1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
4 *
5 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
6 * Signal 11 Software
7 */
8
9 #include <linux/spi/spi.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/regmap.h>
14 #include <linux/ieee802154.h>
15 #include <linux/irq.h>
16 #include <net/cfg802154.h>
17 #include <net/mac802154.h>
18
19 /* MRF24J40 Short Address Registers */
20 #define REG_RXMCR 0x00 /* Receive MAC control */
21 #define BIT_PROMI BIT(0)
22 #define BIT_ERRPKT BIT(1)
23 #define BIT_NOACKRSP BIT(5)
24 #define BIT_PANCOORD BIT(3)
25
26 #define REG_PANIDL 0x01 /* PAN ID (low) */
27 #define REG_PANIDH 0x02 /* PAN ID (high) */
28 #define REG_SADRL 0x03 /* Short address (low) */
29 #define REG_SADRH 0x04 /* Short address (high) */
30 #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
31 #define REG_EADR1 0x06
32 #define REG_EADR2 0x07
33 #define REG_EADR3 0x08
34 #define REG_EADR4 0x09
35 #define REG_EADR5 0x0A
36 #define REG_EADR6 0x0B
37 #define REG_EADR7 0x0C
38 #define REG_RXFLUSH 0x0D
39 #define REG_ORDER 0x10
40 #define REG_TXMCR 0x11 /* Transmit MAC control */
41 #define TXMCR_MIN_BE_SHIFT 3
42 #define TXMCR_MIN_BE_MASK 0x18
43 #define TXMCR_CSMA_RETRIES_SHIFT 0
44 #define TXMCR_CSMA_RETRIES_MASK 0x07
45
46 #define REG_ACKTMOUT 0x12
47 #define REG_ESLOTG1 0x13
48 #define REG_SYMTICKL 0x14
49 #define REG_SYMTICKH 0x15
50 #define REG_PACON0 0x16 /* Power Amplifier Control */
51 #define REG_PACON1 0x17 /* Power Amplifier Control */
52 #define REG_PACON2 0x18 /* Power Amplifier Control */
53 #define REG_TXBCON0 0x1A
54 #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
55 #define BIT_TXNTRIG BIT(0)
56 #define BIT_TXNSECEN BIT(1)
57 #define BIT_TXNACKREQ BIT(2)
58
59 #define REG_TXG1CON 0x1C
60 #define REG_TXG2CON 0x1D
61 #define REG_ESLOTG23 0x1E
62 #define REG_ESLOTG45 0x1F
63 #define REG_ESLOTG67 0x20
64 #define REG_TXPEND 0x21
65 #define REG_WAKECON 0x22
66 #define REG_FROMOFFSET 0x23
67 #define REG_TXSTAT 0x24 /* TX MAC Status Register */
68 #define REG_TXBCON1 0x25
69 #define REG_GATECLK 0x26
70 #define REG_TXTIME 0x27
71 #define REG_HSYMTMRL 0x28
72 #define REG_HSYMTMRH 0x29
73 #define REG_SOFTRST 0x2A /* Soft Reset */
74 #define REG_SECCON0 0x2C
75 #define REG_SECCON1 0x2D
76 #define REG_TXSTBL 0x2E /* TX Stabilization */
77 #define REG_RXSR 0x30
78 #define REG_INTSTAT 0x31 /* Interrupt Status */
79 #define BIT_TXNIF BIT(0)
80 #define BIT_RXIF BIT(3)
81 #define BIT_SECIF BIT(4)
82 #define BIT_SECIGNORE BIT(7)
83
84 #define REG_INTCON 0x32 /* Interrupt Control */
85 #define BIT_TXNIE BIT(0)
86 #define BIT_RXIE BIT(3)
87 #define BIT_SECIE BIT(4)
88
89 #define REG_GPIO 0x33 /* GPIO */
90 #define REG_TRISGPIO 0x34 /* GPIO direction */
91 #define REG_SLPACK 0x35
92 #define REG_RFCTL 0x36 /* RF Control Mode Register */
93 #define BIT_RFRST BIT(2)
94
95 #define REG_SECCR2 0x37
96 #define REG_BBREG0 0x38
97 #define REG_BBREG1 0x39 /* Baseband Registers */
98 #define BIT_RXDECINV BIT(2)
99
100 #define REG_BBREG2 0x3A /* */
101 #define BBREG2_CCA_MODE_SHIFT 6
102 #define BBREG2_CCA_MODE_MASK 0xc0
103
104 #define REG_BBREG3 0x3B
105 #define REG_BBREG4 0x3C
106 #define REG_BBREG6 0x3E /* */
107 #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
108
109 /* MRF24J40 Long Address Registers */
110 #define REG_RFCON0 0x200 /* RF Control Registers */
111 #define RFCON0_CH_SHIFT 4
112 #define RFCON0_CH_MASK 0xf0
113 #define RFOPT_RECOMMEND 3
114
115 #define REG_RFCON1 0x201
116 #define REG_RFCON2 0x202
117 #define REG_RFCON3 0x203
118
119 #define TXPWRL_MASK 0xc0
120 #define TXPWRL_SHIFT 6
121 #define TXPWRL_30 0x3
122 #define TXPWRL_20 0x2
123 #define TXPWRL_10 0x1
124 #define TXPWRL_0 0x0
125
126 #define TXPWRS_MASK 0x38
127 #define TXPWRS_SHIFT 3
128 #define TXPWRS_6_3 0x7
129 #define TXPWRS_4_9 0x6
130 #define TXPWRS_3_7 0x5
131 #define TXPWRS_2_8 0x4
132 #define TXPWRS_1_9 0x3
133 #define TXPWRS_1_2 0x2
134 #define TXPWRS_0_5 0x1
135 #define TXPWRS_0 0x0
136
137 #define REG_RFCON5 0x205
138 #define REG_RFCON6 0x206
139 #define REG_RFCON7 0x207
140 #define REG_RFCON8 0x208
141 #define REG_SLPCAL0 0x209
142 #define REG_SLPCAL1 0x20A
143 #define REG_SLPCAL2 0x20B
144 #define REG_RFSTATE 0x20F
145 #define REG_RSSI 0x210
146 #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
147 #define BIT_INTEDGE BIT(1)
148
149 #define REG_SLPCON1 0x220
150 #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
151 #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
152 #define REG_REMCNTL 0x224
153 #define REG_REMCNTH 0x225
154 #define REG_MAINCNT0 0x226
155 #define REG_MAINCNT1 0x227
156 #define REG_MAINCNT2 0x228
157 #define REG_MAINCNT3 0x229
158 #define REG_TESTMODE 0x22F /* Test mode */
159 #define REG_ASSOEAR0 0x230
160 #define REG_ASSOEAR1 0x231
161 #define REG_ASSOEAR2 0x232
162 #define REG_ASSOEAR3 0x233
163 #define REG_ASSOEAR4 0x234
164 #define REG_ASSOEAR5 0x235
165 #define REG_ASSOEAR6 0x236
166 #define REG_ASSOEAR7 0x237
167 #define REG_ASSOSAR0 0x238
168 #define REG_ASSOSAR1 0x239
169 #define REG_UNONCE0 0x240
170 #define REG_UNONCE1 0x241
171 #define REG_UNONCE2 0x242
172 #define REG_UNONCE3 0x243
173 #define REG_UNONCE4 0x244
174 #define REG_UNONCE5 0x245
175 #define REG_UNONCE6 0x246
176 #define REG_UNONCE7 0x247
177 #define REG_UNONCE8 0x248
178 #define REG_UNONCE9 0x249
179 #define REG_UNONCE10 0x24A
180 #define REG_UNONCE11 0x24B
181 #define REG_UNONCE12 0x24C
182 #define REG_RX_FIFO 0x300 /* Receive FIFO */
183
184 /* Device configuration: Only channels 11-26 on page 0 are supported. */
185 #define MRF24J40_CHAN_MIN 11
186 #define MRF24J40_CHAN_MAX 26
187 #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
188 - ((u32)1 << MRF24J40_CHAN_MIN))
189
190 #define TX_FIFO_SIZE 128 /* From datasheet */
191 #define RX_FIFO_SIZE 144 /* From datasheet */
192 #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
193
194 enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
195
196 /* Device Private Data */
197 struct mrf24j40 {
198 struct spi_device *spi;
199 struct ieee802154_hw *hw;
200
201 struct regmap *regmap_short;
202 struct regmap *regmap_long;
203
204 /* for writing txfifo */
205 struct spi_message tx_msg;
206 u8 tx_hdr_buf[2];
207 struct spi_transfer tx_hdr_trx;
208 u8 tx_len_buf[2];
209 struct spi_transfer tx_len_trx;
210 struct spi_transfer tx_buf_trx;
211 struct sk_buff *tx_skb;
212
213 /* post transmit message to send frame out */
214 struct spi_message tx_post_msg;
215 u8 tx_post_buf[2];
216 struct spi_transfer tx_post_trx;
217
218 /* for protect/unprotect/read length rxfifo */
219 struct spi_message rx_msg;
220 u8 rx_buf[3];
221 struct spi_transfer rx_trx;
222
223 /* receive handling */
224 struct spi_message rx_buf_msg;
225 u8 rx_addr_buf[2];
226 struct spi_transfer rx_addr_trx;
227 u8 rx_lqi_buf[2];
228 struct spi_transfer rx_lqi_trx;
229 u8 rx_fifo_buf[RX_FIFO_SIZE];
230 struct spi_transfer rx_fifo_buf_trx;
231
232 /* isr handling for reading intstat */
233 struct spi_message irq_msg;
234 u8 irq_buf[2];
235 struct spi_transfer irq_trx;
236 };
237
238 /* regmap information for short address register access */
239 #define MRF24J40_SHORT_WRITE 0x01
240 #define MRF24J40_SHORT_READ 0x00
241 #define MRF24J40_SHORT_NUMREGS 0x3F
242
243 /* regmap information for long address register access */
244 #define MRF24J40_LONG_ACCESS 0x80
245 #define MRF24J40_LONG_NUMREGS 0x38F
246
247 /* Read/Write SPI Commands for Short and Long Address registers. */
248 #define MRF24J40_READSHORT(reg) ((reg) << 1)
249 #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
250 #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
251 #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
252
253 /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
254 #define MAX_SPI_SPEED_HZ 10000000
255
256 #define printdev(X) (&X->spi->dev)
257
258 static bool
mrf24j40_short_reg_writeable(struct device * dev,unsigned int reg)259 mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
260 {
261 switch (reg) {
262 case REG_RXMCR:
263 case REG_PANIDL:
264 case REG_PANIDH:
265 case REG_SADRL:
266 case REG_SADRH:
267 case REG_EADR0:
268 case REG_EADR1:
269 case REG_EADR2:
270 case REG_EADR3:
271 case REG_EADR4:
272 case REG_EADR5:
273 case REG_EADR6:
274 case REG_EADR7:
275 case REG_RXFLUSH:
276 case REG_ORDER:
277 case REG_TXMCR:
278 case REG_ACKTMOUT:
279 case REG_ESLOTG1:
280 case REG_SYMTICKL:
281 case REG_SYMTICKH:
282 case REG_PACON0:
283 case REG_PACON1:
284 case REG_PACON2:
285 case REG_TXBCON0:
286 case REG_TXNCON:
287 case REG_TXG1CON:
288 case REG_TXG2CON:
289 case REG_ESLOTG23:
290 case REG_ESLOTG45:
291 case REG_ESLOTG67:
292 case REG_TXPEND:
293 case REG_WAKECON:
294 case REG_FROMOFFSET:
295 case REG_TXBCON1:
296 case REG_GATECLK:
297 case REG_TXTIME:
298 case REG_HSYMTMRL:
299 case REG_HSYMTMRH:
300 case REG_SOFTRST:
301 case REG_SECCON0:
302 case REG_SECCON1:
303 case REG_TXSTBL:
304 case REG_RXSR:
305 case REG_INTCON:
306 case REG_TRISGPIO:
307 case REG_GPIO:
308 case REG_RFCTL:
309 case REG_SECCR2:
310 case REG_SLPACK:
311 case REG_BBREG0:
312 case REG_BBREG1:
313 case REG_BBREG2:
314 case REG_BBREG3:
315 case REG_BBREG4:
316 case REG_BBREG6:
317 case REG_CCAEDTH:
318 return true;
319 default:
320 return false;
321 }
322 }
323
324 static bool
mrf24j40_short_reg_readable(struct device * dev,unsigned int reg)325 mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
326 {
327 bool rc;
328
329 /* all writeable are also readable */
330 rc = mrf24j40_short_reg_writeable(dev, reg);
331 if (rc)
332 return rc;
333
334 /* readonly regs */
335 switch (reg) {
336 case REG_TXSTAT:
337 case REG_INTSTAT:
338 return true;
339 default:
340 return false;
341 }
342 }
343
344 static bool
mrf24j40_short_reg_volatile(struct device * dev,unsigned int reg)345 mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
346 {
347 /* can be changed during runtime */
348 switch (reg) {
349 case REG_TXSTAT:
350 case REG_INTSTAT:
351 case REG_RXFLUSH:
352 case REG_TXNCON:
353 case REG_SOFTRST:
354 case REG_RFCTL:
355 case REG_TXBCON0:
356 case REG_TXG1CON:
357 case REG_TXG2CON:
358 case REG_TXBCON1:
359 case REG_SECCON0:
360 case REG_RXSR:
361 case REG_SLPACK:
362 case REG_SECCR2:
363 case REG_BBREG6:
364 /* use them in spi_async and regmap so it's volatile */
365 case REG_BBREG1:
366 return true;
367 default:
368 return false;
369 }
370 }
371
372 static bool
mrf24j40_short_reg_precious(struct device * dev,unsigned int reg)373 mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
374 {
375 /* don't clear irq line on read */
376 switch (reg) {
377 case REG_INTSTAT:
378 return true;
379 default:
380 return false;
381 }
382 }
383
384 static const struct regmap_config mrf24j40_short_regmap = {
385 .name = "mrf24j40_short",
386 .reg_bits = 7,
387 .val_bits = 8,
388 .pad_bits = 1,
389 .write_flag_mask = MRF24J40_SHORT_WRITE,
390 .read_flag_mask = MRF24J40_SHORT_READ,
391 .cache_type = REGCACHE_RBTREE,
392 .max_register = MRF24J40_SHORT_NUMREGS,
393 .writeable_reg = mrf24j40_short_reg_writeable,
394 .readable_reg = mrf24j40_short_reg_readable,
395 .volatile_reg = mrf24j40_short_reg_volatile,
396 .precious_reg = mrf24j40_short_reg_precious,
397 };
398
399 static bool
mrf24j40_long_reg_writeable(struct device * dev,unsigned int reg)400 mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
401 {
402 switch (reg) {
403 case REG_RFCON0:
404 case REG_RFCON1:
405 case REG_RFCON2:
406 case REG_RFCON3:
407 case REG_RFCON5:
408 case REG_RFCON6:
409 case REG_RFCON7:
410 case REG_RFCON8:
411 case REG_SLPCAL2:
412 case REG_SLPCON0:
413 case REG_SLPCON1:
414 case REG_WAKETIMEL:
415 case REG_WAKETIMEH:
416 case REG_REMCNTL:
417 case REG_REMCNTH:
418 case REG_MAINCNT0:
419 case REG_MAINCNT1:
420 case REG_MAINCNT2:
421 case REG_MAINCNT3:
422 case REG_TESTMODE:
423 case REG_ASSOEAR0:
424 case REG_ASSOEAR1:
425 case REG_ASSOEAR2:
426 case REG_ASSOEAR3:
427 case REG_ASSOEAR4:
428 case REG_ASSOEAR5:
429 case REG_ASSOEAR6:
430 case REG_ASSOEAR7:
431 case REG_ASSOSAR0:
432 case REG_ASSOSAR1:
433 case REG_UNONCE0:
434 case REG_UNONCE1:
435 case REG_UNONCE2:
436 case REG_UNONCE3:
437 case REG_UNONCE4:
438 case REG_UNONCE5:
439 case REG_UNONCE6:
440 case REG_UNONCE7:
441 case REG_UNONCE8:
442 case REG_UNONCE9:
443 case REG_UNONCE10:
444 case REG_UNONCE11:
445 case REG_UNONCE12:
446 return true;
447 default:
448 return false;
449 }
450 }
451
452 static bool
mrf24j40_long_reg_readable(struct device * dev,unsigned int reg)453 mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
454 {
455 bool rc;
456
457 /* all writeable are also readable */
458 rc = mrf24j40_long_reg_writeable(dev, reg);
459 if (rc)
460 return rc;
461
462 /* readonly regs */
463 switch (reg) {
464 case REG_SLPCAL0:
465 case REG_SLPCAL1:
466 case REG_RFSTATE:
467 case REG_RSSI:
468 return true;
469 default:
470 return false;
471 }
472 }
473
474 static bool
mrf24j40_long_reg_volatile(struct device * dev,unsigned int reg)475 mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
476 {
477 /* can be changed during runtime */
478 switch (reg) {
479 case REG_SLPCAL0:
480 case REG_SLPCAL1:
481 case REG_SLPCAL2:
482 case REG_RFSTATE:
483 case REG_RSSI:
484 case REG_MAINCNT3:
485 return true;
486 default:
487 return false;
488 }
489 }
490
491 static const struct regmap_config mrf24j40_long_regmap = {
492 .name = "mrf24j40_long",
493 .reg_bits = 11,
494 .val_bits = 8,
495 .pad_bits = 5,
496 .write_flag_mask = MRF24J40_LONG_ACCESS,
497 .read_flag_mask = MRF24J40_LONG_ACCESS,
498 .cache_type = REGCACHE_RBTREE,
499 .max_register = MRF24J40_LONG_NUMREGS,
500 .writeable_reg = mrf24j40_long_reg_writeable,
501 .readable_reg = mrf24j40_long_reg_readable,
502 .volatile_reg = mrf24j40_long_reg_volatile,
503 };
504
mrf24j40_long_regmap_write(void * context,const void * data,size_t count)505 static int mrf24j40_long_regmap_write(void *context, const void *data,
506 size_t count)
507 {
508 struct spi_device *spi = context;
509 u8 buf[3];
510
511 if (count > 3)
512 return -EINVAL;
513
514 /* regmap supports read/write mask only in frist byte
515 * long write access need to set the 12th bit, so we
516 * make special handling for write.
517 */
518 memcpy(buf, data, count);
519 buf[1] |= (1 << 4);
520
521 return spi_write(spi, buf, count);
522 }
523
524 static int
mrf24j40_long_regmap_read(void * context,const void * reg,size_t reg_size,void * val,size_t val_size)525 mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
526 void *val, size_t val_size)
527 {
528 struct spi_device *spi = context;
529
530 return spi_write_then_read(spi, reg, reg_size, val, val_size);
531 }
532
533 static const struct regmap_bus mrf24j40_long_regmap_bus = {
534 .write = mrf24j40_long_regmap_write,
535 .read = mrf24j40_long_regmap_read,
536 .reg_format_endian_default = REGMAP_ENDIAN_BIG,
537 .val_format_endian_default = REGMAP_ENDIAN_BIG,
538 };
539
write_tx_buf_complete(void * context)540 static void write_tx_buf_complete(void *context)
541 {
542 struct mrf24j40 *devrec = context;
543 __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
544 u8 val = BIT_TXNTRIG;
545 int ret;
546
547 if (ieee802154_is_secen(fc))
548 val |= BIT_TXNSECEN;
549
550 if (ieee802154_is_ackreq(fc))
551 val |= BIT_TXNACKREQ;
552
553 devrec->tx_post_msg.complete = NULL;
554 devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
555 devrec->tx_post_buf[1] = val;
556
557 ret = spi_async(devrec->spi, &devrec->tx_post_msg);
558 if (ret)
559 dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
560 }
561
562 /* This function relies on an undocumented write method. Once a write command
563 and address is set, as many bytes of data as desired can be clocked into
564 the device. The datasheet only shows setting one byte at a time. */
write_tx_buf(struct mrf24j40 * devrec,u16 reg,const u8 * data,size_t length)565 static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
566 const u8 *data, size_t length)
567 {
568 u16 cmd;
569 int ret;
570
571 /* Range check the length. 2 bytes are used for the length fields.*/
572 if (length > TX_FIFO_SIZE-2) {
573 dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
574 length = TX_FIFO_SIZE-2;
575 }
576
577 cmd = MRF24J40_WRITELONG(reg);
578 devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
579 devrec->tx_hdr_buf[1] = cmd & 0xff;
580 devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
581 devrec->tx_len_buf[1] = length; /* Total length */
582 devrec->tx_buf_trx.tx_buf = data;
583 devrec->tx_buf_trx.len = length;
584
585 ret = spi_async(devrec->spi, &devrec->tx_msg);
586 if (ret)
587 dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
588
589 return ret;
590 }
591
mrf24j40_tx(struct ieee802154_hw * hw,struct sk_buff * skb)592 static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
593 {
594 struct mrf24j40 *devrec = hw->priv;
595
596 dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
597 devrec->tx_skb = skb;
598
599 return write_tx_buf(devrec, 0x000, skb->data, skb->len);
600 }
601
mrf24j40_ed(struct ieee802154_hw * hw,u8 * level)602 static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
603 {
604 /* TODO: */
605 pr_warn("mrf24j40: ed not implemented\n");
606 *level = 0;
607 return 0;
608 }
609
mrf24j40_start(struct ieee802154_hw * hw)610 static int mrf24j40_start(struct ieee802154_hw *hw)
611 {
612 struct mrf24j40 *devrec = hw->priv;
613
614 dev_dbg(printdev(devrec), "start\n");
615
616 /* Clear TXNIE and RXIE. Enable interrupts */
617 return regmap_update_bits(devrec->regmap_short, REG_INTCON,
618 BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
619 }
620
mrf24j40_stop(struct ieee802154_hw * hw)621 static void mrf24j40_stop(struct ieee802154_hw *hw)
622 {
623 struct mrf24j40 *devrec = hw->priv;
624
625 dev_dbg(printdev(devrec), "stop\n");
626
627 /* Set TXNIE and RXIE. Disable Interrupts */
628 regmap_update_bits(devrec->regmap_short, REG_INTCON,
629 BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
630 }
631
mrf24j40_set_channel(struct ieee802154_hw * hw,u8 page,u8 channel)632 static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
633 {
634 struct mrf24j40 *devrec = hw->priv;
635 u8 val;
636 int ret;
637
638 dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
639
640 WARN_ON(page != 0);
641 WARN_ON(channel < MRF24J40_CHAN_MIN);
642 WARN_ON(channel > MRF24J40_CHAN_MAX);
643
644 /* Set Channel TODO */
645 val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
646 ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
647 RFCON0_CH_MASK, val);
648 if (ret)
649 return ret;
650
651 /* RF Reset */
652 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
653 BIT_RFRST);
654 if (ret)
655 return ret;
656
657 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
658 if (!ret)
659 udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
660
661 return ret;
662 }
663
mrf24j40_filter(struct ieee802154_hw * hw,struct ieee802154_hw_addr_filt * filt,unsigned long changed)664 static int mrf24j40_filter(struct ieee802154_hw *hw,
665 struct ieee802154_hw_addr_filt *filt,
666 unsigned long changed)
667 {
668 struct mrf24j40 *devrec = hw->priv;
669
670 dev_dbg(printdev(devrec), "filter\n");
671
672 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
673 /* Short Addr */
674 u8 addrh, addrl;
675
676 addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
677 addrl = le16_to_cpu(filt->short_addr) & 0xff;
678
679 regmap_write(devrec->regmap_short, REG_SADRH, addrh);
680 regmap_write(devrec->regmap_short, REG_SADRL, addrl);
681 dev_dbg(printdev(devrec),
682 "Set short addr to %04hx\n", filt->short_addr);
683 }
684
685 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
686 /* Device Address */
687 u8 i, addr[8];
688
689 memcpy(addr, &filt->ieee_addr, 8);
690 for (i = 0; i < 8; i++)
691 regmap_write(devrec->regmap_short, REG_EADR0 + i,
692 addr[i]);
693
694 #ifdef DEBUG
695 pr_debug("Set long addr to: ");
696 for (i = 0; i < 8; i++)
697 pr_debug("%02hhx ", addr[7 - i]);
698 pr_debug("\n");
699 #endif
700 }
701
702 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
703 /* PAN ID */
704 u8 panidl, panidh;
705
706 panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
707 panidl = le16_to_cpu(filt->pan_id) & 0xff;
708 regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
709 regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
710
711 dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
712 }
713
714 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
715 /* Pan Coordinator */
716 u8 val;
717 int ret;
718
719 if (filt->pan_coord)
720 val = BIT_PANCOORD;
721 else
722 val = 0;
723 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
724 BIT_PANCOORD, val);
725 if (ret)
726 return ret;
727
728 /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
729 * REG_ORDER is maintained as default (no beacon/superframe).
730 */
731
732 dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
733 filt->pan_coord ? "on" : "off");
734 }
735
736 return 0;
737 }
738
mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 * devrec)739 static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
740 {
741 int ret;
742
743 /* Turn back on reception of packets off the air. */
744 devrec->rx_msg.complete = NULL;
745 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
746 devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
747 ret = spi_async(devrec->spi, &devrec->rx_msg);
748 if (ret)
749 dev_err(printdev(devrec), "failed to unlock rx buffer\n");
750 }
751
mrf24j40_handle_rx_read_buf_complete(void * context)752 static void mrf24j40_handle_rx_read_buf_complete(void *context)
753 {
754 struct mrf24j40 *devrec = context;
755 u8 len = devrec->rx_buf[2];
756 u8 rx_local_buf[RX_FIFO_SIZE];
757 struct sk_buff *skb;
758
759 memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
760 mrf24j40_handle_rx_read_buf_unlock(devrec);
761
762 skb = dev_alloc_skb(IEEE802154_MTU);
763 if (!skb) {
764 dev_err(printdev(devrec), "failed to allocate skb\n");
765 return;
766 }
767
768 skb_put_data(skb, rx_local_buf, len);
769 ieee802154_rx_irqsafe(devrec->hw, skb, 0);
770
771 #ifdef DEBUG
772 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
773 rx_local_buf, len, 0);
774 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
775 devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
776 #endif
777 }
778
mrf24j40_handle_rx_read_buf(void * context)779 static void mrf24j40_handle_rx_read_buf(void *context)
780 {
781 struct mrf24j40 *devrec = context;
782 u16 cmd;
783 int ret;
784
785 /* if length is invalid read the full MTU */
786 if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
787 devrec->rx_buf[2] = IEEE802154_MTU;
788
789 cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
790 devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
791 devrec->rx_addr_buf[1] = cmd & 0xff;
792 devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
793 ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
794 if (ret) {
795 dev_err(printdev(devrec), "failed to read rx buffer\n");
796 mrf24j40_handle_rx_read_buf_unlock(devrec);
797 }
798 }
799
mrf24j40_handle_rx_read_len(void * context)800 static void mrf24j40_handle_rx_read_len(void *context)
801 {
802 struct mrf24j40 *devrec = context;
803 u16 cmd;
804 int ret;
805
806 /* read the length of received frame */
807 devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
808 devrec->rx_trx.len = 3;
809 cmd = MRF24J40_READLONG(REG_RX_FIFO);
810 devrec->rx_buf[0] = cmd >> 8 & 0xff;
811 devrec->rx_buf[1] = cmd & 0xff;
812
813 ret = spi_async(devrec->spi, &devrec->rx_msg);
814 if (ret) {
815 dev_err(printdev(devrec), "failed to read rx buffer length\n");
816 mrf24j40_handle_rx_read_buf_unlock(devrec);
817 }
818 }
819
mrf24j40_handle_rx(struct mrf24j40 * devrec)820 static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
821 {
822 /* Turn off reception of packets off the air. This prevents the
823 * device from overwriting the buffer while we're reading it.
824 */
825 devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
826 devrec->rx_trx.len = 2;
827 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
828 devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
829
830 return spi_async(devrec->spi, &devrec->rx_msg);
831 }
832
833 static int
mrf24j40_csma_params(struct ieee802154_hw * hw,u8 min_be,u8 max_be,u8 retries)834 mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
835 u8 retries)
836 {
837 struct mrf24j40 *devrec = hw->priv;
838 u8 val;
839
840 /* min_be */
841 val = min_be << TXMCR_MIN_BE_SHIFT;
842 /* csma backoffs */
843 val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
844
845 return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
846 TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
847 val);
848 }
849
mrf24j40_set_cca_mode(struct ieee802154_hw * hw,const struct wpan_phy_cca * cca)850 static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
851 const struct wpan_phy_cca *cca)
852 {
853 struct mrf24j40 *devrec = hw->priv;
854 u8 val;
855
856 /* mapping 802.15.4 to driver spec */
857 switch (cca->mode) {
858 case NL802154_CCA_ENERGY:
859 val = 2;
860 break;
861 case NL802154_CCA_CARRIER:
862 val = 1;
863 break;
864 case NL802154_CCA_ENERGY_CARRIER:
865 switch (cca->opt) {
866 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
867 val = 3;
868 break;
869 default:
870 return -EINVAL;
871 }
872 break;
873 default:
874 return -EINVAL;
875 }
876
877 return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
878 BBREG2_CCA_MODE_MASK,
879 val << BBREG2_CCA_MODE_SHIFT);
880 }
881
882 /* array for representing ed levels */
883 static const s32 mrf24j40_ed_levels[] = {
884 -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
885 -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
886 -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
887 -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
888 -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
889 -4000, -3900, -3800, -3700, -3600, -3500
890 };
891
892 /* map ed levels to register value */
893 static const s32 mrf24j40_ed_levels_map[][2] = {
894 { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
895 { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
896 { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
897 { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
898 { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
899 { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
900 { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
901 { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
902 { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
903 { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
904 { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
905 { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
906 { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
907 { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
908 };
909
mrf24j40_set_cca_ed_level(struct ieee802154_hw * hw,s32 mbm)910 static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
911 {
912 struct mrf24j40 *devrec = hw->priv;
913 int i;
914
915 for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
916 if (mrf24j40_ed_levels_map[i][0] == mbm)
917 return regmap_write(devrec->regmap_short, REG_CCAEDTH,
918 mrf24j40_ed_levels_map[i][1]);
919 }
920
921 return -EINVAL;
922 }
923
924 static const s32 mrf24j40ma_powers[] = {
925 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
926 -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
927 -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
928 };
929
mrf24j40_set_txpower(struct ieee802154_hw * hw,s32 mbm)930 static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
931 {
932 struct mrf24j40 *devrec = hw->priv;
933 s32 small_scale;
934 u8 val;
935
936 if (0 >= mbm && mbm > -1000) {
937 val = TXPWRL_0 << TXPWRL_SHIFT;
938 small_scale = mbm;
939 } else if (-1000 >= mbm && mbm > -2000) {
940 val = TXPWRL_10 << TXPWRL_SHIFT;
941 small_scale = mbm + 1000;
942 } else if (-2000 >= mbm && mbm > -3000) {
943 val = TXPWRL_20 << TXPWRL_SHIFT;
944 small_scale = mbm + 2000;
945 } else if (-3000 >= mbm && mbm > -4000) {
946 val = TXPWRL_30 << TXPWRL_SHIFT;
947 small_scale = mbm + 3000;
948 } else {
949 return -EINVAL;
950 }
951
952 switch (small_scale) {
953 case 0:
954 val |= (TXPWRS_0 << TXPWRS_SHIFT);
955 break;
956 case -50:
957 val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
958 break;
959 case -120:
960 val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
961 break;
962 case -190:
963 val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
964 break;
965 case -280:
966 val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
967 break;
968 case -370:
969 val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
970 break;
971 case -490:
972 val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
973 break;
974 case -630:
975 val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
976 break;
977 default:
978 return -EINVAL;
979 }
980
981 return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
982 TXPWRL_MASK | TXPWRS_MASK, val);
983 }
984
mrf24j40_set_promiscuous_mode(struct ieee802154_hw * hw,bool on)985 static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
986 {
987 struct mrf24j40 *devrec = hw->priv;
988 int ret;
989
990 if (on) {
991 /* set PROMI, ERRPKT and NOACKRSP */
992 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
993 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
994 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
995 } else {
996 /* clear PROMI, ERRPKT and NOACKRSP */
997 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
998 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
999 0);
1000 }
1001
1002 return ret;
1003 }
1004
1005 static const struct ieee802154_ops mrf24j40_ops = {
1006 .owner = THIS_MODULE,
1007 .xmit_async = mrf24j40_tx,
1008 .ed = mrf24j40_ed,
1009 .start = mrf24j40_start,
1010 .stop = mrf24j40_stop,
1011 .set_channel = mrf24j40_set_channel,
1012 .set_hw_addr_filt = mrf24j40_filter,
1013 .set_csma_params = mrf24j40_csma_params,
1014 .set_cca_mode = mrf24j40_set_cca_mode,
1015 .set_cca_ed_level = mrf24j40_set_cca_ed_level,
1016 .set_txpower = mrf24j40_set_txpower,
1017 .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1018 };
1019
mrf24j40_intstat_complete(void * context)1020 static void mrf24j40_intstat_complete(void *context)
1021 {
1022 struct mrf24j40 *devrec = context;
1023 u8 intstat = devrec->irq_buf[1];
1024
1025 enable_irq(devrec->spi->irq);
1026
1027 /* Ignore Rx security decryption */
1028 if (intstat & BIT_SECIF)
1029 regmap_write_async(devrec->regmap_short, REG_SECCON0,
1030 BIT_SECIGNORE);
1031
1032 /* Check for TX complete */
1033 if (intstat & BIT_TXNIF)
1034 ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1035
1036 /* Check for Rx */
1037 if (intstat & BIT_RXIF)
1038 mrf24j40_handle_rx(devrec);
1039 }
1040
mrf24j40_isr(int irq,void * data)1041 static irqreturn_t mrf24j40_isr(int irq, void *data)
1042 {
1043 struct mrf24j40 *devrec = data;
1044 int ret;
1045
1046 disable_irq_nosync(irq);
1047
1048 devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1049 devrec->irq_buf[1] = 0;
1050
1051 /* Read the interrupt status */
1052 ret = spi_async(devrec->spi, &devrec->irq_msg);
1053 if (ret) {
1054 enable_irq(irq);
1055 return IRQ_NONE;
1056 }
1057
1058 return IRQ_HANDLED;
1059 }
1060
mrf24j40_hw_init(struct mrf24j40 * devrec)1061 static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1062 {
1063 u32 irq_type;
1064 int ret;
1065
1066 /* Initialize the device.
1067 From datasheet section 3.2: Initialization. */
1068 ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1069 if (ret)
1070 goto err_ret;
1071
1072 ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1073 if (ret)
1074 goto err_ret;
1075
1076 ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1077 if (ret)
1078 goto err_ret;
1079
1080 ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1081 if (ret)
1082 goto err_ret;
1083
1084 ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1085 if (ret)
1086 goto err_ret;
1087
1088 ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1089 if (ret)
1090 goto err_ret;
1091
1092 ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1093 if (ret)
1094 goto err_ret;
1095
1096 ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1097 if (ret)
1098 goto err_ret;
1099
1100 ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1101 if (ret)
1102 goto err_ret;
1103
1104 ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1105 if (ret)
1106 goto err_ret;
1107
1108 ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1109 if (ret)
1110 goto err_ret;
1111
1112 ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1113 if (ret)
1114 goto err_ret;
1115
1116 ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1117 if (ret)
1118 goto err_ret;
1119
1120 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1121 if (ret)
1122 goto err_ret;
1123
1124 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1125 if (ret)
1126 goto err_ret;
1127
1128 udelay(192);
1129
1130 /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1131 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1132 if (ret)
1133 goto err_ret;
1134
1135 if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1136 /* Enable external amplifier.
1137 * From MRF24J40MC datasheet section 1.3: Operation.
1138 */
1139 regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1140 0x07);
1141
1142 /* Set GPIO3 as output. */
1143 regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1144 0x08);
1145
1146 /* Set GPIO3 HIGH to enable U5 voltage regulator */
1147 regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1148
1149 /* Reduce TX pwr to meet FCC requirements.
1150 * From MRF24J40MC datasheet section 3.1.1
1151 */
1152 regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1153 }
1154
1155 irq_type = irq_get_trigger_type(devrec->spi->irq);
1156 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1157 irq_type == IRQ_TYPE_EDGE_FALLING)
1158 dev_warn(&devrec->spi->dev,
1159 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1160 switch (irq_type) {
1161 case IRQ_TYPE_EDGE_RISING:
1162 case IRQ_TYPE_LEVEL_HIGH:
1163 /* set interrupt polarity to rising */
1164 ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1165 BIT_INTEDGE, BIT_INTEDGE);
1166 if (ret)
1167 goto err_ret;
1168 break;
1169 default:
1170 /* default is falling edge */
1171 break;
1172 }
1173
1174 return 0;
1175
1176 err_ret:
1177 return ret;
1178 }
1179
1180 static void
mrf24j40_setup_tx_spi_messages(struct mrf24j40 * devrec)1181 mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1182 {
1183 spi_message_init(&devrec->tx_msg);
1184 devrec->tx_msg.context = devrec;
1185 devrec->tx_msg.complete = write_tx_buf_complete;
1186 devrec->tx_hdr_trx.len = 2;
1187 devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1188 spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1189 devrec->tx_len_trx.len = 2;
1190 devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1191 spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1192 spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1193
1194 spi_message_init(&devrec->tx_post_msg);
1195 devrec->tx_post_msg.context = devrec;
1196 devrec->tx_post_trx.len = 2;
1197 devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1198 spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1199 }
1200
1201 static void
mrf24j40_setup_rx_spi_messages(struct mrf24j40 * devrec)1202 mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1203 {
1204 spi_message_init(&devrec->rx_msg);
1205 devrec->rx_msg.context = devrec;
1206 devrec->rx_trx.len = 2;
1207 devrec->rx_trx.tx_buf = devrec->rx_buf;
1208 devrec->rx_trx.rx_buf = devrec->rx_buf;
1209 spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1210
1211 spi_message_init(&devrec->rx_buf_msg);
1212 devrec->rx_buf_msg.context = devrec;
1213 devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1214 devrec->rx_addr_trx.len = 2;
1215 devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1216 spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1217 devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1218 spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1219 devrec->rx_lqi_trx.len = 2;
1220 devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1221 spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1222 }
1223
1224 static void
mrf24j40_setup_irq_spi_messages(struct mrf24j40 * devrec)1225 mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1226 {
1227 spi_message_init(&devrec->irq_msg);
1228 devrec->irq_msg.context = devrec;
1229 devrec->irq_msg.complete = mrf24j40_intstat_complete;
1230 devrec->irq_trx.len = 2;
1231 devrec->irq_trx.tx_buf = devrec->irq_buf;
1232 devrec->irq_trx.rx_buf = devrec->irq_buf;
1233 spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1234 }
1235
mrf24j40_phy_setup(struct mrf24j40 * devrec)1236 static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
1237 {
1238 ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1239 devrec->hw->phy->current_channel = 11;
1240
1241 /* mrf24j40 supports max_minbe 0 - 3 */
1242 devrec->hw->phy->supported.max_minbe = 3;
1243 /* datasheet doesn't say anything about max_be, but we have min_be
1244 * So we assume the max_be default.
1245 */
1246 devrec->hw->phy->supported.min_maxbe = 5;
1247 devrec->hw->phy->supported.max_maxbe = 5;
1248
1249 devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1250 devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1251 BIT(NL802154_CCA_CARRIER) |
1252 BIT(NL802154_CCA_ENERGY_CARRIER);
1253 devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1254
1255 devrec->hw->phy->cca_ed_level = -6900;
1256 devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1257 devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1258
1259 switch (spi_get_device_id(devrec->spi)->driver_data) {
1260 case MRF24J40:
1261 case MRF24J40MA:
1262 devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1263 devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1264 devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1265 break;
1266 default:
1267 break;
1268 }
1269 }
1270
mrf24j40_probe(struct spi_device * spi)1271 static int mrf24j40_probe(struct spi_device *spi)
1272 {
1273 int ret = -ENOMEM, irq_type;
1274 struct ieee802154_hw *hw;
1275 struct mrf24j40 *devrec;
1276
1277 dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1278
1279 /* Register with the 802154 subsystem */
1280
1281 hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1282 if (!hw)
1283 goto err_ret;
1284
1285 devrec = hw->priv;
1286 devrec->spi = spi;
1287 spi_set_drvdata(spi, devrec);
1288 devrec->hw = hw;
1289 devrec->hw->parent = &spi->dev;
1290 devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1291 devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1292 IEEE802154_HW_CSMA_PARAMS |
1293 IEEE802154_HW_PROMISCUOUS;
1294
1295 devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1296 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1297
1298 mrf24j40_setup_tx_spi_messages(devrec);
1299 mrf24j40_setup_rx_spi_messages(devrec);
1300 mrf24j40_setup_irq_spi_messages(devrec);
1301
1302 devrec->regmap_short = devm_regmap_init_spi(spi,
1303 &mrf24j40_short_regmap);
1304 if (IS_ERR(devrec->regmap_short)) {
1305 ret = PTR_ERR(devrec->regmap_short);
1306 dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1307 ret);
1308 goto err_register_device;
1309 }
1310
1311 devrec->regmap_long = devm_regmap_init(&spi->dev,
1312 &mrf24j40_long_regmap_bus,
1313 spi, &mrf24j40_long_regmap);
1314 if (IS_ERR(devrec->regmap_long)) {
1315 ret = PTR_ERR(devrec->regmap_long);
1316 dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1317 ret);
1318 goto err_register_device;
1319 }
1320
1321 if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1322 dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1323 MAX_SPI_SPEED_HZ);
1324 ret = -EINVAL;
1325 goto err_register_device;
1326 }
1327
1328 ret = mrf24j40_hw_init(devrec);
1329 if (ret)
1330 goto err_register_device;
1331
1332 mrf24j40_phy_setup(devrec);
1333
1334 /* request IRQF_TRIGGER_LOW as fallback default */
1335 irq_type = irq_get_trigger_type(spi->irq);
1336 if (!irq_type)
1337 irq_type = IRQF_TRIGGER_LOW;
1338
1339 ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1340 irq_type, dev_name(&spi->dev), devrec);
1341 if (ret) {
1342 dev_err(printdev(devrec), "Unable to get IRQ");
1343 goto err_register_device;
1344 }
1345
1346 dev_dbg(printdev(devrec), "registered mrf24j40\n");
1347 ret = ieee802154_register_hw(devrec->hw);
1348 if (ret)
1349 goto err_register_device;
1350
1351 return 0;
1352
1353 err_register_device:
1354 ieee802154_free_hw(devrec->hw);
1355 err_ret:
1356 return ret;
1357 }
1358
mrf24j40_remove(struct spi_device * spi)1359 static int mrf24j40_remove(struct spi_device *spi)
1360 {
1361 struct mrf24j40 *devrec = spi_get_drvdata(spi);
1362
1363 dev_dbg(printdev(devrec), "remove\n");
1364
1365 ieee802154_unregister_hw(devrec->hw);
1366 ieee802154_free_hw(devrec->hw);
1367 /* TODO: Will ieee802154_free_device() wait until ->xmit() is
1368 * complete? */
1369
1370 return 0;
1371 }
1372
1373 static const struct of_device_id mrf24j40_of_match[] = {
1374 { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1375 { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1376 { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1377 { },
1378 };
1379 MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1380
1381 static const struct spi_device_id mrf24j40_ids[] = {
1382 { "mrf24j40", MRF24J40 },
1383 { "mrf24j40ma", MRF24J40MA },
1384 { "mrf24j40mc", MRF24J40MC },
1385 { },
1386 };
1387 MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1388
1389 static struct spi_driver mrf24j40_driver = {
1390 .driver = {
1391 .of_match_table = of_match_ptr(mrf24j40_of_match),
1392 .name = "mrf24j40",
1393 },
1394 .id_table = mrf24j40_ids,
1395 .probe = mrf24j40_probe,
1396 .remove = mrf24j40_remove,
1397 };
1398
1399 module_spi_driver(mrf24j40_driver);
1400
1401 MODULE_LICENSE("GPL");
1402 MODULE_AUTHOR("Alan Ott");
1403 MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");
1404