• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
4  *
5  * Copyright (C) 2012 Alan Ott <alan@signal11.us>
6  *                    Signal 11 Software
7  */
8 
9 #include <linux/spi/spi.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/regmap.h>
14 #include <linux/ieee802154.h>
15 #include <linux/irq.h>
16 #include <net/cfg802154.h>
17 #include <net/mac802154.h>
18 
19 /* MRF24J40 Short Address Registers */
20 #define REG_RXMCR	0x00  /* Receive MAC control */
21 #define BIT_PROMI	BIT(0)
22 #define BIT_ERRPKT	BIT(1)
23 #define BIT_NOACKRSP	BIT(5)
24 #define BIT_PANCOORD	BIT(3)
25 
26 #define REG_PANIDL	0x01  /* PAN ID (low) */
27 #define REG_PANIDH	0x02  /* PAN ID (high) */
28 #define REG_SADRL	0x03  /* Short address (low) */
29 #define REG_SADRH	0x04  /* Short address (high) */
30 #define REG_EADR0	0x05  /* Long address (low) (high is EADR7) */
31 #define REG_EADR1	0x06
32 #define REG_EADR2	0x07
33 #define REG_EADR3	0x08
34 #define REG_EADR4	0x09
35 #define REG_EADR5	0x0A
36 #define REG_EADR6	0x0B
37 #define REG_EADR7	0x0C
38 #define REG_RXFLUSH	0x0D
39 #define REG_ORDER	0x10
40 #define REG_TXMCR	0x11  /* Transmit MAC control */
41 #define TXMCR_MIN_BE_SHIFT		3
42 #define TXMCR_MIN_BE_MASK		0x18
43 #define TXMCR_CSMA_RETRIES_SHIFT	0
44 #define TXMCR_CSMA_RETRIES_MASK		0x07
45 
46 #define REG_ACKTMOUT	0x12
47 #define REG_ESLOTG1	0x13
48 #define REG_SYMTICKL	0x14
49 #define REG_SYMTICKH	0x15
50 #define REG_PACON0	0x16  /* Power Amplifier Control */
51 #define REG_PACON1	0x17  /* Power Amplifier Control */
52 #define REG_PACON2	0x18  /* Power Amplifier Control */
53 #define REG_TXBCON0	0x1A
54 #define REG_TXNCON	0x1B  /* Transmit Normal FIFO Control */
55 #define BIT_TXNTRIG	BIT(0)
56 #define BIT_TXNSECEN	BIT(1)
57 #define BIT_TXNACKREQ	BIT(2)
58 
59 #define REG_TXG1CON	0x1C
60 #define REG_TXG2CON	0x1D
61 #define REG_ESLOTG23	0x1E
62 #define REG_ESLOTG45	0x1F
63 #define REG_ESLOTG67	0x20
64 #define REG_TXPEND	0x21
65 #define REG_WAKECON	0x22
66 #define REG_FROMOFFSET	0x23
67 #define REG_TXSTAT	0x24  /* TX MAC Status Register */
68 #define REG_TXBCON1	0x25
69 #define REG_GATECLK	0x26
70 #define REG_TXTIME	0x27
71 #define REG_HSYMTMRL	0x28
72 #define REG_HSYMTMRH	0x29
73 #define REG_SOFTRST	0x2A  /* Soft Reset */
74 #define REG_SECCON0	0x2C
75 #define REG_SECCON1	0x2D
76 #define REG_TXSTBL	0x2E  /* TX Stabilization */
77 #define REG_RXSR	0x30
78 #define REG_INTSTAT	0x31  /* Interrupt Status */
79 #define BIT_TXNIF	BIT(0)
80 #define BIT_RXIF	BIT(3)
81 #define BIT_SECIF	BIT(4)
82 #define BIT_SECIGNORE	BIT(7)
83 
84 #define REG_INTCON	0x32  /* Interrupt Control */
85 #define BIT_TXNIE	BIT(0)
86 #define BIT_RXIE	BIT(3)
87 #define BIT_SECIE	BIT(4)
88 
89 #define REG_GPIO	0x33  /* GPIO */
90 #define REG_TRISGPIO	0x34  /* GPIO direction */
91 #define REG_SLPACK	0x35
92 #define REG_RFCTL	0x36  /* RF Control Mode Register */
93 #define BIT_RFRST	BIT(2)
94 
95 #define REG_SECCR2	0x37
96 #define REG_BBREG0	0x38
97 #define REG_BBREG1	0x39  /* Baseband Registers */
98 #define BIT_RXDECINV	BIT(2)
99 
100 #define REG_BBREG2	0x3A  /* */
101 #define BBREG2_CCA_MODE_SHIFT	6
102 #define BBREG2_CCA_MODE_MASK	0xc0
103 
104 #define REG_BBREG3	0x3B
105 #define REG_BBREG4	0x3C
106 #define REG_BBREG6	0x3E  /* */
107 #define REG_CCAEDTH	0x3F  /* Energy Detection Threshold */
108 
109 /* MRF24J40 Long Address Registers */
110 #define REG_RFCON0	0x200  /* RF Control Registers */
111 #define RFCON0_CH_SHIFT	4
112 #define RFCON0_CH_MASK	0xf0
113 #define RFOPT_RECOMMEND	3
114 
115 #define REG_RFCON1	0x201
116 #define REG_RFCON2	0x202
117 #define REG_RFCON3	0x203
118 
119 #define TXPWRL_MASK	0xc0
120 #define TXPWRL_SHIFT	6
121 #define TXPWRL_30	0x3
122 #define TXPWRL_20	0x2
123 #define TXPWRL_10	0x1
124 #define TXPWRL_0	0x0
125 
126 #define TXPWRS_MASK	0x38
127 #define TXPWRS_SHIFT	3
128 #define TXPWRS_6_3	0x7
129 #define TXPWRS_4_9	0x6
130 #define TXPWRS_3_7	0x5
131 #define TXPWRS_2_8	0x4
132 #define TXPWRS_1_9	0x3
133 #define TXPWRS_1_2	0x2
134 #define TXPWRS_0_5	0x1
135 #define TXPWRS_0	0x0
136 
137 #define REG_RFCON5	0x205
138 #define REG_RFCON6	0x206
139 #define REG_RFCON7	0x207
140 #define REG_RFCON8	0x208
141 #define REG_SLPCAL0	0x209
142 #define REG_SLPCAL1	0x20A
143 #define REG_SLPCAL2	0x20B
144 #define REG_RFSTATE	0x20F
145 #define REG_RSSI	0x210
146 #define REG_SLPCON0	0x211  /* Sleep Clock Control Registers */
147 #define BIT_INTEDGE	BIT(1)
148 
149 #define REG_SLPCON1	0x220
150 #define REG_WAKETIMEL	0x222  /* Wake-up Time Match Value Low */
151 #define REG_WAKETIMEH	0x223  /* Wake-up Time Match Value High */
152 #define REG_REMCNTL	0x224
153 #define REG_REMCNTH	0x225
154 #define REG_MAINCNT0	0x226
155 #define REG_MAINCNT1	0x227
156 #define REG_MAINCNT2	0x228
157 #define REG_MAINCNT3	0x229
158 #define REG_TESTMODE	0x22F  /* Test mode */
159 #define REG_ASSOEAR0	0x230
160 #define REG_ASSOEAR1	0x231
161 #define REG_ASSOEAR2	0x232
162 #define REG_ASSOEAR3	0x233
163 #define REG_ASSOEAR4	0x234
164 #define REG_ASSOEAR5	0x235
165 #define REG_ASSOEAR6	0x236
166 #define REG_ASSOEAR7	0x237
167 #define REG_ASSOSAR0	0x238
168 #define REG_ASSOSAR1	0x239
169 #define REG_UNONCE0	0x240
170 #define REG_UNONCE1	0x241
171 #define REG_UNONCE2	0x242
172 #define REG_UNONCE3	0x243
173 #define REG_UNONCE4	0x244
174 #define REG_UNONCE5	0x245
175 #define REG_UNONCE6	0x246
176 #define REG_UNONCE7	0x247
177 #define REG_UNONCE8	0x248
178 #define REG_UNONCE9	0x249
179 #define REG_UNONCE10	0x24A
180 #define REG_UNONCE11	0x24B
181 #define REG_UNONCE12	0x24C
182 #define REG_RX_FIFO	0x300  /* Receive FIFO */
183 
184 /* Device configuration: Only channels 11-26 on page 0 are supported. */
185 #define MRF24J40_CHAN_MIN 11
186 #define MRF24J40_CHAN_MAX 26
187 #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
188 		      - ((u32)1 << MRF24J40_CHAN_MIN))
189 
190 #define TX_FIFO_SIZE 128 /* From datasheet */
191 #define RX_FIFO_SIZE 144 /* From datasheet */
192 #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
193 
194 enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
195 
196 /* Device Private Data */
197 struct mrf24j40 {
198 	struct spi_device *spi;
199 	struct ieee802154_hw *hw;
200 
201 	struct regmap *regmap_short;
202 	struct regmap *regmap_long;
203 
204 	/* for writing txfifo */
205 	struct spi_message tx_msg;
206 	u8 tx_hdr_buf[2];
207 	struct spi_transfer tx_hdr_trx;
208 	u8 tx_len_buf[2];
209 	struct spi_transfer tx_len_trx;
210 	struct spi_transfer tx_buf_trx;
211 	struct sk_buff *tx_skb;
212 
213 	/* post transmit message to send frame out  */
214 	struct spi_message tx_post_msg;
215 	u8 tx_post_buf[2];
216 	struct spi_transfer tx_post_trx;
217 
218 	/* for protect/unprotect/read length rxfifo */
219 	struct spi_message rx_msg;
220 	u8 rx_buf[3];
221 	struct spi_transfer rx_trx;
222 
223 	/* receive handling */
224 	struct spi_message rx_buf_msg;
225 	u8 rx_addr_buf[2];
226 	struct spi_transfer rx_addr_trx;
227 	u8 rx_lqi_buf[2];
228 	struct spi_transfer rx_lqi_trx;
229 	u8 rx_fifo_buf[RX_FIFO_SIZE];
230 	struct spi_transfer rx_fifo_buf_trx;
231 
232 	/* isr handling for reading intstat */
233 	struct spi_message irq_msg;
234 	u8 irq_buf[2];
235 	struct spi_transfer irq_trx;
236 };
237 
238 /* regmap information for short address register access */
239 #define MRF24J40_SHORT_WRITE	0x01
240 #define MRF24J40_SHORT_READ	0x00
241 #define MRF24J40_SHORT_NUMREGS	0x3F
242 
243 /* regmap information for long address register access */
244 #define MRF24J40_LONG_ACCESS	0x80
245 #define MRF24J40_LONG_NUMREGS	0x38F
246 
247 /* Read/Write SPI Commands for Short and Long Address registers. */
248 #define MRF24J40_READSHORT(reg) ((reg) << 1)
249 #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
250 #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
251 #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
252 
253 /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
254 #define MAX_SPI_SPEED_HZ 10000000
255 
256 #define printdev(X) (&X->spi->dev)
257 
258 static bool
mrf24j40_short_reg_writeable(struct device * dev,unsigned int reg)259 mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
260 {
261 	switch (reg) {
262 	case REG_RXMCR:
263 	case REG_PANIDL:
264 	case REG_PANIDH:
265 	case REG_SADRL:
266 	case REG_SADRH:
267 	case REG_EADR0:
268 	case REG_EADR1:
269 	case REG_EADR2:
270 	case REG_EADR3:
271 	case REG_EADR4:
272 	case REG_EADR5:
273 	case REG_EADR6:
274 	case REG_EADR7:
275 	case REG_RXFLUSH:
276 	case REG_ORDER:
277 	case REG_TXMCR:
278 	case REG_ACKTMOUT:
279 	case REG_ESLOTG1:
280 	case REG_SYMTICKL:
281 	case REG_SYMTICKH:
282 	case REG_PACON0:
283 	case REG_PACON1:
284 	case REG_PACON2:
285 	case REG_TXBCON0:
286 	case REG_TXNCON:
287 	case REG_TXG1CON:
288 	case REG_TXG2CON:
289 	case REG_ESLOTG23:
290 	case REG_ESLOTG45:
291 	case REG_ESLOTG67:
292 	case REG_TXPEND:
293 	case REG_WAKECON:
294 	case REG_FROMOFFSET:
295 	case REG_TXBCON1:
296 	case REG_GATECLK:
297 	case REG_TXTIME:
298 	case REG_HSYMTMRL:
299 	case REG_HSYMTMRH:
300 	case REG_SOFTRST:
301 	case REG_SECCON0:
302 	case REG_SECCON1:
303 	case REG_TXSTBL:
304 	case REG_RXSR:
305 	case REG_INTCON:
306 	case REG_TRISGPIO:
307 	case REG_GPIO:
308 	case REG_RFCTL:
309 	case REG_SECCR2:
310 	case REG_SLPACK:
311 	case REG_BBREG0:
312 	case REG_BBREG1:
313 	case REG_BBREG2:
314 	case REG_BBREG3:
315 	case REG_BBREG4:
316 	case REG_BBREG6:
317 	case REG_CCAEDTH:
318 		return true;
319 	default:
320 		return false;
321 	}
322 }
323 
324 static bool
mrf24j40_short_reg_readable(struct device * dev,unsigned int reg)325 mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
326 {
327 	bool rc;
328 
329 	/* all writeable are also readable */
330 	rc = mrf24j40_short_reg_writeable(dev, reg);
331 	if (rc)
332 		return rc;
333 
334 	/* readonly regs */
335 	switch (reg) {
336 	case REG_TXSTAT:
337 	case REG_INTSTAT:
338 		return true;
339 	default:
340 		return false;
341 	}
342 }
343 
344 static bool
mrf24j40_short_reg_volatile(struct device * dev,unsigned int reg)345 mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
346 {
347 	/* can be changed during runtime */
348 	switch (reg) {
349 	case REG_TXSTAT:
350 	case REG_INTSTAT:
351 	case REG_RXFLUSH:
352 	case REG_TXNCON:
353 	case REG_SOFTRST:
354 	case REG_RFCTL:
355 	case REG_TXBCON0:
356 	case REG_TXG1CON:
357 	case REG_TXG2CON:
358 	case REG_TXBCON1:
359 	case REG_SECCON0:
360 	case REG_RXSR:
361 	case REG_SLPACK:
362 	case REG_SECCR2:
363 	case REG_BBREG6:
364 	/* use them in spi_async and regmap so it's volatile */
365 	case REG_BBREG1:
366 		return true;
367 	default:
368 		return false;
369 	}
370 }
371 
372 static bool
mrf24j40_short_reg_precious(struct device * dev,unsigned int reg)373 mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
374 {
375 	/* don't clear irq line on read */
376 	switch (reg) {
377 	case REG_INTSTAT:
378 		return true;
379 	default:
380 		return false;
381 	}
382 }
383 
384 static const struct regmap_config mrf24j40_short_regmap = {
385 	.name = "mrf24j40_short",
386 	.reg_bits = 7,
387 	.val_bits = 8,
388 	.pad_bits = 1,
389 	.write_flag_mask = MRF24J40_SHORT_WRITE,
390 	.read_flag_mask = MRF24J40_SHORT_READ,
391 	.cache_type = REGCACHE_RBTREE,
392 	.max_register = MRF24J40_SHORT_NUMREGS,
393 	.writeable_reg = mrf24j40_short_reg_writeable,
394 	.readable_reg = mrf24j40_short_reg_readable,
395 	.volatile_reg = mrf24j40_short_reg_volatile,
396 	.precious_reg = mrf24j40_short_reg_precious,
397 };
398 
399 static bool
mrf24j40_long_reg_writeable(struct device * dev,unsigned int reg)400 mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
401 {
402 	switch (reg) {
403 	case REG_RFCON0:
404 	case REG_RFCON1:
405 	case REG_RFCON2:
406 	case REG_RFCON3:
407 	case REG_RFCON5:
408 	case REG_RFCON6:
409 	case REG_RFCON7:
410 	case REG_RFCON8:
411 	case REG_SLPCAL2:
412 	case REG_SLPCON0:
413 	case REG_SLPCON1:
414 	case REG_WAKETIMEL:
415 	case REG_WAKETIMEH:
416 	case REG_REMCNTL:
417 	case REG_REMCNTH:
418 	case REG_MAINCNT0:
419 	case REG_MAINCNT1:
420 	case REG_MAINCNT2:
421 	case REG_MAINCNT3:
422 	case REG_TESTMODE:
423 	case REG_ASSOEAR0:
424 	case REG_ASSOEAR1:
425 	case REG_ASSOEAR2:
426 	case REG_ASSOEAR3:
427 	case REG_ASSOEAR4:
428 	case REG_ASSOEAR5:
429 	case REG_ASSOEAR6:
430 	case REG_ASSOEAR7:
431 	case REG_ASSOSAR0:
432 	case REG_ASSOSAR1:
433 	case REG_UNONCE0:
434 	case REG_UNONCE1:
435 	case REG_UNONCE2:
436 	case REG_UNONCE3:
437 	case REG_UNONCE4:
438 	case REG_UNONCE5:
439 	case REG_UNONCE6:
440 	case REG_UNONCE7:
441 	case REG_UNONCE8:
442 	case REG_UNONCE9:
443 	case REG_UNONCE10:
444 	case REG_UNONCE11:
445 	case REG_UNONCE12:
446 		return true;
447 	default:
448 		return false;
449 	}
450 }
451 
452 static bool
mrf24j40_long_reg_readable(struct device * dev,unsigned int reg)453 mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
454 {
455 	bool rc;
456 
457 	/* all writeable are also readable */
458 	rc = mrf24j40_long_reg_writeable(dev, reg);
459 	if (rc)
460 		return rc;
461 
462 	/* readonly regs */
463 	switch (reg) {
464 	case REG_SLPCAL0:
465 	case REG_SLPCAL1:
466 	case REG_RFSTATE:
467 	case REG_RSSI:
468 		return true;
469 	default:
470 		return false;
471 	}
472 }
473 
474 static bool
mrf24j40_long_reg_volatile(struct device * dev,unsigned int reg)475 mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
476 {
477 	/* can be changed during runtime */
478 	switch (reg) {
479 	case REG_SLPCAL0:
480 	case REG_SLPCAL1:
481 	case REG_SLPCAL2:
482 	case REG_RFSTATE:
483 	case REG_RSSI:
484 	case REG_MAINCNT3:
485 		return true;
486 	default:
487 		return false;
488 	}
489 }
490 
491 static const struct regmap_config mrf24j40_long_regmap = {
492 	.name = "mrf24j40_long",
493 	.reg_bits = 11,
494 	.val_bits = 8,
495 	.pad_bits = 5,
496 	.write_flag_mask = MRF24J40_LONG_ACCESS,
497 	.read_flag_mask = MRF24J40_LONG_ACCESS,
498 	.cache_type = REGCACHE_RBTREE,
499 	.max_register = MRF24J40_LONG_NUMREGS,
500 	.writeable_reg = mrf24j40_long_reg_writeable,
501 	.readable_reg = mrf24j40_long_reg_readable,
502 	.volatile_reg = mrf24j40_long_reg_volatile,
503 };
504 
mrf24j40_long_regmap_write(void * context,const void * data,size_t count)505 static int mrf24j40_long_regmap_write(void *context, const void *data,
506 				      size_t count)
507 {
508 	struct spi_device *spi = context;
509 	u8 buf[3];
510 
511 	if (count > 3)
512 		return -EINVAL;
513 
514 	/* regmap supports read/write mask only in frist byte
515 	 * long write access need to set the 12th bit, so we
516 	 * make special handling for write.
517 	 */
518 	memcpy(buf, data, count);
519 	buf[1] |= (1 << 4);
520 
521 	return spi_write(spi, buf, count);
522 }
523 
524 static int
mrf24j40_long_regmap_read(void * context,const void * reg,size_t reg_size,void * val,size_t val_size)525 mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
526 			  void *val, size_t val_size)
527 {
528 	struct spi_device *spi = context;
529 
530 	return spi_write_then_read(spi, reg, reg_size, val, val_size);
531 }
532 
533 static const struct regmap_bus mrf24j40_long_regmap_bus = {
534 	.write = mrf24j40_long_regmap_write,
535 	.read = mrf24j40_long_regmap_read,
536 	.reg_format_endian_default = REGMAP_ENDIAN_BIG,
537 	.val_format_endian_default = REGMAP_ENDIAN_BIG,
538 };
539 
write_tx_buf_complete(void * context)540 static void write_tx_buf_complete(void *context)
541 {
542 	struct mrf24j40 *devrec = context;
543 	__le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
544 	u8 val = BIT_TXNTRIG;
545 	int ret;
546 
547 	if (ieee802154_is_secen(fc))
548 		val |= BIT_TXNSECEN;
549 
550 	if (ieee802154_is_ackreq(fc))
551 		val |= BIT_TXNACKREQ;
552 
553 	devrec->tx_post_msg.complete = NULL;
554 	devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
555 	devrec->tx_post_buf[1] = val;
556 
557 	ret = spi_async(devrec->spi, &devrec->tx_post_msg);
558 	if (ret)
559 		dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
560 }
561 
562 /* This function relies on an undocumented write method. Once a write command
563    and address is set, as many bytes of data as desired can be clocked into
564    the device. The datasheet only shows setting one byte at a time. */
write_tx_buf(struct mrf24j40 * devrec,u16 reg,const u8 * data,size_t length)565 static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
566 			const u8 *data, size_t length)
567 {
568 	u16 cmd;
569 	int ret;
570 
571 	/* Range check the length. 2 bytes are used for the length fields.*/
572 	if (length > TX_FIFO_SIZE-2) {
573 		dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
574 		length = TX_FIFO_SIZE-2;
575 	}
576 
577 	cmd = MRF24J40_WRITELONG(reg);
578 	devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
579 	devrec->tx_hdr_buf[1] = cmd & 0xff;
580 	devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
581 	devrec->tx_len_buf[1] = length; /* Total length */
582 	devrec->tx_buf_trx.tx_buf = data;
583 	devrec->tx_buf_trx.len = length;
584 
585 	ret = spi_async(devrec->spi, &devrec->tx_msg);
586 	if (ret)
587 		dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
588 
589 	return ret;
590 }
591 
mrf24j40_tx(struct ieee802154_hw * hw,struct sk_buff * skb)592 static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
593 {
594 	struct mrf24j40 *devrec = hw->priv;
595 
596 	dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
597 	devrec->tx_skb = skb;
598 
599 	return write_tx_buf(devrec, 0x000, skb->data, skb->len);
600 }
601 
mrf24j40_ed(struct ieee802154_hw * hw,u8 * level)602 static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
603 {
604 	/* TODO: */
605 	pr_warn("mrf24j40: ed not implemented\n");
606 	*level = 0;
607 	return 0;
608 }
609 
mrf24j40_start(struct ieee802154_hw * hw)610 static int mrf24j40_start(struct ieee802154_hw *hw)
611 {
612 	struct mrf24j40 *devrec = hw->priv;
613 
614 	dev_dbg(printdev(devrec), "start\n");
615 
616 	/* Clear TXNIE and RXIE. Enable interrupts */
617 	return regmap_update_bits(devrec->regmap_short, REG_INTCON,
618 				  BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
619 }
620 
mrf24j40_stop(struct ieee802154_hw * hw)621 static void mrf24j40_stop(struct ieee802154_hw *hw)
622 {
623 	struct mrf24j40 *devrec = hw->priv;
624 
625 	dev_dbg(printdev(devrec), "stop\n");
626 
627 	/* Set TXNIE and RXIE. Disable Interrupts */
628 	regmap_update_bits(devrec->regmap_short, REG_INTCON,
629 			   BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
630 }
631 
mrf24j40_set_channel(struct ieee802154_hw * hw,u8 page,u8 channel)632 static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
633 {
634 	struct mrf24j40 *devrec = hw->priv;
635 	u8 val;
636 	int ret;
637 
638 	dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
639 
640 	WARN_ON(page != 0);
641 	WARN_ON(channel < MRF24J40_CHAN_MIN);
642 	WARN_ON(channel > MRF24J40_CHAN_MAX);
643 
644 	/* Set Channel TODO */
645 	val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
646 	ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
647 				 RFCON0_CH_MASK, val);
648 	if (ret)
649 		return ret;
650 
651 	/* RF Reset */
652 	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
653 				 BIT_RFRST);
654 	if (ret)
655 		return ret;
656 
657 	ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
658 	if (!ret)
659 		udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
660 
661 	return ret;
662 }
663 
mrf24j40_filter(struct ieee802154_hw * hw,struct ieee802154_hw_addr_filt * filt,unsigned long changed)664 static int mrf24j40_filter(struct ieee802154_hw *hw,
665 			   struct ieee802154_hw_addr_filt *filt,
666 			   unsigned long changed)
667 {
668 	struct mrf24j40 *devrec = hw->priv;
669 
670 	dev_dbg(printdev(devrec), "filter\n");
671 
672 	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
673 		/* Short Addr */
674 		u8 addrh, addrl;
675 
676 		addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
677 		addrl = le16_to_cpu(filt->short_addr) & 0xff;
678 
679 		regmap_write(devrec->regmap_short, REG_SADRH, addrh);
680 		regmap_write(devrec->regmap_short, REG_SADRL, addrl);
681 		dev_dbg(printdev(devrec),
682 			"Set short addr to %04hx\n", filt->short_addr);
683 	}
684 
685 	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
686 		/* Device Address */
687 		u8 i, addr[8];
688 
689 		memcpy(addr, &filt->ieee_addr, 8);
690 		for (i = 0; i < 8; i++)
691 			regmap_write(devrec->regmap_short, REG_EADR0 + i,
692 				     addr[i]);
693 
694 #ifdef DEBUG
695 		pr_debug("Set long addr to: ");
696 		for (i = 0; i < 8; i++)
697 			pr_debug("%02hhx ", addr[7 - i]);
698 		pr_debug("\n");
699 #endif
700 	}
701 
702 	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
703 		/* PAN ID */
704 		u8 panidl, panidh;
705 
706 		panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
707 		panidl = le16_to_cpu(filt->pan_id) & 0xff;
708 		regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
709 		regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
710 
711 		dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
712 	}
713 
714 	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
715 		/* Pan Coordinator */
716 		u8 val;
717 		int ret;
718 
719 		if (filt->pan_coord)
720 			val = BIT_PANCOORD;
721 		else
722 			val = 0;
723 		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
724 					 BIT_PANCOORD, val);
725 		if (ret)
726 			return ret;
727 
728 		/* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
729 		 * REG_ORDER is maintained as default (no beacon/superframe).
730 		 */
731 
732 		dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
733 			filt->pan_coord ? "on" : "off");
734 	}
735 
736 	return 0;
737 }
738 
mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 * devrec)739 static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
740 {
741 	int ret;
742 
743 	/* Turn back on reception of packets off the air. */
744 	devrec->rx_msg.complete = NULL;
745 	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
746 	devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
747 	ret = spi_async(devrec->spi, &devrec->rx_msg);
748 	if (ret)
749 		dev_err(printdev(devrec), "failed to unlock rx buffer\n");
750 }
751 
mrf24j40_handle_rx_read_buf_complete(void * context)752 static void mrf24j40_handle_rx_read_buf_complete(void *context)
753 {
754 	struct mrf24j40 *devrec = context;
755 	u8 len = devrec->rx_buf[2];
756 	u8 rx_local_buf[RX_FIFO_SIZE];
757 	struct sk_buff *skb;
758 
759 	memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
760 	mrf24j40_handle_rx_read_buf_unlock(devrec);
761 
762 	skb = dev_alloc_skb(IEEE802154_MTU);
763 	if (!skb) {
764 		dev_err(printdev(devrec), "failed to allocate skb\n");
765 		return;
766 	}
767 
768 	skb_put_data(skb, rx_local_buf, len);
769 	ieee802154_rx_irqsafe(devrec->hw, skb, 0);
770 
771 #ifdef DEBUG
772 	 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
773 			rx_local_buf, len, 0);
774 	 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
775 		  devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
776 #endif
777 }
778 
mrf24j40_handle_rx_read_buf(void * context)779 static void mrf24j40_handle_rx_read_buf(void *context)
780 {
781 	struct mrf24j40 *devrec = context;
782 	u16 cmd;
783 	int ret;
784 
785 	/* if length is invalid read the full MTU */
786 	if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
787 		devrec->rx_buf[2] = IEEE802154_MTU;
788 
789 	cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
790 	devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
791 	devrec->rx_addr_buf[1] = cmd & 0xff;
792 	devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
793 	ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
794 	if (ret) {
795 		dev_err(printdev(devrec), "failed to read rx buffer\n");
796 		mrf24j40_handle_rx_read_buf_unlock(devrec);
797 	}
798 }
799 
mrf24j40_handle_rx_read_len(void * context)800 static void mrf24j40_handle_rx_read_len(void *context)
801 {
802 	struct mrf24j40 *devrec = context;
803 	u16 cmd;
804 	int ret;
805 
806 	/* read the length of received frame */
807 	devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
808 	devrec->rx_trx.len = 3;
809 	cmd = MRF24J40_READLONG(REG_RX_FIFO);
810 	devrec->rx_buf[0] = cmd >> 8 & 0xff;
811 	devrec->rx_buf[1] = cmd & 0xff;
812 
813 	ret = spi_async(devrec->spi, &devrec->rx_msg);
814 	if (ret) {
815 		dev_err(printdev(devrec), "failed to read rx buffer length\n");
816 		mrf24j40_handle_rx_read_buf_unlock(devrec);
817 	}
818 }
819 
mrf24j40_handle_rx(struct mrf24j40 * devrec)820 static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
821 {
822 	/* Turn off reception of packets off the air. This prevents the
823 	 * device from overwriting the buffer while we're reading it.
824 	 */
825 	devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
826 	devrec->rx_trx.len = 2;
827 	devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
828 	devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
829 
830 	return spi_async(devrec->spi, &devrec->rx_msg);
831 }
832 
833 static int
mrf24j40_csma_params(struct ieee802154_hw * hw,u8 min_be,u8 max_be,u8 retries)834 mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
835 		     u8 retries)
836 {
837 	struct mrf24j40 *devrec = hw->priv;
838 	u8 val;
839 
840 	/* min_be */
841 	val = min_be << TXMCR_MIN_BE_SHIFT;
842 	/* csma backoffs */
843 	val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
844 
845 	return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
846 				  TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
847 				  val);
848 }
849 
mrf24j40_set_cca_mode(struct ieee802154_hw * hw,const struct wpan_phy_cca * cca)850 static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
851 				 const struct wpan_phy_cca *cca)
852 {
853 	struct mrf24j40 *devrec = hw->priv;
854 	u8 val;
855 
856 	/* mapping 802.15.4 to driver spec */
857 	switch (cca->mode) {
858 	case NL802154_CCA_ENERGY:
859 		val = 2;
860 		break;
861 	case NL802154_CCA_CARRIER:
862 		val = 1;
863 		break;
864 	case NL802154_CCA_ENERGY_CARRIER:
865 		switch (cca->opt) {
866 		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
867 			val = 3;
868 			break;
869 		default:
870 			return -EINVAL;
871 		}
872 		break;
873 	default:
874 		return -EINVAL;
875 	}
876 
877 	return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
878 				  BBREG2_CCA_MODE_MASK,
879 				  val << BBREG2_CCA_MODE_SHIFT);
880 }
881 
882 /* array for representing ed levels */
883 static const s32 mrf24j40_ed_levels[] = {
884 	-9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
885 	-8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
886 	-7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
887 	-6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
888 	-5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
889 	-4000, -3900, -3800, -3700, -3600, -3500
890 };
891 
892 /* map ed levels to register value */
893 static const s32 mrf24j40_ed_levels_map[][2] = {
894 	{ -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
895 	{ -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
896 	{ -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
897 	{ -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
898 	{ -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
899 	{ -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
900 	{ -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
901 	{ -6100, 133 },	{ -6000, 138 }, { -5900, 143 }, { -5800, 148 },
902 	{ -5700, 153 }, { -5600, 159 },	{ -5500, 165 }, { -5400, 170 },
903 	{ -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
904 	{ -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
905 	{ -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
906 	{ -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
907 	{ -3700, 253 }, { -3600, 254 }, { -3500, 255 },
908 };
909 
mrf24j40_set_cca_ed_level(struct ieee802154_hw * hw,s32 mbm)910 static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
911 {
912 	struct mrf24j40 *devrec = hw->priv;
913 	int i;
914 
915 	for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
916 		if (mrf24j40_ed_levels_map[i][0] == mbm)
917 			return regmap_write(devrec->regmap_short, REG_CCAEDTH,
918 					    mrf24j40_ed_levels_map[i][1]);
919 	}
920 
921 	return -EINVAL;
922 }
923 
924 static const s32 mrf24j40ma_powers[] = {
925 	0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
926 	-1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
927 	-2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
928 };
929 
mrf24j40_set_txpower(struct ieee802154_hw * hw,s32 mbm)930 static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
931 {
932 	struct mrf24j40 *devrec = hw->priv;
933 	s32 small_scale;
934 	u8 val;
935 
936 	if (0 >= mbm && mbm > -1000) {
937 		val = TXPWRL_0 << TXPWRL_SHIFT;
938 		small_scale = mbm;
939 	} else if (-1000 >= mbm && mbm > -2000) {
940 		val = TXPWRL_10 << TXPWRL_SHIFT;
941 		small_scale = mbm + 1000;
942 	} else if (-2000 >= mbm && mbm > -3000) {
943 		val = TXPWRL_20 << TXPWRL_SHIFT;
944 		small_scale = mbm + 2000;
945 	} else if (-3000 >= mbm && mbm > -4000) {
946 		val = TXPWRL_30 << TXPWRL_SHIFT;
947 		small_scale = mbm + 3000;
948 	} else {
949 		return -EINVAL;
950 	}
951 
952 	switch (small_scale) {
953 	case 0:
954 		val |= (TXPWRS_0 << TXPWRS_SHIFT);
955 		break;
956 	case -50:
957 		val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
958 		break;
959 	case -120:
960 		val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
961 		break;
962 	case -190:
963 		val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
964 		break;
965 	case -280:
966 		val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
967 		break;
968 	case -370:
969 		val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
970 		break;
971 	case -490:
972 		val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
973 		break;
974 	case -630:
975 		val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
976 		break;
977 	default:
978 		return -EINVAL;
979 	}
980 
981 	return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
982 				  TXPWRL_MASK | TXPWRS_MASK, val);
983 }
984 
mrf24j40_set_promiscuous_mode(struct ieee802154_hw * hw,bool on)985 static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
986 {
987 	struct mrf24j40 *devrec = hw->priv;
988 	int ret;
989 
990 	if (on) {
991 		/* set PROMI, ERRPKT and NOACKRSP */
992 		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
993 					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
994 					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
995 	} else {
996 		/* clear PROMI, ERRPKT and NOACKRSP */
997 		ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
998 					 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
999 					 0);
1000 	}
1001 
1002 	return ret;
1003 }
1004 
1005 static const struct ieee802154_ops mrf24j40_ops = {
1006 	.owner = THIS_MODULE,
1007 	.xmit_async = mrf24j40_tx,
1008 	.ed = mrf24j40_ed,
1009 	.start = mrf24j40_start,
1010 	.stop = mrf24j40_stop,
1011 	.set_channel = mrf24j40_set_channel,
1012 	.set_hw_addr_filt = mrf24j40_filter,
1013 	.set_csma_params = mrf24j40_csma_params,
1014 	.set_cca_mode = mrf24j40_set_cca_mode,
1015 	.set_cca_ed_level = mrf24j40_set_cca_ed_level,
1016 	.set_txpower = mrf24j40_set_txpower,
1017 	.set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1018 };
1019 
mrf24j40_intstat_complete(void * context)1020 static void mrf24j40_intstat_complete(void *context)
1021 {
1022 	struct mrf24j40 *devrec = context;
1023 	u8 intstat = devrec->irq_buf[1];
1024 
1025 	enable_irq(devrec->spi->irq);
1026 
1027 	/* Ignore Rx security decryption */
1028 	if (intstat & BIT_SECIF)
1029 		regmap_write_async(devrec->regmap_short, REG_SECCON0,
1030 				   BIT_SECIGNORE);
1031 
1032 	/* Check for TX complete */
1033 	if (intstat & BIT_TXNIF)
1034 		ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1035 
1036 	/* Check for Rx */
1037 	if (intstat & BIT_RXIF)
1038 		mrf24j40_handle_rx(devrec);
1039 }
1040 
mrf24j40_isr(int irq,void * data)1041 static irqreturn_t mrf24j40_isr(int irq, void *data)
1042 {
1043 	struct mrf24j40 *devrec = data;
1044 	int ret;
1045 
1046 	disable_irq_nosync(irq);
1047 
1048 	devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1049 	devrec->irq_buf[1] = 0;
1050 
1051 	/* Read the interrupt status */
1052 	ret = spi_async(devrec->spi, &devrec->irq_msg);
1053 	if (ret) {
1054 		enable_irq(irq);
1055 		return IRQ_NONE;
1056 	}
1057 
1058 	return IRQ_HANDLED;
1059 }
1060 
mrf24j40_hw_init(struct mrf24j40 * devrec)1061 static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1062 {
1063 	u32 irq_type;
1064 	int ret;
1065 
1066 	/* Initialize the device.
1067 		From datasheet section 3.2: Initialization. */
1068 	ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1069 	if (ret)
1070 		goto err_ret;
1071 
1072 	ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1073 	if (ret)
1074 		goto err_ret;
1075 
1076 	ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1077 	if (ret)
1078 		goto err_ret;
1079 
1080 	ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1081 	if (ret)
1082 		goto err_ret;
1083 
1084 	ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1085 	if (ret)
1086 		goto err_ret;
1087 
1088 	ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1089 	if (ret)
1090 		goto err_ret;
1091 
1092 	ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1093 	if (ret)
1094 		goto err_ret;
1095 
1096 	ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1097 	if (ret)
1098 		goto err_ret;
1099 
1100 	ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1101 	if (ret)
1102 		goto err_ret;
1103 
1104 	ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1105 	if (ret)
1106 		goto err_ret;
1107 
1108 	ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1109 	if (ret)
1110 		goto err_ret;
1111 
1112 	ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1113 	if (ret)
1114 		goto err_ret;
1115 
1116 	ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1117 	if (ret)
1118 		goto err_ret;
1119 
1120 	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1121 	if (ret)
1122 		goto err_ret;
1123 
1124 	ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1125 	if (ret)
1126 		goto err_ret;
1127 
1128 	udelay(192);
1129 
1130 	/* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1131 	ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1132 	if (ret)
1133 		goto err_ret;
1134 
1135 	if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1136 		/* Enable external amplifier.
1137 		 * From MRF24J40MC datasheet section 1.3: Operation.
1138 		 */
1139 		regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1140 				   0x07);
1141 
1142 		/* Set GPIO3 as output. */
1143 		regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1144 				   0x08);
1145 
1146 		/* Set GPIO3 HIGH to enable U5 voltage regulator */
1147 		regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1148 
1149 		/* Reduce TX pwr to meet FCC requirements.
1150 		 * From MRF24J40MC datasheet section 3.1.1
1151 		 */
1152 		regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1153 	}
1154 
1155 	irq_type = irq_get_trigger_type(devrec->spi->irq);
1156 	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1157 	    irq_type == IRQ_TYPE_EDGE_FALLING)
1158 		dev_warn(&devrec->spi->dev,
1159 			 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1160 	switch (irq_type) {
1161 	case IRQ_TYPE_EDGE_RISING:
1162 	case IRQ_TYPE_LEVEL_HIGH:
1163 		/* set interrupt polarity to rising */
1164 		ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1165 					 BIT_INTEDGE, BIT_INTEDGE);
1166 		if (ret)
1167 			goto err_ret;
1168 		break;
1169 	default:
1170 		/* default is falling edge */
1171 		break;
1172 	}
1173 
1174 	return 0;
1175 
1176 err_ret:
1177 	return ret;
1178 }
1179 
1180 static void
mrf24j40_setup_tx_spi_messages(struct mrf24j40 * devrec)1181 mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1182 {
1183 	spi_message_init(&devrec->tx_msg);
1184 	devrec->tx_msg.context = devrec;
1185 	devrec->tx_msg.complete = write_tx_buf_complete;
1186 	devrec->tx_hdr_trx.len = 2;
1187 	devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1188 	spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1189 	devrec->tx_len_trx.len = 2;
1190 	devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1191 	spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1192 	spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1193 
1194 	spi_message_init(&devrec->tx_post_msg);
1195 	devrec->tx_post_msg.context = devrec;
1196 	devrec->tx_post_trx.len = 2;
1197 	devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1198 	spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1199 }
1200 
1201 static void
mrf24j40_setup_rx_spi_messages(struct mrf24j40 * devrec)1202 mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1203 {
1204 	spi_message_init(&devrec->rx_msg);
1205 	devrec->rx_msg.context = devrec;
1206 	devrec->rx_trx.len = 2;
1207 	devrec->rx_trx.tx_buf = devrec->rx_buf;
1208 	devrec->rx_trx.rx_buf = devrec->rx_buf;
1209 	spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1210 
1211 	spi_message_init(&devrec->rx_buf_msg);
1212 	devrec->rx_buf_msg.context = devrec;
1213 	devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1214 	devrec->rx_addr_trx.len = 2;
1215 	devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1216 	spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1217 	devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1218 	spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1219 	devrec->rx_lqi_trx.len = 2;
1220 	devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1221 	spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1222 }
1223 
1224 static void
mrf24j40_setup_irq_spi_messages(struct mrf24j40 * devrec)1225 mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1226 {
1227 	spi_message_init(&devrec->irq_msg);
1228 	devrec->irq_msg.context = devrec;
1229 	devrec->irq_msg.complete = mrf24j40_intstat_complete;
1230 	devrec->irq_trx.len = 2;
1231 	devrec->irq_trx.tx_buf = devrec->irq_buf;
1232 	devrec->irq_trx.rx_buf = devrec->irq_buf;
1233 	spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1234 }
1235 
mrf24j40_phy_setup(struct mrf24j40 * devrec)1236 static void  mrf24j40_phy_setup(struct mrf24j40 *devrec)
1237 {
1238 	ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1239 	devrec->hw->phy->current_channel = 11;
1240 
1241 	/* mrf24j40 supports max_minbe 0 - 3 */
1242 	devrec->hw->phy->supported.max_minbe = 3;
1243 	/* datasheet doesn't say anything about max_be, but we have min_be
1244 	 * So we assume the max_be default.
1245 	 */
1246 	devrec->hw->phy->supported.min_maxbe = 5;
1247 	devrec->hw->phy->supported.max_maxbe = 5;
1248 
1249 	devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1250 	devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1251 					       BIT(NL802154_CCA_CARRIER) |
1252 					       BIT(NL802154_CCA_ENERGY_CARRIER);
1253 	devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1254 
1255 	devrec->hw->phy->cca_ed_level = -6900;
1256 	devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1257 	devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1258 
1259 	switch (spi_get_device_id(devrec->spi)->driver_data) {
1260 	case MRF24J40:
1261 	case MRF24J40MA:
1262 		devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1263 		devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1264 		devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1265 		break;
1266 	default:
1267 		break;
1268 	}
1269 }
1270 
mrf24j40_probe(struct spi_device * spi)1271 static int mrf24j40_probe(struct spi_device *spi)
1272 {
1273 	int ret = -ENOMEM, irq_type;
1274 	struct ieee802154_hw *hw;
1275 	struct mrf24j40 *devrec;
1276 
1277 	dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1278 
1279 	/* Register with the 802154 subsystem */
1280 
1281 	hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1282 	if (!hw)
1283 		goto err_ret;
1284 
1285 	devrec = hw->priv;
1286 	devrec->spi = spi;
1287 	spi_set_drvdata(spi, devrec);
1288 	devrec->hw = hw;
1289 	devrec->hw->parent = &spi->dev;
1290 	devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1291 	devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1292 			    IEEE802154_HW_CSMA_PARAMS |
1293 			    IEEE802154_HW_PROMISCUOUS;
1294 
1295 	devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1296 				 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1297 
1298 	mrf24j40_setup_tx_spi_messages(devrec);
1299 	mrf24j40_setup_rx_spi_messages(devrec);
1300 	mrf24j40_setup_irq_spi_messages(devrec);
1301 
1302 	devrec->regmap_short = devm_regmap_init_spi(spi,
1303 						    &mrf24j40_short_regmap);
1304 	if (IS_ERR(devrec->regmap_short)) {
1305 		ret = PTR_ERR(devrec->regmap_short);
1306 		dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1307 			ret);
1308 		goto err_register_device;
1309 	}
1310 
1311 	devrec->regmap_long = devm_regmap_init(&spi->dev,
1312 					       &mrf24j40_long_regmap_bus,
1313 					       spi, &mrf24j40_long_regmap);
1314 	if (IS_ERR(devrec->regmap_long)) {
1315 		ret = PTR_ERR(devrec->regmap_long);
1316 		dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1317 			ret);
1318 		goto err_register_device;
1319 	}
1320 
1321 	if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1322 		dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1323 			 MAX_SPI_SPEED_HZ);
1324 		ret = -EINVAL;
1325 		goto err_register_device;
1326 	}
1327 
1328 	ret = mrf24j40_hw_init(devrec);
1329 	if (ret)
1330 		goto err_register_device;
1331 
1332 	mrf24j40_phy_setup(devrec);
1333 
1334 	/* request IRQF_TRIGGER_LOW as fallback default */
1335 	irq_type = irq_get_trigger_type(spi->irq);
1336 	if (!irq_type)
1337 		irq_type = IRQF_TRIGGER_LOW;
1338 
1339 	ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1340 			       irq_type, dev_name(&spi->dev), devrec);
1341 	if (ret) {
1342 		dev_err(printdev(devrec), "Unable to get IRQ");
1343 		goto err_register_device;
1344 	}
1345 
1346 	dev_dbg(printdev(devrec), "registered mrf24j40\n");
1347 	ret = ieee802154_register_hw(devrec->hw);
1348 	if (ret)
1349 		goto err_register_device;
1350 
1351 	return 0;
1352 
1353 err_register_device:
1354 	ieee802154_free_hw(devrec->hw);
1355 err_ret:
1356 	return ret;
1357 }
1358 
mrf24j40_remove(struct spi_device * spi)1359 static int mrf24j40_remove(struct spi_device *spi)
1360 {
1361 	struct mrf24j40 *devrec = spi_get_drvdata(spi);
1362 
1363 	dev_dbg(printdev(devrec), "remove\n");
1364 
1365 	ieee802154_unregister_hw(devrec->hw);
1366 	ieee802154_free_hw(devrec->hw);
1367 	/* TODO: Will ieee802154_free_device() wait until ->xmit() is
1368 	 * complete? */
1369 
1370 	return 0;
1371 }
1372 
1373 static const struct of_device_id mrf24j40_of_match[] = {
1374 	{ .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1375 	{ .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1376 	{ .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1377 	{ },
1378 };
1379 MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1380 
1381 static const struct spi_device_id mrf24j40_ids[] = {
1382 	{ "mrf24j40", MRF24J40 },
1383 	{ "mrf24j40ma", MRF24J40MA },
1384 	{ "mrf24j40mc", MRF24J40MC },
1385 	{ },
1386 };
1387 MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1388 
1389 static struct spi_driver mrf24j40_driver = {
1390 	.driver = {
1391 		.of_match_table = of_match_ptr(mrf24j40_of_match),
1392 		.name = "mrf24j40",
1393 	},
1394 	.id_table = mrf24j40_ids,
1395 	.probe = mrf24j40_probe,
1396 	.remove = mrf24j40_remove,
1397 };
1398 
1399 module_spi_driver(mrf24j40_driver);
1400 
1401 MODULE_LICENSE("GPL");
1402 MODULE_AUTHOR("Alan Ott");
1403 MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");
1404