask &= ~PFINT_OICR_GRST_M;
2694 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2695 			GLGEN_RSTAT_RESET_TYPE_S;
2696 
2697 		if (reset == ICE_RESET_CORER)
2698 			pf->corer_count++;
2699 		else if (reset == ICE_RESET_GLOBR)
2700 			pf->globr_count++;
2701 		else if (reset == ICE_RESET_EMPR)
2702 			pf->empr_count++;
2703 		else
2704 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2705 
2706 		/* If a reset cycle isn't already in progress, we set a bit in
2707 		 * pf->state so that the service task can start a reset/rebuild.
2708 		 * We also make note of which reset happened so that peer
2709 		 * devices/drivers can be informed.
2710 		 */
2711 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2712 			if (reset == ICE_RESET_CORER)
2713 				set_bit(__ICE_CORER_RECV, pf->state);
2714 			else if (reset == ICE_RESET_GLOBR)
2715 				set_bit(__ICE_GLOBR_RECV, pf->state);
2716 			else
2717 				set_bit(__ICE_EMPR_RECV, pf->state);
2718 
2719 			/* There are couple of different bits at play here.
2720 			 * hw->reset_ongoing indicates whether the hardware is
2721 			 * in reset. This is set to true when a reset interrupt
2722 			 * is received and set back to false after the driver
2723 			 * has determined that the hardware is out of reset.
2724 			 *
2725 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2726 			 * that a post reset rebuild is required before the
2727 			 * driver is operational again. This is set above.
2728 			 *
2729 			 * As this is the start of the reset/rebuild cycle, set
2730 			 * both to indicate that.
2731 			 */
2732 			hw->reset_ongoing = true;
2733 		}
2734 	}
2735 
2736 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2737 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2738 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2739 			rd32(hw, PFHMC_ERRORINFO),
2740 			rd32(hw, PFHMC_ERRORDATA));
2741 	}
2742 
2743 	/* Report any remaining unexpected interrupts */
2744 	oicr &= ena_mask;
2745 	if (oicr) {
2746 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2747 		/* If a critical error is pending there is no choice but to
2748 		 * reset the device.
2749 		 */
2750 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2751 			    PFINT_OICR_PCI_EXCEPTION_M |
2752 			    PFINT_OICR_ECC_ERR_M)) {
2753 			set_bit(__ICE_PFR_REQ, pf->state);
2754 			ice_service_task_schedule(pf);
2755 		}
2756 	}
2757 	ret = IRQ_HANDLED;
2758 
2759 	ice_service_task_schedule(pf);
2760 	ice_irq_dynamic_ena(hw, NULL, NULL);
2761 
2762 	return ret;
2763 }
2764 
2765 /**
2766  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2767  * @hw: pointer to HW structure
2768  */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2769 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2770 {
2771 	/* disable Admin queue Interrupt causes */
2772 	wr32(hw, PFINT_FW_CTL,
2773 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2774 
2775 	/* disable Mailbox queue Interrupt causes */
2776 	wr32(hw, PFINT_MBX_CTL,
2777 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2778 
2779 	/* disable Control queue Interrupt causes */
2780 	wr32(hw, PFINT_OICR_CTL,
2781 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2782 
2783 	ice_flush(hw);
2784 }
2785 
2786 /**
2787  * ice_free_irq_msix_misc - Unroll misc vector setup
2788  * @pf: board private structure
2789  */
ice_free_irq_msix_misc(struct ice_pf * pf)2790 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2791 {
2792 	struct ice_hw *hw = &pf->hw;
2793 
2794 	ice_dis_ctrlq_interrupts(hw);
2795 
2796 	/* disable OICR interrupt */
2797 	wr32(hw, PFINT_OICR_ENA, 0);
2798 	ice_flush(hw);
2799 
2800 	if (pf->msix_entries) {
2801 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2802 		devm_free_irq(ice_pf_to_dev(pf),
2803 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2804 	}
2805 
2806 	pf->num_avail_sw_msix += 1;
2807 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2808 }
2809 
2810 /**
2811  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2812  * @hw: pointer to HW structure
2813  * @reg_idx: HW vector index to associate the control queue interrupts with
2814  */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2815 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2816 {
2817 	u32 val;
2818 
2819 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2820 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2821 	wr32(hw, PFINT_OICR_CTL, val);
2822 
2823 	/* enable Admin queue Interrupt causes */
2824 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2825 	       PFINT_FW_CTL_CAUSE_ENA_M);
2826 	wr32(hw, PFINT_FW_CTL, val);
2827 
2828 	/* enable Mailbox queue Interrupt causes */
2829 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2830 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2831 	wr32(hw, PFINT_MBX_CTL, val);
2832 
2833 	ice_flush(hw);
2834 }
2835 
2836 /**
2837  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2838  * @pf: board private structure
2839  *
2840  * This sets up the handler for MSIX 0, which is used to manage the
2841  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2842  * when in MSI or Legacy interrupt mode.
2843  */
ice_req_irq_msix_misc(struct ice_pf * pf)2844 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2845 {
2846 	struct device *dev = ice_pf_to_dev(pf);
2847 	struct ice_hw *hw = &pf->hw;
2848 	int oicr_idx, err = 0;
2849 
2850 	if (!pf->int_name[0])
2851 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2852 			 dev_driver_string(dev), dev_name(dev));
2853 
2854 	/* Do not request IRQ but do enable OICR interrupt since settings are
2855 	 * lost during reset. Note that this function is called only during
2856 	 * rebuild path and not while reset is in progress.
2857 	 */
2858 	if (ice_is_reset_in_progress(pf->state))
2859 		goto skip_req_irq;
2860 
2861 	/* reserve one vector in irq_tracker for misc interrupts */
2862 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2863 	if (oicr_idx < 0)
2864 		return oicr_idx;
2865 
2866 	pf->num_avail_sw_msix -= 1;
2867 	pf->oicr_idx = (u16)oicr_idx;
2868 
2869 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2870 			       ice_misc_intr, 0, pf->int_name, pf);
2871 	if (err) {
2872 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2873 			pf->int_name, err);
2874 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2875 		pf->num_avail_sw_msix += 1;
2876 		return err;
2877 	}
2878 
2879 skip_req_irq:
2880 	ice_ena_misc_vector(pf);
2881 
2882 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2883 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2884 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2885 
2886 	ice_flush(hw);
2887 	ice_irq_dynamic_ena(hw, NULL, NULL);
2888 
2889 	return 0;
2890 }
2891 
2892 /**
2893  * ice_napi_add - register NAPI handler for the VSI
2894  * @vsi: VSI for which NAPI handler is to be registered
2895  *
2896  * This function is only called in the driver's load path. Registering the NAPI
2897  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2898  * reset/rebuild, etc.)
2899  */
ice_napi_add(struct ice_vsi * vsi)2900 static void ice_napi_add(struct ice_vsi *vsi)
2901 {
2902 	int v_idx;
2903 
2904 	if (!vsi->netdev)
2905 		return;
2906 
2907 	ice_for_each_q_vector(vsi, v_idx)
2908 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2909 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2910 }
2911 
2912 /**
2913  * ice_set_ops - set netdev and ethtools ops for the given netdev
2914  * @netdev: netdev instance
2915  */
ice_set_ops(struct net_device * netdev)2916 static void ice_set_ops(struct net_device *netdev)
2917 {
2918 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2919 
2920 	if (ice_is_safe_mode(pf)) {
2921 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2922 		ice_set_ethtool_safe_mode_ops(netdev);
2923 		return;
2924 	}
2925 
2926 	netdev->netdev_ops = &ice_netdev_ops;
2927 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2928 	ice_set_ethtool_ops(netdev);
2929 }
2930 
2931 /**
2932  * ice_set_netdev_features - set features for the given netdev
2933  * @netdev: netdev instance
2934  */
ice_set_netdev_features(struct net_device * netdev)2935 static void ice_set_netdev_features(struct net_device *netdev)
2936 {
2937 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2938 	netdev_features_t csumo_features;
2939 	netdev_features_t vlano_features;
2940 	netdev_features_t dflt_features;
2941 	netdev_features_t tso_features;
2942 
2943 	if (ice_is_safe_mode(pf)) {
2944 		/* safe mode */
2945 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2946 		netdev->hw_features = netdev->features;
2947 		return;
2948 	}
2949 
2950 	dflt_features = NETIF_F_SG	|
2951 			NETIF_F_HIGHDMA	|
2952 			NETIF_F_NTUPLE	|
2953 			NETIF_F_RXHASH;
2954 
2955 	csumo_features = NETIF_F_RXCSUM	  |
2956 			 NETIF_F_IP_CSUM  |
2957 			 NETIF_F_SCTP_CRC |
2958 			 NETIF_F_IPV6_CSUM;
2959 
2960 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2961 			 NETIF_F_HW_VLAN_CTAG_TX     |
2962 			 NETIF_F_HW_VLAN_CTAG_RX;
2963 
2964 	tso_features = NETIF_F_TSO			|
2965 		       NETIF_F_TSO_ECN			|
2966 		       NETIF_F_TSO6			|
2967 		       NETIF_F_GSO_GRE			|
2968 		       NETIF_F_GSO_UDP_TUNNEL		|
2969 		       NETIF_F_GSO_GRE_CSUM		|
2970 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2971 		       NETIF_F_GSO_PARTIAL		|
2972 		       NETIF_F_GSO_IPXIP4		|
2973 		       NETIF_F_GSO_IPXIP6		|
2974 		       NETIF_F_GSO_UDP_L4;
2975 
2976 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2977 					NETIF_F_GSO_GRE_CSUM;
2978 	/* set features that user can change */
2979 	netdev->hw_features = dflt_features | csumo_features |
2980 			      vlano_features | tso_features;
2981 
2982 	/* add support for HW_CSUM on packets with MPLS header */
2983 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2984 
2985 	/* enable features */
2986 	netdev->features |= netdev->hw_features;
2987 	/* encap and VLAN devices inherit default, csumo and tso features */
2988 	netdev->hw_enc_features |= dflt_features | csumo_features |
2989 				   tso_features;
2990 	netdev->vlan_features |= dflt_features | csumo_features |
2991 				 tso_features;
2992 }
2993 
2994 /**
2995  * ice_cfg_netdev - Allocate, configure and register a netdev
2996  * @vsi: the VSI associated with the new netdev
2997  *
2998  * Returns 0 on success, negative value on failure
2999  */
ice_cfg_netdev(struct ice_vsi * vsi)3000 static int ice_cfg_netdev(struct ice_vsi *vsi)
3001 {
3002 	struct ice_pf *pf = vsi->back;
3003 	struct ice_netdev_priv *np;
3004 	struct net_device *netdev;
3005 	u8 mac_addr[ETH_ALEN];
3006 	int err;
3007 
3008 	err = ice_devlink_create_port(vsi);
3009 	if (err)
3010 		return err;
3011 
3012 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3013 				    vsi->alloc_rxq);
3014 	if (!netdev) {
3015 		err = -ENOMEM;
3016 		goto err_destroy_devlink_port;
3017 	}
3018 
3019 	vsi->netdev = netdev;
3020 	np = netdev_priv(netdev);
3021 	np->vsi = vsi;
3022 
3023 	ice_set_netdev_features(netdev);
3024 
3025 	ice_set_ops(netdev);
3026 
3027 	if (vsi->type == ICE_VSI_PF) {
3028 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3029 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3030 		ether_addr_copy(netdev->dev_addr, mac_addr);
3031 		ether_addr_copy(netdev->perm_addr, mac_addr);
3032 	}
3033 
3034 	netdev->priv_flags |= IFF_UNICAST_FLT;
3035 
3036 	/* Setup netdev TC information */
3037 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3038 
3039 	/* setup watchdog timeout value to be 5 second */
3040 	netdev->watchdog_timeo = 5 * HZ;
3041 
3042 	netdev->min_mtu = ETH_MIN_MTU;
3043 	netdev->max_mtu = ICE_MAX_MTU;
3044 
3045 	err = register_netdev(vsi->netdev);
3046 	if (err)
3047 		goto err_free_netdev;
3048 
3049 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3050 
3051 	netif_carrier_off(vsi->netdev);
3052 
3053 	/* make sure transmit queues start off as stopped */
3054 	netif_tx_stop_all_queues(vsi->netdev);
3055 
3056 	return 0;
3057 
3058 err_free_netdev:
3059 	free_netdev(vsi->netdev);
3060 	vsi->netdev = NULL;
3061 err_destroy_devlink_port:
3062 	ice_devlink_destroy_port(vsi);
3063 	return err;
3064 }
3065 
3066 /**
3067  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3068  * @lut: Lookup table
3069  * @rss_table_size: Lookup table size
3070  * @rss_size: Range of queue number for hashing
3071  */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3072 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3073 {
3074 	u16 i;
3075 
3076 	for (i = 0; i < rss_table_size; i++)
3077 		lut[i] = i % rss_size;
3078 }
3079 
3080 /**
3081  * ice_pf_vsi_setup - Set up a PF VSI
3082  * @pf: board private structure
3083  * @pi: pointer to the port_info instance
3084  *
3085  * Returns pointer to the successfully allocated VSI software struct
3086  * on success, otherwise returns NULL on failure.
3087  */
3088 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3089 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3090 {
3091 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3092 }
3093 
3094 /**
3095  * ice_ctrl_vsi_setup - Set up a control VSI
3096  * @pf: board private structure
3097  * @pi: pointer to the port_info instance
3098  *
3099  * Returns pointer to the successfully allocated VSI software struct
3100  * on success, otherwise returns NULL on failure.
3101  */
3102 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3103 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3104 {
3105 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3106 }
3107 
3108 /**
3109  * ice_lb_vsi_setup - Set up a loopback VSI
3110  * @pf: board private structure
3111  * @pi: pointer to the port_info instance
3112  *
3113  * Returns pointer to the successfully allocated VSI software struct
3114  * on success, otherwise returns NULL on failure.
3115  */
3116 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3117 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3118 {
3119 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3120 }
3121 
3122 /**
3123  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3124  * @netdev: network interface to be adjusted
3125  * @proto: unused protocol
3126  * @vid: VLAN ID to be added
3127  *
3128  * net_device_ops implementation for adding VLAN IDs
3129  */
3130 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3131 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3132 		    u16 vid)
3133 {
3134 	struct ice_netdev_priv *np = netdev_priv(netdev);
3135 	struct ice_vsi *vsi = np->vsi;
3136 	int ret;
3137 
3138 	if (vid >= VLAN_N_VID) {
3139 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3140 			   vid, VLAN_N_VID);
3141 		return -EINVAL;
3142 	}
3143 
3144 	if (vsi->info.pvid)
3145 		return -EINVAL;
3146 
3147 	/* VLAN 0 is added by default during load/reset */
3148 	if (!vid)
3149 		return 0;
3150 
3151 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3152 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3153 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3154 		if (ret)
3155 			return ret;
3156 	}
3157 
3158 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3159 	 * packets aren't pruned by the device's internal switch on Rx
3160 	 */
3161 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3162 	if (!ret) {
3163 		vsi->vlan_ena = true;
3164 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3165 	}
3166 
3167 	return ret;
3168 }
3169 
3170 /**
3171  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3172  * @netdev: network interface to be adjusted
3173  * @proto: unused protocol
3174  * @vid: VLAN ID to be removed
3175  *
3176  * net_device_ops implementation for removing VLAN IDs
3177  */
3178 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3179 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3180 		     u16 vid)
3181 {
3182 	struct ice_netdev_priv *np = netdev_priv(netdev);
3183 	struct ice_vsi *vsi = np->vsi;
3184 	int ret;
3185 
3186 	if (vsi->info.pvid)
3187 		return -EINVAL;
3188 
3189 	/* don't allow removal of VLAN 0 */
3190 	if (!vid)
3191 		return 0;
3192 
3193 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3194 	 * information
3195 	 */
3196 	ret = ice_vsi_kill_vlan(vsi, vid);
3197 	if (ret)
3198 		return ret;
3199 
3200 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3201 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3202 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3203 
3204 	vsi->vlan_ena = false;
3205 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3206 	return ret;
3207 }
3208 
3209 /**
3210  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3211  * @pf: board private structure
3212  *
3213  * Returns 0 on success, negative value on failure
3214  */
ice_setup_pf_sw(struct ice_pf * pf)3215 static int ice_setup_pf_sw(struct ice_pf *pf)
3216 {
3217 	struct ice_vsi *vsi;
3218 	int status = 0;
3219 
3220 	if (ice_is_reset_in_progress(pf->state))
3221 		return -EBUSY;
3222 
3223 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3224 	if (!vsi)
3225 		return -ENOMEM;
3226 
3227 	status = ice_cfg_netdev(vsi);
3228 	if (status) {
3229 		status = -ENODEV;
3230 		goto unroll_vsi_setup;
3231 	}
3232 	/* netdev has to be configured before setting frame size */
3233 	ice_vsi_cfg_frame_size(vsi);
3234 
3235 	/* Setup DCB netlink interface */
3236 	ice_dcbnl_setup(vsi);
3237 
3238 	/* registering the NAPI handler requires both the queues and
3239 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3240 	 * and ice_cfg_netdev() respectively
3241 	 */
3242 	ice_napi_add(vsi);
3243 
3244 	status = ice_set_cpu_rx_rmap(vsi);
3245 	if (status) {
3246 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3247 			vsi->vsi_num, status);
3248 		status = -EINVAL;
3249 		goto unroll_napi_add;
3250 	}
3251 	status = ice_init_mac_fltr(pf);
3252 	if (status)
3253 		goto free_cpu_rx_map;
3254 
3255 	return status;
3256 
3257 free_cpu_rx_map:
3258 	ice_free_cpu_rx_rmap(vsi);
3259 
3260 unroll_napi_add:
3261 	if (vsi) {
3262 		ice_napi_del(vsi);
3263 		if (vsi->netdev) {
3264 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3265 				unregister_netdev(vsi->netdev);
3266 			free_netdev(vsi->netdev);
3267 			vsi->netdev = NULL;
3268 		}
3269 	}
3270 
3271 unroll_vsi_setup:
3272 	ice_vsi_release(vsi);
3273 	return status;
3274 }
3275 
3276 /**
3277  * ice_get_avail_q_count - Get count of queues in use
3278  * @pf_qmap: bitmap to get queue use count from
3279  * @lock: pointer to a mutex that protects access to pf_qmap
3280  * @size: size of the bitmap
3281  */
3282 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3283 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3284 {
3285 	unsigned long bit;
3286 	u16 count = 0;
3287 
3288 	mutex_lock(lock);
3289 	for_each_clear_bit(bit, pf_qmap, size)
3290 		count++;
3291 	mutex_unlock(lock);
3292 
3293 	return count;
3294 }
3295 
3296 /**
3297  * ice_get_avail_txq_count - Get count of Tx queues in use
3298  * @pf: pointer to an ice_pf instance
3299  */
ice_get_avail_txq_count(struct ice_pf * pf)3300 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3301 {
3302 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3303 				     pf->max_pf_txqs);
3304 }
3305 
3306 /**
3307  * ice_get_avail_rxq_count - Get count of Rx queues in use
3308  * @pf: pointer to an ice_pf instance
3309  */
ice_get_avail_rxq_count(struct ice_pf * pf)3310 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3311 {
3312 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3313 				     pf->max_pf_rxqs);
3314 }
3315 
3316 /**
3317  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3318  * @pf: board private structure to initialize
3319  */
ice_deinit_pf(struct ice_pf * pf)3320 static void ice_deinit_pf(struct ice_pf *pf)
3321 {
3322 	ice_service_task_stop(pf);
3323 	mutex_destroy(&pf->sw_mutex);
3324 	mutex_destroy(&pf->tc_mutex);
3325 	mutex_destroy(&pf->avail_q_mutex);
3326 
3327 	if (pf->avail_txqs) {
3328 		bitmap_free(pf->avail_txqs);
3329 		pf->avail_txqs = NULL;
3330 	}
3331 
3332 	if (pf->avail_rxqs) {
3333 		bitmap_free(pf->avail_rxqs);
3334 		pf->avail_rxqs = NULL;
3335 	}
3336 }
3337 
3338 /**
3339  * ice_set_pf_caps - set PFs capability flags
3340  * @pf: pointer to the PF instance
3341  */
ice_set_pf_caps(struct ice_pf * pf)3342 static void ice_set_pf_caps(struct ice_pf *pf)
3343 {
3344 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3345 
3346 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3347 	if (func_caps->common_cap.dcb)
3348 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3349 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3350 	if (func_caps->common_cap.sr_iov_1_1) {
3351 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3352 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3353 					      ICE_MAX_VF_COUNT);
3354 	}
3355 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3356 	if (func_caps->common_cap.rss_table_size)
3357 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3358 
3359 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3360 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3361 		u16 unused;
3362 
3363 		/* ctrl_vsi_idx will be set to a valid value when flow director
3364 		 * is setup by ice_init_fdir
3365 		 */
3366 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3367 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3368 		/* force guaranteed filter pool for PF */
3369 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3370 				       func_caps->fd_fltr_guar);
3371 		/* force shared filter pool for PF */
3372 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3373 				       func_caps->fd_fltr_best_effort);
3374 	}
3375 
3376 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3377 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3378 }
3379 
3380 /**
3381  * ice_init_pf - Initialize general software structures (struct ice_pf)
3382  * @pf: board private structure to initialize
3383  */
ice_init_pf(struct ice_pf * pf)3384 static int ice_init_pf(struct ice_pf *pf)
3385 {
3386 	ice_set_pf_caps(pf);
3387 
3388 	mutex_init(&pf->sw_mutex);
3389 	mutex_init(&pf->tc_mutex);
3390 
3391 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3392 	spin_lock_init(&pf->aq_wait_lock);
3393 	init_waitqueue_head(&pf->aq_wait_queue);
3394 
3395 	/* setup service timer and periodic service task */
3396 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3397 	pf->serv_tmr_period = HZ;
3398 	INIT_WORK(&pf->serv_task, ice_service_task);
3399 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3400 
3401 	mutex_init(&pf->avail_q_mutex);
3402 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3403 	if (!pf->avail_txqs)
3404 		return -ENOMEM;
3405 
3406 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3407 	if (!pf->avail_rxqs) {
3408 		bitmap_free(pf->avail_txqs);
3409 		pf->avail_txqs = NULL;
3410 		return -ENOMEM;
3411 	}
3412 
3413 	return 0;
3414 }
3415 
3416 /**
3417  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3418  * @pf: board private structure
3419  *
3420  * compute the number of MSIX vectors required (v_budget) and request from
3421  * the OS. Return the number of vectors reserved or negative on failure
3422  */
ice_ena_msix_range(struct ice_pf * pf)3423 static int ice_ena_msix_range(struct ice_pf *pf)
3424 {
3425 	struct device *dev = ice_pf_to_dev(pf);
3426 	int v_left, v_actual, v_budget = 0;
3427 	int needed, err, i;
3428 
3429 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3430 
3431 	/* reserve one vector for miscellaneous handler */
3432 	needed = 1;
3433 	if (v_left < needed)
3434 		goto no_hw_vecs_left_err;
3435 	v_budget += needed;
3436 	v_left -= needed;
3437 
3438 	/* reserve vectors for LAN traffic */
3439 	needed = min_t(int, num_online_cpus(), v_left);
3440 	if (v_left < needed)
3441 		goto no_hw_vecs_left_err;
3442 	pf->num_lan_msix = needed;
3443 	v_budget += needed;
3444 	v_left -= needed;
3445 
3446 	/* reserve one vector for flow director */
3447 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3448 		needed = ICE_FDIR_MSIX;
3449 		if (v_left < needed)
3450 			goto no_hw_vecs_left_err;
3451 		v_budget += needed;
3452 		v_left -= needed;
3453 	}
3454 
3455 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3456 					sizeof(*pf->msix_entries), GFP_KERNEL);
3457 
3458 	if (!pf->msix_entries) {
3459 		err = -ENOMEM;
3460 		goto exit_err;
3461 	}
3462 
3463 	for (i = 0; i < v_budget; i++)
3464 		pf->msix_entries[i].entry = i;
3465 
3466 	/* actually reserve the vectors */
3467 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3468 					 ICE_MIN_MSIX, v_budget);
3469 
3470 	if (v_actual < 0) {
3471 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3472 		err = v_actual;
3473 		goto msix_err;
3474 	}
3475 
3476 	if (v_actual < v_budget) {
3477 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3478 			 v_budget, v_actual);
3479 
3480 		if (v_actual < ICE_MIN_MSIX) {
3481 			/* error if we can't get minimum vectors */
3482 			pci_disable_msix(pf->pdev);
3483 			err = -ERANGE;
3484 			goto msix_err;
3485 		} else {
3486 			pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3487 		}
3488 	}
3489 
3490 	return v_actual;
3491 
3492 msix_err:
3493 	devm_kfree(dev, pf->msix_entries);
3494 	goto exit_err;
3495 
3496 no_hw_vecs_left_err:
3497 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3498 		needed, v_left);
3499 	err = -ERANGE;
3500 exit_err:
3501 	pf->num_lan_msix = 0;
3502 	return err;
3503 }
3504 
3505 /**
3506  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3507  * @pf: board private structure
3508  */
ice_dis_msix(struct ice_pf * pf)3509 static void ice_dis_msix(struct ice_pf *pf)
3510 {
3511 	pci_disable_msix(pf->pdev);
3512 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3513 	pf->msix_entries = NULL;
3514 }
3515 
3516 /**
3517  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3518  * @pf: board private structure
3519  */
ice_clear_interrupt_scheme(struct ice_pf * pf)3520 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3521 {
3522 	ice_dis_msix(pf);
3523 
3524 	if (pf->irq_tracker) {
3525 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3526 		pf->irq_tracker = NULL;
3527 	}
3528 }
3529 
3530 /**
3531  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3532  * @pf: board private structure to initialize
3533  */
ice_init_interrupt_scheme(struct ice_pf * pf)3534 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3535 {
3536 	int vectors;
3537 
3538 	vectors = ice_ena_msix_range(pf);
3539 
3540 	if (vectors < 0)
3541 		return vectors;
3542 
3543 	/* set up vector assignment tracking */
3544 	pf->irq_tracker =
3545 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3546 			     (sizeof(u16) * vectors), GFP_KERNEL);
3547 	if (!pf->irq_tracker) {
3548 		ice_dis_msix(pf);
3549 		return -ENOMEM;
3550 	}
3551 
3552 	/* populate SW interrupts pool with number of OS granted IRQs. */
3553 	pf->num_avail_sw_msix = (u16)vectors;
3554 	pf->irq_tracker->num_entries = (u16)vectors;
3555 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3556 
3557 	return 0;
3558 }
3559 
3560 /**
3561  * ice_is_wol_supported - check if WoL is supported
3562  * @hw: pointer to hardware info
3563  *
3564  * Check if WoL is supported based on the HW configuration.
3565  * Returns true if NVM supports and enables WoL for this port, false otherwise
3566  */
ice_is_wol_supported(struct ice_hw * hw)3567 bool ice_is_wol_supported(struct ice_hw *hw)
3568 {
3569 	u16 wol_ctrl;
3570 
3571 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3572 	 * word) indicates WoL is not supported on the corresponding PF ID.
3573 	 */
3574 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3575 		return false;
3576 
3577 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3578 }
3579 
3580 /**
3581  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3582  * @vsi: VSI being changed
3583  * @new_rx: new number of Rx queues
3584  * @new_tx: new number of Tx queues
3585  *
3586  * Only change the number of queues if new_tx, or new_rx is non-0.
3587  *
3588  * Returns 0 on success.
3589  */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3590 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3591 {
3592 	struct ice_pf *pf = vsi->back;
3593 	int err = 0, timeout = 50;
3594 
3595 	if (!new_rx && !new_tx)
3596 		return -EINVAL;
3597 
3598 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3599 		timeout--;
3600 		if (!timeout)
3601 			return -EBUSY;
3602 		usleep_range(1000, 2000);
3603 	}
3604 
3605 	if (new_tx)
3606 		vsi->req_txq = (u16)new_tx;
3607 	if (new_rx)
3608 		vsi->req_rxq = (u16)new_rx;
3609 
3610 	/* set for the next time the netdev is started */
3611 	if (!netif_running(vsi->netdev)) {
3612 		ice_vsi_rebuild(vsi, false);
3613 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3614 		goto done;
3615 	}
3616 
3617 	ice_vsi_close(vsi);
3618 	ice_vsi_rebuild(vsi, false);
3619 	ice_pf_dcb_recfg(pf);
3620 	ice_vsi_open(vsi);
3621 done:
3622 	clear_bit(__ICE_CFG_BUSY, pf->state);
3623 	return err;
3624 }
3625 
3626 /**
3627  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3628  * @pf: PF to configure
3629  *
3630  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3631  * VSI can still Tx/Rx VLAN tagged packets.
3632  */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3633 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3634 {
3635 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3636 	struct ice_vsi_ctx *ctxt;
3637 	enum ice_status status;
3638 	struct ice_hw *hw;
3639 
3640 	if (!vsi)
3641 		return;
3642 
3643 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3644 	if (!ctxt)
3645 		return;
3646 
3647 	hw = &pf->hw;
3648 	ctxt->info = vsi->info;
3649 
3650 	ctxt->info.valid_sections =
3651 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3652 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3653 			    ICE_AQ_VSI_PROP_SW_VALID);
3654 
3655 	/* disable VLAN anti-spoof */
3656 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3657 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3658 
3659 	/* disable VLAN pruning and keep all other settings */
3660 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3661 
3662 	/* allow all VLANs on Tx and don't strip on Rx */
3663 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3664 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3665 
3666 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3667 	if (status) {
3668 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3669 			ice_stat_str(status),
3670 			ice_aq_str(hw->adminq.sq_last_status));
3671 	} else {
3672 		vsi->info.sec_flags = ctxt->info.sec_flags;
3673 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3674 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3675 	}
3676 
3677 	kfree(ctxt);
3678 }
3679 
3680 /**
3681  * ice_log_pkg_init - log result of DDP package load
3682  * @hw: pointer to hardware info
3683  * @status: status of package load
3684  */
3685 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3686 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3687 {
3688 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3689 	struct device *dev = ice_pf_to_dev(pf);
3690 
3691 	switch (*status) {
3692 	case ICE_SUCCESS:
3693 		/* The package download AdminQ command returned success because
3694 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3695 		 * already a package loaded on the device.
3696 		 */
3697 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3698 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3699 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3700 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3701 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3702 			    sizeof(hw->pkg_name))) {
3703 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3704 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3705 					 hw->active_pkg_name,
3706 					 hw->active_pkg_ver.major,
3707 					 hw->active_pkg_ver.minor,
3708 					 hw->active_pkg_ver.update,
3709 					 hw->active_pkg_ver.draft);
3710 			else
3711 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3712 					 hw->active_pkg_name,
3713 					 hw->active_pkg_ver.major,
3714 					 hw->active_pkg_ver.minor,
3715 					 hw->active_pkg_ver.update,
3716 					 hw->active_pkg_ver.draft);
3717 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3718 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3719 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3720 				hw->active_pkg_name,
3721 				hw->active_pkg_ver.major,
3722 				hw->active_pkg_ver.minor,
3723 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3724 			*status = ICE_ERR_NOT_SUPPORTED;
3725 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3726 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3727 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3728 				 hw->active_pkg_name,
3729 				 hw->active_pkg_ver.major,
3730 				 hw->active_pkg_ver.minor,
3731 				 hw->active_pkg_ver.update,
3732 				 hw->active_pkg_ver.draft,
3733 				 hw->pkg_name,
3734 				 hw->pkg_ver.major,
3735 				 hw->pkg_ver.minor,
3736 				 hw->pkg_ver.update,
3737 				 hw->pkg_ver.draft);
3738 		} else {
3739 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3740 			*status = ICE_ERR_NOT_SUPPORTED;
3741 		}
3742 		break;
3743 	case ICE_ERR_FW_DDP_MISMATCH:
3744 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3745 		break;
3746 	case ICE_ERR_BUF_TOO_SHORT:
3747 	case ICE_ERR_CFG:
3748 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3749 		break;
3750 	case ICE_ERR_NOT_SUPPORTED:
3751 		/* Package File version not supported */
3752 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3753 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3754 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3755 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3756 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3757 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3758 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3759 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3760 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3761 		break;
3762 	case ICE_ERR_AQ_ERROR:
3763 		switch (hw->pkg_dwnld_status) {
3764 		case ICE_AQ_RC_ENOSEC:
3765 		case ICE_AQ_RC_EBADSIG:
3766 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3767 			return;
3768 		case ICE_AQ_RC_ESVN:
3769 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3770 			return;
3771 		case ICE_AQ_RC_EBADMAN:
3772 		case ICE_AQ_RC_EBADBUF:
3773 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3774 			/* poll for reset to complete */
3775 			if (ice_check_reset(hw))
3776 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3777 			return;
3778 		default:
3779 			break;
3780 		}
3781 		fallthrough;
3782 	default:
3783 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3784 			*status);
3785 		break;
3786 	}
3787 }
3788 
3789 /**
3790  * ice_load_pkg - load/reload the DDP Package file
3791  * @firmware: firmware structure when firmware requested or NULL for reload
3792  * @pf: pointer to the PF instance
3793  *
3794  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3795  * initialize HW tables.
3796  */
3797 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3798 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3799 {
3800 	enum ice_status status = ICE_ERR_PARAM;
3801 	struct device *dev = ice_pf_to_dev(pf);
3802 	struct ice_hw *hw = &pf->hw;
3803 
3804 	/* Load DDP Package */
3805 	if (firmware && !hw->pkg_copy) {
3806 		status = ice_copy_and_init_pkg(hw, firmware->data,
3807 					       firmware->size);
3808 		ice_log_pkg_init(hw, &status);
3809 	} else if (!firmware && hw->pkg_copy) {
3810 		/* Reload package during rebuild after CORER/GLOBR reset */
3811 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3812 		ice_log_pkg_init(hw, &status);
3813 	} else {
3814 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3815 	}
3816 
3817 	if (status) {
3818 		/* Safe Mode */
3819 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3820 		return;
3821 	}
3822 
3823 	/* Successful download package is the precondition for advanced
3824 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3825 	 */
3826 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3827 }
3828 
3829 /**
3830  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3831  * @pf: pointer to the PF structure
3832  *
3833  * There is no error returned here because the driver should be able to handle
3834  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3835  * specifically with Tx.
3836  */
ice_verify_cacheline_size(struct ice_pf * pf)3837 static void ice_verify_cacheline_size(struct ice_pf *pf)
3838 {
3839 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3840 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3841 			 ICE_CACHE_LINE_BYTES);
3842 }
3843 
3844 /**
3845  * ice_send_version - update firmware with driver version
3846  * @pf: PF struct
3847  *
3848  * Returns ICE_SUCCESS on success, else error code
3849  */
ice_send_version(struct ice_pf * pf)3850 static enum ice_status ice_send_version(struct ice_pf *pf)
3851 {
3852 	struct ice_driver_ver dv;
3853 
3854 	dv.major_ver = 0xff;
3855 	dv.minor_ver = 0xff;
3856 	dv.build_ver = 0xff;
3857 	dv.subbuild_ver = 0;
3858 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3859 		sizeof(dv.driver_string));
3860 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3861 }
3862 
3863 /**
3864  * ice_init_fdir - Initialize flow director VSI and configuration
3865  * @pf: pointer to the PF instance
3866  *
3867  * returns 0 on success, negative on error
3868  */
ice_init_fdir(struct ice_pf * pf)3869 static int ice_init_fdir(struct ice_pf *pf)
3870 {
3871 	struct device *dev = ice_pf_to_dev(pf);
3872 	struct ice_vsi *ctrl_vsi;
3873 	int err;
3874 
3875 	/* Side Band Flow Director needs to have a control VSI.
3876 	 * Allocate it and store it in the PF.
3877 	 */
3878 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3879 	if (!ctrl_vsi) {
3880 		dev_dbg(dev, "could not create control VSI\n");
3881 		return -ENOMEM;
3882 	}
3883 
3884 	err = ice_vsi_open_ctrl(ctrl_vsi);
3885 	if (err) {
3886 		dev_dbg(dev, "could not open control VSI\n");
3887 		goto err_vsi_open;
3888 	}
3889 
3890 	mutex_init(&pf->hw.fdir_fltr_lock);
3891 
3892 	err = ice_fdir_create_dflt_rules(pf);
3893 	if (err)
3894 		goto err_fdir_rule;
3895 
3896 	return 0;
3897 
3898 err_fdir_rule:
3899 	ice_fdir_release_flows(&pf->hw);
3900 	ice_vsi_close(ctrl_vsi);
3901 err_vsi_open:
3902 	ice_vsi_release(ctrl_vsi);
3903 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3904 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3905 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3906 	}
3907 	return err;
3908 }
3909 
3910 /**
3911  * ice_get_opt_fw_name - return optional firmware file name or NULL
3912  * @pf: pointer to the PF instance
3913  */
ice_get_opt_fw_name(struct ice_pf * pf)3914 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3915 {
3916 	/* Optional firmware name same as default with additional dash
3917 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3918 	 */
3919 	struct pci_dev *pdev = pf->pdev;
3920 	char *opt_fw_filename;
3921 	u64 dsn;
3922 
3923 	/* Determine the name of the optional file using the DSN (two
3924 	 * dwords following the start of the DSN Capability).
3925 	 */
3926 	dsn = pci_get_dsn(pdev);
3927 	if (!dsn)
3928 		return NULL;
3929 
3930 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3931 	if (!opt_fw_filename)
3932 		return NULL;
3933 
3934 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3935 		 ICE_DDP_PKG_PATH, dsn);
3936 
3937 	return opt_fw_filename;
3938 }
3939 
3940 /**
3941  * ice_request_fw - Device initialization routine
3942  * @pf: pointer to the PF instance
3943  */
ice_request_fw(struct ice_pf * pf)3944 static void ice_request_fw(struct ice_pf *pf)
3945 {
3946 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3947 	const struct firmware *firmware = NULL;
3948 	struct device *dev = ice_pf_to_dev(pf);
3949 	int err = 0;
3950 
3951 	/* optional device-specific DDP (if present) overrides the default DDP
3952 	 * package file. kernel logs a debug message if the file doesn't exist,
3953 	 * and warning messages for other errors.
3954 	 */
3955 	if (opt_fw_filename) {
3956 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3957 		if (err) {
3958 			kfree(opt_fw_filename);
3959 			goto dflt_pkg_load;
3960 		}
3961 
3962 		/* request for firmware was successful. Download to device */
3963 		ice_load_pkg(firmware, pf);
3964 		kfree(opt_fw_filename);
3965 		release_firmware(firmware);
3966 		return;
3967 	}
3968 
3969 dflt_pkg_load:
3970 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3971 	if (err) {
3972 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3973 		return;
3974 	}
3975 
3976 	/* request for firmware was successful. Download to device */
3977 	ice_load_pkg(firmware, pf);
3978 	release_firmware(firmware);
3979 }
3980 
3981 /**
3982  * ice_print_wake_reason - show the wake up cause in the log
3983  * @pf: pointer to the PF struct
3984  */
ice_print_wake_reason(struct ice_pf * pf)3985 static void ice_print_wake_reason(struct ice_pf *pf)
3986 {
3987 	u32 wus = pf->wakeup_reason;
3988 	const char *wake_str;
3989 
3990 	/* if no wake event, nothing to print */
3991 	if (!wus)
3992 		return;
3993 
3994 	if (wus & PFPM_WUS_LNKC_M)
3995 		wake_str = "Link\n";
3996 	else if (wus & PFPM_WUS_MAG_M)
3997 		wake_str = "Magic Packet\n";
3998 	else if (wus & PFPM_WUS_MNG_M)
3999 		wake_str = "Management\n";
4000 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4001 		wake_str = "Firmware Reset\n";
4002 	else
4003 		wake_str = "Unknown\n";
4004 
4005 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4006 }
4007 
4008 /**
4009  * ice_probe - Device initialization routine
4010  * @pdev: PCI device information struct
4011  * @ent: entry in ice_pci_tbl
4012  *
4013  * Returns 0 on success, negative on failure
4014  */
4015 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4016 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4017 {
4018 	struct device *dev = &pdev->dev;
4019 	struct ice_pf *pf;
4020 	struct ice_hw *hw;
4021 	int i, err;
4022 
4023 	if (pdev->is_virtfn) {
4024 		dev_err(dev, "can't probe a virtual function\n");
4025 		return -EINVAL;
4026 	}
4027 
4028 	/* this driver uses devres, see
4029 	 * Documentation/driver-api/driver-model/devres.rst
4030 	 */
4031 	err = pcim_enable_device(pdev);
4032 	if (err)
4033 		return err;
4034 
4035 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4036 	if (err) {
4037 		dev_err(dev, "BAR0 I/O map error %d\n", err);
4038 		return err;
4039 	}
4040 
4041 	pf = ice_allocate_pf(dev);
4042 	if (!pf)
4043 		return -ENOMEM;
4044 
4045 	/* set up for high or low DMA */
4046 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4047 	if (err)
4048 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4049 	if (err) {
4050 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4051 		return err;
4052 	}
4053 
4054 	pci_enable_pcie_error_reporting(pdev);
4055 	pci_set_master(pdev);
4056 
4057 	pf->pdev = pdev;
4058 	pci_set_drvdata(pdev, pf);
4059 	set_bit(__ICE_DOWN, pf->state);
4060 	/* Disable service task until DOWN bit is cleared */
4061 	set_bit(__ICE_SERVICE_DIS, pf->state);
4062 
4063 	hw = &pf->hw;
4064 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4065 	pci_save_state(pdev);
4066 
4067 	hw->back = pf;
4068 	hw->vendor_id = pdev->vendor;
4069 	hw->device_id = pdev->device;
4070 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4071 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4072 	hw->subsystem_device_id = pdev->subsystem_device;
4073 	hw->bus.device = PCI_SLOT(pdev->devfn);
4074 	hw->bus.func = PCI_FUNC(pdev->devfn);
4075 	ice_set_ctrlq_len(hw);
4076 
4077 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4078 
4079 	err = ice_devlink_register(pf);
4080 	if (err) {
4081 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4082 		goto err_exit_unroll;
4083 	}
4084 
4085 #ifndef CONFIG_DYNAMIC_DEBUG
4086 	if (debug < -1)
4087 		hw->debug_mask = debug;
4088 #endif
4089 
4090 	err = ice_init_hw(hw);
4091 	if (err) {
4092 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4093 		err = -EIO;
4094 		goto err_exit_unroll;
4095 	}
4096 
4097 	ice_request_fw(pf);
4098 
4099 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4100 	 * set in pf->state, which will cause ice_is_safe_mode to return
4101 	 * true
4102 	 */
4103 	if (ice_is_safe_mode(pf)) {
4104 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4105 		/* we already got function/device capabilities but these don't
4106 		 * reflect what the driver needs to do in safe mode. Instead of
4107 		 * adding conditional logic everywhere to ignore these
4108 		 * device/function capabilities, override them.
4109 		 */
4110 		ice_set_safe_mode_caps(hw);
4111 	}
4112 
4113 	err = ice_init_pf(pf);
4114 	if (err) {
4115 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4116 		goto err_init_pf_unroll;
4117 	}
4118 
4119 	ice_devlink_init_regions(pf);
4120 
4121 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4122 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4123 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4124 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4125 	i = 0;
4126 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4127 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4128 			pf->hw.tnl.valid_count[TNL_VXLAN];
4129 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4130 			UDP_TUNNEL_TYPE_VXLAN;
4131 		i++;
4132 	}
4133 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4134 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4135 			pf->hw.tnl.valid_count[TNL_GENEVE];
4136 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4137 			UDP_TUNNEL_TYPE_GENEVE;
4138 		i++;
4139 	}
4140 
4141 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4142 	if (!pf->num_alloc_vsi) {
4143 		err = -EIO;
4144 		goto err_init_pf_unroll;
4145 	}
4146 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4147 		dev_warn(&pf->pdev->dev,
4148 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4149 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4150 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4151 	}
4152 
4153 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4154 			       GFP_KERNEL);
4155 	if (!pf->vsi) {
4156 		err = -ENOMEM;
4157 		goto err_init_pf_unroll;
4158 	}
4159 
4160 	err = ice_init_interrupt_scheme(pf);
4161 	if (err) {
4162 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4163 		err = -EIO;
4164 		goto err_init_vsi_unroll;
4165 	}
4166 
4167 	/* In case of MSIX we are going to setup the misc vector right here
4168 	 * to handle admin queue events etc. In case of legacy and MSI
4169 	 * the misc functionality and queue processing is combined in
4170 	 * the same vector and that gets setup at open.
4171 	 */
4172 	err = ice_req_irq_msix_misc(pf);
4173 	if (err) {
4174 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4175 		goto err_init_interrupt_unroll;
4176 	}
4177 
4178 	/* create switch struct for the switch element created by FW on boot */
4179 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4180 	if (!pf->first_sw) {
4181 		err = -ENOMEM;
4182 		goto err_msix_misc_unroll;
4183 	}
4184 
4185 	if (hw->evb_veb)
4186 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4187 	else
4188 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4189 
4190 	pf->first_sw->pf = pf;
4191 
4192 	/* record the sw_id available for later use */
4193 	pf->first_sw->sw_id = hw->port_info->sw_id;
4194 
4195 	err = ice_setup_pf_sw(pf);
4196 	if (err) {
4197 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4198 		goto err_alloc_sw_unroll;
4199 	}
4200 
4201 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4202 
4203 	/* tell the firmware we are up */
4204 	err = ice_send_version(pf);
4205 	if (err) {
4206 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4207 			UTS_RELEASE, err);
4208 		goto err_send_version_unroll;
4209 	}
4210 
4211 	/* since everything is good, start the service timer */
4212 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4213 
4214 	err = ice_init_link_events(pf->hw.port_info);
4215 	if (err) {
4216 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4217 		goto err_send_version_unroll;
4218 	}
4219 
4220 	/* not a fatal error if this fails */
4221 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4222 	if (err)
4223 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4224 
4225 	/* not a fatal error if this fails */
4226 	err = ice_update_link_info(pf->hw.port_info);
4227 	if (err)
4228 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4229 
4230 	ice_init_link_dflt_override(pf->hw.port_info);
4231 
4232 	/* if media available, initialize PHY settings */
4233 	if (pf->hw.port_info->phy.link_info.link_info &
4234 	    ICE_AQ_MEDIA_AVAILABLE) {
4235 		/* not a fatal error if this fails */
4236 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4237 		if (err)
4238 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4239 
4240 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4241 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4242 
4243 			if (vsi)
4244 				ice_configure_phy(vsi);
4245 		}
4246 	} else {
4247 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4248 	}
4249 
4250 	ice_verify_cacheline_size(pf);
4251 
4252 	/* Save wakeup reason register for later use */
4253 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4254 
4255 	/* check for a power management event */
4256 	ice_print_wake_reason(pf);
4257 
4258 	/* clear wake status, all bits */
4259 	wr32(hw, PFPM_WUS, U32_MAX);
4260 
4261 	/* Disable WoL at init, wait for user to enable */
4262 	device_set_wakeup_enable(dev, false);
4263 
4264 	if (ice_is_safe_mode(pf)) {
4265 		ice_set_safe_mode_vlan_cfg(pf);
4266 		goto probe_done;
4267 	}
4268 
4269 	/* initialize DDP driven features */
4270 
4271 	/* Note: Flow director init failure is non-fatal to load */
4272 	if (ice_init_fdir(pf))
4273 		dev_err(dev, "could not initialize flow director\n");
4274 
4275 	/* Note: DCB init failure is non-fatal to load */
4276 	if (ice_init_pf_dcb(pf, false)) {
4277 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4278 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4279 	} else {
4280 		ice_cfg_lldp_mib_change(&pf->hw, true);
4281 	}
4282 
4283 	/* print PCI link speed and width */
4284 	pcie_print_link_status(pf->pdev);
4285 
4286 probe_done:
4287 	/* ready to go, so clear down state bit */
4288 	clear_bit(__ICE_DOWN, pf->state);
4289 	return 0;
4290 
4291 err_send_version_unroll:
4292 	ice_vsi_release_all(pf);
4293 err_alloc_sw_unroll:
4294 	set_bit(__ICE_SERVICE_DIS, pf->state);
4295 	set_bit(__ICE_DOWN, pf->state);
4296 	devm_kfree(dev, pf->first_sw);
4297 err_msix_misc_unroll:
4298 	ice_free_irq_msix_misc(pf);
4299 err_init_interrupt_unroll:
4300 	ice_clear_interrupt_scheme(pf);
4301 err_init_vsi_unroll:
4302 	devm_kfree(dev, pf->vsi);
4303 err_init_pf_unroll:
4304 	ice_deinit_pf(pf);
4305 	ice_devlink_destroy_regions(pf);
4306 	ice_deinit_hw(hw);
4307 err_exit_unroll:
4308 	ice_devlink_unregister(pf);
4309 	pci_disable_pcie_error_reporting(pdev);
4310 	pci_disable_device(pdev);
4311 	return err;
4312 }
4313 
4314 /**
4315  * ice_set_wake - enable or disable Wake on LAN
4316  * @pf: pointer to the PF struct
4317  *
4318  * Simple helper for WoL control
4319  */
ice_set_wake(struct ice_pf * pf)4320 static void ice_set_wake(struct ice_pf *pf)
4321 {
4322 	struct ice_hw *hw = &pf->hw;
4323 	bool wol = pf->wol_ena;
4324 
4325 	/* clear wake state, otherwise new wake events won't fire */
4326 	wr32(hw, PFPM_WUS, U32_MAX);
4327 
4328 	/* enable / disable APM wake up, no RMW needed */
4329 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4330 
4331 	/* set magic packet filter enabled */
4332 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4333 }
4334 
4335 /**
4336  * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4337  * @pf: pointer to the PF struct
4338  *
4339  * Issue firmware command to enable multicast magic wake, making
4340  * sure that any locally administered address (LAA) is used for
4341  * wake, and that PF reset doesn't undo the LAA.
4342  */
ice_setup_mc_magic_wake(struct ice_pf * pf)4343 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4344 {
4345 	struct device *dev = ice_pf_to_dev(pf);
4346 	struct ice_hw *hw = &pf->hw;
4347 	enum ice_status status;
4348 	u8 mac_addr[ETH_ALEN];
4349 	struct ice_vsi *vsi;
4350 	u8 flags;
4351 
4352 	if (!pf->wol_ena)
4353 		return;
4354 
4355 	vsi = ice_get_main_vsi(pf);
4356 	if (!vsi)
4357 		return;
4358 
4359 	/* Get current MAC address in case it's an LAA */
4360 	if (vsi->netdev)
4361 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4362 	else
4363 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4364 
4365 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4366 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4367 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4368 
4369 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4370 	if (status)
4371 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4372 			ice_stat_str(status),
4373 			ice_aq_str(hw->adminq.sq_last_status));
4374 }
4375 
4376 /**
4377  * ice_remove - Device removal routine
4378  * @pdev: PCI device information struct
4379  */
ice_remove(struct pci_dev * pdev)4380 static void ice_remove(struct pci_dev *pdev)
4381 {
4382 	struct ice_pf *pf = pci_get_drvdata(pdev);
4383 	int i;
4384 
4385 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4386 		if (!ice_is_reset_in_progress(pf->state))
4387 			break;
4388 		msleep(100);
4389 	}
4390 
4391 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4392 		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4393 		ice_free_vfs(pf);
4394 	}
4395 
4396 	set_bit(__ICE_DOWN, pf->state);
4397 	ice_service_task_stop(pf);
4398 
4399 	ice_aq_cancel_waiting_tasks(pf);
4400 
4401 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4402 	if (!ice_is_safe_mode(pf))
4403 		ice_remove_arfs(pf);
4404 	ice_setup_mc_magic_wake(pf);
4405 	ice_vsi_release_all(pf);
4406 	ice_set_wake(pf);
4407 	ice_free_irq_msix_misc(pf);
4408 	ice_for_each_vsi(pf, i) {
4409 		if (!pf->vsi[i])
4410 			continue;
4411 		ice_vsi_free_q_vectors(pf->vsi[i]);
4412 	}
4413 	ice_deinit_pf(pf);
4414 	ice_devlink_destroy_regions(pf);
4415 	ice_deinit_hw(&pf->hw);
4416 	ice_devlink_unregister(pf);
4417 
4418 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4419 	 * do it via ice_schedule_reset() since there is no need to rebuild
4420 	 * and the service task is already stopped.
4421 	 */
4422 	ice_reset(&pf->hw, ICE_RESET_PFR);
4423 	pci_wait_for_pending_transaction(pdev);
4424 	ice_clear_interrupt_scheme(pf);
4425 	pci_disable_pcie_error_reporting(pdev);
4426 	pci_disable_device(pdev);
4427 }
4428 
4429 /**
4430  * ice_shutdown - PCI callback for shutting down device
4431  * @pdev: PCI device information struct
4432  */
ice_shutdown(struct pci_dev * pdev)4433 static void ice_shutdown(struct pci_dev *pdev)
4434 {
4435 	struct ice_pf *pf = pci_get_drvdata(pdev);
4436 
4437 	ice_remove(pdev);
4438 
4439 	if (system_state == SYSTEM_POWER_OFF) {
4440 		pci_wake_from_d3(pdev, pf->wol_ena);
4441 		pci_set_power_state(pdev, PCI_D3hot);
4442 	}
4443 }
4444 
4445 #ifdef CONFIG_PM
4446 /**
4447  * ice_prepare_for_shutdown - prep for PCI shutdown
4448  * @pf: board private structure
4449  *
4450  * Inform or close all dependent features in prep for PCI device shutdown
4451  */
ice_prepare_for_shutdown(struct ice_pf * pf)4452 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4453 {
4454 	struct ice_hw *hw = &pf->hw;
4455 	u32 v;
4456 
4457 	/* Notify VFs of impending reset */
4458 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4459 		ice_vc_notify_reset(pf);
4460 
4461 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4462 
4463 	/* disable the VSIs and their queues that are not already DOWN */
4464 	ice_pf_dis_all_vsi(pf, false);
4465 
4466 	ice_for_each_vsi(pf, v)
4467 		if (pf->vsi[v])
4468 			pf->vsi[v]->vsi_num = 0;
4469 
4470 	ice_shutdown_all_ctrlq(hw);
4471 }
4472 
4473 /**
4474  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4475  * @pf: board private structure to reinitialize
4476  *
4477  * This routine reinitialize interrupt scheme that was cleared during
4478  * power management suspend callback.
4479  *
4480  * This should be called during resume routine to re-allocate the q_vectors
4481  * and reacquire interrupts.
4482  */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4483 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4484 {
4485 	struct device *dev = ice_pf_to_dev(pf);
4486 	int ret, v;
4487 
4488 	/* Since we clear MSIX flag during suspend, we need to
4489 	 * set it back during resume...
4490 	 */
4491 
4492 	ret = ice_init_interrupt_scheme(pf);
4493 	if (ret) {
4494 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4495 		return ret;
4496 	}
4497 
4498 	/* Remap vectors and rings, after successful re-init interrupts */
4499 	ice_for_each_vsi(pf, v) {
4500 		if (!pf->vsi[v])
4501 			continue;
4502 
4503 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4504 		if (ret)
4505 			goto err_reinit;
4506 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4507 	}
4508 
4509 	ret = ice_req_irq_msix_misc(pf);
4510 	if (ret) {
4511 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4512 			ret);
4513 		goto err_reinit;
4514 	}
4515 
4516 	return 0;
4517 
4518 err_reinit:
4519 	while (v--)
4520 		if (pf->vsi[v])
4521 			ice_vsi_free_q_vectors(pf->vsi[v]);
4522 
4523 	return ret;
4524 }
4525 
4526 /**
4527  * ice_suspend
4528  * @dev: generic device information structure
4529  *
4530  * Power Management callback to quiesce the device and prepare
4531  * for D3 transition.
4532  */
ice_suspend(struct device * dev)4533 static int __maybe_unused ice_suspend(struct device *dev)
4534 {
4535 	struct pci_dev *pdev = to_pci_dev(dev);
4536 	struct ice_pf *pf;
4537 	int disabled, v;
4538 
4539 	pf = pci_get_drvdata(pdev);
4540 
4541 	if (!ice_pf_state_is_nominal(pf)) {
4542 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4543 		return -EBUSY;
4544 	}
4545 
4546 	/* Stop watchdog tasks until resume completion.
4547 	 * Even though it is most likely that the service task is
4548 	 * disabled if the device is suspended or down, the service task's
4549 	 * state is controlled by a different state bit, and we should
4550 	 * store and honor whatever state that bit is in at this point.
4551 	 */
4552 	disabled = ice_service_task_stop(pf);
4553 
4554 	/* Already suspended?, then there is nothing to do */
4555 	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4556 		if (!disabled)
4557 			ice_service_task_restart(pf);
4558 		return 0;
4559 	}
4560 
4561 	if (test_bit(__ICE_DOWN, pf->state) ||
4562 	    ice_is_reset_in_progress(pf->state)) {
4563 		dev_err(dev, "can't suspend device in reset or already down\n");
4564 		if (!disabled)
4565 			ice_service_task_restart(pf);
4566 		return 0;
4567 	}
4568 
4569 	ice_setup_mc_magic_wake(pf);
4570 
4571 	ice_prepare_for_shutdown(pf);
4572 
4573 	ice_set_wake(pf);
4574 
4575 	/* Free vectors, clear the interrupt scheme and release IRQs
4576 	 * for proper hibernation, especially with large number of CPUs.
4577 	 * Otherwise hibernation might fail when mapping all the vectors back
4578 	 * to CPU0.
4579 	 */
4580 	ice_free_irq_msix_misc(pf);
4581 	ice_for_each_vsi(pf, v) {
4582 		if (!pf->vsi[v])
4583 			continue;
4584 		ice_vsi_free_q_vectors(pf->vsi[v]);
4585 	}
4586 	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4587 	ice_clear_interrupt_scheme(pf);
4588 
4589 	pci_save_state(pdev);
4590 	pci_wake_from_d3(pdev, pf->wol_ena);
4591 	pci_set_power_state(pdev, PCI_D3hot);
4592 	return 0;
4593 }
4594 
4595 /**
4596  * ice_resume - PM callback for waking up from D3
4597  * @dev: generic device information structure
4598  */
ice_resume(struct device * dev)4599 static int __maybe_unused ice_resume(struct device *dev)
4600 {
4601 	struct pci_dev *pdev = to_pci_dev(dev);
4602 	enum ice_reset_req reset_type;
4603 	struct ice_pf *pf;
4604 	struct ice_hw *hw;
4605 	int ret;
4606 
4607 	pci_set_power_state(pdev, PCI_D0);
4608 	pci_restore_state(pdev);
4609 	pci_save_state(pdev);
4610 
4611 	if (!pci_device_is_present(pdev))
4612 		return -ENODEV;
4613 
4614 	ret = pci_enable_device_mem(pdev);
4615 	if (ret) {
4616 		dev_err(dev, "Cannot enable device after suspend\n");
4617 		return ret;
4618 	}
4619 
4620 	pf = pci_get_drvdata(pdev);
4621 	hw = &pf->hw;
4622 
4623 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4624 	ice_print_wake_reason(pf);
4625 
4626 	/* We cleared the interrupt scheme when we suspended, so we need to
4627 	 * restore it now to resume device functionality.
4628 	 */
4629 	ret = ice_reinit_interrupt_scheme(pf);
4630 	if (ret)
4631 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4632 
4633 	clear_bit(__ICE_DOWN, pf->state);
4634 	/* Now perform PF reset and rebuild */
4635 	reset_type = ICE_RESET_PFR;
4636 	/* re-enable service task for reset, but allow reset to schedule it */
4637 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4638 
4639 	if (ice_schedule_reset(pf, reset_type))
4640 		dev_err(dev, "Reset during resume failed.\n");
4641 
4642 	clear_bit(__ICE_SUSPENDED, pf->state);
4643 	ice_service_task_restart(pf);
4644 
4645 	/* Restart the service task */
4646 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4647 
4648 	return 0;
4649 }
4650 #endif /* CONFIG_PM */
4651 
4652 /**
4653  * ice_pci_err_detected - warning that PCI error has been detected
4654  * @pdev: PCI device information struct
4655  * @err: the type of PCI error
4656  *
4657  * Called to warn that something happened on the PCI bus and the error handling
4658  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4659  */
4660 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4661 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4662 {
4663 	struct ice_pf *pf = pci_get_drvdata(pdev);
4664 
4665 	if (!pf) {
4666 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4667 			__func__, err);
4668 		return PCI_ERS_RESULT_DISCONNECT;
4669 	}
4670 
4671 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4672 		ice_service_task_stop(pf);
4673 
4674 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4675 			set_bit(__ICE_PFR_REQ, pf->state);
4676 			ice_prepare_for_reset(pf);
4677 		}
4678 	}
4679 
4680 	return PCI_ERS_RESULT_NEED_RESET;
4681 }
4682 
4683 /**
4684  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4685  * @pdev: PCI device information struct
4686  *
4687  * Called to determine if the driver can recover from the PCI slot reset by
4688  * using a register read to determine if the device is recoverable.
4689  */
ice_pci_err_slot_reset(struct pci_dev * pdev)4690 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4691 {
4692 	struct ice_pf *pf = pci_get_drvdata(pdev);
4693 	pci_ers_result_t result;
4694 	int err;
4695 	u32 reg;
4696 
4697 	err = pci_enable_device_mem(pdev);
4698 	if (err) {
4699 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4700 			err);
4701 		result = PCI_ERS_RESULT_DISCONNECT;
4702 	} else {
4703 		pci_set_master(pdev);
4704 		pci_restore_state(pdev);
4705 		pci_save_state(pdev);
4706 		pci_wake_from_d3(pdev, false);
4707 
4708 		/* Check for life */
4709 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4710 		if (!reg)
4711 			result = PCI_ERS_RESULT_RECOVERED;
4712 		else
4713 			result = PCI_ERS_RESULT_DISCONNECT;
4714 	}
4715 
4716 	err = pci_aer_clear_nonfatal_status(pdev);
4717 	if (err)
4718 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4719 			err);
4720 		/* non-fatal, continue */
4721 
4722 	return result;
4723 }
4724 
4725 /**
4726  * ice_pci_err_resume - restart operations after PCI error recovery
4727  * @pdev: PCI device information struct
4728  *
4729  * Called to allow the driver to bring things back up after PCI error and/or
4730  * reset recovery have finished
4731  */
ice_pci_err_resume(struct pci_dev * pdev)4732 static void ice_pci_err_resume(struct pci_dev *pdev)
4733 {
4734 	struct ice_pf *pf = pci_get_drvdata(pdev);
4735 
4736 	if (!pf) {
4737 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4738 			__func__);
4739 		return;
4740 	}
4741 
4742 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4743 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4744 			__func__);
4745 		return;
4746 	}
4747 
4748 	ice_restore_all_vfs_msi_state(pdev);
4749 
4750 	ice_do_reset(pf, ICE_RESET_PFR);
4751 	ice_service_task_restart(pf);
4752 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4753 }
4754 
4755 /**
4756  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4757  * @pdev: PCI device information struct
4758  */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4759 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4760 {
4761 	struct ice_pf *pf = pci_get_drvdata(pdev);
4762 
4763 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4764 		ice_service_task_stop(pf);
4765 
4766 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4767 			set_bit(__ICE_PFR_REQ, pf->state);
4768 			ice_prepare_for_reset(pf);
4769 		}
4770 	}
4771 }
4772 
4773 /**
4774  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4775  * @pdev: PCI device information struct
4776  */
ice_pci_err_reset_done(struct pci_dev * pdev)4777 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4778 {
4779 	ice_pci_err_resume(pdev);
4780 }
4781 
4782 /* ice_pci_tbl - PCI Device ID Table
4783  *
4784  * Wildcard entries (PCI_ANY_ID) should come last
4785  * Last entry must be all 0s
4786  *
4787  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4788  *   Class, Class Mask, private data (not used) }
4789  */
4790 static const struct pci_device_id ice_pci_tbl[] = {
4791 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4792 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4793 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4794 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4795 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4796 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4797 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4798 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4799 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4800 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4801 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4802 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4803 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4804 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4805 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4806 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4807 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4808 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4809 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4810 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4811 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4812 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4813 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4814 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4815 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4816 	/* required last entry */
4817 	{ 0, }
4818 };
4819 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4820 
4821 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4822 
4823 static const struct pci_error_handlers ice_pci_err_handler = {
4824 	.error_detected = ice_pci_err_detected,
4825 	.slot_reset = ice_pci_err_slot_reset,
4826 	.reset_prepare = ice_pci_err_reset_prepare,
4827 	.reset_done = ice_pci_err_reset_done,
4828 	.resume = ice_pci_err_resume
4829 };
4830 
4831 static struct pci_driver ice_driver = {
4832 	.name = KBUILD_MODNAME,
4833 	.id_table = ice_pci_tbl,
4834 	.probe = ice_probe,
4835 	.remove = ice_remove,
4836 #ifdef CONFIG_PM
4837 	.driver.pm = &ice_pm_ops,
4838 #endif /* CONFIG_PM */
4839 	.shutdown = ice_shutdown,
4840 	.sriov_configure = ice_sriov_configure,
4841 	.err_handler = &ice_pci_err_handler
4842 };
4843 
4844 /**
4845  * ice_module_init - Driver registration routine
4846  *
4847  * ice_module_init is the first routine called when the driver is
4848  * loaded. All it does is register with the PCI subsystem.
4849  */
ice_module_init(void)4850 static int __init ice_module_init(void)
4851 {
4852 	int status;
4853 
4854 	pr_info("%s\n", ice_driver_string);
4855 	pr_info("%s\n", ice_copyright);
4856 
4857 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
4858 	if (!ice_wq) {
4859 		pr_err("Failed to create workqueue\n");
4860 		return -ENOMEM;
4861 	}
4862 
4863 	status = pci_register_driver(&ice_driver);
4864 	if (status) {
4865 		pr_err("failed to register PCI driver, err %d\n", status);
4866 		destroy_workqueue(ice_wq);
4867 	}
4868 
4869 	return status;
4870 }
4871 module_init(ice_module_init);
4872 
4873 /**
4874  * ice_module_exit - Driver exit cleanup routine
4875  *
4876  * ice_module_exit is called just before the driver is removed
4877  * from memory.
4878  */
ice_module_exit(void)4879 static void __exit ice_module_exit(void)
4880 {
4881 	pci_unregister_driver(&ice_driver);
4882 	destroy_workqueue(ice_wq);
4883 	pr_info("module unloaded\n");
4884 }
4885 module_exit(ice_module_exit);
4886 
4887 /**
4888  * ice_set_mac_address - NDO callback to set MAC address
4889  * @netdev: network interface device structure
4890  * @pi: pointer to an address structure
4891  *
4892  * Returns 0 on success, negative on failure
4893  */
ice_set_mac_address(struct net_device * netdev,void * pi)4894 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4895 {
4896 	struct ice_netdev_priv *np = netdev_priv(netdev);
4897 	struct ice_vsi *vsi = np->vsi;
4898 	struct ice_pf *pf = vsi->back;
4899 	struct ice_hw *hw = &pf->hw;
4900 	struct sockaddr *addr = pi;
4901 	enum ice_status status;
4902 	u8 old_mac[ETH_ALEN];
4903 	u8 flags = 0;
4904 	int err = 0;
4905 	u8 *mac;
4906 
4907 	mac = (u8 *)addr->sa_data;
4908 
4909 	if (!is_valid_ether_addr(mac))
4910 		return -EADDRNOTAVAIL;
4911 
4912 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4913 		netdev_dbg(netdev, "already using mac %pM\n", mac);
4914 		return 0;
4915 	}
4916 
4917 	if (test_bit(__ICE_DOWN, pf->state) ||
4918 	    ice_is_reset_in_progress(pf->state)) {
4919 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4920 			   mac);
4921 		return -EBUSY;
4922 	}
4923 
4924 	netif_addr_lock_bh(netdev);
4925 	ether_addr_copy(old_mac, netdev->dev_addr);
4926 	/* change the netdev's MAC address */
4927 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4928 	netif_addr_unlock_bh(netdev);
4929 
4930 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4931 	status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4932 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4933 		err = -EADDRNOTAVAIL;
4934 		goto err_update_filters;
4935 	}
4936 
4937 	/* Add filter for new MAC. If filter exists, return success */
4938 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4939 	if (status == ICE_ERR_ALREADY_EXISTS)
4940 		/* Although this MAC filter is already present in hardware it's
4941 		 * possible in some cases (e.g. bonding) that dev_addr was
4942 		 * modified outside of the driver and needs to be restored back
4943 		 * to this value.
4944 		 */
4945 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4946 	else if (status)
4947 		/* error if the new filter addition failed */
4948 		err = -EADDRNOTAVAIL;
4949 
4950 err_update_filters:
4951 	if (err) {
4952 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4953 			   mac);
4954 		netif_addr_lock_bh(netdev);
4955 		ether_addr_copy(netdev->dev_addr, old_mac);
4956 		netif_addr_unlock_bh(netdev);
4957 		return err;
4958 	}
4959 
4960 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4961 		   netdev->dev_addr);
4962 
4963 	/* write new MAC address to the firmware */
4964 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4965 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4966 	if (status) {
4967 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4968 			   mac, ice_stat_str(status));
4969 	}
4970 	return 0;
4971 }
4972 
4973 /**
4974  * ice_set_rx_mode - NDO callback to set the netdev filters
4975  * @netdev: network interface device structure
4976  */
ice_set_rx_mode(struct net_device * netdev)4977 static void ice_set_rx_mode(struct net_device *netdev)
4978 {
4979 	struct ice_netdev_priv *np = netdev_priv(netdev);
4980 	struct ice_vsi *vsi = np->vsi;
4981 
4982 	if (!vsi)
4983 		return;
4984 
4985 	/* Set the flags to synchronize filters
4986 	 * ndo_set_rx_mode may be triggered even without a change in netdev
4987 	 * flags
4988 	 */
4989 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4990 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4991 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4992 
4993 	/* schedule our worker thread which will take care of
4994 	 * applying the new filter changes
4995 	 */
4996 	ice_service_task_schedule(vsi->back);
4997 }
4998 
4999 /**
5000  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5001  * @netdev: network interface device structure
5002  * @queue_index: Queue ID
5003  * @maxrate: maximum bandwidth in Mbps
5004  */
5005 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5006 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5007 {
5008 	struct ice_netdev_priv *np = netdev_priv(netdev);
5009 	struct ice_vsi *vsi = np->vsi;
5010 	enum ice_status status;
5011 	u16 q_handle;
5012 	u8 tc;
5013 
5014 	/* Validate maxrate requested is within permitted range */
5015 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5016 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5017 			   maxrate, queue_index);
5018 		return -EINVAL;
5019 	}
5020 
5021 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5022 	tc = ice_dcb_get_tc(vsi, queue_index);
5023 
5024 	/* Set BW back to default, when user set maxrate to 0 */
5025 	if (!maxrate)
5026 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5027 					       q_handle, ICE_MAX_BW);
5028 	else
5029 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5030 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5031 	if (status) {
5032 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5033 			   ice_stat_str(status));
5034 		return -EIO;
5035 	}
5036 
5037 	return 0;
5038 }
5039 
5040 /**
5041  * ice_fdb_add - add an entry to the hardware database
5042  * @ndm: the input from the stack
5043  * @tb: pointer to array of nladdr (unused)
5044  * @dev: the net device pointer
5045  * @addr: the MAC address entry being added
5046  * @vid: VLAN ID
5047  * @flags: instructions from stack about fdb operation
5048  * @extack: netlink extended ack
5049  */
5050 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5051 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5052 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5053 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5054 {
5055 	int err;
5056 
5057 	if (vid) {
5058 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5059 		return -EINVAL;
5060 	}
5061 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5062 		netdev_err(dev, "FDB only supports static addresses\n");
5063 		return -EINVAL;
5064 	}
5065 
5066 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5067 		err = dev_uc_add_excl(dev, addr);
5068 	else if (is_multicast_ether_addr(addr))
5069 		err = dev_mc_add_excl(dev, addr);
5070 	else
5071 		err = -EINVAL;
5072 
5073 	/* Only return duplicate errors if NLM_F_EXCL is set */
5074 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5075 		err = 0;
5076 
5077 	return err;
5078 }
5079 
5080 /**
5081  * ice_fdb_del - delete an entry from the hardware database
5082  * @ndm: the input from the stack
5083  * @tb: pointer to array of nladdr (unused)
5084  * @dev: the net device pointer
5085  * @addr: the MAC address entry being added
5086  * @vid: VLAN ID
5087  */
5088 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5089 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5090 	    struct net_device *dev, const unsigned char *addr,
5091 	    __always_unused u16 vid)
5092 {
5093 	int err;
5094 
5095 	if (ndm->ndm_state & NUD_PERMANENT) {
5096 		netdev_err(dev, "FDB only supports static addresses\n");
5097 		return -EINVAL;
5098 	}
5099 
5100 	if (is_unicast_ether_addr(addr))
5101 		err = dev_uc_del(dev, addr);
5102 	else if (is_multicast_ether_addr(addr))
5103 		err = dev_mc_del(dev, addr);
5104 	else
5105 		err = -EINVAL;
5106 
5107 	return err;
5108 }
5109 
5110 /**
5111  * ice_set_features - set the netdev feature flags
5112  * @netdev: ptr to the netdev being adjusted
5113  * @features: the feature set that the stack is suggesting
5114  */
5115 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5116 ice_set_features(struct net_device *netdev, netdev_features_t features)
5117 {
5118 	struct ice_netdev_priv *np = netdev_priv(netdev);
5119 	struct ice_vsi *vsi = np->vsi;
5120 	struct ice_pf *pf = vsi->back;
5121 	int ret = 0;
5122 
5123 	/* Don't set any netdev advanced features with device in Safe Mode */
5124 	if (ice_is_safe_mode(vsi->back)) {
5125 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5126 		return ret;
5127 	}
5128 
5129 	/* Do not change setting during reset */
5130 	if (ice_is_reset_in_progress(pf->state)) {
5131 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5132 		return -EBUSY;
5133 	}
5134 
5135 	/* Multiple features can be changed in one call so keep features in
5136 	 * separate if/else statements to guarantee each feature is checked
5137 	 */
5138 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5139 		ret = ice_vsi_manage_rss_lut(vsi, true);
5140 	else if (!(features & NETIF_F_RXHASH) &&
5141 		 netdev->features & NETIF_F_RXHASH)
5142 		ret = ice_vsi_manage_rss_lut(vsi, false);
5143 
5144 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5145 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5146 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5147 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5148 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5149 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5150 
5151 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5152 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5153 		ret = ice_vsi_manage_vlan_insertion(vsi);
5154 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5155 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5156 		ret = ice_vsi_manage_vlan_insertion(vsi);
5157 
5158 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5159 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5160 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5161 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5162 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5163 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5164 
5165 	if ((features & NETIF_F_NTUPLE) &&
5166 	    !(netdev->features & NETIF_F_NTUPLE)) {
5167 		ice_vsi_manage_fdir(vsi, true);
5168 		ice_init_arfs(vsi);
5169 	} else if (!(features & NETIF_F_NTUPLE) &&
5170 		 (netdev->features & NETIF_F_NTUPLE)) {
5171 		ice_vsi_manage_fdir(vsi, false);
5172 		ice_clear_arfs(vsi);
5173 	}
5174 
5175 	return ret;
5176 }
5177 
5178 /**
5179  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5180  * @vsi: VSI to setup VLAN properties for
5181  */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5182 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5183 {
5184 	int ret = 0;
5185 
5186 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5187 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5188 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5189 		ret = ice_vsi_manage_vlan_insertion(vsi);
5190 
5191 	return ret;
5192 }
5193 
5194 /**
5195  * ice_vsi_cfg - Setup the VSI
5196  * @vsi: the VSI being configured
5197  *
5198  * Return 0 on success and negative value on error
5199  */
ice_vsi_cfg(struct ice_vsi * vsi)5200 int ice_vsi_cfg(struct ice_vsi *vsi)
5201 {
5202 	int err;
5203 
5204 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
5205 		ice_set_rx_mode(vsi->netdev);
5206 
5207 		err = ice_vsi_vlan_setup(vsi);
5208 		if (err)
5209 			return err;
5210 	}
5211 	ice_vsi_cfg_dcb_rings(vsi);
5212 
5213 	err = ice_vsi_cfg_lan_txqs(vsi);
5214 	if (!err && ice_is_xdp_ena_vsi(vsi))
5215 		err = ice_vsi_cfg_xdp_txqs(vsi);
5216 	if (!err)
5217 		err = ice_vsi_cfg_rxqs(vsi);
5218 
5219 	return err;
5220 }
5221 
5222 /**
5223  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5224  * @vsi: the VSI being configured
5225  */
ice_napi_enable_all(struct ice_vsi * vsi)5226 static void ice_napi_enable_all(struct ice_vsi *vsi)
5227 {
5228 	int q_idx;
5229 
5230 	if (!vsi->netdev)
5231 		return;
5232 
5233 	ice_for_each_q_vector(vsi, q_idx) {
5234 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5235 
5236 		if (q_vector->rx.ring || q_vector->tx.ring)
5237 			napi_enable(&q_vector->napi);
5238 	}
5239 }
5240 
5241 /**
5242  * ice_up_complete - Finish the last steps of bringing up a connection
5243  * @vsi: The VSI being configured
5244  *
5245  * Return 0 on success and negative value on error
5246  */
ice_up_complete(struct ice_vsi * vsi)5247 static int ice_up_complete(struct ice_vsi *vsi)
5248 {
5249 	struct ice_pf *pf = vsi->back;
5250 	int err;
5251 
5252 	ice_vsi_cfg_msix(vsi);
5253 
5254 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5255 	 * Tx queue group list was configured and the context bits were
5256 	 * programmed using ice_vsi_cfg_txqs
5257 	 */
5258 	err = ice_vsi_start_all_rx_rings(vsi);
5259 	if (err)
5260 		return err;
5261 
5262 	clear_bit(__ICE_DOWN, vsi->state);
5263 	ice_napi_enable_all(vsi);
5264 	ice_vsi_ena_irq(vsi);
5265 
5266 	if (vsi->port_info &&
5267 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5268 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
5269 		ice_print_link_msg(vsi, true);
5270 		netif_tx_start_all_queues(vsi->netdev);
5271 		netif_carrier_on(vsi->netdev);
5272 	}
5273 
5274 	/* Perform an initial read of the statistics registers now to
5275 	 * set the baseline so counters are ready when interface is up
5276 	 */
5277 	ice_update_eth_stats(vsi);
5278 
5279 	if (vsi->type == ICE_VSI_PF)
5280 		ice_service_task_schedule(pf);
5281 
5282 	return 0;
5283 }
5284 
5285 /**
5286  * ice_up - Bring the connection back up after being down
5287  * @vsi: VSI being configured
5288  */
ice_up(struct ice_vsi * vsi)5289 int ice_up(struct ice_vsi *vsi)
5290 {
5291 	int err;
5292 
5293 	err = ice_vsi_cfg(vsi);
5294 	if (!err)
5295 		err = ice_up_complete(vsi);
5296 
5297 	return err;
5298 }
5299 
5300 /**
5301  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5302  * @ring: Tx or Rx ring to read stats from
5303  * @pkts: packets stats counter
5304  * @bytes: bytes stats counter
5305  *
5306  * This function fetches stats from the ring considering the atomic operations
5307  * that needs to be performed to read u64 values in 32 bit machine.
5308  */
5309 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5310 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5311 {
5312 	unsigned int start;
5313 	*pkts = 0;
5314 	*bytes = 0;
5315 
5316 	if (!ring)
5317 		return;
5318 	do {
5319 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5320 		*pkts = ring->stats.pkts;
5321 		*bytes = ring->stats.bytes;
5322 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5323 }
5324 
5325 /**
5326  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5327  * @vsi: the VSI to be updated
5328  * @rings: rings to work on
5329  * @count: number of rings
5330  */
5331 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5332 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5333 			     u16 count)
5334 {
5335 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5336 	u16 i;
5337 
5338 	for (i = 0; i < count; i++) {
5339 		struct ice_ring *ring;
5340 		u64 pkts, bytes;
5341 
5342 		ring = READ_ONCE(rings[i]);
5343 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5344 		vsi_stats->tx_packets += pkts;
5345 		vsi_stats->tx_bytes += bytes;
5346 		vsi->tx_restart += ring->tx_stats.restart_q;
5347 		vsi->tx_busy += ring->tx_stats.tx_busy;
5348 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5349 	}
5350 }
5351 
5352 /**
5353  * ice_update_vsi_ring_stats - Update VSI stats counters
5354  * @vsi: the VSI to be updated
5355  */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5356 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5357 {
5358 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5359 	struct ice_ring *ring;
5360 	u64 pkts, bytes;
5361 	int i;
5362 
5363 	/* reset netdev stats */
5364 	vsi_stats->tx_packets = 0;
5365 	vsi_stats->tx_bytes = 0;
5366 	vsi_stats->rx_packets = 0;
5367 	vsi_stats->rx_bytes = 0;
5368 
5369 	/* reset non-netdev (extended) stats */
5370 	vsi->tx_restart = 0;
5371 	vsi->tx_busy = 0;
5372 	vsi->tx_linearize = 0;
5373 	vsi->rx_buf_failed = 0;
5374 	vsi->rx_page_failed = 0;
5375 	vsi->rx_gro_dropped = 0;
5376 
5377 	rcu_read_lock();
5378 
5379 	/* update Tx rings counters */
5380 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5381 
5382 	/* update Rx rings counters */
5383 	ice_for_each_rxq(vsi, i) {
5384 		ring = READ_ONCE(vsi->rx_rings[i]);
5385 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5386 		vsi_stats->rx_packets += pkts;
5387 		vsi_stats->rx_bytes += bytes;
5388 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5389 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5390 		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5391 	}
5392 
5393 	/* update XDP Tx rings counters */
5394 	if (ice_is_xdp_ena_vsi(vsi))
5395 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5396 					     vsi->num_xdp_txq);
5397 
5398 	rcu_read_unlock();
5399 }
5400 
5401 /**
5402  * ice_update_vsi_stats - Update VSI stats counters
5403  * @vsi: the VSI to be updated
5404  */
ice_update_vsi_stats(struct ice_vsi * vsi)5405 void ice_update_vsi_stats(struct ice_vsi *vsi)
5406 {
5407 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5408 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5409 	struct ice_pf *pf = vsi->back;
5410 
5411 	if (test_bit(__ICE_DOWN, vsi->state) ||
5412 	    test_bit(__ICE_CFG_BUSY, pf->state))
5413 		return;
5414 
5415 	/* get stats as recorded by Tx/Rx rings */
5416 	ice_update_vsi_ring_stats(vsi);
5417 
5418 	/* get VSI stats as recorded by the hardware */
5419 	ice_update_eth_stats(vsi);
5420 
5421 	cur_ns->tx_errors = cur_es->tx_errors;
5422 	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5423 	cur_ns->tx_dropped = cur_es->tx_discards;
5424 	cur_ns->multicast = cur_es->rx_multicast;
5425 
5426 	/* update some more netdev stats if this is main VSI */
5427 	if (vsi->type == ICE_VSI_PF) {
5428 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5429 		cur_ns->rx_errors = pf->stats.crc_errors +
5430 				    pf->stats.illegal_bytes +
5431 				    pf->stats.rx_len_errors +
5432 				    pf->stats.rx_undersize +
5433 				    pf->hw_csum_rx_error +
5434 				    pf->stats.rx_jabber +
5435 				    pf->stats.rx_fragments +
5436 				    pf->stats.rx_oversize;
5437 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5438 		/* record drops from the port level */
5439 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5440 	}
5441 }
5442 
5443 /**
5444  * ice_update_pf_stats - Update PF port stats counters
5445  * @pf: PF whose stats needs to be updated
5446  */
ice_update_pf_stats(struct ice_pf * pf)5447 void ice_update_pf_stats(struct ice_pf *pf)
5448 {
5449 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5450 	struct ice_hw *hw = &pf->hw;
5451 	u16 fd_ctr_base;
5452 	u8 port;
5453 
5454 	port = hw->port_info->lport;
5455 	prev_ps = &pf->stats_prev;
5456 	cur_ps = &pf->stats;
5457 
5458 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5459 			  &prev_ps->eth.rx_bytes,
5460 			  &cur_ps->eth.rx_bytes);
5461 
5462 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5463 			  &prev_ps->eth.rx_unicast,
5464 			  &cur_ps->eth.rx_unicast);
5465 
5466 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5467 			  &prev_ps->eth.rx_multicast,
5468 			  &cur_ps->eth.rx_multicast);
5469 
5470 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5471 			  &prev_ps->eth.rx_broadcast,
5472 			  &cur_ps->eth.rx_broadcast);
5473 
5474 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5475 			  &prev_ps->eth.rx_discards,
5476 			  &cur_ps->eth.rx_discards);
5477 
5478 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5479 			  &prev_ps->eth.tx_bytes,
5480 			  &cur_ps->eth.tx_bytes);
5481 
5482 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5483 			  &prev_ps->eth.tx_unicast,
5484 			  &cur_ps->eth.tx_unicast);
5485 
5486 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5487 			  &prev_ps->eth.tx_multicast,
5488 			  &cur_ps->eth.tx_multicast);
5489 
5490 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5491 			  &prev_ps->eth.tx_broadcast,
5492 			  &cur_ps->eth.tx_broadcast);
5493 
5494 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5495 			  &prev_ps->tx_dropped_link_down,
5496 			  &cur_ps->tx_dropped_link_down);
5497 
5498 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5499 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5500 
5501 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5502 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5503 
5504 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5505 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5506 
5507 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5508 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5509 
5510 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5511 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5512 
5513 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5514 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5515 
5516 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5517 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5518 
5519 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5520 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5521 
5522 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5523 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5524 
5525 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5526 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5527 
5528 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5529 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5530 
5531 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5532 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5533 
5534 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5535 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5536 
5537 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5538 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5539 
5540 	fd_ctr_base = hw->fd_ctr_base;
5541 
5542 	ice_stat_update40(hw,
5543 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5544 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5545 			  &cur_ps->fd_sb_match);
5546 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5547 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5548 
5549 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5550 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5551 
5552 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5553 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5554 
5555 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5556 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5557 
5558 	ice_update_dcb_stats(pf);
5559 
5560 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5561 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5562 
5563 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5564 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5565 
5566 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5567 			  &prev_ps->mac_local_faults,
5568 			  &cur_ps->mac_local_faults);
5569 
5570 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5571 			  &prev_ps->mac_remote_faults,
5572 			  &cur_ps->mac_remote_faults);
5573 
5574 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5575 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5576 
5577 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5578 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5579 
5580 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5581 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5582 
5583 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5584 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5585 
5586 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5587 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5588 
5589 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5590 
5591 	pf->stat_prev_loaded = true;
5592 }
5593 
5594 /**
5595  * ice_get_stats64 - get statistics for network device structure
5596  * @netdev: network interface device structure
5597  * @stats: main device statistics structure
5598  */
5599 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5600 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5601 {
5602 	struct ice_netdev_priv *np = netdev_priv(netdev);
5603 	struct rtnl_link_stats64 *vsi_stats;
5604 	struct ice_vsi *vsi = np->vsi;
5605 
5606 	vsi_stats = &vsi->net_stats;
5607 
5608 	if (!vsi->num_txq || !vsi->num_rxq)
5609 		return;
5610 
5611 	/* netdev packet/byte stats come from ring counter. These are obtained
5612 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5613 	 * But, only call the update routine and read the registers if VSI is
5614 	 * not down.
5615 	 */
5616 	if (!test_bit(__ICE_DOWN, vsi->state))
5617 		ice_update_vsi_ring_stats(vsi);
5618 	stats->tx_packets = vsi_stats->tx_packets;
5619 	stats->tx_bytes = vsi_stats->tx_bytes;
5620 	stats->rx_packets = vsi_stats->rx_packets;
5621 	stats->rx_bytes = vsi_stats->rx_bytes;
5622 
5623 	/* The rest of the stats can be read from the hardware but instead we
5624 	 * just return values that the watchdog task has already obtained from
5625 	 * the hardware.
5626 	 */
5627 	stats->multicast = vsi_stats->multicast;
5628 	stats->tx_errors = vsi_stats->tx_errors;
5629 	stats->tx_dropped = vsi_stats->tx_dropped;
5630 	stats->rx_errors = vsi_stats->rx_errors;
5631 	stats->rx_dropped = vsi_stats->rx_dropped;
5632 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5633 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5634 }
5635 
5636 /**
5637  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5638  * @vsi: VSI having NAPI disabled
5639  */
ice_napi_disable_all(struct ice_vsi * vsi)5640 static void ice_napi_disable_all(struct ice_vsi *vsi)
5641 {
5642 	int q_idx;
5643 
5644 	if (!vsi->netdev)
5645 		return;
5646 
5647 	ice_for_each_q_vector(vsi, q_idx) {
5648 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5649 
5650 		if (q_vector->rx.ring || q_vector->tx.ring)
5651 			napi_disable(&q_vector->napi);
5652 	}
5653 }
5654 
5655 /**
5656  * ice_down - Shutdown the connection
5657  * @vsi: The VSI being stopped
5658  */
ice_down(struct ice_vsi * vsi)5659 int ice_down(struct ice_vsi *vsi)
5660 {
5661 	int i, tx_err, rx_err, link_err = 0;
5662 
5663 	/* Caller of this function is expected to set the
5664 	 * vsi->state __ICE_DOWN bit
5665 	 */
5666 	if (vsi->netdev) {
5667 		netif_carrier_off(vsi->netdev);
5668 		netif_tx_disable(vsi->netdev);
5669 	}
5670 
5671 	ice_vsi_dis_irq(vsi);
5672 
5673 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5674 	if (tx_err)
5675 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5676 			   vsi->vsi_num, tx_err);
5677 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5678 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5679 		if (tx_err)
5680 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5681 				   vsi->vsi_num, tx_err);
5682 	}
5683 
5684 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5685 	if (rx_err)
5686 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5687 			   vsi->vsi_num, rx_err);
5688 
5689 	ice_napi_disable_all(vsi);
5690 
5691 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5692 		link_err = ice_force_phys_link_state(vsi, false);
5693 		if (link_err)
5694 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5695 				   vsi->vsi_num, link_err);
5696 	}
5697 
5698 	ice_for_each_txq(vsi, i)
5699 		ice_clean_tx_ring(vsi->tx_rings[i]);
5700 
5701 	ice_for_each_rxq(vsi, i)
5702 		ice_clean_rx_ring(vsi->rx_rings[i]);
5703 
5704 	if (tx_err || rx_err || link_err) {
5705 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5706 			   vsi->vsi_num, vsi->vsw->sw_id);
5707 		return -EIO;
5708 	}
5709 
5710 	return 0;
5711 }
5712 
5713 /**
5714  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5715  * @vsi: VSI having resources allocated
5716  *
5717  * Return 0 on success, negative on failure
5718  */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5719 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5720 {
5721 	int i, err = 0;
5722 
5723 	if (!vsi->num_txq) {
5724 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5725 			vsi->vsi_num);
5726 		return -EINVAL;
5727 	}
5728 
5729 	ice_for_each_txq(vsi, i) {
5730 		struct ice_ring *ring = vsi->tx_rings[i];
5731 
5732 		if (!ring)
5733 			return -EINVAL;
5734 
5735 		ring->netdev = vsi->netdev;
5736 		err = ice_setup_tx_ring(ring);
5737 		if (err)
5738 			break;
5739 	}
5740 
5741 	return err;
5742 }
5743 
5744 /**
5745  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5746  * @vsi: VSI having resources allocated
5747  *
5748  * Return 0 on success, negative on failure
5749  */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5750 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5751 {
5752 	int i, err = 0;
5753 
5754 	if (!vsi->num_rxq) {
5755 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5756 			vsi->vsi_num);
5757 		return -EINVAL;
5758 	}
5759 
5760 	ice_for_each_rxq(vsi, i) {
5761 		struct ice_ring *ring = vsi->rx_rings[i];
5762 
5763 		if (!ring)
5764 			return -EINVAL;
5765 
5766 		ring->netdev = vsi->netdev;
5767 		err = ice_setup_rx_ring(ring);
5768 		if (err)
5769 			break;
5770 	}
5771 
5772 	return err;
5773 }
5774 
5775 /**
5776  * ice_vsi_open_ctrl - open control VSI for use
5777  * @vsi: the VSI to open
5778  *
5779  * Initialization of the Control VSI
5780  *
5781  * Returns 0 on success, negative value on error
5782  */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5783 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5784 {
5785 	char int_name[ICE_INT_NAME_STR_LEN];
5786 	struct ice_pf *pf = vsi->back;
5787 	struct device *dev;
5788 	int err;
5789 
5790 	dev = ice_pf_to_dev(pf);
5791 	/* allocate descriptors */
5792 	err = ice_vsi_setup_tx_rings(vsi);
5793 	if (err)
5794 		goto err_setup_tx;
5795 
5796 	err = ice_vsi_setup_rx_rings(vsi);
5797 	if (err)
5798 		goto err_setup_rx;
5799 
5800 	err = ice_vsi_cfg(vsi);
5801 	if (err)
5802 		goto err_setup_rx;
5803 
5804 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5805 		 dev_driver_string(dev), dev_name(dev));
5806 	err = ice_vsi_req_irq_msix(vsi, int_name);
5807 	if (err)
5808 		goto err_setup_rx;
5809 
5810 	ice_vsi_cfg_msix(vsi);
5811 
5812 	err = ice_vsi_start_all_rx_rings(vsi);
5813 	if (err)
5814 		goto err_up_complete;
5815 
5816 	clear_bit(__ICE_DOWN, vsi->state);
5817 	ice_vsi_ena_irq(vsi);
5818 
5819 	return 0;
5820 
5821 err_up_complete:
5822 	ice_down(vsi);
5823 err_setup_rx:
5824 	ice_vsi_free_rx_rings(vsi);
5825 err_setup_tx:
5826 	ice_vsi_free_tx_rings(vsi);
5827 
5828 	return err;
5829 }
5830 
5831 /**
5832  * ice_vsi_open - Called when a network interface is made active
5833  * @vsi: the VSI to open
5834  *
5835  * Initialization of the VSI
5836  *
5837  * Returns 0 on success, negative value on error
5838  */
ice_vsi_open(struct ice_vsi * vsi)5839 static int ice_vsi_open(struct ice_vsi *vsi)
5840 {
5841 	char int_name[ICE_INT_NAME_STR_LEN];
5842 	struct ice_pf *pf = vsi->back;
5843 	int err;
5844 
5845 	/* allocate descriptors */
5846 	err = ice_vsi_setup_tx_rings(vsi);
5847 	if (err)
5848 		goto err_setup_tx;
5849 
5850 	err = ice_vsi_setup_rx_rings(vsi);
5851 	if (err)
5852 		goto err_setup_rx;
5853 
5854 	err = ice_vsi_cfg(vsi);
5855 	if (err)
5856 		goto err_setup_rx;
5857 
5858 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5859 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5860 	err = ice_vsi_req_irq_msix(vsi, int_name);
5861 	if (err)
5862 		goto err_setup_rx;
5863 
5864 	/* Notify the stack of the actual queue counts. */
5865 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5866 	if (err)
5867 		goto err_set_qs;
5868 
5869 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5870 	if (err)
5871 		goto err_set_qs;
5872 
5873 	err = ice_up_complete(vsi);
5874 	if (err)
5875 		goto err_up_complete;
5876 
5877 	return 0;
5878 
5879 err_up_complete:
5880 	ice_down(vsi);
5881 err_set_qs:
5882 	ice_vsi_free_irq(vsi);
5883 err_setup_rx:
5884 	ice_vsi_free_rx_rings(vsi);
5885 err_setup_tx:
5886 	ice_vsi_free_tx_rings(vsi);
5887 
5888 	return err;
5889 }
5890 
5891 /**
5892  * ice_vsi_release_all - Delete all VSIs
5893  * @pf: PF from which all VSIs are being removed
5894  */
ice_vsi_release_all(struct ice_pf * pf)5895 static void ice_vsi_release_all(struct ice_pf *pf)
5896 {
5897 	int err, i;
5898 
5899 	if (!pf->vsi)
5900 		return;
5901 
5902 	ice_for_each_vsi(pf, i) {
5903 		if (!pf->vsi[i])
5904 			continue;
5905 
5906 		err = ice_vsi_release(pf->vsi[i]);
5907 		if (err)
5908 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5909 				i, err, pf->vsi[i]->vsi_num);
5910 	}
5911 }
5912 
5913 /**
5914  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5915  * @pf: pointer to the PF instance
5916  * @type: VSI type to rebuild
5917  *
5918  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5919  */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5920 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5921 {
5922 	struct device *dev = ice_pf_to_dev(pf);
5923 	enum ice_status status;
5924 	int i, err;
5925 
5926 	ice_for_each_vsi(pf, i) {
5927 		struct ice_vsi *vsi = pf->vsi[i];
5928 
5929 		if (!vsi || vsi->type != type)
5930 			continue;
5931 
5932 		/* rebuild the VSI */
5933 		err = ice_vsi_rebuild(vsi, true);
5934 		if (err) {
5935 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5936 				err, vsi->idx, ice_vsi_type_str(type));
5937 			return err;
5938 		}
5939 
5940 		/* replay filters for the VSI */
5941 		status = ice_replay_vsi(&pf->hw, vsi->idx);
5942 		if (status) {
5943 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5944 				ice_stat_str(status), vsi->idx,
5945 				ice_vsi_type_str(type));
5946 			return -EIO;
5947 		}
5948 
5949 		/* Re-map HW VSI number, using VSI handle that has been
5950 		 * previously validated in ice_replay_vsi() call above
5951 		 */
5952 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5953 
5954 		/* enable the VSI */
5955 		err = ice_ena_vsi(vsi, false);
5956 		if (err) {
5957 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5958 				err, vsi->idx, ice_vsi_type_str(type));
5959 			return err;
5960 		}
5961 
5962 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5963 			 ice_vsi_type_str(type));
5964 	}
5965 
5966 	return 0;
5967 }
5968 
5969 /**
5970  * ice_update_pf_netdev_link - Update PF netdev link status
5971  * @pf: pointer to the PF instance
5972  */
ice_update_pf_netdev_link(struct ice_pf * pf)5973 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5974 {
5975 	bool link_up;
5976 	int i;
5977 
5978 	ice_for_each_vsi(pf, i) {
5979 		struct ice_vsi *vsi = pf->vsi[i];
5980 
5981 		if (!vsi || vsi->type != ICE_VSI_PF)
5982 			return;
5983 
5984 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5985 		if (link_up) {
5986 			netif_carrier_on(pf->vsi[i]->netdev);
5987 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5988 		} else {
5989 			netif_carrier_off(pf->vsi[i]->netdev);
5990 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5991 		}
5992 	}
5993 }
5994 
5995 /**
5996  * ice_rebuild - rebuild after reset
5997  * @pf: PF to rebuild
5998  * @reset_type: type of reset
5999  *
6000  * Do not rebuild VF VSI in this flow because that is already handled via
6001  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6002  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6003  * to reset/rebuild all the VF VSI twice.
6004  */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6005 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6006 {
6007 	struct device *dev = ice_pf_to_dev(pf);
6008 	struct ice_hw *hw = &pf->hw;
6009 	enum ice_status ret;
6010 	int err;
6011 
6012 	if (test_bit(__ICE_DOWN, pf->state))
6013 		goto clear_recovery;
6014 
6015 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6016 
6017 	ret = ice_init_all_ctrlq(hw);
6018 	if (ret) {
6019 		dev_err(dev, "control queues init failed %s\n",
6020 			ice_stat_str(ret));
6021 		goto err_init_ctrlq;
6022 	}
6023 
6024 	/* if DDP was previously loaded successfully */
6025 	if (!ice_is_safe_mode(pf)) {
6026 		/* reload the SW DB of filter tables */
6027 		if (reset_type == ICE_RESET_PFR)
6028 			ice_fill_blk_tbls(hw);
6029 		else
6030 			/* Reload DDP Package after CORER/GLOBR reset */
6031 			ice_load_pkg(NULL, pf);
6032 	}
6033 
6034 	ret = ice_clear_pf_cfg(hw);
6035 	if (ret) {
6036 		dev_err(dev, "clear PF configuration failed %s\n",
6037 			ice_stat_str(ret));
6038 		goto err_init_ctrlq;
6039 	}
6040 
6041 	if (pf->first_sw->dflt_vsi_ena)
6042 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6043 	/* clear the default VSI configuration if it exists */
6044 	pf->first_sw->dflt_vsi = NULL;
6045 	pf->first_sw->dflt_vsi_ena = false;
6046 
6047 	ice_clear_pxe_mode(hw);
6048 
6049 	ret = ice_get_caps(hw);
6050 	if (ret) {
6051 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6052 		goto err_init_ctrlq;
6053 	}
6054 
6055 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6056 	if (ret) {
6057 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6058 		goto err_init_ctrlq;
6059 	}
6060 
6061 	err = ice_sched_init_port(hw->port_info);
6062 	if (err)
6063 		goto err_sched_init_port;
6064 
6065 	/* start misc vector */
6066 	err = ice_req_irq_msix_misc(pf);
6067 	if (err) {
6068 		dev_err(dev, "misc vector setup failed: %d\n", err);
6069 		goto err_sched_init_port;
6070 	}
6071 
6072 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6073 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6074 		if (!rd32(hw, PFQF_FD_SIZE)) {
6075 			u16 unused, guar, b_effort;
6076 
6077 			guar = hw->func_caps.fd_fltr_guar;
6078 			b_effort = hw->func_caps.fd_fltr_best_effort;
6079 
6080 			/* force guaranteed filter pool for PF */
6081 			ice_alloc_fd_guar_item(hw, &unused, guar);
6082 			/* force shared filter pool for PF */
6083 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6084 		}
6085 	}
6086 
6087 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6088 		ice_dcb_rebuild(pf);
6089 
6090 	/* rebuild PF VSI */
6091 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6092 	if (err) {
6093 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6094 		goto err_vsi_rebuild;
6095 	}
6096 
6097 	/* If Flow Director is active */
6098 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6099 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6100 		if (err) {
6101 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6102 			goto err_vsi_rebuild;
6103 		}
6104 
6105 		/* replay HW Flow Director recipes */
6106 		if (hw->fdir_prof)
6107 			ice_fdir_replay_flows(hw);
6108 
6109 		/* replay Flow Director filters */
6110 		ice_fdir_replay_fltrs(pf);
6111 
6112 		ice_rebuild_arfs(pf);
6113 	}
6114 
6115 	ice_update_pf_netdev_link(pf);
6116 
6117 	/* tell the firmware we are up */
6118 	ret = ice_send_version(pf);
6119 	if (ret) {
6120 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6121 			ice_stat_str(ret));
6122 		goto err_vsi_rebuild;
6123 	}
6124 
6125 	ice_replay_post(hw);
6126 
6127 	/* if we get here, reset flow is successful */
6128 	clear_bit(__ICE_RESET_FAILED, pf->state);
6129 	return;
6130 
6131 err_vsi_rebuild:
6132 err_sched_init_port:
6133 	ice_sched_cleanup_all(hw);
6134 err_init_ctrlq:
6135 	ice_shutdown_all_ctrlq(hw);
6136 	set_bit(__ICE_RESET_FAILED, pf->state);
6137 clear_recovery:
6138 	/* set this bit in PF state to control service task scheduling */
6139 	set_bit(__ICE_NEEDS_RESTART, pf->state);
6140 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6141 }
6142 
6143 /**
6144  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6145  * @vsi: Pointer to VSI structure
6146  */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6147 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6148 {
6149 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6150 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6151 	else
6152 		return ICE_RXBUF_3072;
6153 }
6154 
6155 /**
6156  * ice_change_mtu - NDO callback to change the MTU
6157  * @netdev: network interface device structure
6158  * @new_mtu: new value for maximum frame size
6159  *
6160  * Returns 0 on success, negative on failure
6161  */
ice_change_mtu(struct net_device * netdev,int new_mtu)6162 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6163 {
6164 	struct ice_netdev_priv *np = netdev_priv(netdev);
6165 	struct ice_vsi *vsi = np->vsi;
6166 	struct ice_pf *pf = vsi->back;
6167 	u8 count = 0;
6168 
6169 	if (new_mtu == (int)netdev->mtu) {
6170 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6171 		return 0;
6172 	}
6173 
6174 	if (ice_is_xdp_ena_vsi(vsi)) {
6175 		int frame_size = ice_max_xdp_frame_size(vsi);
6176 
6177 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6178 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6179 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6180 			return -EINVAL;
6181 		}
6182 	}
6183 
6184 	if (new_mtu < (int)netdev->min_mtu) {
6185 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6186 			   netdev->min_mtu);
6187 		return -EINVAL;
6188 	} else if (new_mtu > (int)netdev->max_mtu) {
6189 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6190 			   netdev->min_mtu);
6191 		return -EINVAL;
6192 	}
6193 	/* if a reset is in progress, wait for some time for it to complete */
6194 	do {
6195 		if (ice_is_reset_in_progress(pf->state)) {
6196 			count++;
6197 			usleep_range(1000, 2000);
6198 		} else {
6199 			break;
6200 		}
6201 
6202 	} while (count < 100);
6203 
6204 	if (count == 100) {
6205 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6206 		return -EBUSY;
6207 	}
6208 
6209 	netdev->mtu = (unsigned int)new_mtu;
6210 
6211 	/* if VSI is up, bring it down and then back up */
6212 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6213 		int err;
6214 
6215 		err = ice_down(vsi);
6216 		if (err) {
6217 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6218 			return err;
6219 		}
6220 
6221 		err = ice_up(vsi);
6222 		if (err) {
6223 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6224 			return err;
6225 		}
6226 	}
6227 
6228 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6229 	return 0;
6230 }
6231 
6232 /**
6233  * ice_aq_str - convert AQ err code to a string
6234  * @aq_err: the AQ error code to convert
6235  */
ice_aq_str(enum ice_aq_err aq_err)6236 const char *ice_aq_str(enum ice_aq_err aq_err)
6237 {
6238 	switch (aq_err) {
6239 	case ICE_AQ_RC_OK:
6240 		return "OK";
6241 	case ICE_AQ_RC_EPERM:
6242 		return "ICE_AQ_RC_EPERM";
6243 	case ICE_AQ_RC_ENOENT:
6244 		return "ICE_AQ_RC_ENOENT";
6245 	case ICE_AQ_RC_ENOMEM:
6246 		return "ICE_AQ_RC_ENOMEM";
6247 	case ICE_AQ_RC_EBUSY:
6248 		return "ICE_AQ_RC_EBUSY";
6249 	case ICE_AQ_RC_EEXIST:
6250 		return "ICE_AQ_RC_EEXIST";
6251 	case ICE_AQ_RC_EINVAL:
6252 		return "ICE_AQ_RC_EINVAL";
6253 	case ICE_AQ_RC_ENOSPC:
6254 		return "ICE_AQ_RC_ENOSPC";
6255 	case ICE_AQ_RC_ENOSYS:
6256 		return "ICE_AQ_RC_ENOSYS";
6257 	case ICE_AQ_RC_EMODE:
6258 		return "ICE_AQ_RC_EMODE";
6259 	case ICE_AQ_RC_ENOSEC:
6260 		return "ICE_AQ_RC_ENOSEC";
6261 	case ICE_AQ_RC_EBADSIG:
6262 		return "ICE_AQ_RC_EBADSIG";
6263 	case ICE_AQ_RC_ESVN:
6264 		return "ICE_AQ_RC_ESVN";
6265 	case ICE_AQ_RC_EBADMAN:
6266 		return "ICE_AQ_RC_EBADMAN";
6267 	case ICE_AQ_RC_EBADBUF:
6268 		return "ICE_AQ_RC_EBADBUF";
6269 	}
6270 
6271 	return "ICE_AQ_RC_UNKNOWN";
6272 }
6273 
6274 /**
6275  * ice_stat_str - convert status err code to a string
6276  * @stat_err: the status error code to convert
6277  */
ice_stat_str(enum ice_status stat_err)6278 const char *ice_stat_str(enum ice_status stat_err)
6279 {
6280 	switch (stat_err) {
6281 	case ICE_SUCCESS:
6282 		return "OK";
6283 	case ICE_ERR_PARAM:
6284 		return "ICE_ERR_PARAM";
6285 	case ICE_ERR_NOT_IMPL:
6286 		return "ICE_ERR_NOT_IMPL";
6287 	case ICE_ERR_NOT_READY:
6288 		return "ICE_ERR_NOT_READY";
6289 	case ICE_ERR_NOT_SUPPORTED:
6290 		return "ICE_ERR_NOT_SUPPORTED";
6291 	case ICE_ERR_BAD_PTR:
6292 		return "ICE_ERR_BAD_PTR";
6293 	case ICE_ERR_INVAL_SIZE:
6294 		return "ICE_ERR_INVAL_SIZE";
6295 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6296 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6297 	case ICE_ERR_RESET_FAILED:
6298 		return "ICE_ERR_RESET_FAILED";
6299 	case ICE_ERR_FW_API_VER:
6300 		return "ICE_ERR_FW_API_VER";
6301 	case ICE_ERR_NO_MEMORY:
6302 		return "ICE_ERR_NO_MEMORY";
6303 	case ICE_ERR_CFG:
6304 		return "ICE_ERR_CFG";
6305 	case ICE_ERR_OUT_OF_RANGE:
6306 		return "ICE_ERR_OUT_OF_RANGE";
6307 	case ICE_ERR_ALREADY_EXISTS:
6308 		return "ICE_ERR_ALREADY_EXISTS";
6309 	case ICE_ERR_NVM_CHECKSUM:
6310 		return "ICE_ERR_NVM_CHECKSUM";
6311 	case ICE_ERR_BUF_TOO_SHORT:
6312 		return "ICE_ERR_BUF_TOO_SHORT";
6313 	case ICE_ERR_NVM_BLANK_MODE:
6314 		return "ICE_ERR_NVM_BLANK_MODE";
6315 	case ICE_ERR_IN_USE:
6316 		return "ICE_ERR_IN_USE";
6317 	case ICE_ERR_MAX_LIMIT:
6318 		return "ICE_ERR_MAX_LIMIT";
6319 	case ICE_ERR_RESET_ONGOING:
6320 		return "ICE_ERR_RESET_ONGOING";
6321 	case ICE_ERR_HW_TABLE:
6322 		return "ICE_ERR_HW_TABLE";
6323 	case ICE_ERR_DOES_NOT_EXIST:
6324 		return "ICE_ERR_DOES_NOT_EXIST";
6325 	case ICE_ERR_FW_DDP_MISMATCH:
6326 		return "ICE_ERR_FW_DDP_MISMATCH";
6327 	case ICE_ERR_AQ_ERROR:
6328 		return "ICE_ERR_AQ_ERROR";
6329 	case ICE_ERR_AQ_TIMEOUT:
6330 		return "ICE_ERR_AQ_TIMEOUT";
6331 	case ICE_ERR_AQ_FULL:
6332 		return "ICE_ERR_AQ_FULL";
6333 	case ICE_ERR_AQ_NO_WORK:
6334 		return "ICE_ERR_AQ_NO_WORK";
6335 	case ICE_ERR_AQ_EMPTY:
6336 		return "ICE_ERR_AQ_EMPTY";
6337 	case ICE_ERR_AQ_FW_CRITICAL:
6338 		return "ICE_ERR_AQ_FW_CRITICAL";
6339 	}
6340 
6341 	return "ICE_ERR_UNKNOWN";
6342 }
6343 
6344 /**
6345  * ice_set_rss - Set RSS keys and lut
6346  * @vsi: Pointer to VSI structure
6347  * @seed: RSS hash seed
6348  * @lut: Lookup table
6349  * @lut_size: Lookup table size
6350  *
6351  * Returns 0 on success, negative on failure
6352  */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6353 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6354 {
6355 	struct ice_pf *pf = vsi->back;
6356 	struct ice_hw *hw = &pf->hw;
6357 	enum ice_status status;
6358 	struct device *dev;
6359 
6360 	dev = ice_pf_to_dev(pf);
6361 	if (seed) {
6362 		struct ice_aqc_get_set_rss_keys *buf =
6363 				  (struct ice_aqc_get_set_rss_keys *)seed;
6364 
6365 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6366 
6367 		if (status) {
6368 			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6369 				ice_stat_str(status),
6370 				ice_aq_str(hw->adminq.sq_last_status));
6371 			return -EIO;
6372 		}
6373 	}
6374 
6375 	if (lut) {
6376 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6377 					    lut, lut_size);
6378 		if (status) {
6379 			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6380 				ice_stat_str(status),
6381 				ice_aq_str(hw->adminq.sq_last_status));
6382 			return -EIO;
6383 		}
6384 	}
6385 
6386 	return 0;
6387 }
6388 
6389 /**
6390  * ice_get_rss - Get RSS keys and lut
6391  * @vsi: Pointer to VSI structure
6392  * @seed: Buffer to store the keys
6393  * @lut: Buffer to store the lookup table entries
6394  * @lut_size: Size of buffer to store the lookup table entries
6395  *
6396  * Returns 0 on success, negative on failure
6397  */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6398 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6399 {
6400 	struct ice_pf *pf = vsi->back;
6401 	struct ice_hw *hw = &pf->hw;
6402 	enum ice_status status;
6403 	struct device *dev;
6404 
6405 	dev = ice_pf_to_dev(pf);
6406 	if (seed) {
6407 		struct ice_aqc_get_set_rss_keys *buf =
6408 				  (struct ice_aqc_get_set_rss_keys *)seed;
6409 
6410 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6411 		if (status) {
6412 			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6413 				ice_stat_str(status),
6414 				ice_aq_str(hw->adminq.sq_last_status));
6415 			return -EIO;
6416 		}
6417 	}
6418 
6419 	if (lut) {
6420 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6421 					    lut, lut_size);
6422 		if (status) {
6423 			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6424 				ice_stat_str(status),
6425 				ice_aq_str(hw->adminq.sq_last_status));
6426 			return -EIO;
6427 		}
6428 	}
6429 
6430 	return 0;
6431 }
6432 
6433 /**
6434  * ice_bridge_getlink - Get the hardware bridge mode
6435  * @skb: skb buff
6436  * @pid: process ID
6437  * @seq: RTNL message seq
6438  * @dev: the netdev being configured
6439  * @filter_mask: filter mask passed in
6440  * @nlflags: netlink flags passed in
6441  *
6442  * Return the bridge mode (VEB/VEPA)
6443  */
6444 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6445 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6446 		   struct net_device *dev, u32 filter_mask, int nlflags)
6447 {
6448 	struct ice_netdev_priv *np = netdev_priv(dev);
6449 	struct ice_vsi *vsi = np->vsi;
6450 	struct ice_pf *pf = vsi->back;
6451 	u16 bmode;
6452 
6453 	bmode = pf->first_sw->bridge_mode;
6454 
6455 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6456 				       filter_mask, NULL);
6457 }
6458 
6459 /**
6460  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6461  * @vsi: Pointer to VSI structure
6462  * @bmode: Hardware bridge mode (VEB/VEPA)
6463  *
6464  * Returns 0 on success, negative on failure
6465  */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6466 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6467 {
6468 	struct ice_aqc_vsi_props *vsi_props;
6469 	struct ice_hw *hw = &vsi->back->hw;
6470 	struct ice_vsi_ctx *ctxt;
6471 	enum ice_status status;
6472 	int ret = 0;
6473 
6474 	vsi_props = &vsi->info;
6475 
6476 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6477 	if (!ctxt)
6478 		return -ENOMEM;
6479 
6480 	ctxt->info = vsi->info;
6481 
6482 	if (bmode == BRIDGE_MODE_VEB)
6483 		/* change from VEPA to VEB mode */
6484 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6485 	else
6486 		/* change from VEB to VEPA mode */
6487 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6488 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6489 
6490 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6491 	if (status) {
6492 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6493 			bmode, ice_stat_str(status),
6494 			ice_aq_str(hw->adminq.sq_last_status));
6495 		ret = -EIO;
6496 		goto out;
6497 	}
6498 	/* Update sw flags for book keeping */
6499 	vsi_props->sw_flags = ctxt->info.sw_flags;
6500 
6501 out:
6502 	kfree(ctxt);
6503 	return ret;
6504 }
6505 
6506 /**
6507  * ice_bridge_setlink - Set the hardware bridge mode
6508  * @dev: the netdev being configured
6509  * @nlh: RTNL message
6510  * @flags: bridge setlink flags
6511  * @extack: netlink extended ack
6512  *
6513  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6514  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6515  * not already set for all VSIs connected to this switch. And also update the
6516  * unicast switch filter rules for the corresponding switch of the netdev.
6517  */
6518 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6519 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6520 		   u16 __always_unused flags,
6521 		   struct netlink_ext_ack __always_unused *extack)
6522 {
6523 	struct ice_netdev_priv *np = netdev_priv(dev);
6524 	struct ice_pf *pf = np->vsi->back;
6525 	struct nlattr *attr, *br_spec;
6526 	struct ice_hw *hw = &pf->hw;
6527 	enum ice_status status;
6528 	struct ice_sw *pf_sw;
6529 	int rem, v, err = 0;
6530 
6531 	pf_sw = pf->first_sw;
6532 	/* find the attribute in the netlink message */
6533 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6534 
6535 	nla_for_each_nested(attr, br_spec, rem) {
6536 		__u16 mode;
6537 
6538 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6539 			continue;
6540 		mode = nla_get_u16(attr);
6541 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6542 			return -EINVAL;
6543 		/* Continue  if bridge mode is not being flipped */
6544 		if (mode == pf_sw->bridge_mode)
6545 			continue;
6546 		/* Iterates through the PF VSI list and update the loopback
6547 		 * mode of the VSI
6548 		 */
6549 		ice_for_each_vsi(pf, v) {
6550 			if (!pf->vsi[v])
6551 				continue;
6552 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6553 			if (err)
6554 				return err;
6555 		}
6556 
6557 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6558 		/* Update the unicast switch filter rules for the corresponding
6559 		 * switch of the netdev
6560 		 */
6561 		status = ice_update_sw_rule_bridge_mode(hw);
6562 		if (status) {
6563 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6564 				   mode, ice_stat_str(status),
6565 				   ice_aq_str(hw->adminq.sq_last_status));
6566 			/* revert hw->evb_veb */
6567 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6568 			return -EIO;
6569 		}
6570 
6571 		pf_sw->bridge_mode = mode;
6572 	}
6573 
6574 	return 0;
6575 }
6576 
6577 /**
6578  * ice_tx_timeout - Respond to a Tx Hang
6579  * @netdev: network interface device structure
6580  * @txqueue: Tx queue
6581  */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6582 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6583 {
6584 	struct ice_netdev_priv *np = netdev_priv(netdev);
6585 	struct ice_ring *tx_ring = NULL;
6586 	struct ice_vsi *vsi = np->vsi;
6587 	struct ice_pf *pf = vsi->back;
6588 	u32 i;
6589 
6590 	pf->tx_timeout_count++;
6591 
6592 	/* Check if PFC is enabled for the TC to which the queue belongs
6593 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6594 	 * need to reset and rebuild
6595 	 */
6596 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6597 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6598 			 txqueue);
6599 		return;
6600 	}
6601 
6602 	/* now that we have an index, find the tx_ring struct */
6603 	for (i = 0; i < vsi->num_txq; i++)
6604 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6605 			if (txqueue == vsi->tx_rings[i]->q_index) {
6606 				tx_ring = vsi->tx_rings[i];
6607 				break;
6608 			}
6609 
6610 	/* Reset recovery level if enough time has elapsed after last timeout.
6611 	 * Also ensure no new reset action happens before next timeout period.
6612 	 */
6613 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6614 		pf->tx_timeout_recovery_level = 1;
6615 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6616 				       netdev->watchdog_timeo)))
6617 		return;
6618 
6619 	if (tx_ring) {
6620 		struct ice_hw *hw = &pf->hw;
6621 		u32 head, val = 0;
6622 
6623 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6624 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6625 		/* Read interrupt register */
6626 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6627 
6628 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6629 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6630 			    head, tx_ring->next_to_use, val);
6631 	}
6632 
6633 	pf->tx_timeout_last_recovery = jiffies;
6634 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6635 		    pf->tx_timeout_recovery_level, txqueue);
6636 
6637 	switch (pf->tx_timeout_recovery_level) {
6638 	case 1:
6639 		set_bit(__ICE_PFR_REQ, pf->state);
6640 		break;
6641 	case 2:
6642 		set_bit(__ICE_CORER_REQ, pf->state);
6643 		break;
6644 	case 3:
6645 		set_bit(__ICE_GLOBR_REQ, pf->state);
6646 		break;
6647 	default:
6648 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6649 		set_bit(__ICE_DOWN, pf->state);
6650 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6651 		set_bit(__ICE_SERVICE_DIS, pf->state);
6652 		break;
6653 	}
6654 
6655 	ice_service_task_schedule(pf);
6656 	pf->tx_timeout_recovery_level++;
6657 }
6658 
6659 /**
6660  * ice_open - Called when a network interface becomes active
6661  * @netdev: network interface device structure
6662  *
6663  * The open entry point is called when a network interface is made
6664  * active by the system (IFF_UP). At this point all resources needed
6665  * for transmit and receive operations are allocated, the interrupt
6666  * handler is registered with the OS, the netdev watchdog is enabled,
6667  * and the stack is notified that the interface is ready.
6668  *
6669  * Returns 0 on success, negative value on failure
6670  */
ice_open(struct net_device * netdev)6671 int ice_open(struct net_device *netdev)
6672 {
6673 	struct ice_netdev_priv *np = netdev_priv(netdev);
6674 	struct ice_pf *pf = np->vsi->back;
6675 
6676 	if (ice_is_reset_in_progress(pf->state)) {
6677 		netdev_err(netdev, "can't open net device while reset is in progress");
6678 		return -EBUSY;
6679 	}
6680 
6681 	return ice_open_internal(netdev);
6682 }
6683 
6684 /**
6685  * ice_open_internal - Called when a network interface becomes active
6686  * @netdev: network interface device structure
6687  *
6688  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6689  * handling routine
6690  *
6691  * Returns 0 on success, negative value on failure
6692  */
ice_open_internal(struct net_device * netdev)6693 int ice_open_internal(struct net_device *netdev)
6694 {
6695 	struct ice_netdev_priv *np = netdev_priv(netdev);
6696 	struct ice_vsi *vsi = np->vsi;
6697 	struct ice_pf *pf = vsi->back;
6698 	struct ice_port_info *pi;
6699 	int err;
6700 
6701 	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6702 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6703 		return -EIO;
6704 	}
6705 
6706 	if (test_bit(__ICE_DOWN, pf->state)) {
6707 		netdev_err(netdev, "device is not ready yet\n");
6708 		return -EBUSY;
6709 	}
6710 
6711 	netif_carrier_off(netdev);
6712 
6713 	pi = vsi->port_info;
6714 	err = ice_update_link_info(pi);
6715 	if (err) {
6716 		netdev_err(netdev, "Failed to get link info, error %d\n",
6717 			   err);
6718 		return err;
6719 	}
6720 
6721 	/* Set PHY if there is media, otherwise, turn off PHY */
6722 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6723 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6724 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6725 			err = ice_init_phy_user_cfg(pi);
6726 			if (err) {
6727 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6728 					   err);
6729 				return err;
6730 			}
6731 		}
6732 
6733 		err = ice_configure_phy(vsi);
6734 		if (err) {
6735 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6736 				   err);
6737 			return err;
6738 		}
6739 	} else {
6740 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6741 		err = ice_aq_set_link_restart_an(pi, false, NULL);
6742 		if (err) {
6743 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6744 				   vsi->vsi_num, err);
6745 			return err;
6746 		}
6747 	}
6748 
6749 	err = ice_vsi_open(vsi);
6750 	if (err)
6751 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6752 			   vsi->vsi_num, vsi->vsw->sw_id);
6753 
6754 	/* Update existing tunnels information */
6755 	udp_tunnel_get_rx_info(netdev);
6756 
6757 	return err;
6758 }
6759 
6760 /**
6761  * ice_stop - Disables a network interface
6762  * @netdev: network interface device structure
6763  *
6764  * The stop entry point is called when an interface is de-activated by the OS,
6765  * and the netdevice enters the DOWN state. The hardware is still under the
6766  * driver's control, but the netdev interface is disabled.
6767  *
6768  * Returns success only - not allowed to fail
6769  */
ice_stop(struct net_device * netdev)6770 int ice_stop(struct net_device *netdev)
6771 {
6772 	struct ice_netdev_priv *np = netdev_priv(netdev);
6773 	struct ice_vsi *vsi = np->vsi;
6774 	struct ice_pf *pf = vsi->back;
6775 
6776 	if (ice_is_reset_in_progress(pf->state)) {
6777 		netdev_err(netdev, "can't stop net device while reset is in progress");
6778 		return -EBUSY;
6779 	}
6780 
6781 	ice_vsi_close(vsi);
6782 
6783 	return 0;
6784 }
6785 
6786 /**
6787  * ice_features_check - Validate encapsulated packet conforms to limits
6788  * @skb: skb buffer
6789  * @netdev: This port's netdev
6790  * @features: Offload features that the stack believes apply
6791  */
6792 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6793 ice_features_check(struct sk_buff *skb,
6794 		   struct net_device __always_unused *netdev,
6795 		   netdev_features_t features)
6796 {
6797 	size_t len;
6798 
6799 	/* No point in doing any of this if neither checksum nor GSO are
6800 	 * being requested for this frame. We can rule out both by just
6801 	 * checking for CHECKSUM_PARTIAL
6802 	 */
6803 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6804 		return features;
6805 
6806 	/* We cannot support GSO if the MSS is going to be less than
6807 	 * 64 bytes. If it is then we need to drop support for GSO.
6808 	 */
6809 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6810 		features &= ~NETIF_F_GSO_MASK;
6811 
6812 	len = skb_network_header(skb) - skb->data;
6813 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6814 		goto out_rm_features;
6815 
6816 	len = skb_transport_header(skb) - skb_network_header(skb);
6817 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6818 		goto out_rm_features;
6819 
6820 	if (skb->encapsulation) {
6821 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6822 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6823 			goto out_rm_features;
6824 
6825 		len = skb_inner_transport_header(skb) -
6826 		      skb_inner_network_header(skb);
6827 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6828 			goto out_rm_features;
6829 	}
6830 
6831 	return features;
6832 out_rm_features:
6833 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6834 }
6835 
6836 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6837 	.ndo_open = ice_open,
6838 	.ndo_stop = ice_stop,
6839 	.ndo_start_xmit = ice_start_xmit,
6840 	.ndo_set_mac_address = ice_set_mac_address,
6841 	.ndo_validate_addr = eth_validate_addr,
6842 	.ndo_change_mtu = ice_change_mtu,
6843 	.ndo_get_stats64 = ice_get_stats64,
6844 	.ndo_tx_timeout = ice_tx_timeout,
6845 	.ndo_bpf = ice_xdp_safe_mode,
6846 };
6847 
6848 static const struct net_device_ops ice_netdev_ops = {
6849 	.ndo_open = ice_open,
6850 	.ndo_stop = ice_stop,
6851 	.ndo_start_xmit = ice_start_xmit,
6852 	.ndo_features_check = ice_features_check,
6853 	.ndo_set_rx_mode = ice_set_rx_mode,
6854 	.ndo_set_mac_address = ice_set_mac_address,
6855 	.ndo_validate_addr = eth_validate_addr,
6856 	.ndo_change_mtu = ice_change_mtu,
6857 	.ndo_get_stats64 = ice_get_stats64,
6858 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6859 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6860 	.ndo_set_vf_mac = ice_set_vf_mac,
6861 	.ndo_get_vf_config = ice_get_vf_cfg,
6862 	.ndo_set_vf_trust = ice_set_vf_trust,
6863 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6864 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6865 	.ndo_get_vf_stats = ice_get_vf_stats,
6866 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6867 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6868 	.ndo_set_features = ice_set_features,
6869 	.ndo_bridge_getlink = ice_bridge_getlink,
6870 	.ndo_bridge_setlink = ice_bridge_setlink,
6871 	.ndo_fdb_add = ice_fdb_add,
6872 	.ndo_fdb_del = ice_fdb_del,
6873 #ifdef CONFIG_RFS_ACCEL
6874 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6875 #endif
6876 	.ndo_tx_timeout = ice_tx_timeout,
6877 	.ndo_bpf = ice_xdp,
6878 	.ndo_xdp_xmit = ice_xdp_xmit,
6879 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6880 	.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6881 	.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6882 };
6883