• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2014 Renesas Electronics Corporation
5  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
7  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
8  *  Copyright (C) 2014 Codethink Limited
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34 
35 #include "sh_eth.h"
36 
37 #define SH_ETH_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	| \
39 		NETIF_MSG_TIMER	| \
40 		NETIF_MSG_RX_ERR| \
41 		NETIF_MSG_TX_ERR)
42 
43 #define SH_ETH_OFFSET_INVALID	((u16)~0)
44 
45 #define SH_ETH_OFFSET_DEFAULTS			\
46 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47 
48 /* use some intentionally tricky logic here to initialize the whole struct to
49  * 0xffff, but then override certain fields, requiring us to indicate that we
50  * "know" that there are overrides in this structure, and we'll need to disable
51  * that warning from W=1 builds. GCC has supported this option since 4.2.X, but
52  * the macros available to do this only define GCC 8.
53  */
54 __diag_push();
55 __diag_ignore(GCC, 8, "-Woverride-init",
56 	      "logic to initialize all and then override some is OK");
57 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
58 	SH_ETH_OFFSET_DEFAULTS,
59 
60 	[EDSR]		= 0x0000,
61 	[EDMR]		= 0x0400,
62 	[EDTRR]		= 0x0408,
63 	[EDRRR]		= 0x0410,
64 	[EESR]		= 0x0428,
65 	[EESIPR]	= 0x0430,
66 	[TDLAR]		= 0x0010,
67 	[TDFAR]		= 0x0014,
68 	[TDFXR]		= 0x0018,
69 	[TDFFR]		= 0x001c,
70 	[RDLAR]		= 0x0030,
71 	[RDFAR]		= 0x0034,
72 	[RDFXR]		= 0x0038,
73 	[RDFFR]		= 0x003c,
74 	[TRSCER]	= 0x0438,
75 	[RMFCR]		= 0x0440,
76 	[TFTR]		= 0x0448,
77 	[FDR]		= 0x0450,
78 	[RMCR]		= 0x0458,
79 	[RPADIR]	= 0x0460,
80 	[FCFTR]		= 0x0468,
81 	[CSMR]		= 0x04E4,
82 
83 	[ECMR]		= 0x0500,
84 	[ECSR]		= 0x0510,
85 	[ECSIPR]	= 0x0518,
86 	[PIR]		= 0x0520,
87 	[PSR]		= 0x0528,
88 	[PIPR]		= 0x052c,
89 	[RFLR]		= 0x0508,
90 	[APR]		= 0x0554,
91 	[MPR]		= 0x0558,
92 	[PFTCR]		= 0x055c,
93 	[PFRCR]		= 0x0560,
94 	[TPAUSER]	= 0x0564,
95 	[GECMR]		= 0x05b0,
96 	[BCULR]		= 0x05b4,
97 	[MAHR]		= 0x05c0,
98 	[MALR]		= 0x05c8,
99 	[TROCR]		= 0x0700,
100 	[CDCR]		= 0x0708,
101 	[LCCR]		= 0x0710,
102 	[CEFCR]		= 0x0740,
103 	[FRECR]		= 0x0748,
104 	[TSFRCR]	= 0x0750,
105 	[TLFRCR]	= 0x0758,
106 	[RFCR]		= 0x0760,
107 	[CERCR]		= 0x0768,
108 	[CEECR]		= 0x0770,
109 	[MAFCR]		= 0x0778,
110 	[RMII_MII]	= 0x0790,
111 
112 	[ARSTR]		= 0x0000,
113 	[TSU_CTRST]	= 0x0004,
114 	[TSU_FWEN0]	= 0x0010,
115 	[TSU_FWEN1]	= 0x0014,
116 	[TSU_FCM]	= 0x0018,
117 	[TSU_BSYSL0]	= 0x0020,
118 	[TSU_BSYSL1]	= 0x0024,
119 	[TSU_PRISL0]	= 0x0028,
120 	[TSU_PRISL1]	= 0x002c,
121 	[TSU_FWSL0]	= 0x0030,
122 	[TSU_FWSL1]	= 0x0034,
123 	[TSU_FWSLC]	= 0x0038,
124 	[TSU_QTAGM0]	= 0x0040,
125 	[TSU_QTAGM1]	= 0x0044,
126 	[TSU_FWSR]	= 0x0050,
127 	[TSU_FWINMK]	= 0x0054,
128 	[TSU_ADQT0]	= 0x0048,
129 	[TSU_ADQT1]	= 0x004c,
130 	[TSU_VTAG0]	= 0x0058,
131 	[TSU_VTAG1]	= 0x005c,
132 	[TSU_ADSBSY]	= 0x0060,
133 	[TSU_TEN]	= 0x0064,
134 	[TSU_POST1]	= 0x0070,
135 	[TSU_POST2]	= 0x0074,
136 	[TSU_POST3]	= 0x0078,
137 	[TSU_POST4]	= 0x007c,
138 	[TSU_ADRH0]	= 0x0100,
139 
140 	[TXNLCR0]	= 0x0080,
141 	[TXALCR0]	= 0x0084,
142 	[RXNLCR0]	= 0x0088,
143 	[RXALCR0]	= 0x008c,
144 	[FWNLCR0]	= 0x0090,
145 	[FWALCR0]	= 0x0094,
146 	[TXNLCR1]	= 0x00a0,
147 	[TXALCR1]	= 0x00a4,
148 	[RXNLCR1]	= 0x00a8,
149 	[RXALCR1]	= 0x00ac,
150 	[FWNLCR1]	= 0x00b0,
151 	[FWALCR1]	= 0x00b4,
152 };
153 
154 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
155 	SH_ETH_OFFSET_DEFAULTS,
156 
157 	[ECMR]		= 0x0300,
158 	[RFLR]		= 0x0308,
159 	[ECSR]		= 0x0310,
160 	[ECSIPR]	= 0x0318,
161 	[PIR]		= 0x0320,
162 	[PSR]		= 0x0328,
163 	[RDMLR]		= 0x0340,
164 	[IPGR]		= 0x0350,
165 	[APR]		= 0x0354,
166 	[MPR]		= 0x0358,
167 	[RFCF]		= 0x0360,
168 	[TPAUSER]	= 0x0364,
169 	[TPAUSECR]	= 0x0368,
170 	[MAHR]		= 0x03c0,
171 	[MALR]		= 0x03c8,
172 	[TROCR]		= 0x03d0,
173 	[CDCR]		= 0x03d4,
174 	[LCCR]		= 0x03d8,
175 	[CNDCR]		= 0x03dc,
176 	[CEFCR]		= 0x03e4,
177 	[FRECR]		= 0x03e8,
178 	[TSFRCR]	= 0x03ec,
179 	[TLFRCR]	= 0x03f0,
180 	[RFCR]		= 0x03f4,
181 	[MAFCR]		= 0x03f8,
182 
183 	[EDMR]		= 0x0200,
184 	[EDTRR]		= 0x0208,
185 	[EDRRR]		= 0x0210,
186 	[TDLAR]		= 0x0218,
187 	[RDLAR]		= 0x0220,
188 	[EESR]		= 0x0228,
189 	[EESIPR]	= 0x0230,
190 	[TRSCER]	= 0x0238,
191 	[RMFCR]		= 0x0240,
192 	[TFTR]		= 0x0248,
193 	[FDR]		= 0x0250,
194 	[RMCR]		= 0x0258,
195 	[TFUCR]		= 0x0264,
196 	[RFOCR]		= 0x0268,
197 	[RMIIMODE]      = 0x026c,
198 	[FCFTR]		= 0x0270,
199 	[TRIMD]		= 0x027c,
200 };
201 
202 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
203 	SH_ETH_OFFSET_DEFAULTS,
204 
205 	[ECMR]		= 0x0100,
206 	[RFLR]		= 0x0108,
207 	[ECSR]		= 0x0110,
208 	[ECSIPR]	= 0x0118,
209 	[PIR]		= 0x0120,
210 	[PSR]		= 0x0128,
211 	[RDMLR]		= 0x0140,
212 	[IPGR]		= 0x0150,
213 	[APR]		= 0x0154,
214 	[MPR]		= 0x0158,
215 	[TPAUSER]	= 0x0164,
216 	[RFCF]		= 0x0160,
217 	[TPAUSECR]	= 0x0168,
218 	[BCFRR]		= 0x016c,
219 	[MAHR]		= 0x01c0,
220 	[MALR]		= 0x01c8,
221 	[TROCR]		= 0x01d0,
222 	[CDCR]		= 0x01d4,
223 	[LCCR]		= 0x01d8,
224 	[CNDCR]		= 0x01dc,
225 	[CEFCR]		= 0x01e4,
226 	[FRECR]		= 0x01e8,
227 	[TSFRCR]	= 0x01ec,
228 	[TLFRCR]	= 0x01f0,
229 	[RFCR]		= 0x01f4,
230 	[MAFCR]		= 0x01f8,
231 	[RTRATE]	= 0x01fc,
232 
233 	[EDMR]		= 0x0000,
234 	[EDTRR]		= 0x0008,
235 	[EDRRR]		= 0x0010,
236 	[TDLAR]		= 0x0018,
237 	[RDLAR]		= 0x0020,
238 	[EESR]		= 0x0028,
239 	[EESIPR]	= 0x0030,
240 	[TRSCER]	= 0x0038,
241 	[RMFCR]		= 0x0040,
242 	[TFTR]		= 0x0048,
243 	[FDR]		= 0x0050,
244 	[RMCR]		= 0x0058,
245 	[TFUCR]		= 0x0064,
246 	[RFOCR]		= 0x0068,
247 	[FCFTR]		= 0x0070,
248 	[RPADIR]	= 0x0078,
249 	[TRIMD]		= 0x007c,
250 	[RBWAR]		= 0x00c8,
251 	[RDFAR]		= 0x00cc,
252 	[TBRAR]		= 0x00d4,
253 	[TDFAR]		= 0x00d8,
254 };
255 
256 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
257 	SH_ETH_OFFSET_DEFAULTS,
258 
259 	[EDMR]		= 0x0000,
260 	[EDTRR]		= 0x0004,
261 	[EDRRR]		= 0x0008,
262 	[TDLAR]		= 0x000c,
263 	[RDLAR]		= 0x0010,
264 	[EESR]		= 0x0014,
265 	[EESIPR]	= 0x0018,
266 	[TRSCER]	= 0x001c,
267 	[RMFCR]		= 0x0020,
268 	[TFTR]		= 0x0024,
269 	[FDR]		= 0x0028,
270 	[RMCR]		= 0x002c,
271 	[EDOCR]		= 0x0030,
272 	[FCFTR]		= 0x0034,
273 	[RPADIR]	= 0x0038,
274 	[TRIMD]		= 0x003c,
275 	[RBWAR]		= 0x0040,
276 	[RDFAR]		= 0x0044,
277 	[TBRAR]		= 0x004c,
278 	[TDFAR]		= 0x0050,
279 
280 	[ECMR]		= 0x0160,
281 	[ECSR]		= 0x0164,
282 	[ECSIPR]	= 0x0168,
283 	[PIR]		= 0x016c,
284 	[MAHR]		= 0x0170,
285 	[MALR]		= 0x0174,
286 	[RFLR]		= 0x0178,
287 	[PSR]		= 0x017c,
288 	[TROCR]		= 0x0180,
289 	[CDCR]		= 0x0184,
290 	[LCCR]		= 0x0188,
291 	[CNDCR]		= 0x018c,
292 	[CEFCR]		= 0x0194,
293 	[FRECR]		= 0x0198,
294 	[TSFRCR]	= 0x019c,
295 	[TLFRCR]	= 0x01a0,
296 	[RFCR]		= 0x01a4,
297 	[MAFCR]		= 0x01a8,
298 	[IPGR]		= 0x01b4,
299 	[APR]		= 0x01b8,
300 	[MPR]		= 0x01bc,
301 	[TPAUSER]	= 0x01c4,
302 	[BCFR]		= 0x01cc,
303 
304 	[ARSTR]		= 0x0000,
305 	[TSU_CTRST]	= 0x0004,
306 	[TSU_FWEN0]	= 0x0010,
307 	[TSU_FWEN1]	= 0x0014,
308 	[TSU_FCM]	= 0x0018,
309 	[TSU_BSYSL0]	= 0x0020,
310 	[TSU_BSYSL1]	= 0x0024,
311 	[TSU_PRISL0]	= 0x0028,
312 	[TSU_PRISL1]	= 0x002c,
313 	[TSU_FWSL0]	= 0x0030,
314 	[TSU_FWSL1]	= 0x0034,
315 	[TSU_FWSLC]	= 0x0038,
316 	[TSU_QTAGM0]	= 0x0040,
317 	[TSU_QTAGM1]	= 0x0044,
318 	[TSU_ADQT0]	= 0x0048,
319 	[TSU_ADQT1]	= 0x004c,
320 	[TSU_FWSR]	= 0x0050,
321 	[TSU_FWINMK]	= 0x0054,
322 	[TSU_ADSBSY]	= 0x0060,
323 	[TSU_TEN]	= 0x0064,
324 	[TSU_POST1]	= 0x0070,
325 	[TSU_POST2]	= 0x0074,
326 	[TSU_POST3]	= 0x0078,
327 	[TSU_POST4]	= 0x007c,
328 
329 	[TXNLCR0]	= 0x0080,
330 	[TXALCR0]	= 0x0084,
331 	[RXNLCR0]	= 0x0088,
332 	[RXALCR0]	= 0x008c,
333 	[FWNLCR0]	= 0x0090,
334 	[FWALCR0]	= 0x0094,
335 	[TXNLCR1]	= 0x00a0,
336 	[TXALCR1]	= 0x00a4,
337 	[RXNLCR1]	= 0x00a8,
338 	[RXALCR1]	= 0x00ac,
339 	[FWNLCR1]	= 0x00b0,
340 	[FWALCR1]	= 0x00b4,
341 
342 	[TSU_ADRH0]	= 0x0100,
343 };
344 __diag_pop();
345 
346 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
347 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
348 
sh_eth_write(struct net_device * ndev,u32 data,int enum_index)349 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
350 {
351 	struct sh_eth_private *mdp = netdev_priv(ndev);
352 	u16 offset = mdp->reg_offset[enum_index];
353 
354 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
355 		return;
356 
357 	iowrite32(data, mdp->addr + offset);
358 }
359 
sh_eth_read(struct net_device * ndev,int enum_index)360 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
361 {
362 	struct sh_eth_private *mdp = netdev_priv(ndev);
363 	u16 offset = mdp->reg_offset[enum_index];
364 
365 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
366 		return ~0U;
367 
368 	return ioread32(mdp->addr + offset);
369 }
370 
sh_eth_modify(struct net_device * ndev,int enum_index,u32 clear,u32 set)371 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
372 			  u32 set)
373 {
374 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
375 		     enum_index);
376 }
377 
sh_eth_tsu_get_offset(struct sh_eth_private * mdp,int enum_index)378 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
379 {
380 	return mdp->reg_offset[enum_index];
381 }
382 
sh_eth_tsu_write(struct sh_eth_private * mdp,u32 data,int enum_index)383 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
384 			     int enum_index)
385 {
386 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
387 
388 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
389 		return;
390 
391 	iowrite32(data, mdp->tsu_addr + offset);
392 }
393 
sh_eth_tsu_read(struct sh_eth_private * mdp,int enum_index)394 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
395 {
396 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
397 
398 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
399 		return ~0U;
400 
401 	return ioread32(mdp->tsu_addr + offset);
402 }
403 
sh_eth_soft_swap(char * src,int len)404 static void sh_eth_soft_swap(char *src, int len)
405 {
406 #ifdef __LITTLE_ENDIAN
407 	u32 *p = (u32 *)src;
408 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
409 
410 	for (; p < maxp; p++)
411 		*p = swab32(*p);
412 #endif
413 }
414 
sh_eth_select_mii(struct net_device * ndev)415 static void sh_eth_select_mii(struct net_device *ndev)
416 {
417 	struct sh_eth_private *mdp = netdev_priv(ndev);
418 	u32 value;
419 
420 	switch (mdp->phy_interface) {
421 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
422 		value = 0x3;
423 		break;
424 	case PHY_INTERFACE_MODE_GMII:
425 		value = 0x2;
426 		break;
427 	case PHY_INTERFACE_MODE_MII:
428 		value = 0x1;
429 		break;
430 	case PHY_INTERFACE_MODE_RMII:
431 		value = 0x0;
432 		break;
433 	default:
434 		netdev_warn(ndev,
435 			    "PHY interface mode was not setup. Set to MII.\n");
436 		value = 0x1;
437 		break;
438 	}
439 
440 	sh_eth_write(ndev, value, RMII_MII);
441 }
442 
sh_eth_set_duplex(struct net_device * ndev)443 static void sh_eth_set_duplex(struct net_device *ndev)
444 {
445 	struct sh_eth_private *mdp = netdev_priv(ndev);
446 
447 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
448 }
449 
sh_eth_chip_reset(struct net_device * ndev)450 static void sh_eth_chip_reset(struct net_device *ndev)
451 {
452 	struct sh_eth_private *mdp = netdev_priv(ndev);
453 
454 	/* reset device */
455 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
456 	mdelay(1);
457 }
458 
sh_eth_soft_reset(struct net_device * ndev)459 static int sh_eth_soft_reset(struct net_device *ndev)
460 {
461 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
462 	mdelay(3);
463 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
464 
465 	return 0;
466 }
467 
sh_eth_check_soft_reset(struct net_device * ndev)468 static int sh_eth_check_soft_reset(struct net_device *ndev)
469 {
470 	int cnt;
471 
472 	for (cnt = 100; cnt > 0; cnt--) {
473 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
474 			return 0;
475 		mdelay(1);
476 	}
477 
478 	netdev_err(ndev, "Device reset failed\n");
479 	return -ETIMEDOUT;
480 }
481 
sh_eth_soft_reset_gether(struct net_device * ndev)482 static int sh_eth_soft_reset_gether(struct net_device *ndev)
483 {
484 	struct sh_eth_private *mdp = netdev_priv(ndev);
485 	int ret;
486 
487 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
488 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
489 
490 	ret = sh_eth_check_soft_reset(ndev);
491 	if (ret)
492 		return ret;
493 
494 	/* Table Init */
495 	sh_eth_write(ndev, 0, TDLAR);
496 	sh_eth_write(ndev, 0, TDFAR);
497 	sh_eth_write(ndev, 0, TDFXR);
498 	sh_eth_write(ndev, 0, TDFFR);
499 	sh_eth_write(ndev, 0, RDLAR);
500 	sh_eth_write(ndev, 0, RDFAR);
501 	sh_eth_write(ndev, 0, RDFXR);
502 	sh_eth_write(ndev, 0, RDFFR);
503 
504 	/* Reset HW CRC register */
505 	if (mdp->cd->csmr)
506 		sh_eth_write(ndev, 0, CSMR);
507 
508 	/* Select MII mode */
509 	if (mdp->cd->select_mii)
510 		sh_eth_select_mii(ndev);
511 
512 	return ret;
513 }
514 
sh_eth_set_rate_gether(struct net_device * ndev)515 static void sh_eth_set_rate_gether(struct net_device *ndev)
516 {
517 	struct sh_eth_private *mdp = netdev_priv(ndev);
518 
519 	if (WARN_ON(!mdp->cd->gecmr))
520 		return;
521 
522 	switch (mdp->speed) {
523 	case 10: /* 10BASE */
524 		sh_eth_write(ndev, GECMR_10, GECMR);
525 		break;
526 	case 100:/* 100BASE */
527 		sh_eth_write(ndev, GECMR_100, GECMR);
528 		break;
529 	case 1000: /* 1000BASE */
530 		sh_eth_write(ndev, GECMR_1000, GECMR);
531 		break;
532 	}
533 }
534 
535 #ifdef CONFIG_OF
536 /* R7S72100 */
537 static struct sh_eth_cpu_data r7s72100_data = {
538 	.soft_reset	= sh_eth_soft_reset_gether,
539 
540 	.chip_reset	= sh_eth_chip_reset,
541 	.set_duplex	= sh_eth_set_duplex,
542 
543 	.register_type	= SH_ETH_REG_GIGABIT,
544 
545 	.edtrr_trns	= EDTRR_TRNS_GETHER,
546 	.ecsr_value	= ECSR_ICD,
547 	.ecsipr_value	= ECSIPR_ICDIP,
548 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
549 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
550 			  EESIPR_ECIIP |
551 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
552 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
553 			  EESIPR_RMAFIP | EESIPR_RRFIP |
554 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
555 			  EESIPR_PREIP | EESIPR_CERFIP,
556 
557 	.tx_check	= EESR_TC1 | EESR_FTC,
558 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
559 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
560 			  EESR_TDE,
561 	.fdr_value	= 0x0000070f,
562 
563 	.trscer_err_mask = DESC_I_RINT8 | DESC_I_RINT5,
564 
565 	.no_psr		= 1,
566 	.apr		= 1,
567 	.mpr		= 1,
568 	.tpauser	= 1,
569 	.hw_swap	= 1,
570 	.rpadir		= 1,
571 	.no_trimd	= 1,
572 	.no_ade		= 1,
573 	.xdfar_rw	= 1,
574 	.csmr		= 1,
575 	.rx_csum	= 1,
576 	.tsu		= 1,
577 	.no_tx_cntrs	= 1,
578 };
579 
sh_eth_chip_reset_r8a7740(struct net_device * ndev)580 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
581 {
582 	sh_eth_chip_reset(ndev);
583 
584 	sh_eth_select_mii(ndev);
585 }
586 
587 /* R8A7740 */
588 static struct sh_eth_cpu_data r8a7740_data = {
589 	.soft_reset	= sh_eth_soft_reset_gether,
590 
591 	.chip_reset	= sh_eth_chip_reset_r8a7740,
592 	.set_duplex	= sh_eth_set_duplex,
593 	.set_rate	= sh_eth_set_rate_gether,
594 
595 	.register_type	= SH_ETH_REG_GIGABIT,
596 
597 	.edtrr_trns	= EDTRR_TRNS_GETHER,
598 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
599 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
600 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
601 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
604 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
605 			  EESIPR_CEEFIP | EESIPR_CELFIP |
606 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
607 			  EESIPR_PREIP | EESIPR_CERFIP,
608 
609 	.tx_check	= EESR_TC1 | EESR_FTC,
610 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
611 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
612 			  EESR_TDE,
613 	.fdr_value	= 0x0000070f,
614 
615 	.apr		= 1,
616 	.mpr		= 1,
617 	.tpauser	= 1,
618 	.gecmr		= 1,
619 	.bculr		= 1,
620 	.hw_swap	= 1,
621 	.rpadir		= 1,
622 	.no_trimd	= 1,
623 	.no_ade		= 1,
624 	.xdfar_rw	= 1,
625 	.csmr		= 1,
626 	.rx_csum	= 1,
627 	.tsu		= 1,
628 	.select_mii	= 1,
629 	.magic		= 1,
630 	.cexcr		= 1,
631 };
632 
633 /* There is CPU dependent code */
sh_eth_set_rate_rcar(struct net_device * ndev)634 static void sh_eth_set_rate_rcar(struct net_device *ndev)
635 {
636 	struct sh_eth_private *mdp = netdev_priv(ndev);
637 
638 	switch (mdp->speed) {
639 	case 10: /* 10BASE */
640 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
641 		break;
642 	case 100:/* 100BASE */
643 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
644 		break;
645 	}
646 }
647 
648 /* R-Car Gen1 */
649 static struct sh_eth_cpu_data rcar_gen1_data = {
650 	.soft_reset	= sh_eth_soft_reset,
651 
652 	.set_duplex	= sh_eth_set_duplex,
653 	.set_rate	= sh_eth_set_rate_rcar,
654 
655 	.register_type	= SH_ETH_REG_FAST_RCAR,
656 
657 	.edtrr_trns	= EDTRR_TRNS_ETHER,
658 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
659 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
660 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
661 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
662 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
663 			  EESIPR_RMAFIP | EESIPR_RRFIP |
664 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
665 			  EESIPR_PREIP | EESIPR_CERFIP,
666 
667 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
668 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
669 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
670 	.fdr_value	= 0x00000f0f,
671 
672 	.apr		= 1,
673 	.mpr		= 1,
674 	.tpauser	= 1,
675 	.hw_swap	= 1,
676 	.no_xdfar	= 1,
677 };
678 
679 /* R-Car Gen2 and RZ/G1 */
680 static struct sh_eth_cpu_data rcar_gen2_data = {
681 	.soft_reset	= sh_eth_soft_reset,
682 
683 	.set_duplex	= sh_eth_set_duplex,
684 	.set_rate	= sh_eth_set_rate_rcar,
685 
686 	.register_type	= SH_ETH_REG_FAST_RCAR,
687 
688 	.edtrr_trns	= EDTRR_TRNS_ETHER,
689 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
690 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
691 			  ECSIPR_MPDIP,
692 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
693 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
694 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
695 			  EESIPR_RMAFIP | EESIPR_RRFIP |
696 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
697 			  EESIPR_PREIP | EESIPR_CERFIP,
698 
699 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
700 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
701 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
702 	.fdr_value	= 0x00000f0f,
703 
704 	.trscer_err_mask = DESC_I_RINT8,
705 
706 	.apr		= 1,
707 	.mpr		= 1,
708 	.tpauser	= 1,
709 	.hw_swap	= 1,
710 	.no_xdfar	= 1,
711 	.rmiimode	= 1,
712 	.magic		= 1,
713 };
714 
715 /* R8A77980 */
716 static struct sh_eth_cpu_data r8a77980_data = {
717 	.soft_reset	= sh_eth_soft_reset_gether,
718 
719 	.set_duplex	= sh_eth_set_duplex,
720 	.set_rate	= sh_eth_set_rate_gether,
721 
722 	.register_type  = SH_ETH_REG_GIGABIT,
723 
724 	.edtrr_trns	= EDTRR_TRNS_GETHER,
725 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
726 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
727 			  ECSIPR_MPDIP,
728 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
729 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
730 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
731 			  EESIPR_RMAFIP | EESIPR_RRFIP |
732 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
733 			  EESIPR_PREIP | EESIPR_CERFIP,
734 
735 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
736 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
737 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
738 			  EESR_TFE | EESR_TDE | EESR_ECI,
739 	.fdr_value	= 0x0000070f,
740 
741 	.apr		= 1,
742 	.mpr		= 1,
743 	.tpauser	= 1,
744 	.gecmr		= 1,
745 	.bculr		= 1,
746 	.hw_swap	= 1,
747 	.nbst		= 1,
748 	.rpadir		= 1,
749 	.no_trimd	= 1,
750 	.no_ade		= 1,
751 	.xdfar_rw	= 1,
752 	.csmr		= 1,
753 	.rx_csum	= 1,
754 	.select_mii	= 1,
755 	.magic		= 1,
756 	.cexcr		= 1,
757 };
758 
759 /* R7S9210 */
760 static struct sh_eth_cpu_data r7s9210_data = {
761 	.soft_reset	= sh_eth_soft_reset,
762 
763 	.set_duplex	= sh_eth_set_duplex,
764 	.set_rate	= sh_eth_set_rate_rcar,
765 
766 	.register_type	= SH_ETH_REG_FAST_SH4,
767 
768 	.edtrr_trns	= EDTRR_TRNS_ETHER,
769 	.ecsr_value	= ECSR_ICD,
770 	.ecsipr_value	= ECSIPR_ICDIP,
771 	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
772 			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
773 			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
774 			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
775 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
776 			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
777 			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
778 
779 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
780 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
781 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
782 
783 	.fdr_value	= 0x0000070f,
784 
785 	.trscer_err_mask = DESC_I_RINT8 | DESC_I_RINT5,
786 
787 	.apr		= 1,
788 	.mpr		= 1,
789 	.tpauser	= 1,
790 	.hw_swap	= 1,
791 	.rpadir		= 1,
792 	.no_ade		= 1,
793 	.xdfar_rw	= 1,
794 };
795 #endif /* CONFIG_OF */
796 
sh_eth_set_rate_sh7724(struct net_device * ndev)797 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
798 {
799 	struct sh_eth_private *mdp = netdev_priv(ndev);
800 
801 	switch (mdp->speed) {
802 	case 10: /* 10BASE */
803 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
804 		break;
805 	case 100:/* 100BASE */
806 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
807 		break;
808 	}
809 }
810 
811 /* SH7724 */
812 static struct sh_eth_cpu_data sh7724_data = {
813 	.soft_reset	= sh_eth_soft_reset,
814 
815 	.set_duplex	= sh_eth_set_duplex,
816 	.set_rate	= sh_eth_set_rate_sh7724,
817 
818 	.register_type	= SH_ETH_REG_FAST_SH4,
819 
820 	.edtrr_trns	= EDTRR_TRNS_ETHER,
821 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
822 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
823 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
824 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
825 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
826 			  EESIPR_RMAFIP | EESIPR_RRFIP |
827 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
828 			  EESIPR_PREIP | EESIPR_CERFIP,
829 
830 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
831 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
832 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
833 
834 	.apr		= 1,
835 	.mpr		= 1,
836 	.tpauser	= 1,
837 	.hw_swap	= 1,
838 	.rpadir		= 1,
839 };
840 
sh_eth_set_rate_sh7757(struct net_device * ndev)841 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
842 {
843 	struct sh_eth_private *mdp = netdev_priv(ndev);
844 
845 	switch (mdp->speed) {
846 	case 10: /* 10BASE */
847 		sh_eth_write(ndev, 0, RTRATE);
848 		break;
849 	case 100:/* 100BASE */
850 		sh_eth_write(ndev, 1, RTRATE);
851 		break;
852 	}
853 }
854 
855 /* SH7757 */
856 static struct sh_eth_cpu_data sh7757_data = {
857 	.soft_reset	= sh_eth_soft_reset,
858 
859 	.set_duplex	= sh_eth_set_duplex,
860 	.set_rate	= sh_eth_set_rate_sh7757,
861 
862 	.register_type	= SH_ETH_REG_FAST_SH4,
863 
864 	.edtrr_trns	= EDTRR_TRNS_ETHER,
865 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
866 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
867 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
868 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
869 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
870 			  EESIPR_CEEFIP | EESIPR_CELFIP |
871 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
872 			  EESIPR_PREIP | EESIPR_CERFIP,
873 
874 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
875 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
876 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
877 
878 	.irq_flags	= IRQF_SHARED,
879 	.apr		= 1,
880 	.mpr		= 1,
881 	.tpauser	= 1,
882 	.hw_swap	= 1,
883 	.no_ade		= 1,
884 	.rpadir		= 1,
885 	.rtrate		= 1,
886 	.dual_port	= 1,
887 };
888 
889 #define SH_GIGA_ETH_BASE	0xfee00000UL
890 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
891 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
sh_eth_chip_reset_giga(struct net_device * ndev)892 static void sh_eth_chip_reset_giga(struct net_device *ndev)
893 {
894 	u32 mahr[2], malr[2];
895 	int i;
896 
897 	/* save MAHR and MALR */
898 	for (i = 0; i < 2; i++) {
899 		malr[i] = ioread32((void *)GIGA_MALR(i));
900 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
901 	}
902 
903 	sh_eth_chip_reset(ndev);
904 
905 	/* restore MAHR and MALR */
906 	for (i = 0; i < 2; i++) {
907 		iowrite32(malr[i], (void *)GIGA_MALR(i));
908 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
909 	}
910 }
911 
sh_eth_set_rate_giga(struct net_device * ndev)912 static void sh_eth_set_rate_giga(struct net_device *ndev)
913 {
914 	struct sh_eth_private *mdp = netdev_priv(ndev);
915 
916 	if (WARN_ON(!mdp->cd->gecmr))
917 		return;
918 
919 	switch (mdp->speed) {
920 	case 10: /* 10BASE */
921 		sh_eth_write(ndev, 0x00000000, GECMR);
922 		break;
923 	case 100:/* 100BASE */
924 		sh_eth_write(ndev, 0x00000010, GECMR);
925 		break;
926 	case 1000: /* 1000BASE */
927 		sh_eth_write(ndev, 0x00000020, GECMR);
928 		break;
929 	}
930 }
931 
932 /* SH7757(GETHERC) */
933 static struct sh_eth_cpu_data sh7757_data_giga = {
934 	.soft_reset	= sh_eth_soft_reset_gether,
935 
936 	.chip_reset	= sh_eth_chip_reset_giga,
937 	.set_duplex	= sh_eth_set_duplex,
938 	.set_rate	= sh_eth_set_rate_giga,
939 
940 	.register_type	= SH_ETH_REG_GIGABIT,
941 
942 	.edtrr_trns	= EDTRR_TRNS_GETHER,
943 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
944 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
945 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
946 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
947 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
948 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
949 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
950 			  EESIPR_CEEFIP | EESIPR_CELFIP |
951 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
952 			  EESIPR_PREIP | EESIPR_CERFIP,
953 
954 	.tx_check	= EESR_TC1 | EESR_FTC,
955 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
956 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
957 			  EESR_TDE,
958 	.fdr_value	= 0x0000072f,
959 
960 	.irq_flags	= IRQF_SHARED,
961 	.apr		= 1,
962 	.mpr		= 1,
963 	.tpauser	= 1,
964 	.gecmr		= 1,
965 	.bculr		= 1,
966 	.hw_swap	= 1,
967 	.rpadir		= 1,
968 	.no_trimd	= 1,
969 	.no_ade		= 1,
970 	.xdfar_rw	= 1,
971 	.tsu		= 1,
972 	.cexcr		= 1,
973 	.dual_port	= 1,
974 };
975 
976 /* SH7734 */
977 static struct sh_eth_cpu_data sh7734_data = {
978 	.soft_reset	= sh_eth_soft_reset_gether,
979 
980 	.chip_reset	= sh_eth_chip_reset,
981 	.set_duplex	= sh_eth_set_duplex,
982 	.set_rate	= sh_eth_set_rate_gether,
983 
984 	.register_type	= SH_ETH_REG_GIGABIT,
985 
986 	.edtrr_trns	= EDTRR_TRNS_GETHER,
987 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
988 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
989 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
990 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
991 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
992 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
993 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
994 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
995 			  EESIPR_PREIP | EESIPR_CERFIP,
996 
997 	.tx_check	= EESR_TC1 | EESR_FTC,
998 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
999 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1000 			  EESR_TDE,
1001 
1002 	.apr		= 1,
1003 	.mpr		= 1,
1004 	.tpauser	= 1,
1005 	.gecmr		= 1,
1006 	.bculr		= 1,
1007 	.hw_swap	= 1,
1008 	.no_trimd	= 1,
1009 	.no_ade		= 1,
1010 	.xdfar_rw	= 1,
1011 	.tsu		= 1,
1012 	.csmr		= 1,
1013 	.rx_csum	= 1,
1014 	.select_mii	= 1,
1015 	.magic		= 1,
1016 	.cexcr		= 1,
1017 };
1018 
1019 /* SH7763 */
1020 static struct sh_eth_cpu_data sh7763_data = {
1021 	.soft_reset	= sh_eth_soft_reset_gether,
1022 
1023 	.chip_reset	= sh_eth_chip_reset,
1024 	.set_duplex	= sh_eth_set_duplex,
1025 	.set_rate	= sh_eth_set_rate_gether,
1026 
1027 	.register_type	= SH_ETH_REG_GIGABIT,
1028 
1029 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1030 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1031 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1032 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1033 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1034 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1035 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1036 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1037 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1038 			  EESIPR_PREIP | EESIPR_CERFIP,
1039 
1040 	.tx_check	= EESR_TC1 | EESR_FTC,
1041 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1042 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1043 
1044 	.apr		= 1,
1045 	.mpr		= 1,
1046 	.tpauser	= 1,
1047 	.gecmr		= 1,
1048 	.bculr		= 1,
1049 	.hw_swap	= 1,
1050 	.no_trimd	= 1,
1051 	.no_ade		= 1,
1052 	.xdfar_rw	= 1,
1053 	.tsu		= 1,
1054 	.irq_flags	= IRQF_SHARED,
1055 	.magic		= 1,
1056 	.cexcr		= 1,
1057 	.rx_csum	= 1,
1058 	.dual_port	= 1,
1059 };
1060 
1061 static struct sh_eth_cpu_data sh7619_data = {
1062 	.soft_reset	= sh_eth_soft_reset,
1063 
1064 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1065 
1066 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1067 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1068 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1069 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1070 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1071 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1072 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1073 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1074 			  EESIPR_PREIP | EESIPR_CERFIP,
1075 
1076 	.apr		= 1,
1077 	.mpr		= 1,
1078 	.tpauser	= 1,
1079 	.hw_swap	= 1,
1080 };
1081 
1082 static struct sh_eth_cpu_data sh771x_data = {
1083 	.soft_reset	= sh_eth_soft_reset,
1084 
1085 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1086 
1087 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1088 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1089 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1090 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1091 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1092 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1093 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1094 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1095 			  EESIPR_PREIP | EESIPR_CERFIP,
1096 
1097 	.trscer_err_mask = DESC_I_RINT8,
1098 
1099 	.tsu		= 1,
1100 	.dual_port	= 1,
1101 };
1102 
sh_eth_set_default_cpu_data(struct sh_eth_cpu_data * cd)1103 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1104 {
1105 	if (!cd->ecsr_value)
1106 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1107 
1108 	if (!cd->ecsipr_value)
1109 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1110 
1111 	if (!cd->fcftr_value)
1112 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1113 				  DEFAULT_FIFO_F_D_RFD;
1114 
1115 	if (!cd->fdr_value)
1116 		cd->fdr_value = DEFAULT_FDR_INIT;
1117 
1118 	if (!cd->tx_check)
1119 		cd->tx_check = DEFAULT_TX_CHECK;
1120 
1121 	if (!cd->eesr_err_check)
1122 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1123 
1124 	if (!cd->trscer_err_mask)
1125 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1126 }
1127 
sh_eth_set_receive_align(struct sk_buff * skb)1128 static void sh_eth_set_receive_align(struct sk_buff *skb)
1129 {
1130 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1131 
1132 	if (reserve)
1133 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1134 }
1135 
1136 /* Program the hardware MAC address from dev->dev_addr. */
update_mac_address(struct net_device * ndev)1137 static void update_mac_address(struct net_device *ndev)
1138 {
1139 	sh_eth_write(ndev,
1140 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1141 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1142 	sh_eth_write(ndev,
1143 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1144 }
1145 
1146 /* Get MAC address from SuperH MAC address register
1147  *
1148  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1149  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1150  * When you want use this device, you must set MAC address in bootloader.
1151  *
1152  */
read_mac_address(struct net_device * ndev,unsigned char * mac)1153 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1154 {
1155 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1156 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1157 	} else {
1158 		u32 mahr = sh_eth_read(ndev, MAHR);
1159 		u32 malr = sh_eth_read(ndev, MALR);
1160 
1161 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1162 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1163 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1164 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1165 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1166 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1167 	}
1168 }
1169 
1170 struct bb_info {
1171 	void (*set_gate)(void *addr);
1172 	struct mdiobb_ctrl ctrl;
1173 	void *addr;
1174 };
1175 
sh_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)1176 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1177 {
1178 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1179 	u32 pir;
1180 
1181 	if (bitbang->set_gate)
1182 		bitbang->set_gate(bitbang->addr);
1183 
1184 	pir = ioread32(bitbang->addr);
1185 	if (set)
1186 		pir |=  mask;
1187 	else
1188 		pir &= ~mask;
1189 	iowrite32(pir, bitbang->addr);
1190 }
1191 
1192 /* Data I/O pin control */
sh_mmd_ctrl(struct mdiobb_ctrl * ctrl,int bit)1193 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1194 {
1195 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1196 }
1197 
1198 /* Set bit data*/
sh_set_mdio(struct mdiobb_ctrl * ctrl,int bit)1199 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1200 {
1201 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1202 }
1203 
1204 /* Get bit data*/
sh_get_mdio(struct mdiobb_ctrl * ctrl)1205 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1206 {
1207 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1208 
1209 	if (bitbang->set_gate)
1210 		bitbang->set_gate(bitbang->addr);
1211 
1212 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1213 }
1214 
1215 /* MDC pin control */
sh_mdc_ctrl(struct mdiobb_ctrl * ctrl,int bit)1216 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1217 {
1218 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1219 }
1220 
1221 /* mdio bus control struct */
1222 static const struct mdiobb_ops bb_ops = {
1223 	.owner = THIS_MODULE,
1224 	.set_mdc = sh_mdc_ctrl,
1225 	.set_mdio_dir = sh_mmd_ctrl,
1226 	.set_mdio_data = sh_set_mdio,
1227 	.get_mdio_data = sh_get_mdio,
1228 };
1229 
1230 /* free Tx skb function */
sh_eth_tx_free(struct net_device * ndev,bool sent_only)1231 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1232 {
1233 	struct sh_eth_private *mdp = netdev_priv(ndev);
1234 	struct sh_eth_txdesc *txdesc;
1235 	int free_num = 0;
1236 	int entry;
1237 	bool sent;
1238 
1239 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1240 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1241 		txdesc = &mdp->tx_ring[entry];
1242 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1243 		if (sent_only && !sent)
1244 			break;
1245 		/* TACT bit must be checked before all the following reads */
1246 		dma_rmb();
1247 		netif_info(mdp, tx_done, ndev,
1248 			   "tx entry %d status 0x%08x\n",
1249 			   entry, le32_to_cpu(txdesc->status));
1250 		/* Free the original skb. */
1251 		if (mdp->tx_skbuff[entry]) {
1252 			dma_unmap_single(&mdp->pdev->dev,
1253 					 le32_to_cpu(txdesc->addr),
1254 					 le32_to_cpu(txdesc->len) >> 16,
1255 					 DMA_TO_DEVICE);
1256 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1257 			mdp->tx_skbuff[entry] = NULL;
1258 			free_num++;
1259 		}
1260 		txdesc->status = cpu_to_le32(TD_TFP);
1261 		if (entry >= mdp->num_tx_ring - 1)
1262 			txdesc->status |= cpu_to_le32(TD_TDLE);
1263 
1264 		if (sent) {
1265 			ndev->stats.tx_packets++;
1266 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1267 		}
1268 	}
1269 	return free_num;
1270 }
1271 
1272 /* free skb and descriptor buffer */
sh_eth_ring_free(struct net_device * ndev)1273 static void sh_eth_ring_free(struct net_device *ndev)
1274 {
1275 	struct sh_eth_private *mdp = netdev_priv(ndev);
1276 	int ringsize, i;
1277 
1278 	if (mdp->rx_ring) {
1279 		for (i = 0; i < mdp->num_rx_ring; i++) {
1280 			if (mdp->rx_skbuff[i]) {
1281 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1282 
1283 				dma_unmap_single(&mdp->pdev->dev,
1284 						 le32_to_cpu(rxdesc->addr),
1285 						 ALIGN(mdp->rx_buf_sz, 32),
1286 						 DMA_FROM_DEVICE);
1287 			}
1288 		}
1289 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1290 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1291 				  mdp->rx_desc_dma);
1292 		mdp->rx_ring = NULL;
1293 	}
1294 
1295 	/* Free Rx skb ringbuffer */
1296 	if (mdp->rx_skbuff) {
1297 		for (i = 0; i < mdp->num_rx_ring; i++)
1298 			dev_kfree_skb(mdp->rx_skbuff[i]);
1299 	}
1300 	kfree(mdp->rx_skbuff);
1301 	mdp->rx_skbuff = NULL;
1302 
1303 	if (mdp->tx_ring) {
1304 		sh_eth_tx_free(ndev, false);
1305 
1306 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1307 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1308 				  mdp->tx_desc_dma);
1309 		mdp->tx_ring = NULL;
1310 	}
1311 
1312 	/* Free Tx skb ringbuffer */
1313 	kfree(mdp->tx_skbuff);
1314 	mdp->tx_skbuff = NULL;
1315 }
1316 
1317 /* format skb and descriptor buffer */
sh_eth_ring_format(struct net_device * ndev)1318 static void sh_eth_ring_format(struct net_device *ndev)
1319 {
1320 	struct sh_eth_private *mdp = netdev_priv(ndev);
1321 	int i;
1322 	struct sk_buff *skb;
1323 	struct sh_eth_rxdesc *rxdesc = NULL;
1324 	struct sh_eth_txdesc *txdesc = NULL;
1325 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1326 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1327 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1328 	dma_addr_t dma_addr;
1329 	u32 buf_len;
1330 
1331 	mdp->cur_rx = 0;
1332 	mdp->cur_tx = 0;
1333 	mdp->dirty_rx = 0;
1334 	mdp->dirty_tx = 0;
1335 
1336 	memset(mdp->rx_ring, 0, rx_ringsize);
1337 
1338 	/* build Rx ring buffer */
1339 	for (i = 0; i < mdp->num_rx_ring; i++) {
1340 		/* skb */
1341 		mdp->rx_skbuff[i] = NULL;
1342 		skb = netdev_alloc_skb(ndev, skbuff_size);
1343 		if (skb == NULL)
1344 			break;
1345 		sh_eth_set_receive_align(skb);
1346 
1347 		/* The size of the buffer is a multiple of 32 bytes. */
1348 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1349 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1350 					  DMA_FROM_DEVICE);
1351 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1352 			kfree_skb(skb);
1353 			break;
1354 		}
1355 		mdp->rx_skbuff[i] = skb;
1356 
1357 		/* RX descriptor */
1358 		rxdesc = &mdp->rx_ring[i];
1359 		rxdesc->len = cpu_to_le32(buf_len << 16);
1360 		rxdesc->addr = cpu_to_le32(dma_addr);
1361 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1362 
1363 		/* Rx descriptor address set */
1364 		if (i == 0) {
1365 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1366 			if (mdp->cd->xdfar_rw)
1367 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1368 		}
1369 	}
1370 
1371 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1372 
1373 	/* Mark the last entry as wrapping the ring. */
1374 	if (rxdesc)
1375 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1376 
1377 	memset(mdp->tx_ring, 0, tx_ringsize);
1378 
1379 	/* build Tx ring buffer */
1380 	for (i = 0; i < mdp->num_tx_ring; i++) {
1381 		mdp->tx_skbuff[i] = NULL;
1382 		txdesc = &mdp->tx_ring[i];
1383 		txdesc->status = cpu_to_le32(TD_TFP);
1384 		txdesc->len = cpu_to_le32(0);
1385 		if (i == 0) {
1386 			/* Tx descriptor address set */
1387 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1388 			if (mdp->cd->xdfar_rw)
1389 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1390 		}
1391 	}
1392 
1393 	txdesc->status |= cpu_to_le32(TD_TDLE);
1394 }
1395 
1396 /* Get skb and descriptor buffer */
sh_eth_ring_init(struct net_device * ndev)1397 static int sh_eth_ring_init(struct net_device *ndev)
1398 {
1399 	struct sh_eth_private *mdp = netdev_priv(ndev);
1400 	int rx_ringsize, tx_ringsize;
1401 
1402 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1403 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1404 	 * the first 2 bytes, and +16 gets room for the status word from the
1405 	 * card.
1406 	 */
1407 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1408 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1409 	if (mdp->cd->rpadir)
1410 		mdp->rx_buf_sz += NET_IP_ALIGN;
1411 
1412 	/* Allocate RX and TX skb rings */
1413 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1414 				 GFP_KERNEL);
1415 	if (!mdp->rx_skbuff)
1416 		return -ENOMEM;
1417 
1418 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1419 				 GFP_KERNEL);
1420 	if (!mdp->tx_skbuff)
1421 		goto ring_free;
1422 
1423 	/* Allocate all Rx descriptors. */
1424 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1425 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1426 					  &mdp->rx_desc_dma, GFP_KERNEL);
1427 	if (!mdp->rx_ring)
1428 		goto ring_free;
1429 
1430 	mdp->dirty_rx = 0;
1431 
1432 	/* Allocate all Tx descriptors. */
1433 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1434 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1435 					  &mdp->tx_desc_dma, GFP_KERNEL);
1436 	if (!mdp->tx_ring)
1437 		goto ring_free;
1438 	return 0;
1439 
1440 ring_free:
1441 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1442 	sh_eth_ring_free(ndev);
1443 
1444 	return -ENOMEM;
1445 }
1446 
sh_eth_dev_init(struct net_device * ndev)1447 static int sh_eth_dev_init(struct net_device *ndev)
1448 {
1449 	struct sh_eth_private *mdp = netdev_priv(ndev);
1450 	int ret;
1451 
1452 	/* Soft Reset */
1453 	ret = mdp->cd->soft_reset(ndev);
1454 	if (ret)
1455 		return ret;
1456 
1457 	if (mdp->cd->rmiimode)
1458 		sh_eth_write(ndev, 0x1, RMIIMODE);
1459 
1460 	/* Descriptor format */
1461 	sh_eth_ring_format(ndev);
1462 	if (mdp->cd->rpadir)
1463 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1464 
1465 	/* all sh_eth int mask */
1466 	sh_eth_write(ndev, 0, EESIPR);
1467 
1468 #if defined(__LITTLE_ENDIAN)
1469 	if (mdp->cd->hw_swap)
1470 		sh_eth_write(ndev, EDMR_EL, EDMR);
1471 	else
1472 #endif
1473 		sh_eth_write(ndev, 0, EDMR);
1474 
1475 	/* FIFO size set */
1476 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1477 	sh_eth_write(ndev, 0, TFTR);
1478 
1479 	/* Frame recv control (enable multiple-packets per rx irq) */
1480 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1481 
1482 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1483 
1484 	/* DMA transfer burst mode */
1485 	if (mdp->cd->nbst)
1486 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1487 
1488 	/* Burst cycle count upper-limit */
1489 	if (mdp->cd->bculr)
1490 		sh_eth_write(ndev, 0x800, BCULR);
1491 
1492 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1493 
1494 	if (!mdp->cd->no_trimd)
1495 		sh_eth_write(ndev, 0, TRIMD);
1496 
1497 	/* Recv frame limit set register */
1498 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1499 		     RFLR);
1500 
1501 	sh_eth_modify(ndev, EESR, 0, 0);
1502 	mdp->irq_enabled = true;
1503 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1504 
1505 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1506 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1507 		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1508 		     ECMR_TE | ECMR_RE, ECMR);
1509 
1510 	if (mdp->cd->set_rate)
1511 		mdp->cd->set_rate(ndev);
1512 
1513 	/* E-MAC Status Register clear */
1514 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1515 
1516 	/* E-MAC Interrupt Enable register */
1517 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1518 
1519 	/* Set MAC address */
1520 	update_mac_address(ndev);
1521 
1522 	/* mask reset */
1523 	if (mdp->cd->apr)
1524 		sh_eth_write(ndev, 1, APR);
1525 	if (mdp->cd->mpr)
1526 		sh_eth_write(ndev, 1, MPR);
1527 	if (mdp->cd->tpauser)
1528 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1529 
1530 	/* Setting the Rx mode will start the Rx process. */
1531 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1532 
1533 	return ret;
1534 }
1535 
sh_eth_dev_exit(struct net_device * ndev)1536 static void sh_eth_dev_exit(struct net_device *ndev)
1537 {
1538 	struct sh_eth_private *mdp = netdev_priv(ndev);
1539 	int i;
1540 
1541 	/* Deactivate all TX descriptors, so DMA should stop at next
1542 	 * packet boundary if it's currently running
1543 	 */
1544 	for (i = 0; i < mdp->num_tx_ring; i++)
1545 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1546 
1547 	/* Disable TX FIFO egress to MAC */
1548 	sh_eth_rcv_snd_disable(ndev);
1549 
1550 	/* Stop RX DMA at next packet boundary */
1551 	sh_eth_write(ndev, 0, EDRRR);
1552 
1553 	/* Aside from TX DMA, we can't tell when the hardware is
1554 	 * really stopped, so we need to reset to make sure.
1555 	 * Before doing that, wait for long enough to *probably*
1556 	 * finish transmitting the last packet and poll stats.
1557 	 */
1558 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1559 	sh_eth_get_stats(ndev);
1560 	mdp->cd->soft_reset(ndev);
1561 
1562 	/* Set the RMII mode again if required */
1563 	if (mdp->cd->rmiimode)
1564 		sh_eth_write(ndev, 0x1, RMIIMODE);
1565 
1566 	/* Set MAC address again */
1567 	update_mac_address(ndev);
1568 }
1569 
sh_eth_rx_csum(struct sk_buff * skb)1570 static void sh_eth_rx_csum(struct sk_buff *skb)
1571 {
1572 	u8 *hw_csum;
1573 
1574 	/* The hardware checksum is 2 bytes appended to packet data */
1575 	if (unlikely(skb->len < sizeof(__sum16)))
1576 		return;
1577 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1578 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1579 	skb->ip_summed = CHECKSUM_COMPLETE;
1580 	skb_trim(skb, skb->len - sizeof(__sum16));
1581 }
1582 
1583 /* Packet receive function */
sh_eth_rx(struct net_device * ndev,u32 intr_status,int * quota)1584 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1585 {
1586 	struct sh_eth_private *mdp = netdev_priv(ndev);
1587 	struct sh_eth_rxdesc *rxdesc;
1588 
1589 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1590 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1591 	int limit;
1592 	struct sk_buff *skb;
1593 	u32 desc_status;
1594 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1595 	dma_addr_t dma_addr;
1596 	u16 pkt_len;
1597 	u32 buf_len;
1598 
1599 	boguscnt = min(boguscnt, *quota);
1600 	limit = boguscnt;
1601 	rxdesc = &mdp->rx_ring[entry];
1602 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1603 		/* RACT bit must be checked before all the following reads */
1604 		dma_rmb();
1605 		desc_status = le32_to_cpu(rxdesc->status);
1606 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1607 
1608 		if (--boguscnt < 0)
1609 			break;
1610 
1611 		netif_info(mdp, rx_status, ndev,
1612 			   "rx entry %d status 0x%08x len %d\n",
1613 			   entry, desc_status, pkt_len);
1614 
1615 		if (!(desc_status & RDFEND))
1616 			ndev->stats.rx_length_errors++;
1617 
1618 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1619 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1620 		 * bit 0. However, in case of the R8A7740 and R7S72100
1621 		 * the RFS bits are from bit 25 to bit 16. So, the
1622 		 * driver needs right shifting by 16.
1623 		 */
1624 		if (mdp->cd->csmr)
1625 			desc_status >>= 16;
1626 
1627 		skb = mdp->rx_skbuff[entry];
1628 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1629 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1630 			ndev->stats.rx_errors++;
1631 			if (desc_status & RD_RFS1)
1632 				ndev->stats.rx_crc_errors++;
1633 			if (desc_status & RD_RFS2)
1634 				ndev->stats.rx_frame_errors++;
1635 			if (desc_status & RD_RFS3)
1636 				ndev->stats.rx_length_errors++;
1637 			if (desc_status & RD_RFS4)
1638 				ndev->stats.rx_length_errors++;
1639 			if (desc_status & RD_RFS6)
1640 				ndev->stats.rx_missed_errors++;
1641 			if (desc_status & RD_RFS10)
1642 				ndev->stats.rx_over_errors++;
1643 		} else	if (skb) {
1644 			dma_addr = le32_to_cpu(rxdesc->addr);
1645 			if (!mdp->cd->hw_swap)
1646 				sh_eth_soft_swap(
1647 					phys_to_virt(ALIGN(dma_addr, 4)),
1648 					pkt_len + 2);
1649 			mdp->rx_skbuff[entry] = NULL;
1650 			if (mdp->cd->rpadir)
1651 				skb_reserve(skb, NET_IP_ALIGN);
1652 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1653 					 ALIGN(mdp->rx_buf_sz, 32),
1654 					 DMA_FROM_DEVICE);
1655 			skb_put(skb, pkt_len);
1656 			skb->protocol = eth_type_trans(skb, ndev);
1657 			if (ndev->features & NETIF_F_RXCSUM)
1658 				sh_eth_rx_csum(skb);
1659 			netif_receive_skb(skb);
1660 			ndev->stats.rx_packets++;
1661 			ndev->stats.rx_bytes += pkt_len;
1662 			if (desc_status & RD_RFS8)
1663 				ndev->stats.multicast++;
1664 		}
1665 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1666 		rxdesc = &mdp->rx_ring[entry];
1667 	}
1668 
1669 	/* Refill the Rx ring buffers. */
1670 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1671 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1672 		rxdesc = &mdp->rx_ring[entry];
1673 		/* The size of the buffer is 32 byte boundary. */
1674 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1675 		rxdesc->len = cpu_to_le32(buf_len << 16);
1676 
1677 		if (mdp->rx_skbuff[entry] == NULL) {
1678 			skb = netdev_alloc_skb(ndev, skbuff_size);
1679 			if (skb == NULL)
1680 				break;	/* Better luck next round. */
1681 			sh_eth_set_receive_align(skb);
1682 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1683 						  buf_len, DMA_FROM_DEVICE);
1684 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1685 				kfree_skb(skb);
1686 				break;
1687 			}
1688 			mdp->rx_skbuff[entry] = skb;
1689 
1690 			skb_checksum_none_assert(skb);
1691 			rxdesc->addr = cpu_to_le32(dma_addr);
1692 		}
1693 		dma_wmb(); /* RACT bit must be set after all the above writes */
1694 		if (entry >= mdp->num_rx_ring - 1)
1695 			rxdesc->status |=
1696 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1697 		else
1698 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1699 	}
1700 
1701 	/* Restart Rx engine if stopped. */
1702 	/* If we don't need to check status, don't. -KDU */
1703 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1704 		/* fix the values for the next receiving if RDE is set */
1705 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1706 			u32 count = (sh_eth_read(ndev, RDFAR) -
1707 				     sh_eth_read(ndev, RDLAR)) >> 4;
1708 
1709 			mdp->cur_rx = count;
1710 			mdp->dirty_rx = count;
1711 		}
1712 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1713 	}
1714 
1715 	*quota -= limit - boguscnt - 1;
1716 
1717 	return *quota <= 0;
1718 }
1719 
sh_eth_rcv_snd_disable(struct net_device * ndev)1720 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1721 {
1722 	/* disable tx and rx */
1723 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1724 }
1725 
sh_eth_rcv_snd_enable(struct net_device * ndev)1726 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1727 {
1728 	/* enable tx and rx */
1729 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1730 }
1731 
1732 /* E-MAC interrupt handler */
sh_eth_emac_interrupt(struct net_device * ndev)1733 static void sh_eth_emac_interrupt(struct net_device *ndev)
1734 {
1735 	struct sh_eth_private *mdp = netdev_priv(ndev);
1736 	u32 felic_stat;
1737 	u32 link_stat;
1738 
1739 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1740 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1741 	if (felic_stat & ECSR_ICD)
1742 		ndev->stats.tx_carrier_errors++;
1743 	if (felic_stat & ECSR_MPD)
1744 		pm_wakeup_event(&mdp->pdev->dev, 0);
1745 	if (felic_stat & ECSR_LCHNG) {
1746 		/* Link Changed */
1747 		if (mdp->cd->no_psr || mdp->no_ether_link)
1748 			return;
1749 		link_stat = sh_eth_read(ndev, PSR);
1750 		if (mdp->ether_link_active_low)
1751 			link_stat = ~link_stat;
1752 		if (!(link_stat & PHY_ST_LINK)) {
1753 			sh_eth_rcv_snd_disable(ndev);
1754 		} else {
1755 			/* Link Up */
1756 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1757 			/* clear int */
1758 			sh_eth_modify(ndev, ECSR, 0, 0);
1759 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1760 			/* enable tx and rx */
1761 			sh_eth_rcv_snd_enable(ndev);
1762 		}
1763 	}
1764 }
1765 
1766 /* error control function */
sh_eth_error(struct net_device * ndev,u32 intr_status)1767 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1768 {
1769 	struct sh_eth_private *mdp = netdev_priv(ndev);
1770 	u32 mask;
1771 
1772 	if (intr_status & EESR_TWB) {
1773 		/* Unused write back interrupt */
1774 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1775 			ndev->stats.tx_aborted_errors++;
1776 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1777 		}
1778 	}
1779 
1780 	if (intr_status & EESR_RABT) {
1781 		/* Receive Abort int */
1782 		if (intr_status & EESR_RFRMER) {
1783 			/* Receive Frame Overflow int */
1784 			ndev->stats.rx_frame_errors++;
1785 		}
1786 	}
1787 
1788 	if (intr_status & EESR_TDE) {
1789 		/* Transmit Descriptor Empty int */
1790 		ndev->stats.tx_fifo_errors++;
1791 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1792 	}
1793 
1794 	if (intr_status & EESR_TFE) {
1795 		/* FIFO under flow */
1796 		ndev->stats.tx_fifo_errors++;
1797 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1798 	}
1799 
1800 	if (intr_status & EESR_RDE) {
1801 		/* Receive Descriptor Empty int */
1802 		ndev->stats.rx_over_errors++;
1803 	}
1804 
1805 	if (intr_status & EESR_RFE) {
1806 		/* Receive FIFO Overflow int */
1807 		ndev->stats.rx_fifo_errors++;
1808 	}
1809 
1810 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1811 		/* Address Error */
1812 		ndev->stats.tx_fifo_errors++;
1813 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1814 	}
1815 
1816 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1817 	if (mdp->cd->no_ade)
1818 		mask &= ~EESR_ADE;
1819 	if (intr_status & mask) {
1820 		/* Tx error */
1821 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1822 
1823 		/* dmesg */
1824 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1825 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1826 			   (u32)ndev->state, edtrr);
1827 		/* dirty buffer free */
1828 		sh_eth_tx_free(ndev, true);
1829 
1830 		/* SH7712 BUG */
1831 		if (edtrr ^ mdp->cd->edtrr_trns) {
1832 			/* tx dma start */
1833 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1834 		}
1835 		/* wakeup */
1836 		netif_wake_queue(ndev);
1837 	}
1838 }
1839 
sh_eth_interrupt(int irq,void * netdev)1840 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1841 {
1842 	struct net_device *ndev = netdev;
1843 	struct sh_eth_private *mdp = netdev_priv(ndev);
1844 	struct sh_eth_cpu_data *cd = mdp->cd;
1845 	irqreturn_t ret = IRQ_NONE;
1846 	u32 intr_status, intr_enable;
1847 
1848 	spin_lock(&mdp->lock);
1849 
1850 	/* Get interrupt status */
1851 	intr_status = sh_eth_read(ndev, EESR);
1852 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1853 	 * enabled since it's the one that  comes  thru regardless of the mask,
1854 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1855 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1856 	 * bit...
1857 	 */
1858 	intr_enable = sh_eth_read(ndev, EESIPR);
1859 	intr_status &= intr_enable | EESIPR_ECIIP;
1860 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1861 			   cd->eesr_err_check))
1862 		ret = IRQ_HANDLED;
1863 	else
1864 		goto out;
1865 
1866 	if (unlikely(!mdp->irq_enabled)) {
1867 		sh_eth_write(ndev, 0, EESIPR);
1868 		goto out;
1869 	}
1870 
1871 	if (intr_status & EESR_RX_CHECK) {
1872 		if (napi_schedule_prep(&mdp->napi)) {
1873 			/* Mask Rx interrupts */
1874 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1875 				     EESIPR);
1876 			__napi_schedule(&mdp->napi);
1877 		} else {
1878 			netdev_warn(ndev,
1879 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1880 				    intr_status, intr_enable);
1881 		}
1882 	}
1883 
1884 	/* Tx Check */
1885 	if (intr_status & cd->tx_check) {
1886 		/* Clear Tx interrupts */
1887 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1888 
1889 		sh_eth_tx_free(ndev, true);
1890 		netif_wake_queue(ndev);
1891 	}
1892 
1893 	/* E-MAC interrupt */
1894 	if (intr_status & EESR_ECI)
1895 		sh_eth_emac_interrupt(ndev);
1896 
1897 	if (intr_status & cd->eesr_err_check) {
1898 		/* Clear error interrupts */
1899 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1900 
1901 		sh_eth_error(ndev, intr_status);
1902 	}
1903 
1904 out:
1905 	spin_unlock(&mdp->lock);
1906 
1907 	return ret;
1908 }
1909 
sh_eth_poll(struct napi_struct * napi,int budget)1910 static int sh_eth_poll(struct napi_struct *napi, int budget)
1911 {
1912 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1913 						  napi);
1914 	struct net_device *ndev = napi->dev;
1915 	int quota = budget;
1916 	u32 intr_status;
1917 
1918 	for (;;) {
1919 		intr_status = sh_eth_read(ndev, EESR);
1920 		if (!(intr_status & EESR_RX_CHECK))
1921 			break;
1922 		/* Clear Rx interrupts */
1923 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1924 
1925 		if (sh_eth_rx(ndev, intr_status, &quota))
1926 			goto out;
1927 	}
1928 
1929 	napi_complete(napi);
1930 
1931 	/* Reenable Rx interrupts */
1932 	if (mdp->irq_enabled)
1933 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1934 out:
1935 	return budget - quota;
1936 }
1937 
1938 /* PHY state control function */
sh_eth_adjust_link(struct net_device * ndev)1939 static void sh_eth_adjust_link(struct net_device *ndev)
1940 {
1941 	struct sh_eth_private *mdp = netdev_priv(ndev);
1942 	struct phy_device *phydev = ndev->phydev;
1943 	unsigned long flags;
1944 	int new_state = 0;
1945 
1946 	spin_lock_irqsave(&mdp->lock, flags);
1947 
1948 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1949 	if (mdp->cd->no_psr || mdp->no_ether_link)
1950 		sh_eth_rcv_snd_disable(ndev);
1951 
1952 	if (phydev->link) {
1953 		if (phydev->duplex != mdp->duplex) {
1954 			new_state = 1;
1955 			mdp->duplex = phydev->duplex;
1956 			if (mdp->cd->set_duplex)
1957 				mdp->cd->set_duplex(ndev);
1958 		}
1959 
1960 		if (phydev->speed != mdp->speed) {
1961 			new_state = 1;
1962 			mdp->speed = phydev->speed;
1963 			if (mdp->cd->set_rate)
1964 				mdp->cd->set_rate(ndev);
1965 		}
1966 		if (!mdp->link) {
1967 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1968 			new_state = 1;
1969 			mdp->link = phydev->link;
1970 		}
1971 	} else if (mdp->link) {
1972 		new_state = 1;
1973 		mdp->link = 0;
1974 		mdp->speed = 0;
1975 		mdp->duplex = -1;
1976 	}
1977 
1978 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1979 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1980 		sh_eth_rcv_snd_enable(ndev);
1981 
1982 	spin_unlock_irqrestore(&mdp->lock, flags);
1983 
1984 	if (new_state && netif_msg_link(mdp))
1985 		phy_print_status(phydev);
1986 }
1987 
1988 /* PHY init function */
sh_eth_phy_init(struct net_device * ndev)1989 static int sh_eth_phy_init(struct net_device *ndev)
1990 {
1991 	struct device_node *np = ndev->dev.parent->of_node;
1992 	struct sh_eth_private *mdp = netdev_priv(ndev);
1993 	struct phy_device *phydev;
1994 
1995 	mdp->link = 0;
1996 	mdp->speed = 0;
1997 	mdp->duplex = -1;
1998 
1999 	/* Try connect to PHY */
2000 	if (np) {
2001 		struct device_node *pn;
2002 
2003 		pn = of_parse_phandle(np, "phy-handle", 0);
2004 		phydev = of_phy_connect(ndev, pn,
2005 					sh_eth_adjust_link, 0,
2006 					mdp->phy_interface);
2007 
2008 		of_node_put(pn);
2009 		if (!phydev)
2010 			phydev = ERR_PTR(-ENOENT);
2011 	} else {
2012 		char phy_id[MII_BUS_ID_SIZE + 3];
2013 
2014 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2015 			 mdp->mii_bus->id, mdp->phy_id);
2016 
2017 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2018 				     mdp->phy_interface);
2019 	}
2020 
2021 	if (IS_ERR(phydev)) {
2022 		netdev_err(ndev, "failed to connect PHY\n");
2023 		return PTR_ERR(phydev);
2024 	}
2025 
2026 	/* mask with MAC supported features */
2027 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2028 		int err = phy_set_max_speed(phydev, SPEED_100);
2029 		if (err) {
2030 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2031 			phy_disconnect(phydev);
2032 			return err;
2033 		}
2034 	}
2035 
2036 	phy_attached_info(phydev);
2037 
2038 	return 0;
2039 }
2040 
2041 /* PHY control start function */
sh_eth_phy_start(struct net_device * ndev)2042 static int sh_eth_phy_start(struct net_device *ndev)
2043 {
2044 	int ret;
2045 
2046 	ret = sh_eth_phy_init(ndev);
2047 	if (ret)
2048 		return ret;
2049 
2050 	phy_start(ndev->phydev);
2051 
2052 	return 0;
2053 }
2054 
2055 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2056  * version must be bumped as well.  Just adding registers up to that
2057  * limit is fine, as long as the existing register indices don't
2058  * change.
2059  */
2060 #define SH_ETH_REG_DUMP_VERSION		1
2061 #define SH_ETH_REG_DUMP_MAX_REGS	256
2062 
__sh_eth_get_regs(struct net_device * ndev,u32 * buf)2063 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2064 {
2065 	struct sh_eth_private *mdp = netdev_priv(ndev);
2066 	struct sh_eth_cpu_data *cd = mdp->cd;
2067 	u32 *valid_map;
2068 	size_t len;
2069 
2070 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2071 
2072 	/* Dump starts with a bitmap that tells ethtool which
2073 	 * registers are defined for this chip.
2074 	 */
2075 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2076 	if (buf) {
2077 		valid_map = buf;
2078 		buf += len;
2079 	} else {
2080 		valid_map = NULL;
2081 	}
2082 
2083 	/* Add a register to the dump, if it has a defined offset.
2084 	 * This automatically skips most undefined registers, but for
2085 	 * some it is also necessary to check a capability flag in
2086 	 * struct sh_eth_cpu_data.
2087 	 */
2088 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2089 #define add_reg_from(reg, read_expr) do {				\
2090 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2091 			if (buf) {					\
2092 				mark_reg_valid(reg);			\
2093 				*buf++ = read_expr;			\
2094 			}						\
2095 			++len;						\
2096 		}							\
2097 	} while (0)
2098 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2099 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2100 
2101 	add_reg(EDSR);
2102 	add_reg(EDMR);
2103 	add_reg(EDTRR);
2104 	add_reg(EDRRR);
2105 	add_reg(EESR);
2106 	add_reg(EESIPR);
2107 	add_reg(TDLAR);
2108 	if (!cd->no_xdfar)
2109 		add_reg(TDFAR);
2110 	add_reg(TDFXR);
2111 	add_reg(TDFFR);
2112 	add_reg(RDLAR);
2113 	if (!cd->no_xdfar)
2114 		add_reg(RDFAR);
2115 	add_reg(RDFXR);
2116 	add_reg(RDFFR);
2117 	add_reg(TRSCER);
2118 	add_reg(RMFCR);
2119 	add_reg(TFTR);
2120 	add_reg(FDR);
2121 	add_reg(RMCR);
2122 	add_reg(TFUCR);
2123 	add_reg(RFOCR);
2124 	if (cd->rmiimode)
2125 		add_reg(RMIIMODE);
2126 	add_reg(FCFTR);
2127 	if (cd->rpadir)
2128 		add_reg(RPADIR);
2129 	if (!cd->no_trimd)
2130 		add_reg(TRIMD);
2131 	add_reg(ECMR);
2132 	add_reg(ECSR);
2133 	add_reg(ECSIPR);
2134 	add_reg(PIR);
2135 	if (!cd->no_psr)
2136 		add_reg(PSR);
2137 	add_reg(RDMLR);
2138 	add_reg(RFLR);
2139 	add_reg(IPGR);
2140 	if (cd->apr)
2141 		add_reg(APR);
2142 	if (cd->mpr)
2143 		add_reg(MPR);
2144 	add_reg(RFCR);
2145 	add_reg(RFCF);
2146 	if (cd->tpauser)
2147 		add_reg(TPAUSER);
2148 	add_reg(TPAUSECR);
2149 	if (cd->gecmr)
2150 		add_reg(GECMR);
2151 	if (cd->bculr)
2152 		add_reg(BCULR);
2153 	add_reg(MAHR);
2154 	add_reg(MALR);
2155 	if (!cd->no_tx_cntrs) {
2156 		add_reg(TROCR);
2157 		add_reg(CDCR);
2158 		add_reg(LCCR);
2159 		add_reg(CNDCR);
2160 	}
2161 	add_reg(CEFCR);
2162 	add_reg(FRECR);
2163 	add_reg(TSFRCR);
2164 	add_reg(TLFRCR);
2165 	if (cd->cexcr) {
2166 		add_reg(CERCR);
2167 		add_reg(CEECR);
2168 	}
2169 	add_reg(MAFCR);
2170 	if (cd->rtrate)
2171 		add_reg(RTRATE);
2172 	if (cd->csmr)
2173 		add_reg(CSMR);
2174 	if (cd->select_mii)
2175 		add_reg(RMII_MII);
2176 	if (cd->tsu) {
2177 		add_tsu_reg(ARSTR);
2178 		add_tsu_reg(TSU_CTRST);
2179 		if (cd->dual_port) {
2180 			add_tsu_reg(TSU_FWEN0);
2181 			add_tsu_reg(TSU_FWEN1);
2182 			add_tsu_reg(TSU_FCM);
2183 			add_tsu_reg(TSU_BSYSL0);
2184 			add_tsu_reg(TSU_BSYSL1);
2185 			add_tsu_reg(TSU_PRISL0);
2186 			add_tsu_reg(TSU_PRISL1);
2187 			add_tsu_reg(TSU_FWSL0);
2188 			add_tsu_reg(TSU_FWSL1);
2189 		}
2190 		add_tsu_reg(TSU_FWSLC);
2191 		if (cd->dual_port) {
2192 			add_tsu_reg(TSU_QTAGM0);
2193 			add_tsu_reg(TSU_QTAGM1);
2194 			add_tsu_reg(TSU_FWSR);
2195 			add_tsu_reg(TSU_FWINMK);
2196 			add_tsu_reg(TSU_ADQT0);
2197 			add_tsu_reg(TSU_ADQT1);
2198 			add_tsu_reg(TSU_VTAG0);
2199 			add_tsu_reg(TSU_VTAG1);
2200 		}
2201 		add_tsu_reg(TSU_ADSBSY);
2202 		add_tsu_reg(TSU_TEN);
2203 		add_tsu_reg(TSU_POST1);
2204 		add_tsu_reg(TSU_POST2);
2205 		add_tsu_reg(TSU_POST3);
2206 		add_tsu_reg(TSU_POST4);
2207 		/* This is the start of a table, not just a single register. */
2208 		if (buf) {
2209 			unsigned int i;
2210 
2211 			mark_reg_valid(TSU_ADRH0);
2212 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2213 				*buf++ = ioread32(mdp->tsu_addr +
2214 						  mdp->reg_offset[TSU_ADRH0] +
2215 						  i * 4);
2216 		}
2217 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2218 	}
2219 
2220 #undef mark_reg_valid
2221 #undef add_reg_from
2222 #undef add_reg
2223 #undef add_tsu_reg
2224 
2225 	return len * 4;
2226 }
2227 
sh_eth_get_regs_len(struct net_device * ndev)2228 static int sh_eth_get_regs_len(struct net_device *ndev)
2229 {
2230 	return __sh_eth_get_regs(ndev, NULL);
2231 }
2232 
sh_eth_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * buf)2233 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2234 			    void *buf)
2235 {
2236 	struct sh_eth_private *mdp = netdev_priv(ndev);
2237 
2238 	regs->version = SH_ETH_REG_DUMP_VERSION;
2239 
2240 	pm_runtime_get_sync(&mdp->pdev->dev);
2241 	__sh_eth_get_regs(ndev, buf);
2242 	pm_runtime_put_sync(&mdp->pdev->dev);
2243 }
2244 
sh_eth_get_msglevel(struct net_device * ndev)2245 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2246 {
2247 	struct sh_eth_private *mdp = netdev_priv(ndev);
2248 	return mdp->msg_enable;
2249 }
2250 
sh_eth_set_msglevel(struct net_device * ndev,u32 value)2251 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2252 {
2253 	struct sh_eth_private *mdp = netdev_priv(ndev);
2254 	mdp->msg_enable = value;
2255 }
2256 
2257 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2258 	"rx_current", "tx_current",
2259 	"rx_dirty", "tx_dirty",
2260 };
2261 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2262 
sh_eth_get_sset_count(struct net_device * netdev,int sset)2263 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2264 {
2265 	switch (sset) {
2266 	case ETH_SS_STATS:
2267 		return SH_ETH_STATS_LEN;
2268 	default:
2269 		return -EOPNOTSUPP;
2270 	}
2271 }
2272 
sh_eth_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * stats,u64 * data)2273 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2274 				     struct ethtool_stats *stats, u64 *data)
2275 {
2276 	struct sh_eth_private *mdp = netdev_priv(ndev);
2277 	int i = 0;
2278 
2279 	/* device-specific stats */
2280 	data[i++] = mdp->cur_rx;
2281 	data[i++] = mdp->cur_tx;
2282 	data[i++] = mdp->dirty_rx;
2283 	data[i++] = mdp->dirty_tx;
2284 }
2285 
sh_eth_get_strings(struct net_device * ndev,u32 stringset,u8 * data)2286 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2287 {
2288 	switch (stringset) {
2289 	case ETH_SS_STATS:
2290 		memcpy(data, sh_eth_gstrings_stats,
2291 		       sizeof(sh_eth_gstrings_stats));
2292 		break;
2293 	}
2294 }
2295 
sh_eth_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)2296 static void sh_eth_get_ringparam(struct net_device *ndev,
2297 				 struct ethtool_ringparam *ring)
2298 {
2299 	struct sh_eth_private *mdp = netdev_priv(ndev);
2300 
2301 	ring->rx_max_pending = RX_RING_MAX;
2302 	ring->tx_max_pending = TX_RING_MAX;
2303 	ring->rx_pending = mdp->num_rx_ring;
2304 	ring->tx_pending = mdp->num_tx_ring;
2305 }
2306 
sh_eth_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring)2307 static int sh_eth_set_ringparam(struct net_device *ndev,
2308 				struct ethtool_ringparam *ring)
2309 {
2310 	struct sh_eth_private *mdp = netdev_priv(ndev);
2311 	int ret;
2312 
2313 	if (ring->tx_pending > TX_RING_MAX ||
2314 	    ring->rx_pending > RX_RING_MAX ||
2315 	    ring->tx_pending < TX_RING_MIN ||
2316 	    ring->rx_pending < RX_RING_MIN)
2317 		return -EINVAL;
2318 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2319 		return -EINVAL;
2320 
2321 	if (netif_running(ndev)) {
2322 		netif_device_detach(ndev);
2323 		netif_tx_disable(ndev);
2324 
2325 		/* Serialise with the interrupt handler and NAPI, then
2326 		 * disable interrupts.  We have to clear the
2327 		 * irq_enabled flag first to ensure that interrupts
2328 		 * won't be re-enabled.
2329 		 */
2330 		mdp->irq_enabled = false;
2331 		synchronize_irq(ndev->irq);
2332 		napi_synchronize(&mdp->napi);
2333 		sh_eth_write(ndev, 0x0000, EESIPR);
2334 
2335 		sh_eth_dev_exit(ndev);
2336 
2337 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2338 		sh_eth_ring_free(ndev);
2339 	}
2340 
2341 	/* Set new parameters */
2342 	mdp->num_rx_ring = ring->rx_pending;
2343 	mdp->num_tx_ring = ring->tx_pending;
2344 
2345 	if (netif_running(ndev)) {
2346 		ret = sh_eth_ring_init(ndev);
2347 		if (ret < 0) {
2348 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2349 				   __func__);
2350 			return ret;
2351 		}
2352 		ret = sh_eth_dev_init(ndev);
2353 		if (ret < 0) {
2354 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2355 				   __func__);
2356 			return ret;
2357 		}
2358 
2359 		netif_device_attach(ndev);
2360 	}
2361 
2362 	return 0;
2363 }
2364 
sh_eth_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2365 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2366 {
2367 	struct sh_eth_private *mdp = netdev_priv(ndev);
2368 
2369 	wol->supported = 0;
2370 	wol->wolopts = 0;
2371 
2372 	if (mdp->cd->magic) {
2373 		wol->supported = WAKE_MAGIC;
2374 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2375 	}
2376 }
2377 
sh_eth_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2378 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2379 {
2380 	struct sh_eth_private *mdp = netdev_priv(ndev);
2381 
2382 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2383 		return -EOPNOTSUPP;
2384 
2385 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2386 
2387 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2388 
2389 	return 0;
2390 }
2391 
2392 static const struct ethtool_ops sh_eth_ethtool_ops = {
2393 	.get_regs_len	= sh_eth_get_regs_len,
2394 	.get_regs	= sh_eth_get_regs,
2395 	.nway_reset	= phy_ethtool_nway_reset,
2396 	.get_msglevel	= sh_eth_get_msglevel,
2397 	.set_msglevel	= sh_eth_set_msglevel,
2398 	.get_link	= ethtool_op_get_link,
2399 	.get_strings	= sh_eth_get_strings,
2400 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2401 	.get_sset_count     = sh_eth_get_sset_count,
2402 	.get_ringparam	= sh_eth_get_ringparam,
2403 	.set_ringparam	= sh_eth_set_ringparam,
2404 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2405 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2406 	.get_wol	= sh_eth_get_wol,
2407 	.set_wol	= sh_eth_set_wol,
2408 };
2409 
2410 /* network device open function */
sh_eth_open(struct net_device * ndev)2411 static int sh_eth_open(struct net_device *ndev)
2412 {
2413 	struct sh_eth_private *mdp = netdev_priv(ndev);
2414 	int ret;
2415 
2416 	pm_runtime_get_sync(&mdp->pdev->dev);
2417 
2418 	napi_enable(&mdp->napi);
2419 
2420 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2421 			  mdp->cd->irq_flags, ndev->name, ndev);
2422 	if (ret) {
2423 		netdev_err(ndev, "Can not assign IRQ number\n");
2424 		goto out_napi_off;
2425 	}
2426 
2427 	/* Descriptor set */
2428 	ret = sh_eth_ring_init(ndev);
2429 	if (ret)
2430 		goto out_free_irq;
2431 
2432 	/* device init */
2433 	ret = sh_eth_dev_init(ndev);
2434 	if (ret)
2435 		goto out_free_irq;
2436 
2437 	/* PHY control start*/
2438 	ret = sh_eth_phy_start(ndev);
2439 	if (ret)
2440 		goto out_free_irq;
2441 
2442 	netif_start_queue(ndev);
2443 
2444 	mdp->is_opened = 1;
2445 
2446 	return ret;
2447 
2448 out_free_irq:
2449 	free_irq(ndev->irq, ndev);
2450 out_napi_off:
2451 	napi_disable(&mdp->napi);
2452 	pm_runtime_put_sync(&mdp->pdev->dev);
2453 	return ret;
2454 }
2455 
2456 /* Timeout function */
sh_eth_tx_timeout(struct net_device * ndev,unsigned int txqueue)2457 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2458 {
2459 	struct sh_eth_private *mdp = netdev_priv(ndev);
2460 	struct sh_eth_rxdesc *rxdesc;
2461 	int i;
2462 
2463 	netif_stop_queue(ndev);
2464 
2465 	netif_err(mdp, timer, ndev,
2466 		  "transmit timed out, status %8.8x, resetting...\n",
2467 		  sh_eth_read(ndev, EESR));
2468 
2469 	/* tx_errors count up */
2470 	ndev->stats.tx_errors++;
2471 
2472 	/* Free all the skbuffs in the Rx queue. */
2473 	for (i = 0; i < mdp->num_rx_ring; i++) {
2474 		rxdesc = &mdp->rx_ring[i];
2475 		rxdesc->status = cpu_to_le32(0);
2476 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2477 		dev_kfree_skb(mdp->rx_skbuff[i]);
2478 		mdp->rx_skbuff[i] = NULL;
2479 	}
2480 	for (i = 0; i < mdp->num_tx_ring; i++) {
2481 		dev_kfree_skb(mdp->tx_skbuff[i]);
2482 		mdp->tx_skbuff[i] = NULL;
2483 	}
2484 
2485 	/* device init */
2486 	sh_eth_dev_init(ndev);
2487 
2488 	netif_start_queue(ndev);
2489 }
2490 
2491 /* Packet transmit function */
sh_eth_start_xmit(struct sk_buff * skb,struct net_device * ndev)2492 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2493 				     struct net_device *ndev)
2494 {
2495 	struct sh_eth_private *mdp = netdev_priv(ndev);
2496 	struct sh_eth_txdesc *txdesc;
2497 	dma_addr_t dma_addr;
2498 	u32 entry;
2499 	unsigned long flags;
2500 
2501 	spin_lock_irqsave(&mdp->lock, flags);
2502 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2503 		if (!sh_eth_tx_free(ndev, true)) {
2504 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2505 			netif_stop_queue(ndev);
2506 			spin_unlock_irqrestore(&mdp->lock, flags);
2507 			return NETDEV_TX_BUSY;
2508 		}
2509 	}
2510 	spin_unlock_irqrestore(&mdp->lock, flags);
2511 
2512 	if (skb_put_padto(skb, ETH_ZLEN))
2513 		return NETDEV_TX_OK;
2514 
2515 	entry = mdp->cur_tx % mdp->num_tx_ring;
2516 	mdp->tx_skbuff[entry] = skb;
2517 	txdesc = &mdp->tx_ring[entry];
2518 	/* soft swap. */
2519 	if (!mdp->cd->hw_swap)
2520 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2521 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2522 				  DMA_TO_DEVICE);
2523 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2524 		kfree_skb(skb);
2525 		return NETDEV_TX_OK;
2526 	}
2527 	txdesc->addr = cpu_to_le32(dma_addr);
2528 	txdesc->len  = cpu_to_le32(skb->len << 16);
2529 
2530 	dma_wmb(); /* TACT bit must be set after all the above writes */
2531 	if (entry >= mdp->num_tx_ring - 1)
2532 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2533 	else
2534 		txdesc->status |= cpu_to_le32(TD_TACT);
2535 
2536 	wmb(); /* cur_tx must be incremented after TACT bit was set */
2537 	mdp->cur_tx++;
2538 
2539 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2540 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2541 
2542 	return NETDEV_TX_OK;
2543 }
2544 
2545 /* The statistics registers have write-clear behaviour, which means we
2546  * will lose any increment between the read and write.  We mitigate
2547  * this by only clearing when we read a non-zero value, so we will
2548  * never falsely report a total of zero.
2549  */
2550 static void
sh_eth_update_stat(struct net_device * ndev,unsigned long * stat,int reg)2551 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2552 {
2553 	u32 delta = sh_eth_read(ndev, reg);
2554 
2555 	if (delta) {
2556 		*stat += delta;
2557 		sh_eth_write(ndev, 0, reg);
2558 	}
2559 }
2560 
sh_eth_get_stats(struct net_device * ndev)2561 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2562 {
2563 	struct sh_eth_private *mdp = netdev_priv(ndev);
2564 
2565 	if (mdp->cd->no_tx_cntrs)
2566 		return &ndev->stats;
2567 
2568 	if (!mdp->is_opened)
2569 		return &ndev->stats;
2570 
2571 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2572 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2573 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2574 
2575 	if (mdp->cd->cexcr) {
2576 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2577 				   CERCR);
2578 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2579 				   CEECR);
2580 	} else {
2581 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2582 				   CNDCR);
2583 	}
2584 
2585 	return &ndev->stats;
2586 }
2587 
2588 /* device close function */
sh_eth_close(struct net_device * ndev)2589 static int sh_eth_close(struct net_device *ndev)
2590 {
2591 	struct sh_eth_private *mdp = netdev_priv(ndev);
2592 
2593 	netif_stop_queue(ndev);
2594 
2595 	/* Serialise with the interrupt handler and NAPI, then disable
2596 	 * interrupts.  We have to clear the irq_enabled flag first to
2597 	 * ensure that interrupts won't be re-enabled.
2598 	 */
2599 	mdp->irq_enabled = false;
2600 	synchronize_irq(ndev->irq);
2601 	napi_disable(&mdp->napi);
2602 	sh_eth_write(ndev, 0x0000, EESIPR);
2603 
2604 	sh_eth_dev_exit(ndev);
2605 
2606 	/* PHY Disconnect */
2607 	if (ndev->phydev) {
2608 		phy_stop(ndev->phydev);
2609 		phy_disconnect(ndev->phydev);
2610 	}
2611 
2612 	free_irq(ndev->irq, ndev);
2613 
2614 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2615 	sh_eth_ring_free(ndev);
2616 
2617 	mdp->is_opened = 0;
2618 
2619 	pm_runtime_put(&mdp->pdev->dev);
2620 
2621 	return 0;
2622 }
2623 
sh_eth_change_mtu(struct net_device * ndev,int new_mtu)2624 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2625 {
2626 	if (netif_running(ndev))
2627 		return -EBUSY;
2628 
2629 	ndev->mtu = new_mtu;
2630 	netdev_update_features(ndev);
2631 
2632 	return 0;
2633 }
2634 
2635 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
sh_eth_tsu_get_post_mask(int entry)2636 static u32 sh_eth_tsu_get_post_mask(int entry)
2637 {
2638 	return 0x0f << (28 - ((entry % 8) * 4));
2639 }
2640 
sh_eth_tsu_get_post_bit(struct sh_eth_private * mdp,int entry)2641 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2642 {
2643 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2644 }
2645 
sh_eth_tsu_enable_cam_entry_post(struct net_device * ndev,int entry)2646 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2647 					     int entry)
2648 {
2649 	struct sh_eth_private *mdp = netdev_priv(ndev);
2650 	int reg = TSU_POST1 + entry / 8;
2651 	u32 tmp;
2652 
2653 	tmp = sh_eth_tsu_read(mdp, reg);
2654 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2655 }
2656 
sh_eth_tsu_disable_cam_entry_post(struct net_device * ndev,int entry)2657 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2658 					      int entry)
2659 {
2660 	struct sh_eth_private *mdp = netdev_priv(ndev);
2661 	int reg = TSU_POST1 + entry / 8;
2662 	u32 post_mask, ref_mask, tmp;
2663 
2664 	post_mask = sh_eth_tsu_get_post_mask(entry);
2665 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2666 
2667 	tmp = sh_eth_tsu_read(mdp, reg);
2668 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2669 
2670 	/* If other port enables, the function returns "true" */
2671 	return tmp & ref_mask;
2672 }
2673 
sh_eth_tsu_busy(struct net_device * ndev)2674 static int sh_eth_tsu_busy(struct net_device *ndev)
2675 {
2676 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2677 	struct sh_eth_private *mdp = netdev_priv(ndev);
2678 
2679 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2680 		udelay(10);
2681 		timeout--;
2682 		if (timeout <= 0) {
2683 			netdev_err(ndev, "%s: timeout\n", __func__);
2684 			return -ETIMEDOUT;
2685 		}
2686 	}
2687 
2688 	return 0;
2689 }
2690 
sh_eth_tsu_write_entry(struct net_device * ndev,u16 offset,const u8 * addr)2691 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2692 				  const u8 *addr)
2693 {
2694 	struct sh_eth_private *mdp = netdev_priv(ndev);
2695 	u32 val;
2696 
2697 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2698 	iowrite32(val, mdp->tsu_addr + offset);
2699 	if (sh_eth_tsu_busy(ndev) < 0)
2700 		return -EBUSY;
2701 
2702 	val = addr[4] << 8 | addr[5];
2703 	iowrite32(val, mdp->tsu_addr + offset + 4);
2704 	if (sh_eth_tsu_busy(ndev) < 0)
2705 		return -EBUSY;
2706 
2707 	return 0;
2708 }
2709 
sh_eth_tsu_read_entry(struct net_device * ndev,u16 offset,u8 * addr)2710 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2711 {
2712 	struct sh_eth_private *mdp = netdev_priv(ndev);
2713 	u32 val;
2714 
2715 	val = ioread32(mdp->tsu_addr + offset);
2716 	addr[0] = (val >> 24) & 0xff;
2717 	addr[1] = (val >> 16) & 0xff;
2718 	addr[2] = (val >> 8) & 0xff;
2719 	addr[3] = val & 0xff;
2720 	val = ioread32(mdp->tsu_addr + offset + 4);
2721 	addr[4] = (val >> 8) & 0xff;
2722 	addr[5] = val & 0xff;
2723 }
2724 
2725 
sh_eth_tsu_find_entry(struct net_device * ndev,const u8 * addr)2726 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2727 {
2728 	struct sh_eth_private *mdp = netdev_priv(ndev);
2729 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2730 	int i;
2731 	u8 c_addr[ETH_ALEN];
2732 
2733 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2734 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2735 		if (ether_addr_equal(addr, c_addr))
2736 			return i;
2737 	}
2738 
2739 	return -ENOENT;
2740 }
2741 
sh_eth_tsu_find_empty(struct net_device * ndev)2742 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2743 {
2744 	u8 blank[ETH_ALEN];
2745 	int entry;
2746 
2747 	memset(blank, 0, sizeof(blank));
2748 	entry = sh_eth_tsu_find_entry(ndev, blank);
2749 	return (entry < 0) ? -ENOMEM : entry;
2750 }
2751 
sh_eth_tsu_disable_cam_entry_table(struct net_device * ndev,int entry)2752 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2753 					      int entry)
2754 {
2755 	struct sh_eth_private *mdp = netdev_priv(ndev);
2756 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2757 	int ret;
2758 	u8 blank[ETH_ALEN];
2759 
2760 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2761 			 ~(1 << (31 - entry)), TSU_TEN);
2762 
2763 	memset(blank, 0, sizeof(blank));
2764 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2765 	if (ret < 0)
2766 		return ret;
2767 	return 0;
2768 }
2769 
sh_eth_tsu_add_entry(struct net_device * ndev,const u8 * addr)2770 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2771 {
2772 	struct sh_eth_private *mdp = netdev_priv(ndev);
2773 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2774 	int i, ret;
2775 
2776 	if (!mdp->cd->tsu)
2777 		return 0;
2778 
2779 	i = sh_eth_tsu_find_entry(ndev, addr);
2780 	if (i < 0) {
2781 		/* No entry found, create one */
2782 		i = sh_eth_tsu_find_empty(ndev);
2783 		if (i < 0)
2784 			return -ENOMEM;
2785 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2786 		if (ret < 0)
2787 			return ret;
2788 
2789 		/* Enable the entry */
2790 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2791 				 (1 << (31 - i)), TSU_TEN);
2792 	}
2793 
2794 	/* Entry found or created, enable POST */
2795 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2796 
2797 	return 0;
2798 }
2799 
sh_eth_tsu_del_entry(struct net_device * ndev,const u8 * addr)2800 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2801 {
2802 	struct sh_eth_private *mdp = netdev_priv(ndev);
2803 	int i, ret;
2804 
2805 	if (!mdp->cd->tsu)
2806 		return 0;
2807 
2808 	i = sh_eth_tsu_find_entry(ndev, addr);
2809 	if (i) {
2810 		/* Entry found */
2811 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2812 			goto done;
2813 
2814 		/* Disable the entry if both ports was disabled */
2815 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2816 		if (ret < 0)
2817 			return ret;
2818 	}
2819 done:
2820 	return 0;
2821 }
2822 
sh_eth_tsu_purge_all(struct net_device * ndev)2823 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2824 {
2825 	struct sh_eth_private *mdp = netdev_priv(ndev);
2826 	int i, ret;
2827 
2828 	if (!mdp->cd->tsu)
2829 		return 0;
2830 
2831 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2832 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2833 			continue;
2834 
2835 		/* Disable the entry if both ports was disabled */
2836 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2837 		if (ret < 0)
2838 			return ret;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
sh_eth_tsu_purge_mcast(struct net_device * ndev)2844 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2845 {
2846 	struct sh_eth_private *mdp = netdev_priv(ndev);
2847 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2848 	u8 addr[ETH_ALEN];
2849 	int i;
2850 
2851 	if (!mdp->cd->tsu)
2852 		return;
2853 
2854 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2855 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2856 		if (is_multicast_ether_addr(addr))
2857 			sh_eth_tsu_del_entry(ndev, addr);
2858 	}
2859 }
2860 
2861 /* Update promiscuous flag and multicast filter */
sh_eth_set_rx_mode(struct net_device * ndev)2862 static void sh_eth_set_rx_mode(struct net_device *ndev)
2863 {
2864 	struct sh_eth_private *mdp = netdev_priv(ndev);
2865 	u32 ecmr_bits;
2866 	int mcast_all = 0;
2867 	unsigned long flags;
2868 
2869 	spin_lock_irqsave(&mdp->lock, flags);
2870 	/* Initial condition is MCT = 1, PRM = 0.
2871 	 * Depending on ndev->flags, set PRM or clear MCT
2872 	 */
2873 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2874 	if (mdp->cd->tsu)
2875 		ecmr_bits |= ECMR_MCT;
2876 
2877 	if (!(ndev->flags & IFF_MULTICAST)) {
2878 		sh_eth_tsu_purge_mcast(ndev);
2879 		mcast_all = 1;
2880 	}
2881 	if (ndev->flags & IFF_ALLMULTI) {
2882 		sh_eth_tsu_purge_mcast(ndev);
2883 		ecmr_bits &= ~ECMR_MCT;
2884 		mcast_all = 1;
2885 	}
2886 
2887 	if (ndev->flags & IFF_PROMISC) {
2888 		sh_eth_tsu_purge_all(ndev);
2889 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2890 	} else if (mdp->cd->tsu) {
2891 		struct netdev_hw_addr *ha;
2892 		netdev_for_each_mc_addr(ha, ndev) {
2893 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2894 				continue;
2895 
2896 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2897 				if (!mcast_all) {
2898 					sh_eth_tsu_purge_mcast(ndev);
2899 					ecmr_bits &= ~ECMR_MCT;
2900 					mcast_all = 1;
2901 				}
2902 			}
2903 		}
2904 	}
2905 
2906 	/* update the ethernet mode */
2907 	sh_eth_write(ndev, ecmr_bits, ECMR);
2908 
2909 	spin_unlock_irqrestore(&mdp->lock, flags);
2910 }
2911 
sh_eth_set_rx_csum(struct net_device * ndev,bool enable)2912 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2913 {
2914 	struct sh_eth_private *mdp = netdev_priv(ndev);
2915 	unsigned long flags;
2916 
2917 	spin_lock_irqsave(&mdp->lock, flags);
2918 
2919 	/* Disable TX and RX */
2920 	sh_eth_rcv_snd_disable(ndev);
2921 
2922 	/* Modify RX Checksum setting */
2923 	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2924 
2925 	/* Enable TX and RX */
2926 	sh_eth_rcv_snd_enable(ndev);
2927 
2928 	spin_unlock_irqrestore(&mdp->lock, flags);
2929 }
2930 
sh_eth_set_features(struct net_device * ndev,netdev_features_t features)2931 static int sh_eth_set_features(struct net_device *ndev,
2932 			       netdev_features_t features)
2933 {
2934 	netdev_features_t changed = ndev->features ^ features;
2935 	struct sh_eth_private *mdp = netdev_priv(ndev);
2936 
2937 	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2938 		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2939 
2940 	ndev->features = features;
2941 
2942 	return 0;
2943 }
2944 
sh_eth_get_vtag_index(struct sh_eth_private * mdp)2945 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2946 {
2947 	if (!mdp->port)
2948 		return TSU_VTAG0;
2949 	else
2950 		return TSU_VTAG1;
2951 }
2952 
sh_eth_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2953 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2954 				  __be16 proto, u16 vid)
2955 {
2956 	struct sh_eth_private *mdp = netdev_priv(ndev);
2957 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2958 
2959 	if (unlikely(!mdp->cd->tsu))
2960 		return -EPERM;
2961 
2962 	/* No filtering if vid = 0 */
2963 	if (!vid)
2964 		return 0;
2965 
2966 	mdp->vlan_num_ids++;
2967 
2968 	/* The controller has one VLAN tag HW filter. So, if the filter is
2969 	 * already enabled, the driver disables it and the filte
2970 	 */
2971 	if (mdp->vlan_num_ids > 1) {
2972 		/* disable VLAN filter */
2973 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2974 		return 0;
2975 	}
2976 
2977 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2978 			 vtag_reg_index);
2979 
2980 	return 0;
2981 }
2982 
sh_eth_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2983 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2984 				   __be16 proto, u16 vid)
2985 {
2986 	struct sh_eth_private *mdp = netdev_priv(ndev);
2987 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2988 
2989 	if (unlikely(!mdp->cd->tsu))
2990 		return -EPERM;
2991 
2992 	/* No filtering if vid = 0 */
2993 	if (!vid)
2994 		return 0;
2995 
2996 	mdp->vlan_num_ids--;
2997 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2998 
2999 	return 0;
3000 }
3001 
3002 /* SuperH's TSU register init function */
sh_eth_tsu_init(struct sh_eth_private * mdp)3003 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3004 {
3005 	if (!mdp->cd->dual_port) {
3006 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3007 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3008 				 TSU_FWSLC);	/* Enable POST registers */
3009 		return;
3010 	}
3011 
3012 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3013 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3014 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3015 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3016 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3017 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3018 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3019 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3020 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3021 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3022 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3023 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3024 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3025 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3026 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3027 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3028 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3029 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3030 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3031 }
3032 
3033 /* MDIO bus release function */
sh_mdio_release(struct sh_eth_private * mdp)3034 static int sh_mdio_release(struct sh_eth_private *mdp)
3035 {
3036 	/* unregister mdio bus */
3037 	mdiobus_unregister(mdp->mii_bus);
3038 
3039 	/* free bitbang info */
3040 	free_mdio_bitbang(mdp->mii_bus);
3041 
3042 	return 0;
3043 }
3044 
3045 /* MDIO bus init function */
sh_mdio_init(struct sh_eth_private * mdp,struct sh_eth_plat_data * pd)3046 static int sh_mdio_init(struct sh_eth_private *mdp,
3047 			struct sh_eth_plat_data *pd)
3048 {
3049 	int ret;
3050 	struct bb_info *bitbang;
3051 	struct platform_device *pdev = mdp->pdev;
3052 	struct device *dev = &mdp->pdev->dev;
3053 
3054 	/* create bit control struct for PHY */
3055 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3056 	if (!bitbang)
3057 		return -ENOMEM;
3058 
3059 	/* bitbang init */
3060 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3061 	bitbang->set_gate = pd->set_mdio_gate;
3062 	bitbang->ctrl.ops = &bb_ops;
3063 
3064 	/* MII controller setting */
3065 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3066 	if (!mdp->mii_bus)
3067 		return -ENOMEM;
3068 
3069 	/* Hook up MII support for ethtool */
3070 	mdp->mii_bus->name = "sh_mii";
3071 	mdp->mii_bus->parent = dev;
3072 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3073 		 pdev->name, pdev->id);
3074 
3075 	/* register MDIO bus */
3076 	if (pd->phy_irq > 0)
3077 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3078 
3079 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3080 	if (ret)
3081 		goto out_free_bus;
3082 
3083 	return 0;
3084 
3085 out_free_bus:
3086 	free_mdio_bitbang(mdp->mii_bus);
3087 	return ret;
3088 }
3089 
sh_eth_get_register_offset(int register_type)3090 static const u16 *sh_eth_get_register_offset(int register_type)
3091 {
3092 	const u16 *reg_offset = NULL;
3093 
3094 	switch (register_type) {
3095 	case SH_ETH_REG_GIGABIT:
3096 		reg_offset = sh_eth_offset_gigabit;
3097 		break;
3098 	case SH_ETH_REG_FAST_RCAR:
3099 		reg_offset = sh_eth_offset_fast_rcar;
3100 		break;
3101 	case SH_ETH_REG_FAST_SH4:
3102 		reg_offset = sh_eth_offset_fast_sh4;
3103 		break;
3104 	case SH_ETH_REG_FAST_SH3_SH2:
3105 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3106 		break;
3107 	}
3108 
3109 	return reg_offset;
3110 }
3111 
3112 static const struct net_device_ops sh_eth_netdev_ops = {
3113 	.ndo_open		= sh_eth_open,
3114 	.ndo_stop		= sh_eth_close,
3115 	.ndo_start_xmit		= sh_eth_start_xmit,
3116 	.ndo_get_stats		= sh_eth_get_stats,
3117 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3118 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3119 	.ndo_do_ioctl		= phy_do_ioctl_running,
3120 	.ndo_change_mtu		= sh_eth_change_mtu,
3121 	.ndo_validate_addr	= eth_validate_addr,
3122 	.ndo_set_mac_address	= eth_mac_addr,
3123 	.ndo_set_features	= sh_eth_set_features,
3124 };
3125 
3126 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3127 	.ndo_open		= sh_eth_open,
3128 	.ndo_stop		= sh_eth_close,
3129 	.ndo_start_xmit		= sh_eth_start_xmit,
3130 	.ndo_get_stats		= sh_eth_get_stats,
3131 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3132 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3133 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3134 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3135 	.ndo_do_ioctl		= phy_do_ioctl_running,
3136 	.ndo_change_mtu		= sh_eth_change_mtu,
3137 	.ndo_validate_addr	= eth_validate_addr,
3138 	.ndo_set_mac_address	= eth_mac_addr,
3139 	.ndo_set_features	= sh_eth_set_features,
3140 };
3141 
3142 #ifdef CONFIG_OF
sh_eth_parse_dt(struct device * dev)3143 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3144 {
3145 	struct device_node *np = dev->of_node;
3146 	struct sh_eth_plat_data *pdata;
3147 	phy_interface_t interface;
3148 	const char *mac_addr;
3149 	int ret;
3150 
3151 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3152 	if (!pdata)
3153 		return NULL;
3154 
3155 	ret = of_get_phy_mode(np, &interface);
3156 	if (ret)
3157 		return NULL;
3158 	pdata->phy_interface = interface;
3159 
3160 	mac_addr = of_get_mac_address(np);
3161 	if (!IS_ERR(mac_addr))
3162 		ether_addr_copy(pdata->mac_addr, mac_addr);
3163 
3164 	pdata->no_ether_link =
3165 		of_property_read_bool(np, "renesas,no-ether-link");
3166 	pdata->ether_link_active_low =
3167 		of_property_read_bool(np, "renesas,ether-link-active-low");
3168 
3169 	return pdata;
3170 }
3171 
3172 static const struct of_device_id sh_eth_match_table[] = {
3173 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3174 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3175 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3176 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3177 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3178 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3179 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3180 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3181 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3182 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3183 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3184 	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3185 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3186 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3187 	{ }
3188 };
3189 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3190 #else
sh_eth_parse_dt(struct device * dev)3191 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3192 {
3193 	return NULL;
3194 }
3195 #endif
3196 
sh_eth_drv_probe(struct platform_device * pdev)3197 static int sh_eth_drv_probe(struct platform_device *pdev)
3198 {
3199 	struct resource *res;
3200 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3201 	const struct platform_device_id *id = platform_get_device_id(pdev);
3202 	struct sh_eth_private *mdp;
3203 	struct net_device *ndev;
3204 	int ret;
3205 
3206 	/* get base addr */
3207 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3208 
3209 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3210 	if (!ndev)
3211 		return -ENOMEM;
3212 
3213 	pm_runtime_enable(&pdev->dev);
3214 	pm_runtime_get_sync(&pdev->dev);
3215 
3216 	ret = platform_get_irq(pdev, 0);
3217 	if (ret < 0)
3218 		goto out_release;
3219 	ndev->irq = ret;
3220 
3221 	SET_NETDEV_DEV(ndev, &pdev->dev);
3222 
3223 	mdp = netdev_priv(ndev);
3224 	mdp->num_tx_ring = TX_RING_SIZE;
3225 	mdp->num_rx_ring = RX_RING_SIZE;
3226 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3227 	if (IS_ERR(mdp->addr)) {
3228 		ret = PTR_ERR(mdp->addr);
3229 		goto out_release;
3230 	}
3231 
3232 	ndev->base_addr = res->start;
3233 
3234 	spin_lock_init(&mdp->lock);
3235 	mdp->pdev = pdev;
3236 
3237 	if (pdev->dev.of_node)
3238 		pd = sh_eth_parse_dt(&pdev->dev);
3239 	if (!pd) {
3240 		dev_err(&pdev->dev, "no platform data\n");
3241 		ret = -EINVAL;
3242 		goto out_release;
3243 	}
3244 
3245 	/* get PHY ID */
3246 	mdp->phy_id = pd->phy;
3247 	mdp->phy_interface = pd->phy_interface;
3248 	mdp->no_ether_link = pd->no_ether_link;
3249 	mdp->ether_link_active_low = pd->ether_link_active_low;
3250 
3251 	/* set cpu data */
3252 	if (id)
3253 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3254 	else
3255 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3256 
3257 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3258 	if (!mdp->reg_offset) {
3259 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3260 			mdp->cd->register_type);
3261 		ret = -EINVAL;
3262 		goto out_release;
3263 	}
3264 	sh_eth_set_default_cpu_data(mdp->cd);
3265 
3266 	/* User's manual states max MTU should be 2048 but due to the
3267 	 * alignment calculations in sh_eth_ring_init() the practical
3268 	 * MTU is a bit less. Maybe this can be optimized some more.
3269 	 */
3270 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3271 	ndev->min_mtu = ETH_MIN_MTU;
3272 
3273 	if (mdp->cd->rx_csum) {
3274 		ndev->features = NETIF_F_RXCSUM;
3275 		ndev->hw_features = NETIF_F_RXCSUM;
3276 	}
3277 
3278 	/* set function */
3279 	if (mdp->cd->tsu)
3280 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3281 	else
3282 		ndev->netdev_ops = &sh_eth_netdev_ops;
3283 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3284 	ndev->watchdog_timeo = TX_TIMEOUT;
3285 
3286 	/* debug message level */
3287 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3288 
3289 	/* read and set MAC address */
3290 	read_mac_address(ndev, pd->mac_addr);
3291 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3292 		dev_warn(&pdev->dev,
3293 			 "no valid MAC address supplied, using a random one.\n");
3294 		eth_hw_addr_random(ndev);
3295 	}
3296 
3297 	if (mdp->cd->tsu) {
3298 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3299 		struct resource *rtsu;
3300 
3301 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3302 		if (!rtsu) {
3303 			dev_err(&pdev->dev, "no TSU resource\n");
3304 			ret = -ENODEV;
3305 			goto out_release;
3306 		}
3307 		/* We can only request the  TSU region  for the first port
3308 		 * of the two  sharing this TSU for the probe to succeed...
3309 		 */
3310 		if (port == 0 &&
3311 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3312 					     resource_size(rtsu),
3313 					     dev_name(&pdev->dev))) {
3314 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3315 			ret = -EBUSY;
3316 			goto out_release;
3317 		}
3318 		/* ioremap the TSU registers */
3319 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3320 					     resource_size(rtsu));
3321 		if (!mdp->tsu_addr) {
3322 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3323 			ret = -ENOMEM;
3324 			goto out_release;
3325 		}
3326 		mdp->port = port;
3327 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3328 
3329 		/* Need to init only the first port of the two sharing a TSU */
3330 		if (port == 0) {
3331 			if (mdp->cd->chip_reset)
3332 				mdp->cd->chip_reset(ndev);
3333 
3334 			/* TSU init (Init only)*/
3335 			sh_eth_tsu_init(mdp);
3336 		}
3337 	}
3338 
3339 	if (mdp->cd->rmiimode)
3340 		sh_eth_write(ndev, 0x1, RMIIMODE);
3341 
3342 	/* MDIO bus init */
3343 	ret = sh_mdio_init(mdp, pd);
3344 	if (ret) {
3345 		if (ret != -EPROBE_DEFER)
3346 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3347 		goto out_release;
3348 	}
3349 
3350 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3351 
3352 	/* network device register */
3353 	ret = register_netdev(ndev);
3354 	if (ret)
3355 		goto out_napi_del;
3356 
3357 	if (mdp->cd->magic)
3358 		device_set_wakeup_capable(&pdev->dev, 1);
3359 
3360 	/* print device information */
3361 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3362 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3363 
3364 	pm_runtime_put(&pdev->dev);
3365 	platform_set_drvdata(pdev, ndev);
3366 
3367 	return ret;
3368 
3369 out_napi_del:
3370 	netif_napi_del(&mdp->napi);
3371 	sh_mdio_release(mdp);
3372 
3373 out_release:
3374 	/* net_dev free */
3375 	free_netdev(ndev);
3376 
3377 	pm_runtime_put(&pdev->dev);
3378 	pm_runtime_disable(&pdev->dev);
3379 	return ret;
3380 }
3381 
sh_eth_drv_remove(struct platform_device * pdev)3382 static int sh_eth_drv_remove(struct platform_device *pdev)
3383 {
3384 	struct net_device *ndev = platform_get_drvdata(pdev);
3385 	struct sh_eth_private *mdp = netdev_priv(ndev);
3386 
3387 	unregister_netdev(ndev);
3388 	netif_napi_del(&mdp->napi);
3389 	sh_mdio_release(mdp);
3390 	pm_runtime_disable(&pdev->dev);
3391 	free_netdev(ndev);
3392 
3393 	return 0;
3394 }
3395 
3396 #ifdef CONFIG_PM
3397 #ifdef CONFIG_PM_SLEEP
sh_eth_wol_setup(struct net_device * ndev)3398 static int sh_eth_wol_setup(struct net_device *ndev)
3399 {
3400 	struct sh_eth_private *mdp = netdev_priv(ndev);
3401 
3402 	/* Only allow ECI interrupts */
3403 	synchronize_irq(ndev->irq);
3404 	napi_disable(&mdp->napi);
3405 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3406 
3407 	/* Enable MagicPacket */
3408 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3409 
3410 	return enable_irq_wake(ndev->irq);
3411 }
3412 
sh_eth_wol_restore(struct net_device * ndev)3413 static int sh_eth_wol_restore(struct net_device *ndev)
3414 {
3415 	struct sh_eth_private *mdp = netdev_priv(ndev);
3416 	int ret;
3417 
3418 	napi_enable(&mdp->napi);
3419 
3420 	/* Disable MagicPacket */
3421 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3422 
3423 	/* The device needs to be reset to restore MagicPacket logic
3424 	 * for next wakeup. If we close and open the device it will
3425 	 * both be reset and all registers restored. This is what
3426 	 * happens during suspend and resume without WoL enabled.
3427 	 */
3428 	ret = sh_eth_close(ndev);
3429 	if (ret < 0)
3430 		return ret;
3431 	ret = sh_eth_open(ndev);
3432 	if (ret < 0)
3433 		return ret;
3434 
3435 	return disable_irq_wake(ndev->irq);
3436 }
3437 
sh_eth_suspend(struct device * dev)3438 static int sh_eth_suspend(struct device *dev)
3439 {
3440 	struct net_device *ndev = dev_get_drvdata(dev);
3441 	struct sh_eth_private *mdp = netdev_priv(ndev);
3442 	int ret = 0;
3443 
3444 	if (!netif_running(ndev))
3445 		return 0;
3446 
3447 	netif_device_detach(ndev);
3448 
3449 	if (mdp->wol_enabled)
3450 		ret = sh_eth_wol_setup(ndev);
3451 	else
3452 		ret = sh_eth_close(ndev);
3453 
3454 	return ret;
3455 }
3456 
sh_eth_resume(struct device * dev)3457 static int sh_eth_resume(struct device *dev)
3458 {
3459 	struct net_device *ndev = dev_get_drvdata(dev);
3460 	struct sh_eth_private *mdp = netdev_priv(ndev);
3461 	int ret = 0;
3462 
3463 	if (!netif_running(ndev))
3464 		return 0;
3465 
3466 	if (mdp->wol_enabled)
3467 		ret = sh_eth_wol_restore(ndev);
3468 	else
3469 		ret = sh_eth_open(ndev);
3470 
3471 	if (ret < 0)
3472 		return ret;
3473 
3474 	netif_device_attach(ndev);
3475 
3476 	return ret;
3477 }
3478 #endif
3479 
sh_eth_runtime_nop(struct device * dev)3480 static int sh_eth_runtime_nop(struct device *dev)
3481 {
3482 	/* Runtime PM callback shared between ->runtime_suspend()
3483 	 * and ->runtime_resume(). Simply returns success.
3484 	 *
3485 	 * This driver re-initializes all registers after
3486 	 * pm_runtime_get_sync() anyway so there is no need
3487 	 * to save and restore registers here.
3488 	 */
3489 	return 0;
3490 }
3491 
3492 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3493 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3494 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3495 };
3496 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3497 #else
3498 #define SH_ETH_PM_OPS NULL
3499 #endif
3500 
3501 static const struct platform_device_id sh_eth_id_table[] = {
3502 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3503 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3504 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3505 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3506 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3507 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3508 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3509 	{ }
3510 };
3511 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3512 
3513 static struct platform_driver sh_eth_driver = {
3514 	.probe = sh_eth_drv_probe,
3515 	.remove = sh_eth_drv_remove,
3516 	.id_table = sh_eth_id_table,
3517 	.driver = {
3518 		   .name = CARDNAME,
3519 		   .pm = SH_ETH_PM_OPS,
3520 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3521 	},
3522 };
3523 
3524 module_platform_driver(sh_eth_driver);
3525 
3526 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3527 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3528 MODULE_LICENSE("GPL v2");
3529