• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/types.h>
64 #include <linux/slab.h>
65 #include <linux/export.h>
66 #include <linux/etherdevice.h>
67 #include <linux/pci.h>
68 #include <linux/firmware.h>
69 
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76 #include "fw/acpi.h"
77 #include "fw/api/nvm-reg.h"
78 #include "fw/api/commands.h"
79 #include "fw/api/cmdhdr.h"
80 #include "fw/img.h"
81 
82 /* NVM offsets (in words) definitions */
83 enum nvm_offsets {
84 	/* NVM HW-Section offset (in words) definitions */
85 	SUBSYSTEM_ID = 0x0A,
86 	HW_ADDR = 0x15,
87 
88 	/* NVM SW-Section offset (in words) definitions */
89 	NVM_SW_SECTION = 0x1C0,
90 	NVM_VERSION = 0,
91 	RADIO_CFG = 1,
92 	SKU = 2,
93 	N_HW_ADDRS = 3,
94 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
95 
96 	/* NVM calibration section offset (in words) definitions */
97 	NVM_CALIB_SECTION = 0x2B8,
98 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
99 
100 	/* NVM REGULATORY -Section offset (in words) definitions */
101 	NVM_CHANNELS_SDP = 0,
102 };
103 
104 enum ext_nvm_offsets {
105 	/* NVM HW-Section offset (in words) definitions */
106 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
107 
108 	/* NVM SW-Section offset (in words) definitions */
109 	NVM_VERSION_EXT_NVM = 0,
110 	RADIO_CFG_FAMILY_EXT_NVM = 0,
111 	SKU_FAMILY_8000 = 2,
112 	N_HW_ADDRS_FAMILY_8000 = 3,
113 
114 	/* NVM REGULATORY -Section offset (in words) definitions */
115 	NVM_CHANNELS_EXTENDED = 0,
116 	NVM_LAR_OFFSET_OLD = 0x4C7,
117 	NVM_LAR_OFFSET = 0x507,
118 	NVM_LAR_ENABLED = 0x7,
119 };
120 
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
124 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
125 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
126 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
127 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
128 };
129 
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u16 iwl_nvm_channels[] = {
134 	/* 2.4 GHz */
135 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136 	/* 5 GHz */
137 	36, 40, 44 , 48, 52, 56, 60, 64,
138 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139 	149, 153, 157, 161, 165
140 };
141 
142 static const u16 iwl_ext_nvm_channels[] = {
143 	/* 2.4 GHz */
144 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145 	/* 5 GHz */
146 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148 	149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150 
151 static const u16 iwl_uhb_nvm_channels[] = {
152 	/* 2.4 GHz */
153 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
154 	/* 5 GHz */
155 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
156 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
157 	149, 153, 157, 161, 165, 169, 173, 177, 181,
158 	/* 6-7 GHz */
159 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
160 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
161 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
162 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
163 };
164 
165 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
166 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
167 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
168 #define NUM_2GHZ_CHANNELS		14
169 #define FIRST_2GHZ_HT_MINUS		5
170 #define LAST_2GHZ_HT_PLUS		9
171 #define N_HW_ADDR_MASK			0xF
172 
173 /* rate data (static) */
174 static struct ieee80211_rate iwl_cfg80211_rates[] = {
175 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
176 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
177 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
178 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
179 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
180 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
181 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
182 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
183 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
184 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
185 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
186 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
187 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
188 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
189 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
190 };
191 #define RATES_24_OFFS	0
192 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
193 #define RATES_52_OFFS	4
194 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
195 
196 /**
197  * enum iwl_nvm_channel_flags - channel flags in NVM
198  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
199  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
200  * @NVM_CHANNEL_ACTIVE: active scanning allowed
201  * @NVM_CHANNEL_RADAR: radar detection required
202  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
203  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
204  *	on same channel on 2.4 or same UNII band on 5.2
205  * @NVM_CHANNEL_UNIFORM: uniform spreading required
206  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
207  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
208  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
209  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
210  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
211  */
212 enum iwl_nvm_channel_flags {
213 	NVM_CHANNEL_VALID		= BIT(0),
214 	NVM_CHANNEL_IBSS		= BIT(1),
215 	NVM_CHANNEL_ACTIVE		= BIT(3),
216 	NVM_CHANNEL_RADAR		= BIT(4),
217 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
218 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
219 	NVM_CHANNEL_UNIFORM		= BIT(7),
220 	NVM_CHANNEL_20MHZ		= BIT(8),
221 	NVM_CHANNEL_40MHZ		= BIT(9),
222 	NVM_CHANNEL_80MHZ		= BIT(10),
223 	NVM_CHANNEL_160MHZ		= BIT(11),
224 	NVM_CHANNEL_DC_HIGH		= BIT(12),
225 };
226 
227 /**
228  * enum iwl_reg_capa_flags - global flags applied for the whole regulatory
229  * domain.
230  * @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
231  *	2.4Ghz band is allowed.
232  * @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
233  *	5Ghz band is allowed.
234  * @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
235  *	for this regulatory domain (valid only in 5Ghz).
236  * @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
237  *	for this regulatory domain (valid only in 5Ghz).
238  * @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
239  * @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
240  * @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
241  *	for this regulatory domain (valid only in 5Ghz).
242  * @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
243  * @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
244  */
245 enum iwl_reg_capa_flags {
246 	REG_CAPA_BF_CCD_LOW_BAND	= BIT(0),
247 	REG_CAPA_BF_CCD_HIGH_BAND	= BIT(1),
248 	REG_CAPA_160MHZ_ALLOWED		= BIT(2),
249 	REG_CAPA_80MHZ_ALLOWED		= BIT(3),
250 	REG_CAPA_MCS_8_ALLOWED		= BIT(4),
251 	REG_CAPA_MCS_9_ALLOWED		= BIT(5),
252 	REG_CAPA_40MHZ_FORBIDDEN	= BIT(7),
253 	REG_CAPA_DC_HIGH_ENABLED	= BIT(9),
254 	REG_CAPA_11AX_DISABLED		= BIT(10),
255 };
256 
257 /**
258  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
259  * domain (version 2).
260  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
261  *	disabled.
262  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
263  *	2.4Ghz band is allowed.
264  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
265  *	5Ghz band is allowed.
266  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
267  *	for this regulatory domain (valid only in 5Ghz).
268  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
269  *	for this regulatory domain (valid only in 5Ghz).
270  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
271  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
272  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
273  *	126, 122) are disabled.
274  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
275  *	for this regulatory domain (uvalid only in 5Ghz).
276  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
277  */
278 enum iwl_reg_capa_flags_v2 {
279 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
280 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
281 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
282 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
283 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
284 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
285 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
286 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
287 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
288 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
289 };
290 
291 /*
292 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
293 * MCC update command response.
294 */
295 #define REG_CAPA_V2_RESP_VER	6
296 
297 /**
298  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
299  * handling the different APIs of reg_capa_flags.
300  *
301  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
302  *	for this regulatory domain (valid only in 5Ghz).
303  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
304  *	for this regulatory domain (valid only in 5Ghz).
305  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
306  *	for this regulatory domain (valid only in 5Ghz).
307  * @disable_11ax: 11ax is forbidden for this regulatory domain.
308  */
309 struct iwl_reg_capa {
310 	u16 allow_40mhz;
311 	u16 allow_80mhz;
312 	u16 allow_160mhz;
313 	u16 disable_11ax;
314 };
315 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)316 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
317 					       int chan, u32 flags)
318 {
319 #define CHECK_AND_PRINT_I(x)	\
320 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
321 
322 	if (!(flags & NVM_CHANNEL_VALID)) {
323 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
324 			      chan, flags);
325 		return;
326 	}
327 
328 	/* Note: already can print up to 101 characters, 110 is the limit! */
329 	IWL_DEBUG_DEV(dev, level,
330 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
331 		      chan, flags,
332 		      CHECK_AND_PRINT_I(VALID),
333 		      CHECK_AND_PRINT_I(IBSS),
334 		      CHECK_AND_PRINT_I(ACTIVE),
335 		      CHECK_AND_PRINT_I(RADAR),
336 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
337 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
338 		      CHECK_AND_PRINT_I(UNIFORM),
339 		      CHECK_AND_PRINT_I(20MHZ),
340 		      CHECK_AND_PRINT_I(40MHZ),
341 		      CHECK_AND_PRINT_I(80MHZ),
342 		      CHECK_AND_PRINT_I(160MHZ),
343 		      CHECK_AND_PRINT_I(DC_HIGH));
344 #undef CHECK_AND_PRINT_I
345 }
346 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)347 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
348 				 u32 nvm_flags, const struct iwl_cfg *cfg)
349 {
350 	u32 flags = IEEE80211_CHAN_NO_HT40;
351 
352 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
353 		if (ch_num <= LAST_2GHZ_HT_PLUS)
354 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
355 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
356 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
357 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
358 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
359 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
360 		else
361 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
362 	}
363 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
364 		flags |= IEEE80211_CHAN_NO_80MHZ;
365 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
366 		flags |= IEEE80211_CHAN_NO_160MHZ;
367 
368 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
369 		flags |= IEEE80211_CHAN_NO_IR;
370 
371 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
372 		flags |= IEEE80211_CHAN_NO_IR;
373 
374 	if (nvm_flags & NVM_CHANNEL_RADAR)
375 		flags |= IEEE80211_CHAN_RADAR;
376 
377 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
378 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
379 
380 	/* Set the GO concurrent flag only in case that NO_IR is set.
381 	 * Otherwise it is meaningless
382 	 */
383 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
384 	    (flags & IEEE80211_CHAN_NO_IR))
385 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
386 
387 	return flags;
388 }
389 
iwl_nl80211_band_from_channel_idx(int ch_idx)390 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
391 {
392 	if (ch_idx >= NUM_2GHZ_CHANNELS)
393 		return NL80211_BAND_5GHZ;
394 	return NL80211_BAND_2GHZ;
395 }
396 
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)397 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
398 				struct iwl_nvm_data *data,
399 				const void * const nvm_ch_flags,
400 				u32 sbands_flags, bool v4)
401 {
402 	int ch_idx;
403 	int n_channels = 0;
404 	struct ieee80211_channel *channel;
405 	u32 ch_flags;
406 	int num_of_ch;
407 	const u16 *nvm_chan;
408 
409 	if (cfg->uhb_supported) {
410 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
411 		nvm_chan = iwl_uhb_nvm_channels;
412 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
413 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
414 		nvm_chan = iwl_ext_nvm_channels;
415 	} else {
416 		num_of_ch = IWL_NVM_NUM_CHANNELS;
417 		nvm_chan = iwl_nvm_channels;
418 	}
419 
420 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
421 		enum nl80211_band band =
422 			iwl_nl80211_band_from_channel_idx(ch_idx);
423 
424 		if (v4)
425 			ch_flags =
426 				__le32_to_cpup((__le32 *)nvm_ch_flags + ch_idx);
427 		else
428 			ch_flags =
429 				__le16_to_cpup((__le16 *)nvm_ch_flags + ch_idx);
430 
431 		if (band == NL80211_BAND_5GHZ &&
432 		    !data->sku_cap_band_52ghz_enable)
433 			continue;
434 
435 		/* workaround to disable wide channels in 5GHz */
436 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
437 		    band == NL80211_BAND_5GHZ) {
438 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
439 				     NVM_CHANNEL_80MHZ |
440 				     NVM_CHANNEL_160MHZ);
441 		}
442 
443 		if (ch_flags & NVM_CHANNEL_160MHZ)
444 			data->vht160_supported = true;
445 
446 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
447 		    !(ch_flags & NVM_CHANNEL_VALID)) {
448 			/*
449 			 * Channels might become valid later if lar is
450 			 * supported, hence we still want to add them to
451 			 * the list of supported channels to cfg80211.
452 			 */
453 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
454 						    nvm_chan[ch_idx], ch_flags);
455 			continue;
456 		}
457 
458 		channel = &data->channels[n_channels];
459 		n_channels++;
460 
461 		channel->hw_value = nvm_chan[ch_idx];
462 		channel->band = band;
463 		channel->center_freq =
464 			ieee80211_channel_to_frequency(
465 				channel->hw_value, channel->band);
466 
467 		/* Initialize regulatory-based run-time data */
468 
469 		/*
470 		 * Default value - highest tx power value.  max_power
471 		 * is not used in mvm, and is used for backwards compatibility
472 		 */
473 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
474 
475 		/* don't put limitations in case we're using LAR */
476 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
477 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
478 							       ch_idx, band,
479 							       ch_flags, cfg);
480 		else
481 			channel->flags = 0;
482 
483 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
484 					    channel->hw_value, ch_flags);
485 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
486 				 channel->hw_value, channel->max_power);
487 	}
488 
489 	return n_channels;
490 }
491 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)492 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
493 				  struct iwl_nvm_data *data,
494 				  struct ieee80211_sta_vht_cap *vht_cap,
495 				  u8 tx_chains, u8 rx_chains)
496 {
497 	const struct iwl_cfg *cfg = trans->cfg;
498 	int num_rx_ants = num_of_ant(rx_chains);
499 	int num_tx_ants = num_of_ant(tx_chains);
500 	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
501 					   IEEE80211_VHT_MAX_AMPDU_1024K);
502 
503 	vht_cap->vht_supported = true;
504 
505 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
506 		       IEEE80211_VHT_CAP_RXSTBC_1 |
507 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
508 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
509 		       max_ampdu_exponent <<
510 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
511 
512 	if (data->vht160_supported)
513 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
514 				IEEE80211_VHT_CAP_SHORT_GI_160;
515 
516 	if (cfg->vht_mu_mimo_supported)
517 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
518 
519 	if (cfg->ht_params->ldpc)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
521 
522 	if (data->sku_cap_mimo_disabled) {
523 		num_rx_ants = 1;
524 		num_tx_ants = 1;
525 	}
526 
527 	if (num_tx_ants > 1)
528 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
529 	else
530 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
531 
532 	switch (iwlwifi_mod_params.amsdu_size) {
533 	case IWL_AMSDU_DEF:
534 		if (trans->trans_cfg->mq_rx_supported)
535 			vht_cap->cap |=
536 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
537 		else
538 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
539 		break;
540 	case IWL_AMSDU_2K:
541 		if (trans->trans_cfg->mq_rx_supported)
542 			vht_cap->cap |=
543 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
544 		else
545 			WARN(1, "RB size of 2K is not supported by this device\n");
546 		break;
547 	case IWL_AMSDU_4K:
548 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
549 		break;
550 	case IWL_AMSDU_8K:
551 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
552 		break;
553 	case IWL_AMSDU_12K:
554 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
555 		break;
556 	default:
557 		break;
558 	}
559 
560 	vht_cap->vht_mcs.rx_mcs_map =
561 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
562 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
563 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
564 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
565 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
566 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
567 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
568 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
569 
570 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
571 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
572 		/* this works because NOT_SUPPORTED == 3 */
573 		vht_cap->vht_mcs.rx_mcs_map |=
574 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
575 	}
576 
577 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
578 
579 	vht_cap->vht_mcs.tx_highest |=
580 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
581 }
582 
583 static struct ieee80211_sband_iftype_data iwl_he_capa[] = {
584 	{
585 		.types_mask = BIT(NL80211_IFTYPE_STATION),
586 		.he_cap = {
587 			.has_he = true,
588 			.he_cap_elem = {
589 				.mac_cap_info[0] =
590 					IEEE80211_HE_MAC_CAP0_HTC_HE,
591 				.mac_cap_info[1] =
592 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
593 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
594 				.mac_cap_info[2] =
595 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
596 				.mac_cap_info[3] =
597 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
598 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
599 				.mac_cap_info[4] =
600 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU |
601 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
602 				.mac_cap_info[5] =
603 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
604 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
605 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
606 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
607 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
608 				.phy_cap_info[0] =
609 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
610 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
611 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
612 				.phy_cap_info[1] =
613 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
614 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
615 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
616 				.phy_cap_info[2] =
617 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[5] =
628 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
629 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
630 				.phy_cap_info[6] =
631 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
632 				.phy_cap_info[7] =
633 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_AR |
634 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
635 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
636 				.phy_cap_info[8] =
637 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
638 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
639 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
640 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
641 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
642 				.phy_cap_info[9] =
643 					IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
644 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
645 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
646 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 	},
668 	{
669 		.types_mask = BIT(NL80211_IFTYPE_AP),
670 		.he_cap = {
671 			.has_he = true,
672 			.he_cap_elem = {
673 				.mac_cap_info[0] =
674 					IEEE80211_HE_MAC_CAP0_HTC_HE,
675 				.mac_cap_info[1] =
676 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
677 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
678 				.mac_cap_info[2] =
679 					IEEE80211_HE_MAC_CAP2_BSR,
680 				.mac_cap_info[3] =
681 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
682 					IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_VHT_2,
683 				.mac_cap_info[4] =
684 					IEEE80211_HE_MAC_CAP4_AMDSU_IN_AMPDU,
685 				.mac_cap_info[5] =
686 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU,
687 				.phy_cap_info[0] =
688 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
689 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
690 					IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
691 				.phy_cap_info[1] =
692 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
693 				.phy_cap_info[2] =
694 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
695 				.phy_cap_info[3] =
696 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM |
697 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
698 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM |
699 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
700 				.phy_cap_info[4] =
701 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
702 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
703 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
704 				.phy_cap_info[5] =
705 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
706 					IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2,
707 				.phy_cap_info[6] =
708 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
709 				.phy_cap_info[7] =
710 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI |
711 					IEEE80211_HE_PHY_CAP7_MAX_NC_1,
712 				.phy_cap_info[8] =
713 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
714 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
715 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
716 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
717 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996,
718 				.phy_cap_info[9] =
719 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
720 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
721 					IEEE80211_HE_PHY_CAP9_NOMIMAL_PKT_PADDING_RESERVED,
722 			},
723 			/*
724 			 * Set default Tx/Rx HE MCS NSS Support field.
725 			 * Indicate support for up to 2 spatial streams and all
726 			 * MCS, without any special cases
727 			 */
728 			.he_mcs_nss_supp = {
729 				.rx_mcs_80 = cpu_to_le16(0xfffa),
730 				.tx_mcs_80 = cpu_to_le16(0xfffa),
731 				.rx_mcs_160 = cpu_to_le16(0xfffa),
732 				.tx_mcs_160 = cpu_to_le16(0xfffa),
733 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
734 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
735 			},
736 			/*
737 			 * Set default PPE thresholds, with PPET16 set to 0,
738 			 * PPET8 set to 7
739 			 */
740 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
741 		},
742 	},
743 };
744 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)745 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
746 				 struct iwl_nvm_data *data,
747 				 struct ieee80211_supported_band *sband,
748 				 u8 tx_chains, u8 rx_chains)
749 {
750 	sband->iftype_data = iwl_he_capa;
751 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
752 
753 	/* If not 2x2, we need to indicate 1x1 in the Midamble RX Max NSTS */
754 	if ((tx_chains & rx_chains) != ANT_AB) {
755 		int i;
756 
757 		for (i = 0; i < sband->n_iftype_data; i++) {
758 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[1] &=
759 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
760 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[2] &=
761 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
762 			iwl_he_capa[i].he_cap.he_cap_elem.phy_cap_info[7] &=
763 				~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
764 		}
765 	}
766 }
767 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4)768 static void iwl_init_sbands(struct iwl_trans *trans,
769 			    struct iwl_nvm_data *data,
770 			    const void *nvm_ch_flags, u8 tx_chains,
771 			    u8 rx_chains, u32 sbands_flags, bool v4)
772 {
773 	struct device *dev = trans->dev;
774 	const struct iwl_cfg *cfg = trans->cfg;
775 	int n_channels;
776 	int n_used = 0;
777 	struct ieee80211_supported_band *sband;
778 
779 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
780 					  sbands_flags, v4);
781 	sband = &data->bands[NL80211_BAND_2GHZ];
782 	sband->band = NL80211_BAND_2GHZ;
783 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
784 	sband->n_bitrates = N_RATES_24;
785 	n_used += iwl_init_sband_channels(data, sband, n_channels,
786 					  NL80211_BAND_2GHZ);
787 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
788 			     tx_chains, rx_chains);
789 
790 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
791 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
792 
793 	sband = &data->bands[NL80211_BAND_5GHZ];
794 	sband->band = NL80211_BAND_5GHZ;
795 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
796 	sband->n_bitrates = N_RATES_52;
797 	n_used += iwl_init_sband_channels(data, sband, n_channels,
798 					  NL80211_BAND_5GHZ);
799 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
800 			     tx_chains, rx_chains);
801 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
802 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
803 				      tx_chains, rx_chains);
804 
805 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
806 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains);
807 
808 	if (n_channels != n_used)
809 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
810 			    n_used, n_channels);
811 }
812 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)813 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
814 		       const __le16 *phy_sku)
815 {
816 	if (cfg->nvm_type != IWL_NVM_EXT)
817 		return le16_to_cpup(nvm_sw + SKU);
818 
819 	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
820 }
821 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)822 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
823 {
824 	if (cfg->nvm_type != IWL_NVM_EXT)
825 		return le16_to_cpup(nvm_sw + NVM_VERSION);
826 	else
827 		return le32_to_cpup((__le32 *)(nvm_sw +
828 					       NVM_VERSION_EXT_NVM));
829 }
830 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)831 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
832 			     const __le16 *phy_sku)
833 {
834 	if (cfg->nvm_type != IWL_NVM_EXT)
835 		return le16_to_cpup(nvm_sw + RADIO_CFG);
836 
837 	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
838 
839 }
840 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)841 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
842 {
843 	int n_hw_addr;
844 
845 	if (cfg->nvm_type != IWL_NVM_EXT)
846 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
847 
848 	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
849 
850 	return n_hw_addr & N_HW_ADDR_MASK;
851 }
852 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)853 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
854 			      struct iwl_nvm_data *data,
855 			      u32 radio_cfg)
856 {
857 	if (cfg->nvm_type != IWL_NVM_EXT) {
858 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
859 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
860 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
861 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
862 		return;
863 	}
864 
865 	/* set the radio configuration for family 8000 */
866 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
867 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
868 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
869 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
870 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
871 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
872 }
873 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)874 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
875 {
876 	const u8 *hw_addr;
877 
878 	hw_addr = (const u8 *)&mac_addr0;
879 	dest[0] = hw_addr[3];
880 	dest[1] = hw_addr[2];
881 	dest[2] = hw_addr[1];
882 	dest[3] = hw_addr[0];
883 
884 	hw_addr = (const u8 *)&mac_addr1;
885 	dest[4] = hw_addr[1];
886 	dest[5] = hw_addr[0];
887 }
888 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)889 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
890 					struct iwl_nvm_data *data)
891 {
892 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
893 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
894 
895 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
896 	/*
897 	 * If the OEM fused a valid address, use it instead of the one in the
898 	 * OTP
899 	 */
900 	if (is_valid_ether_addr(data->hw_addr))
901 		return;
902 
903 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
904 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
905 
906 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
907 }
908 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)909 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
910 					   const struct iwl_cfg *cfg,
911 					   struct iwl_nvm_data *data,
912 					   const __le16 *mac_override,
913 					   const __be16 *nvm_hw)
914 {
915 	const u8 *hw_addr;
916 
917 	if (mac_override) {
918 		static const u8 reserved_mac[] = {
919 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
920 		};
921 
922 		hw_addr = (const u8 *)(mac_override +
923 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
924 
925 		/*
926 		 * Store the MAC address from MAO section.
927 		 * No byte swapping is required in MAO section
928 		 */
929 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
930 
931 		/*
932 		 * Force the use of the OTP MAC address in case of reserved MAC
933 		 * address in the NVM, or if address is given but invalid.
934 		 */
935 		if (is_valid_ether_addr(data->hw_addr) &&
936 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
937 			return;
938 
939 		IWL_ERR(trans,
940 			"mac address from nvm override section is not valid\n");
941 	}
942 
943 	if (nvm_hw) {
944 		/* read the mac address from WFMP registers */
945 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
946 						WFMP_MAC_ADDR_0));
947 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
948 						WFMP_MAC_ADDR_1));
949 
950 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
951 
952 		return;
953 	}
954 
955 	IWL_ERR(trans, "mac address is not found\n");
956 }
957 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)958 static int iwl_set_hw_address(struct iwl_trans *trans,
959 			      const struct iwl_cfg *cfg,
960 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
961 			      const __le16 *mac_override)
962 {
963 	if (cfg->mac_addr_from_csr) {
964 		iwl_set_hw_address_from_csr(trans, data);
965 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
966 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
967 
968 		/* The byte order is little endian 16 bit, meaning 214365 */
969 		data->hw_addr[0] = hw_addr[1];
970 		data->hw_addr[1] = hw_addr[0];
971 		data->hw_addr[2] = hw_addr[3];
972 		data->hw_addr[3] = hw_addr[2];
973 		data->hw_addr[4] = hw_addr[5];
974 		data->hw_addr[5] = hw_addr[4];
975 	} else {
976 		iwl_set_hw_address_family_8000(trans, cfg, data,
977 					       mac_override, nvm_hw);
978 	}
979 
980 	if (!is_valid_ether_addr(data->hw_addr)) {
981 		IWL_ERR(trans, "no valid mac address was found\n");
982 		return -EINVAL;
983 	}
984 
985 	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
986 
987 	return 0;
988 }
989 
990 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)991 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
992 			const __be16 *nvm_hw)
993 {
994 	/*
995 	 * Workaround a bug in Indonesia SKUs where the regulatory in
996 	 * some 7000-family OTPs erroneously allow wide channels in
997 	 * 5GHz.  To check for Indonesia, we take the SKU value from
998 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
999 	 * 9.  In those cases, we need to force-disable wide channels
1000 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1001 	 * to use them.
1002 	 */
1003 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1004 		/*
1005 		 * Unlike the other sections in the NVM, the hw
1006 		 * section uses big-endian.
1007 		 */
1008 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1009 		u8 sku = (subsystem_id & 0x1e) >> 1;
1010 
1011 		if (sku == 5 || sku == 9) {
1012 			IWL_DEBUG_EEPROM(trans->dev,
1013 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1014 					 subsystem_id, sku);
1015 			return true;
1016 		}
1017 	}
1018 
1019 	return false;
1020 }
1021 
1022 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1023 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1024 		   const struct iwl_fw *fw,
1025 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1026 		   const __le16 *nvm_calib, const __le16 *regulatory,
1027 		   const __le16 *mac_override, const __le16 *phy_sku,
1028 		   u8 tx_chains, u8 rx_chains)
1029 {
1030 	struct iwl_nvm_data *data;
1031 	bool lar_enabled;
1032 	u32 sku, radio_cfg;
1033 	u32 sbands_flags = 0;
1034 	u16 lar_config;
1035 	const __le16 *ch_section;
1036 
1037 	if (cfg->uhb_supported)
1038 		data = kzalloc(struct_size(data, channels,
1039 					   IWL_NVM_NUM_CHANNELS_UHB),
1040 					   GFP_KERNEL);
1041 	else if (cfg->nvm_type != IWL_NVM_EXT)
1042 		data = kzalloc(struct_size(data, channels,
1043 					   IWL_NVM_NUM_CHANNELS),
1044 					   GFP_KERNEL);
1045 	else
1046 		data = kzalloc(struct_size(data, channels,
1047 					   IWL_NVM_NUM_CHANNELS_EXT),
1048 					   GFP_KERNEL);
1049 	if (!data)
1050 		return NULL;
1051 
1052 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1053 
1054 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1055 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1056 	if (data->valid_tx_ant)
1057 		tx_chains &= data->valid_tx_ant;
1058 	if (data->valid_rx_ant)
1059 		rx_chains &= data->valid_rx_ant;
1060 
1061 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1062 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1063 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1064 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1065 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1066 		data->sku_cap_11n_enable = false;
1067 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1068 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1069 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1070 
1071 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1072 
1073 	if (cfg->nvm_type != IWL_NVM_EXT) {
1074 		/* Checking for required sections */
1075 		if (!nvm_calib) {
1076 			IWL_ERR(trans,
1077 				"Can't parse empty Calib NVM sections\n");
1078 			kfree(data);
1079 			return NULL;
1080 		}
1081 
1082 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1083 			     &regulatory[NVM_CHANNELS_SDP] :
1084 			     &nvm_sw[NVM_CHANNELS];
1085 
1086 		/* in family 8000 Xtal calibration values moved to OTP */
1087 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1088 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1089 		lar_enabled = true;
1090 	} else {
1091 		u16 lar_offset = data->nvm_version < 0xE39 ?
1092 				 NVM_LAR_OFFSET_OLD :
1093 				 NVM_LAR_OFFSET;
1094 
1095 		lar_config = le16_to_cpup(regulatory + lar_offset);
1096 		data->lar_enabled = !!(lar_config &
1097 				       NVM_LAR_ENABLED);
1098 		lar_enabled = data->lar_enabled;
1099 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1100 	}
1101 
1102 	/* If no valid mac address was found - bail out */
1103 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1104 		kfree(data);
1105 		return NULL;
1106 	}
1107 
1108 	if (lar_enabled &&
1109 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1110 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1111 
1112 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1113 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1114 
1115 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1116 			sbands_flags, false);
1117 	data->calib_version = 255;
1118 
1119 	return data;
1120 }
1121 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1122 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1123 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1124 				       int ch_idx, u16 nvm_flags,
1125 				       struct iwl_reg_capa reg_capa,
1126 				       const struct iwl_cfg *cfg)
1127 {
1128 	u32 flags = NL80211_RRF_NO_HT40;
1129 
1130 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1131 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1132 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1133 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1134 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1135 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1136 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1137 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1138 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1139 		else
1140 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1141 	}
1142 
1143 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1144 		flags |= NL80211_RRF_NO_80MHZ;
1145 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1146 		flags |= NL80211_RRF_NO_160MHZ;
1147 
1148 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1149 		flags |= NL80211_RRF_NO_IR;
1150 
1151 	if (nvm_flags & NVM_CHANNEL_RADAR)
1152 		flags |= NL80211_RRF_DFS;
1153 
1154 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1155 		flags |= NL80211_RRF_NO_OUTDOOR;
1156 
1157 	/* Set the GO concurrent flag only in case that NO_IR is set.
1158 	 * Otherwise it is meaningless
1159 	 */
1160 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1161 	    (flags & NL80211_RRF_NO_IR))
1162 		flags |= NL80211_RRF_GO_CONCURRENT;
1163 
1164 	/*
1165 	 * reg_capa is per regulatory domain so apply it for every channel
1166 	 */
1167 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1168 		if (!reg_capa.allow_40mhz)
1169 			flags |= NL80211_RRF_NO_HT40;
1170 
1171 		if (!reg_capa.allow_80mhz)
1172 			flags |= NL80211_RRF_NO_80MHZ;
1173 
1174 		if (!reg_capa.allow_160mhz)
1175 			flags |= NL80211_RRF_NO_160MHZ;
1176 	}
1177 	if (reg_capa.disable_11ax)
1178 		flags |= NL80211_RRF_NO_HE;
1179 
1180 	return flags;
1181 }
1182 
iwl_get_reg_capa(u16 flags,u8 resp_ver)1183 static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
1184 {
1185 	struct iwl_reg_capa reg_capa;
1186 
1187 	if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1188 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1189 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1190 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1191 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1192 	} else {
1193 		reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
1194 		reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
1195 		reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
1196 		reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
1197 	}
1198 	return reg_capa;
1199 }
1200 
1201 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u16 cap,u8 resp_ver)1202 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1203 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1204 		       u16 geo_info, u16 cap, u8 resp_ver)
1205 {
1206 	int ch_idx;
1207 	u16 ch_flags;
1208 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1209 	const u16 *nvm_chan;
1210 	struct ieee80211_regdomain *regd, *copy_rd;
1211 	struct ieee80211_reg_rule *rule;
1212 	enum nl80211_band band;
1213 	int center_freq, prev_center_freq = 0;
1214 	int valid_rules = 0;
1215 	bool new_rule;
1216 	int max_num_ch;
1217 	struct iwl_reg_capa reg_capa;
1218 
1219 	if (cfg->uhb_supported) {
1220 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1221 		nvm_chan = iwl_uhb_nvm_channels;
1222 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1223 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1224 		nvm_chan = iwl_ext_nvm_channels;
1225 	} else {
1226 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1227 		nvm_chan = iwl_nvm_channels;
1228 	}
1229 
1230 	if (WARN_ON(num_of_ch > max_num_ch))
1231 		num_of_ch = max_num_ch;
1232 
1233 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1234 		return ERR_PTR(-EINVAL);
1235 
1236 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1237 		      num_of_ch);
1238 
1239 	/* build a regdomain rule for every valid channel */
1240 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1241 	if (!regd)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	/* set alpha2 from FW. */
1245 	regd->alpha2[0] = fw_mcc >> 8;
1246 	regd->alpha2[1] = fw_mcc & 0xff;
1247 
1248 	/* parse regulatory capability flags */
1249 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1250 
1251 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1252 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1253 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1254 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1255 							     band);
1256 		new_rule = false;
1257 
1258 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1259 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1260 						    nvm_chan[ch_idx], ch_flags);
1261 			continue;
1262 		}
1263 
1264 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1265 							     ch_flags, reg_capa,
1266 							     cfg);
1267 
1268 		/* we can't continue the same rule */
1269 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1270 		    center_freq - prev_center_freq > 20) {
1271 			valid_rules++;
1272 			new_rule = true;
1273 		}
1274 
1275 		rule = &regd->reg_rules[valid_rules - 1];
1276 
1277 		if (new_rule)
1278 			rule->freq_range.start_freq_khz =
1279 						MHZ_TO_KHZ(center_freq - 10);
1280 
1281 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1282 
1283 		/* this doesn't matter - not used by FW */
1284 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1285 		rule->power_rule.max_eirp =
1286 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1287 
1288 		rule->flags = reg_rule_flags;
1289 
1290 		/* rely on auto-calculation to merge BW of contiguous chans */
1291 		rule->flags |= NL80211_RRF_AUTO_BW;
1292 		rule->freq_range.max_bandwidth_khz = 0;
1293 
1294 		prev_center_freq = center_freq;
1295 		prev_reg_rule_flags = reg_rule_flags;
1296 
1297 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1298 					    nvm_chan[ch_idx], ch_flags);
1299 
1300 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1301 		    band == NL80211_BAND_2GHZ)
1302 			continue;
1303 
1304 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1305 	}
1306 
1307 	regd->n_reg_rules = valid_rules;
1308 
1309 	/*
1310 	 * Narrow down regdom for unused regulatory rules to prevent hole
1311 	 * between reg rules to wmm rules.
1312 	 */
1313 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1314 			  GFP_KERNEL);
1315 	if (!copy_rd)
1316 		copy_rd = ERR_PTR(-ENOMEM);
1317 
1318 	kfree(regd);
1319 	return copy_rd;
1320 }
1321 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1322 
1323 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1324 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1325 #define MAX_NVM_FILE_LEN	16384
1326 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1327 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1328 		    unsigned int len)
1329 {
1330 #define IWL_4165_DEVICE_ID	0x5501
1331 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1332 
1333 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1334 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1335 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1336 		/* OTP 0x52 bug work around: it's a 1x1 device */
1337 		data[3] = ANT_B | (ANT_B << 4);
1338 }
1339 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1340 
1341 /*
1342  * Reads external NVM from a file into mvm->nvm_sections
1343  *
1344  * HOW TO CREATE THE NVM FILE FORMAT:
1345  * ------------------------------
1346  * 1. create hex file, format:
1347  *      3800 -> header
1348  *      0000 -> header
1349  *      5a40 -> data
1350  *
1351  *   rev - 6 bit (word1)
1352  *   len - 10 bit (word1)
1353  *   id - 4 bit (word2)
1354  *   rsv - 12 bit (word2)
1355  *
1356  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1357  *
1358  * 3. create binary file from the hex file
1359  *
1360  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1361  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1362 int iwl_read_external_nvm(struct iwl_trans *trans,
1363 			  const char *nvm_file_name,
1364 			  struct iwl_nvm_section *nvm_sections)
1365 {
1366 	int ret, section_size;
1367 	u16 section_id;
1368 	const struct firmware *fw_entry;
1369 	const struct {
1370 		__le16 word1;
1371 		__le16 word2;
1372 		u8 data[];
1373 	} *file_sec;
1374 	const u8 *eof;
1375 	u8 *temp;
1376 	int max_section_size;
1377 	const __le32 *dword_buff;
1378 
1379 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1380 #define NVM_WORD2_ID(x) (x >> 12)
1381 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1382 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1383 #define NVM_HEADER_0	(0x2A504C54)
1384 #define NVM_HEADER_1	(0x4E564D2A)
1385 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1386 
1387 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1388 
1389 	/* Maximal size depends on NVM version */
1390 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1391 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1392 	else
1393 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1394 
1395 	/*
1396 	 * Obtain NVM image via request_firmware. Since we already used
1397 	 * request_firmware_nowait() for the firmware binary load and only
1398 	 * get here after that we assume the NVM request can be satisfied
1399 	 * synchronously.
1400 	 */
1401 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1402 	if (ret) {
1403 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1404 			nvm_file_name, ret);
1405 		return ret;
1406 	}
1407 
1408 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1409 		 nvm_file_name, fw_entry->size);
1410 
1411 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1412 		IWL_ERR(trans, "NVM file too large\n");
1413 		ret = -EINVAL;
1414 		goto out;
1415 	}
1416 
1417 	eof = fw_entry->data + fw_entry->size;
1418 	dword_buff = (__le32 *)fw_entry->data;
1419 
1420 	/* some NVM file will contain a header.
1421 	 * The header is identified by 2 dwords header as follow:
1422 	 * dword[0] = 0x2A504C54
1423 	 * dword[1] = 0x4E564D2A
1424 	 *
1425 	 * This header must be skipped when providing the NVM data to the FW.
1426 	 */
1427 	if (fw_entry->size > NVM_HEADER_SIZE &&
1428 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1429 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1430 		file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE);
1431 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1432 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1433 			 le32_to_cpu(dword_buff[3]));
1434 
1435 		/* nvm file validation, dword_buff[2] holds the file version */
1436 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1437 		    CSR_HW_REV_STEP(trans->hw_rev) == SILICON_C_STEP &&
1438 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1439 			ret = -EFAULT;
1440 			goto out;
1441 		}
1442 	} else {
1443 		file_sec = (void *)fw_entry->data;
1444 	}
1445 
1446 	while (true) {
1447 		if (file_sec->data > eof) {
1448 			IWL_ERR(trans,
1449 				"ERROR - NVM file too short for section header\n");
1450 			ret = -EINVAL;
1451 			break;
1452 		}
1453 
1454 		/* check for EOF marker */
1455 		if (!file_sec->word1 && !file_sec->word2) {
1456 			ret = 0;
1457 			break;
1458 		}
1459 
1460 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1461 			section_size =
1462 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1463 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1464 		} else {
1465 			section_size = 2 * EXT_NVM_WORD2_LEN(
1466 						le16_to_cpu(file_sec->word2));
1467 			section_id = EXT_NVM_WORD1_ID(
1468 						le16_to_cpu(file_sec->word1));
1469 		}
1470 
1471 		if (section_size > max_section_size) {
1472 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1473 				section_size);
1474 			ret = -EINVAL;
1475 			break;
1476 		}
1477 
1478 		if (!section_size) {
1479 			IWL_ERR(trans, "ERROR - section empty\n");
1480 			ret = -EINVAL;
1481 			break;
1482 		}
1483 
1484 		if (file_sec->data + section_size > eof) {
1485 			IWL_ERR(trans,
1486 				"ERROR - NVM file too short for section (%d bytes)\n",
1487 				section_size);
1488 			ret = -EINVAL;
1489 			break;
1490 		}
1491 
1492 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1493 			 "Invalid NVM section ID %d\n", section_id)) {
1494 			ret = -EINVAL;
1495 			break;
1496 		}
1497 
1498 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1499 		if (!temp) {
1500 			ret = -ENOMEM;
1501 			break;
1502 		}
1503 
1504 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1505 
1506 		kfree(nvm_sections[section_id].data);
1507 		nvm_sections[section_id].data = temp;
1508 		nvm_sections[section_id].length = section_size;
1509 
1510 		/* advance to the next section */
1511 		file_sec = (void *)(file_sec->data + section_size);
1512 	}
1513 out:
1514 	release_firmware(fw_entry);
1515 	return ret;
1516 }
1517 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1518 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw)1519 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1520 				 const struct iwl_fw *fw)
1521 {
1522 	struct iwl_nvm_get_info cmd = {};
1523 	struct iwl_nvm_data *nvm;
1524 	struct iwl_host_cmd hcmd = {
1525 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1526 		.data = { &cmd, },
1527 		.len = { sizeof(cmd) },
1528 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1529 	};
1530 	int  ret;
1531 	bool empty_otp;
1532 	u32 mac_flags;
1533 	u32 sbands_flags = 0;
1534 	/*
1535 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1536 	 * in v3, except for the channel profile part of the
1537 	 * regulatory.  So we can just access the new struct, with the
1538 	 * exception of the latter.
1539 	 */
1540 	struct iwl_nvm_get_info_rsp *rsp;
1541 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1542 	bool v4 = fw_has_api(&fw->ucode_capa,
1543 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1544 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1545 	void *channel_profile;
1546 
1547 	ret = iwl_trans_send_cmd(trans, &hcmd);
1548 	if (ret)
1549 		return ERR_PTR(ret);
1550 
1551 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1552 		 "Invalid payload len in NVM response from FW %d",
1553 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1554 		ret = -EINVAL;
1555 		goto out;
1556 	}
1557 
1558 	rsp = (void *)hcmd.resp_pkt->data;
1559 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
1560 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
1561 	if (empty_otp)
1562 		IWL_INFO(trans, "OTP is empty\n");
1563 
1564 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
1565 	if (!nvm) {
1566 		ret = -ENOMEM;
1567 		goto out;
1568 	}
1569 
1570 	iwl_set_hw_address_from_csr(trans, nvm);
1571 	/* TODO: if platform NVM has MAC address - override it here */
1572 
1573 	if (!is_valid_ether_addr(nvm->hw_addr)) {
1574 		IWL_ERR(trans, "no valid mac address was found\n");
1575 		ret = -EINVAL;
1576 		goto err_free;
1577 	}
1578 
1579 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
1580 
1581 	/* Initialize general data */
1582 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
1583 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
1584 	if (nvm->n_hw_addrs == 0)
1585 		IWL_WARN(trans,
1586 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
1587 			 empty_otp);
1588 
1589 	/* Initialize MAC sku data */
1590 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
1591 	nvm->sku_cap_11ac_enable =
1592 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
1593 	nvm->sku_cap_11n_enable =
1594 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
1595 	nvm->sku_cap_11ax_enable =
1596 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
1597 	nvm->sku_cap_band_24ghz_enable =
1598 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
1599 	nvm->sku_cap_band_52ghz_enable =
1600 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
1601 	nvm->sku_cap_mimo_disabled =
1602 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
1603 
1604 	/* Initialize PHY sku data */
1605 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
1606 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
1607 
1608 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
1609 	    fw_has_capa(&fw->ucode_capa,
1610 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
1611 		nvm->lar_enabled = true;
1612 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1613 	}
1614 
1615 	rsp_v3 = (void *)rsp;
1616 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
1617 			  (void *)rsp_v3->regulatory.channel_profile;
1618 
1619 	iwl_init_sbands(trans, nvm,
1620 			channel_profile,
1621 			nvm->valid_tx_ant & fw->valid_tx_ant,
1622 			nvm->valid_rx_ant & fw->valid_rx_ant,
1623 			sbands_flags, v4);
1624 
1625 	iwl_free_resp(&hcmd);
1626 	return nvm;
1627 
1628 err_free:
1629 	kfree(nvm);
1630 out:
1631 	iwl_free_resp(&hcmd);
1632 	return ERR_PTR(ret);
1633 }
1634 IWL_EXPORT_SYMBOL(iwl_get_nvm);
1635