1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29
30 #define NVME_MINORS (1U << MINORBITS)
31
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 "max power saving latency for new devices; use PM QOS to change per device");
54
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58
59 static bool streams;
60 module_param(streams, bool, 0644);
61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
62
63 /*
64 * nvme_wq - hosts nvme related works that are not reset or delete
65 * nvme_reset_wq - hosts nvme reset works
66 * nvme_delete_wq - hosts nvme delete works
67 *
68 * nvme_wq will host works such as scan, aen handling, fw activation,
69 * keep-alive, periodic reconnects etc. nvme_reset_wq
70 * runs reset works which also flush works hosted on nvme_wq for
71 * serialization purposes. nvme_delete_wq host controller deletion
72 * works which flush reset works for serialization.
73 */
74 struct workqueue_struct *nvme_wq;
75 EXPORT_SYMBOL_GPL(nvme_wq);
76
77 struct workqueue_struct *nvme_reset_wq;
78 EXPORT_SYMBOL_GPL(nvme_reset_wq);
79
80 struct workqueue_struct *nvme_delete_wq;
81 EXPORT_SYMBOL_GPL(nvme_delete_wq);
82
83 static LIST_HEAD(nvme_subsystems);
84 static DEFINE_MUTEX(nvme_subsystems_lock);
85
86 static DEFINE_IDA(nvme_instance_ida);
87 static dev_t nvme_chr_devt;
88 static struct class *nvme_class;
89 static struct class *nvme_subsys_class;
90
91 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
92 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
93 unsigned nsid);
94
nvme_update_bdev_size(struct gendisk * disk)95 static void nvme_update_bdev_size(struct gendisk *disk)
96 {
97 struct block_device *bdev = bdget_disk(disk, 0);
98
99 if (bdev) {
100 bd_set_nr_sectors(bdev, get_capacity(disk));
101 bdput(bdev);
102 }
103 }
104
nvme_queue_scan(struct nvme_ctrl * ctrl)105 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
106 {
107 /*
108 * Only new queue scan work when admin and IO queues are both alive
109 */
110 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
111 queue_work(nvme_wq, &ctrl->scan_work);
112 }
113
114 /*
115 * Use this function to proceed with scheduling reset_work for a controller
116 * that had previously been set to the resetting state. This is intended for
117 * code paths that can't be interrupted by other reset attempts. A hot removal
118 * may prevent this from succeeding.
119 */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)120 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
121 {
122 if (ctrl->state != NVME_CTRL_RESETTING)
123 return -EBUSY;
124 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 return -EBUSY;
126 return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
129
nvme_reset_ctrl(struct nvme_ctrl * ctrl)130 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
131 {
132 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
133 return -EBUSY;
134 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
135 return -EBUSY;
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
139
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)140 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
141 {
142 int ret;
143
144 ret = nvme_reset_ctrl(ctrl);
145 if (!ret) {
146 flush_work(&ctrl->reset_work);
147 if (ctrl->state != NVME_CTRL_LIVE)
148 ret = -ENETRESET;
149 }
150
151 return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)155 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
156 {
157 dev_info(ctrl->device,
158 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
159
160 flush_work(&ctrl->reset_work);
161 nvme_stop_ctrl(ctrl);
162 nvme_remove_namespaces(ctrl);
163 ctrl->ops->delete_ctrl(ctrl);
164 nvme_uninit_ctrl(ctrl);
165 }
166
nvme_delete_ctrl_work(struct work_struct * work)167 static void nvme_delete_ctrl_work(struct work_struct *work)
168 {
169 struct nvme_ctrl *ctrl =
170 container_of(work, struct nvme_ctrl, delete_work);
171
172 nvme_do_delete_ctrl(ctrl);
173 }
174
nvme_delete_ctrl(struct nvme_ctrl * ctrl)175 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
176 {
177 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
178 return -EBUSY;
179 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
180 return -EBUSY;
181 return 0;
182 }
183 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
184
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)185 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
186 {
187 /*
188 * Keep a reference until nvme_do_delete_ctrl() complete,
189 * since ->delete_ctrl can free the controller.
190 */
191 nvme_get_ctrl(ctrl);
192 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
193 nvme_do_delete_ctrl(ctrl);
194 nvme_put_ctrl(ctrl);
195 }
196
nvme_error_status(u16 status)197 static blk_status_t nvme_error_status(u16 status)
198 {
199 switch (status & 0x7ff) {
200 case NVME_SC_SUCCESS:
201 return BLK_STS_OK;
202 case NVME_SC_CAP_EXCEEDED:
203 return BLK_STS_NOSPC;
204 case NVME_SC_LBA_RANGE:
205 case NVME_SC_CMD_INTERRUPTED:
206 case NVME_SC_NS_NOT_READY:
207 return BLK_STS_TARGET;
208 case NVME_SC_BAD_ATTRIBUTES:
209 case NVME_SC_ONCS_NOT_SUPPORTED:
210 case NVME_SC_INVALID_OPCODE:
211 case NVME_SC_INVALID_FIELD:
212 case NVME_SC_INVALID_NS:
213 return BLK_STS_NOTSUPP;
214 case NVME_SC_WRITE_FAULT:
215 case NVME_SC_READ_ERROR:
216 case NVME_SC_UNWRITTEN_BLOCK:
217 case NVME_SC_ACCESS_DENIED:
218 case NVME_SC_READ_ONLY:
219 case NVME_SC_COMPARE_FAILED:
220 return BLK_STS_MEDIUM;
221 case NVME_SC_GUARD_CHECK:
222 case NVME_SC_APPTAG_CHECK:
223 case NVME_SC_REFTAG_CHECK:
224 case NVME_SC_INVALID_PI:
225 return BLK_STS_PROTECTION;
226 case NVME_SC_RESERVATION_CONFLICT:
227 return BLK_STS_NEXUS;
228 case NVME_SC_HOST_PATH_ERROR:
229 return BLK_STS_TRANSPORT;
230 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
231 return BLK_STS_ZONE_ACTIVE_RESOURCE;
232 case NVME_SC_ZONE_TOO_MANY_OPEN:
233 return BLK_STS_ZONE_OPEN_RESOURCE;
234 default:
235 return BLK_STS_IOERR;
236 }
237 }
238
nvme_retry_req(struct request * req)239 static void nvme_retry_req(struct request *req)
240 {
241 struct nvme_ns *ns = req->q->queuedata;
242 unsigned long delay = 0;
243 u16 crd;
244
245 /* The mask and shift result must be <= 3 */
246 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
247 if (ns && crd)
248 delay = ns->ctrl->crdt[crd - 1] * 100;
249
250 nvme_req(req)->retries++;
251 blk_mq_requeue_request(req, false);
252 blk_mq_delay_kick_requeue_list(req->q, delay);
253 }
254
255 enum nvme_disposition {
256 COMPLETE,
257 RETRY,
258 FAILOVER,
259 };
260
nvme_decide_disposition(struct request * req)261 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
262 {
263 if (likely(nvme_req(req)->status == 0))
264 return COMPLETE;
265
266 if (blk_noretry_request(req) ||
267 (nvme_req(req)->status & NVME_SC_DNR) ||
268 nvme_req(req)->retries >= nvme_max_retries)
269 return COMPLETE;
270
271 if (req->cmd_flags & REQ_NVME_MPATH) {
272 if (nvme_is_path_error(nvme_req(req)->status) ||
273 blk_queue_dying(req->q))
274 return FAILOVER;
275 } else {
276 if (blk_queue_dying(req->q))
277 return COMPLETE;
278 }
279
280 return RETRY;
281 }
282
nvme_end_req(struct request * req)283 static inline void nvme_end_req(struct request *req)
284 {
285 blk_status_t status = nvme_error_status(nvme_req(req)->status);
286
287 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
288 req_op(req) == REQ_OP_ZONE_APPEND)
289 req->__sector = nvme_lba_to_sect(req->q->queuedata,
290 le64_to_cpu(nvme_req(req)->result.u64));
291
292 nvme_trace_bio_complete(req, status);
293 blk_mq_end_request(req, status);
294 }
295
nvme_complete_rq(struct request * req)296 void nvme_complete_rq(struct request *req)
297 {
298 trace_nvme_complete_rq(req);
299 nvme_cleanup_cmd(req);
300
301 if (nvme_req(req)->ctrl->kas)
302 nvme_req(req)->ctrl->comp_seen = true;
303
304 switch (nvme_decide_disposition(req)) {
305 case COMPLETE:
306 nvme_end_req(req);
307 return;
308 case RETRY:
309 nvme_retry_req(req);
310 return;
311 case FAILOVER:
312 nvme_failover_req(req);
313 return;
314 }
315 }
316 EXPORT_SYMBOL_GPL(nvme_complete_rq);
317
nvme_cancel_request(struct request * req,void * data,bool reserved)318 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
319 {
320 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
321 "Cancelling I/O %d", req->tag);
322
323 /* don't abort one completed request */
324 if (blk_mq_request_completed(req))
325 return true;
326
327 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
328 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
329 blk_mq_complete_request(req);
330 return true;
331 }
332 EXPORT_SYMBOL_GPL(nvme_cancel_request);
333
nvme_cancel_tagset(struct nvme_ctrl * ctrl)334 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
335 {
336 if (ctrl->tagset) {
337 blk_mq_tagset_busy_iter(ctrl->tagset,
338 nvme_cancel_request, ctrl);
339 blk_mq_tagset_wait_completed_request(ctrl->tagset);
340 }
341 }
342 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
343
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)344 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
345 {
346 if (ctrl->admin_tagset) {
347 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
348 nvme_cancel_request, ctrl);
349 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
350 }
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
353
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355 enum nvme_ctrl_state new_state)
356 {
357 enum nvme_ctrl_state old_state;
358 unsigned long flags;
359 bool changed = false;
360
361 spin_lock_irqsave(&ctrl->lock, flags);
362
363 old_state = ctrl->state;
364 switch (new_state) {
365 case NVME_CTRL_LIVE:
366 switch (old_state) {
367 case NVME_CTRL_NEW:
368 case NVME_CTRL_RESETTING:
369 case NVME_CTRL_CONNECTING:
370 changed = true;
371 fallthrough;
372 default:
373 break;
374 }
375 break;
376 case NVME_CTRL_RESETTING:
377 switch (old_state) {
378 case NVME_CTRL_NEW:
379 case NVME_CTRL_LIVE:
380 changed = true;
381 fallthrough;
382 default:
383 break;
384 }
385 break;
386 case NVME_CTRL_CONNECTING:
387 switch (old_state) {
388 case NVME_CTRL_NEW:
389 case NVME_CTRL_RESETTING:
390 changed = true;
391 fallthrough;
392 default:
393 break;
394 }
395 break;
396 case NVME_CTRL_DELETING:
397 switch (old_state) {
398 case NVME_CTRL_LIVE:
399 case NVME_CTRL_RESETTING:
400 case NVME_CTRL_CONNECTING:
401 changed = true;
402 fallthrough;
403 default:
404 break;
405 }
406 break;
407 case NVME_CTRL_DELETING_NOIO:
408 switch (old_state) {
409 case NVME_CTRL_DELETING:
410 case NVME_CTRL_DEAD:
411 changed = true;
412 fallthrough;
413 default:
414 break;
415 }
416 break;
417 case NVME_CTRL_DEAD:
418 switch (old_state) {
419 case NVME_CTRL_DELETING:
420 changed = true;
421 fallthrough;
422 default:
423 break;
424 }
425 break;
426 default:
427 break;
428 }
429
430 if (changed) {
431 ctrl->state = new_state;
432 wake_up_all(&ctrl->state_wq);
433 }
434
435 spin_unlock_irqrestore(&ctrl->lock, flags);
436 if (changed && ctrl->state == NVME_CTRL_LIVE)
437 nvme_kick_requeue_lists(ctrl);
438 return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441
442 /*
443 * Returns true for sink states that can't ever transition back to live.
444 */
nvme_state_terminal(struct nvme_ctrl * ctrl)445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447 switch (ctrl->state) {
448 case NVME_CTRL_NEW:
449 case NVME_CTRL_LIVE:
450 case NVME_CTRL_RESETTING:
451 case NVME_CTRL_CONNECTING:
452 return false;
453 case NVME_CTRL_DELETING:
454 case NVME_CTRL_DELETING_NOIO:
455 case NVME_CTRL_DEAD:
456 return true;
457 default:
458 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459 return true;
460 }
461 }
462
463 /*
464 * Waits for the controller state to be resetting, or returns false if it is
465 * not possible to ever transition to that state.
466 */
nvme_wait_reset(struct nvme_ctrl * ctrl)467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469 wait_event(ctrl->state_wq,
470 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471 nvme_state_terminal(ctrl));
472 return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475
nvme_free_ns_head(struct kref * ref)476 static void nvme_free_ns_head(struct kref *ref)
477 {
478 struct nvme_ns_head *head =
479 container_of(ref, struct nvme_ns_head, ref);
480
481 nvme_mpath_remove_disk(head);
482 ida_simple_remove(&head->subsys->ns_ida, head->instance);
483 cleanup_srcu_struct(&head->srcu);
484 nvme_put_subsystem(head->subsys);
485 kfree(head);
486 }
487
nvme_put_ns_head(struct nvme_ns_head * head)488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490 kref_put(&head->ref, nvme_free_ns_head);
491 }
492
nvme_free_ns(struct kref * kref)493 static void nvme_free_ns(struct kref *kref)
494 {
495 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496
497 if (ns->ndev)
498 nvme_nvm_unregister(ns);
499
500 put_disk(ns->disk);
501 nvme_put_ns_head(ns->head);
502 nvme_put_ctrl(ns->ctrl);
503 kfree(ns);
504 }
505
nvme_put_ns(struct nvme_ns * ns)506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508 kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511
nvme_clear_nvme_request(struct request * req)512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514 nvme_req(req)->retries = 0;
515 nvme_req(req)->flags = 0;
516 req->rq_flags |= RQF_DONTPREP;
517 }
518
nvme_req_op(struct nvme_command * cmd)519 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
520 {
521 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
522 }
523
nvme_init_request(struct request * req,struct nvme_command * cmd)524 static inline void nvme_init_request(struct request *req,
525 struct nvme_command *cmd)
526 {
527 if (req->q->queuedata)
528 req->timeout = NVME_IO_TIMEOUT;
529 else /* no queuedata implies admin queue */
530 req->timeout = ADMIN_TIMEOUT;
531
532 req->cmd_flags |= REQ_FAILFAST_DRIVER;
533 nvme_clear_nvme_request(req);
534 nvme_req(req)->cmd = cmd;
535 }
536
nvme_alloc_request(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags)537 struct request *nvme_alloc_request(struct request_queue *q,
538 struct nvme_command *cmd, blk_mq_req_flags_t flags)
539 {
540 struct request *req;
541
542 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
543 if (!IS_ERR(req))
544 nvme_init_request(req, cmd);
545 return req;
546 }
547 EXPORT_SYMBOL_GPL(nvme_alloc_request);
548
nvme_alloc_request_qid(struct request_queue * q,struct nvme_command * cmd,blk_mq_req_flags_t flags,int qid)549 struct request *nvme_alloc_request_qid(struct request_queue *q,
550 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
551 {
552 struct request *req;
553
554 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
555 qid ? qid - 1 : 0);
556 if (!IS_ERR(req))
557 nvme_init_request(req, cmd);
558 return req;
559 }
560 EXPORT_SYMBOL_GPL(nvme_alloc_request_qid);
561
nvme_toggle_streams(struct nvme_ctrl * ctrl,bool enable)562 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
563 {
564 struct nvme_command c;
565
566 memset(&c, 0, sizeof(c));
567
568 c.directive.opcode = nvme_admin_directive_send;
569 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
570 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
571 c.directive.dtype = NVME_DIR_IDENTIFY;
572 c.directive.tdtype = NVME_DIR_STREAMS;
573 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
574
575 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
576 }
577
nvme_disable_streams(struct nvme_ctrl * ctrl)578 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
579 {
580 return nvme_toggle_streams(ctrl, false);
581 }
582
nvme_enable_streams(struct nvme_ctrl * ctrl)583 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
584 {
585 return nvme_toggle_streams(ctrl, true);
586 }
587
nvme_get_stream_params(struct nvme_ctrl * ctrl,struct streams_directive_params * s,u32 nsid)588 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
589 struct streams_directive_params *s, u32 nsid)
590 {
591 struct nvme_command c;
592
593 memset(&c, 0, sizeof(c));
594 memset(s, 0, sizeof(*s));
595
596 c.directive.opcode = nvme_admin_directive_recv;
597 c.directive.nsid = cpu_to_le32(nsid);
598 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
599 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
600 c.directive.dtype = NVME_DIR_STREAMS;
601
602 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
603 }
604
nvme_configure_directives(struct nvme_ctrl * ctrl)605 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
606 {
607 struct streams_directive_params s;
608 int ret;
609
610 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
611 return 0;
612 if (!streams)
613 return 0;
614
615 ret = nvme_enable_streams(ctrl);
616 if (ret)
617 return ret;
618
619 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
620 if (ret)
621 goto out_disable_stream;
622
623 ctrl->nssa = le16_to_cpu(s.nssa);
624 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
625 dev_info(ctrl->device, "too few streams (%u) available\n",
626 ctrl->nssa);
627 goto out_disable_stream;
628 }
629
630 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
631 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
632 return 0;
633
634 out_disable_stream:
635 nvme_disable_streams(ctrl);
636 return ret;
637 }
638
639 /*
640 * Check if 'req' has a write hint associated with it. If it does, assign
641 * a valid namespace stream to the write.
642 */
nvme_assign_write_stream(struct nvme_ctrl * ctrl,struct request * req,u16 * control,u32 * dsmgmt)643 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
644 struct request *req, u16 *control,
645 u32 *dsmgmt)
646 {
647 enum rw_hint streamid = req->write_hint;
648
649 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
650 streamid = 0;
651 else {
652 streamid--;
653 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
654 return;
655
656 *control |= NVME_RW_DTYPE_STREAMS;
657 *dsmgmt |= streamid << 16;
658 }
659
660 if (streamid < ARRAY_SIZE(req->q->write_hints))
661 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
662 }
663
nvme_setup_passthrough(struct request * req,struct nvme_command * cmd)664 static inline void nvme_setup_passthrough(struct request *req,
665 struct nvme_command *cmd)
666 {
667 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
668 /* passthru commands should let the driver set the SGL flags */
669 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
670 }
671
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)672 static inline void nvme_setup_flush(struct nvme_ns *ns,
673 struct nvme_command *cmnd)
674 {
675 cmnd->common.opcode = nvme_cmd_flush;
676 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
677 }
678
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)679 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
680 struct nvme_command *cmnd)
681 {
682 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
683 struct nvme_dsm_range *range;
684 struct bio *bio;
685
686 /*
687 * Some devices do not consider the DSM 'Number of Ranges' field when
688 * determining how much data to DMA. Always allocate memory for maximum
689 * number of segments to prevent device reading beyond end of buffer.
690 */
691 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
692
693 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
694 if (!range) {
695 /*
696 * If we fail allocation our range, fallback to the controller
697 * discard page. If that's also busy, it's safe to return
698 * busy, as we know we can make progress once that's freed.
699 */
700 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
701 return BLK_STS_RESOURCE;
702
703 range = page_address(ns->ctrl->discard_page);
704 }
705
706 if (queue_max_discard_segments(req->q) == 1) {
707 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
708 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
709
710 range[0].cattr = cpu_to_le32(0);
711 range[0].nlb = cpu_to_le32(nlb);
712 range[0].slba = cpu_to_le64(slba);
713 n = 1;
714 } else {
715 __rq_for_each_bio(bio, req) {
716 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
717 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
718
719 if (n < segments) {
720 range[n].cattr = cpu_to_le32(0);
721 range[n].nlb = cpu_to_le32(nlb);
722 range[n].slba = cpu_to_le64(slba);
723 }
724 n++;
725 }
726 }
727
728 if (WARN_ON_ONCE(n != segments)) {
729 if (virt_to_page(range) == ns->ctrl->discard_page)
730 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
731 else
732 kfree(range);
733 return BLK_STS_IOERR;
734 }
735
736 cmnd->dsm.opcode = nvme_cmd_dsm;
737 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
738 cmnd->dsm.nr = cpu_to_le32(segments - 1);
739 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
740
741 req->special_vec.bv_page = virt_to_page(range);
742 req->special_vec.bv_offset = offset_in_page(range);
743 req->special_vec.bv_len = alloc_size;
744 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
745
746 return BLK_STS_OK;
747 }
748
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)749 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
750 struct request *req, struct nvme_command *cmnd)
751 {
752 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
753 return nvme_setup_discard(ns, req, cmnd);
754
755 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
756 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
757 cmnd->write_zeroes.slba =
758 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
759 cmnd->write_zeroes.length =
760 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
761 if (nvme_ns_has_pi(ns))
762 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
763 else
764 cmnd->write_zeroes.control = 0;
765 return BLK_STS_OK;
766 }
767
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)768 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
769 struct request *req, struct nvme_command *cmnd,
770 enum nvme_opcode op)
771 {
772 struct nvme_ctrl *ctrl = ns->ctrl;
773 u16 control = 0;
774 u32 dsmgmt = 0;
775
776 if (req->cmd_flags & REQ_FUA)
777 control |= NVME_RW_FUA;
778 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
779 control |= NVME_RW_LR;
780
781 if (req->cmd_flags & REQ_RAHEAD)
782 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
783
784 cmnd->rw.opcode = op;
785 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
786 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
787 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
788
789 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
790 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
791
792 if (ns->ms) {
793 /*
794 * If formated with metadata, the block layer always provides a
795 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
796 * we enable the PRACT bit for protection information or set the
797 * namespace capacity to zero to prevent any I/O.
798 */
799 if (!blk_integrity_rq(req)) {
800 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
801 return BLK_STS_NOTSUPP;
802 control |= NVME_RW_PRINFO_PRACT;
803 }
804
805 switch (ns->pi_type) {
806 case NVME_NS_DPS_PI_TYPE3:
807 control |= NVME_RW_PRINFO_PRCHK_GUARD;
808 break;
809 case NVME_NS_DPS_PI_TYPE1:
810 case NVME_NS_DPS_PI_TYPE2:
811 control |= NVME_RW_PRINFO_PRCHK_GUARD |
812 NVME_RW_PRINFO_PRCHK_REF;
813 if (op == nvme_cmd_zone_append)
814 control |= NVME_RW_APPEND_PIREMAP;
815 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
816 break;
817 }
818 }
819
820 cmnd->rw.control = cpu_to_le16(control);
821 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
822 return 0;
823 }
824
nvme_cleanup_cmd(struct request * req)825 void nvme_cleanup_cmd(struct request *req)
826 {
827 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
828 struct nvme_ns *ns = req->rq_disk->private_data;
829 struct page *page = req->special_vec.bv_page;
830
831 if (page == ns->ctrl->discard_page)
832 clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
833 else
834 kfree(page_address(page) + req->special_vec.bv_offset);
835 }
836 }
837 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
838
nvme_setup_cmd(struct nvme_ns * ns,struct request * req,struct nvme_command * cmd)839 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
840 struct nvme_command *cmd)
841 {
842 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
843 blk_status_t ret = BLK_STS_OK;
844
845 if (!(req->rq_flags & RQF_DONTPREP))
846 nvme_clear_nvme_request(req);
847
848 memset(cmd, 0, sizeof(*cmd));
849 switch (req_op(req)) {
850 case REQ_OP_DRV_IN:
851 case REQ_OP_DRV_OUT:
852 nvme_setup_passthrough(req, cmd);
853 break;
854 case REQ_OP_FLUSH:
855 nvme_setup_flush(ns, cmd);
856 break;
857 case REQ_OP_ZONE_RESET_ALL:
858 case REQ_OP_ZONE_RESET:
859 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
860 break;
861 case REQ_OP_ZONE_OPEN:
862 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
863 break;
864 case REQ_OP_ZONE_CLOSE:
865 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
866 break;
867 case REQ_OP_ZONE_FINISH:
868 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
869 break;
870 case REQ_OP_WRITE_ZEROES:
871 ret = nvme_setup_write_zeroes(ns, req, cmd);
872 break;
873 case REQ_OP_DISCARD:
874 ret = nvme_setup_discard(ns, req, cmd);
875 break;
876 case REQ_OP_READ:
877 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
878 break;
879 case REQ_OP_WRITE:
880 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
881 break;
882 case REQ_OP_ZONE_APPEND:
883 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
884 break;
885 default:
886 WARN_ON_ONCE(1);
887 return BLK_STS_IOERR;
888 }
889
890 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
891 nvme_req(req)->genctr++;
892 cmd->common.command_id = nvme_cid(req);
893 trace_nvme_setup_cmd(req, cmd);
894 return ret;
895 }
896 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
897
nvme_end_sync_rq(struct request * rq,blk_status_t error)898 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
899 {
900 struct completion *waiting = rq->end_io_data;
901
902 rq->end_io_data = NULL;
903 complete(waiting);
904 }
905
nvme_execute_rq_polled(struct request_queue * q,struct gendisk * bd_disk,struct request * rq,int at_head)906 static void nvme_execute_rq_polled(struct request_queue *q,
907 struct gendisk *bd_disk, struct request *rq, int at_head)
908 {
909 DECLARE_COMPLETION_ONSTACK(wait);
910
911 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
912
913 rq->cmd_flags |= REQ_HIPRI;
914 rq->end_io_data = &wait;
915 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
916
917 while (!completion_done(&wait)) {
918 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
919 cond_resched();
920 }
921 }
922
923 /*
924 * Returns 0 on success. If the result is negative, it's a Linux error code;
925 * if the result is positive, it's an NVM Express status code
926 */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,unsigned timeout,int qid,int at_head,blk_mq_req_flags_t flags,bool poll)927 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
928 union nvme_result *result, void *buffer, unsigned bufflen,
929 unsigned timeout, int qid, int at_head,
930 blk_mq_req_flags_t flags, bool poll)
931 {
932 struct request *req;
933 int ret;
934
935 if (qid == NVME_QID_ANY)
936 req = nvme_alloc_request(q, cmd, flags);
937 else
938 req = nvme_alloc_request_qid(q, cmd, flags, qid);
939 if (IS_ERR(req))
940 return PTR_ERR(req);
941
942 if (timeout)
943 req->timeout = timeout;
944
945 if (buffer && bufflen) {
946 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
947 if (ret)
948 goto out;
949 }
950
951 if (poll)
952 nvme_execute_rq_polled(req->q, NULL, req, at_head);
953 else
954 blk_execute_rq(req->q, NULL, req, at_head);
955 if (result)
956 *result = nvme_req(req)->result;
957 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
958 ret = -EINTR;
959 else
960 ret = nvme_req(req)->status;
961 out:
962 blk_mq_free_request(req);
963 return ret;
964 }
965 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
966
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)967 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
968 void *buffer, unsigned bufflen)
969 {
970 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
971 NVME_QID_ANY, 0, 0, false);
972 }
973 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
974
nvme_add_user_metadata(struct bio * bio,void __user * ubuf,unsigned len,u32 seed,bool write)975 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
976 unsigned len, u32 seed, bool write)
977 {
978 struct bio_integrity_payload *bip;
979 int ret = -ENOMEM;
980 void *buf;
981
982 buf = kmalloc(len, GFP_KERNEL);
983 if (!buf)
984 goto out;
985
986 ret = -EFAULT;
987 if (write && copy_from_user(buf, ubuf, len))
988 goto out_free_meta;
989
990 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
991 if (IS_ERR(bip)) {
992 ret = PTR_ERR(bip);
993 goto out_free_meta;
994 }
995
996 bip->bip_iter.bi_size = len;
997 bip->bip_iter.bi_sector = seed;
998 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
999 offset_in_page(buf));
1000 if (ret == len)
1001 return buf;
1002 ret = -ENOMEM;
1003 out_free_meta:
1004 kfree(buf);
1005 out:
1006 return ERR_PTR(ret);
1007 }
1008
nvme_known_admin_effects(u8 opcode)1009 static u32 nvme_known_admin_effects(u8 opcode)
1010 {
1011 switch (opcode) {
1012 case nvme_admin_format_nvm:
1013 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1014 NVME_CMD_EFFECTS_CSE_MASK;
1015 case nvme_admin_sanitize_nvm:
1016 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1017 default:
1018 break;
1019 }
1020 return 0;
1021 }
1022
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1023 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1024 {
1025 u32 effects = 0;
1026
1027 if (ns) {
1028 if (ns->head->effects)
1029 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1030 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1031 dev_warn(ctrl->device,
1032 "IO command:%02x has unhandled effects:%08x\n",
1033 opcode, effects);
1034 return 0;
1035 }
1036
1037 if (ctrl->effects)
1038 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1039 effects |= nvme_known_admin_effects(opcode);
1040
1041 return effects;
1042 }
1043 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1044
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1045 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1046 u8 opcode)
1047 {
1048 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1049
1050 /*
1051 * For simplicity, IO to all namespaces is quiesced even if the command
1052 * effects say only one namespace is affected.
1053 */
1054 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1055 mutex_lock(&ctrl->scan_lock);
1056 mutex_lock(&ctrl->subsys->lock);
1057 nvme_mpath_start_freeze(ctrl->subsys);
1058 nvme_mpath_wait_freeze(ctrl->subsys);
1059 nvme_start_freeze(ctrl);
1060 nvme_wait_freeze(ctrl);
1061 }
1062 return effects;
1063 }
1064
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects)1065 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1066 {
1067 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1068 nvme_unfreeze(ctrl);
1069 nvme_mpath_unfreeze(ctrl->subsys);
1070 mutex_unlock(&ctrl->subsys->lock);
1071 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1072 mutex_unlock(&ctrl->scan_lock);
1073 }
1074 if (effects & NVME_CMD_EFFECTS_CCC)
1075 nvme_init_identify(ctrl);
1076 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1077 nvme_queue_scan(ctrl);
1078 flush_work(&ctrl->scan_work);
1079 }
1080 }
1081
nvme_execute_passthru_rq(struct request * rq)1082 void nvme_execute_passthru_rq(struct request *rq)
1083 {
1084 struct nvme_command *cmd = nvme_req(rq)->cmd;
1085 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1086 struct nvme_ns *ns = rq->q->queuedata;
1087 struct gendisk *disk = ns ? ns->disk : NULL;
1088 u32 effects;
1089
1090 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1091 blk_execute_rq(rq->q, disk, rq, 0);
1092 nvme_passthru_end(ctrl, effects);
1093 }
1094 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1095
nvme_submit_user_cmd(struct request_queue * q,struct nvme_command * cmd,void __user * ubuffer,unsigned bufflen,void __user * meta_buffer,unsigned meta_len,u32 meta_seed,u64 * result,unsigned timeout)1096 static int nvme_submit_user_cmd(struct request_queue *q,
1097 struct nvme_command *cmd, void __user *ubuffer,
1098 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1099 u32 meta_seed, u64 *result, unsigned timeout)
1100 {
1101 bool write = nvme_is_write(cmd);
1102 struct nvme_ns *ns = q->queuedata;
1103 struct gendisk *disk = ns ? ns->disk : NULL;
1104 struct request *req;
1105 struct bio *bio = NULL;
1106 void *meta = NULL;
1107 int ret;
1108
1109 req = nvme_alloc_request(q, cmd, 0);
1110 if (IS_ERR(req))
1111 return PTR_ERR(req);
1112
1113 if (timeout)
1114 req->timeout = timeout;
1115 nvme_req(req)->flags |= NVME_REQ_USERCMD;
1116
1117 if (ubuffer && bufflen) {
1118 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1119 GFP_KERNEL);
1120 if (ret)
1121 goto out;
1122 bio = req->bio;
1123 bio->bi_disk = disk;
1124 if (disk && meta_buffer && meta_len) {
1125 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1126 meta_seed, write);
1127 if (IS_ERR(meta)) {
1128 ret = PTR_ERR(meta);
1129 goto out_unmap;
1130 }
1131 req->cmd_flags |= REQ_INTEGRITY;
1132 }
1133 }
1134
1135 nvme_execute_passthru_rq(req);
1136 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1137 ret = -EINTR;
1138 else
1139 ret = nvme_req(req)->status;
1140 if (result)
1141 *result = le64_to_cpu(nvme_req(req)->result.u64);
1142 if (meta && !ret && !write) {
1143 if (copy_to_user(meta_buffer, meta, meta_len))
1144 ret = -EFAULT;
1145 }
1146 kfree(meta);
1147 out_unmap:
1148 if (bio)
1149 blk_rq_unmap_user(bio);
1150 out:
1151 blk_mq_free_request(req);
1152 return ret;
1153 }
1154
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1155 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1156 {
1157 struct nvme_ctrl *ctrl = rq->end_io_data;
1158 unsigned long flags;
1159 bool startka = false;
1160
1161 blk_mq_free_request(rq);
1162
1163 if (status) {
1164 dev_err(ctrl->device,
1165 "failed nvme_keep_alive_end_io error=%d\n",
1166 status);
1167 return;
1168 }
1169
1170 ctrl->comp_seen = false;
1171 spin_lock_irqsave(&ctrl->lock, flags);
1172 if (ctrl->state == NVME_CTRL_LIVE ||
1173 ctrl->state == NVME_CTRL_CONNECTING)
1174 startka = true;
1175 spin_unlock_irqrestore(&ctrl->lock, flags);
1176 if (startka)
1177 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1178 }
1179
nvme_keep_alive(struct nvme_ctrl * ctrl)1180 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1181 {
1182 struct request *rq;
1183
1184 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1185 BLK_MQ_REQ_RESERVED);
1186 if (IS_ERR(rq))
1187 return PTR_ERR(rq);
1188
1189 rq->timeout = ctrl->kato * HZ;
1190 rq->end_io_data = ctrl;
1191
1192 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1193
1194 return 0;
1195 }
1196
nvme_keep_alive_work(struct work_struct * work)1197 static void nvme_keep_alive_work(struct work_struct *work)
1198 {
1199 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1200 struct nvme_ctrl, ka_work);
1201 bool comp_seen = ctrl->comp_seen;
1202
1203 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1204 dev_dbg(ctrl->device,
1205 "reschedule traffic based keep-alive timer\n");
1206 ctrl->comp_seen = false;
1207 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1208 return;
1209 }
1210
1211 if (nvme_keep_alive(ctrl)) {
1212 /* allocation failure, reset the controller */
1213 dev_err(ctrl->device, "keep-alive failed\n");
1214 nvme_reset_ctrl(ctrl);
1215 return;
1216 }
1217 }
1218
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1219 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1220 {
1221 if (unlikely(ctrl->kato == 0))
1222 return;
1223
1224 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1225 }
1226
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1227 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1228 {
1229 if (unlikely(ctrl->kato == 0))
1230 return;
1231
1232 cancel_delayed_work_sync(&ctrl->ka_work);
1233 }
1234 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1235
1236 /*
1237 * In NVMe 1.0 the CNS field was just a binary controller or namespace
1238 * flag, thus sending any new CNS opcodes has a big chance of not working.
1239 * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1240 * (but not for any later version).
1241 */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1242 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1243 {
1244 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1245 return ctrl->vs < NVME_VS(1, 2, 0);
1246 return ctrl->vs < NVME_VS(1, 1, 0);
1247 }
1248
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1249 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1250 {
1251 struct nvme_command c = { };
1252 int error;
1253
1254 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1255 c.identify.opcode = nvme_admin_identify;
1256 c.identify.cns = NVME_ID_CNS_CTRL;
1257
1258 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1259 if (!*id)
1260 return -ENOMEM;
1261
1262 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1263 sizeof(struct nvme_id_ctrl));
1264 if (error)
1265 kfree(*id);
1266 return error;
1267 }
1268
nvme_multi_css(struct nvme_ctrl * ctrl)1269 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1270 {
1271 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1272 }
1273
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1274 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1275 struct nvme_ns_id_desc *cur, bool *csi_seen)
1276 {
1277 const char *warn_str = "ctrl returned bogus length:";
1278 void *data = cur;
1279
1280 switch (cur->nidt) {
1281 case NVME_NIDT_EUI64:
1282 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1283 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1284 warn_str, cur->nidl);
1285 return -1;
1286 }
1287 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1288 return NVME_NIDT_EUI64_LEN;
1289 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1290 return NVME_NIDT_EUI64_LEN;
1291 case NVME_NIDT_NGUID:
1292 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1293 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1294 warn_str, cur->nidl);
1295 return -1;
1296 }
1297 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1298 return NVME_NIDT_NGUID_LEN;
1299 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1300 return NVME_NIDT_NGUID_LEN;
1301 case NVME_NIDT_UUID:
1302 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1303 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1304 warn_str, cur->nidl);
1305 return -1;
1306 }
1307 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1308 return NVME_NIDT_UUID_LEN;
1309 uuid_copy(&ids->uuid, data + sizeof(*cur));
1310 return NVME_NIDT_UUID_LEN;
1311 case NVME_NIDT_CSI:
1312 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1313 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1314 warn_str, cur->nidl);
1315 return -1;
1316 }
1317 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1318 *csi_seen = true;
1319 return NVME_NIDT_CSI_LEN;
1320 default:
1321 /* Skip unknown types */
1322 return cur->nidl;
1323 }
1324 }
1325
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)1326 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1327 struct nvme_ns_ids *ids)
1328 {
1329 struct nvme_command c = { };
1330 bool csi_seen = false;
1331 int status, pos, len;
1332 void *data;
1333
1334 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1335 return 0;
1336 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1337 return 0;
1338
1339 c.identify.opcode = nvme_admin_identify;
1340 c.identify.nsid = cpu_to_le32(nsid);
1341 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1342
1343 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1344 if (!data)
1345 return -ENOMEM;
1346
1347 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1348 NVME_IDENTIFY_DATA_SIZE);
1349 if (status) {
1350 dev_warn(ctrl->device,
1351 "Identify Descriptors failed (%d)\n", status);
1352 goto free_data;
1353 }
1354
1355 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1356 struct nvme_ns_id_desc *cur = data + pos;
1357
1358 if (cur->nidl == 0)
1359 break;
1360
1361 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1362 if (len < 0)
1363 break;
1364
1365 len += sizeof(*cur);
1366 }
1367
1368 if (nvme_multi_css(ctrl) && !csi_seen) {
1369 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1370 nsid);
1371 status = -EINVAL;
1372 }
1373
1374 free_data:
1375 kfree(data);
1376 return status;
1377 }
1378
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids,struct nvme_id_ns ** id)1379 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1380 struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1381 {
1382 struct nvme_command c = { };
1383 int error;
1384
1385 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1386 c.identify.opcode = nvme_admin_identify;
1387 c.identify.nsid = cpu_to_le32(nsid);
1388 c.identify.cns = NVME_ID_CNS_NS;
1389
1390 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1391 if (!*id)
1392 return -ENOMEM;
1393
1394 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1395 if (error) {
1396 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1397 goto out_free_id;
1398 }
1399
1400 error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1401 if ((*id)->ncap == 0) /* namespace not allocated or attached */
1402 goto out_free_id;
1403
1404
1405 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1406 dev_info(ctrl->device,
1407 "Ignoring bogus Namespace Identifiers\n");
1408 } else {
1409 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1410 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1411 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1412 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1413 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1414 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1415 }
1416
1417 return 0;
1418
1419 out_free_id:
1420 kfree(*id);
1421 return error;
1422 }
1423
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1424 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1425 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1426 {
1427 union nvme_result res = { 0 };
1428 struct nvme_command c;
1429 int ret;
1430
1431 memset(&c, 0, sizeof(c));
1432 c.features.opcode = op;
1433 c.features.fid = cpu_to_le32(fid);
1434 c.features.dword11 = cpu_to_le32(dword11);
1435
1436 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1437 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1438 if (ret >= 0 && result)
1439 *result = le32_to_cpu(res.u32);
1440 return ret;
1441 }
1442
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1443 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1444 unsigned int dword11, void *buffer, size_t buflen,
1445 u32 *result)
1446 {
1447 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1448 buflen, result);
1449 }
1450 EXPORT_SYMBOL_GPL(nvme_set_features);
1451
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1452 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1453 unsigned int dword11, void *buffer, size_t buflen,
1454 u32 *result)
1455 {
1456 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1457 buflen, result);
1458 }
1459 EXPORT_SYMBOL_GPL(nvme_get_features);
1460
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1461 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1462 {
1463 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1464 u32 result;
1465 int status, nr_io_queues;
1466
1467 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1468 &result);
1469 if (status < 0)
1470 return status;
1471
1472 /*
1473 * Degraded controllers might return an error when setting the queue
1474 * count. We still want to be able to bring them online and offer
1475 * access to the admin queue, as that might be only way to fix them up.
1476 */
1477 if (status > 0) {
1478 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1479 *count = 0;
1480 } else {
1481 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1482 *count = min(*count, nr_io_queues);
1483 }
1484
1485 return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1488
1489 #define NVME_AEN_SUPPORTED \
1490 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1491 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1492
nvme_enable_aen(struct nvme_ctrl * ctrl)1493 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1494 {
1495 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1496 int status;
1497
1498 if (!supported_aens)
1499 return;
1500
1501 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1502 NULL, 0, &result);
1503 if (status)
1504 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1505 supported_aens);
1506
1507 queue_work(nvme_wq, &ctrl->async_event_work);
1508 }
1509
1510 /*
1511 * Convert integer values from ioctl structures to user pointers, silently
1512 * ignoring the upper bits in the compat case to match behaviour of 32-bit
1513 * kernels.
1514 */
nvme_to_user_ptr(uintptr_t ptrval)1515 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1516 {
1517 if (in_compat_syscall())
1518 ptrval = (compat_uptr_t)ptrval;
1519 return (void __user *)ptrval;
1520 }
1521
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1522 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1523 {
1524 struct nvme_user_io io;
1525 struct nvme_command c;
1526 unsigned length, meta_len;
1527 void __user *metadata;
1528
1529 if (copy_from_user(&io, uio, sizeof(io)))
1530 return -EFAULT;
1531 if (io.flags)
1532 return -EINVAL;
1533
1534 switch (io.opcode) {
1535 case nvme_cmd_write:
1536 case nvme_cmd_read:
1537 case nvme_cmd_compare:
1538 break;
1539 default:
1540 return -EINVAL;
1541 }
1542
1543 length = (io.nblocks + 1) << ns->lba_shift;
1544
1545 if ((io.control & NVME_RW_PRINFO_PRACT) &&
1546 ns->ms == sizeof(struct t10_pi_tuple)) {
1547 /*
1548 * Protection information is stripped/inserted by the
1549 * controller.
1550 */
1551 if (nvme_to_user_ptr(io.metadata))
1552 return -EINVAL;
1553 meta_len = 0;
1554 metadata = NULL;
1555 } else {
1556 meta_len = (io.nblocks + 1) * ns->ms;
1557 metadata = nvme_to_user_ptr(io.metadata);
1558 }
1559
1560 if (ns->features & NVME_NS_EXT_LBAS) {
1561 length += meta_len;
1562 meta_len = 0;
1563 } else if (meta_len) {
1564 if ((io.metadata & 3) || !io.metadata)
1565 return -EINVAL;
1566 }
1567
1568 memset(&c, 0, sizeof(c));
1569 c.rw.opcode = io.opcode;
1570 c.rw.flags = io.flags;
1571 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1572 c.rw.slba = cpu_to_le64(io.slba);
1573 c.rw.length = cpu_to_le16(io.nblocks);
1574 c.rw.control = cpu_to_le16(io.control);
1575 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1576 c.rw.reftag = cpu_to_le32(io.reftag);
1577 c.rw.apptag = cpu_to_le16(io.apptag);
1578 c.rw.appmask = cpu_to_le16(io.appmask);
1579
1580 return nvme_submit_user_cmd(ns->queue, &c,
1581 nvme_to_user_ptr(io.addr), length,
1582 metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1583 }
1584
nvme_user_cmd(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1585 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1586 struct nvme_passthru_cmd __user *ucmd)
1587 {
1588 struct nvme_passthru_cmd cmd;
1589 struct nvme_command c;
1590 unsigned timeout = 0;
1591 u64 result;
1592 int status;
1593
1594 if (!capable(CAP_SYS_ADMIN))
1595 return -EACCES;
1596 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1597 return -EFAULT;
1598 if (cmd.flags)
1599 return -EINVAL;
1600
1601 memset(&c, 0, sizeof(c));
1602 c.common.opcode = cmd.opcode;
1603 c.common.flags = cmd.flags;
1604 c.common.nsid = cpu_to_le32(cmd.nsid);
1605 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1606 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1607 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1608 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1609 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1610 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1611 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1612 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1613
1614 if (cmd.timeout_ms)
1615 timeout = msecs_to_jiffies(cmd.timeout_ms);
1616
1617 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1618 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1619 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1620 0, &result, timeout);
1621
1622 if (status >= 0) {
1623 if (put_user(result, &ucmd->result))
1624 return -EFAULT;
1625 }
1626
1627 return status;
1628 }
1629
nvme_user_cmd64(struct nvme_ctrl * ctrl,struct nvme_ns * ns,struct nvme_passthru_cmd64 __user * ucmd)1630 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1631 struct nvme_passthru_cmd64 __user *ucmd)
1632 {
1633 struct nvme_passthru_cmd64 cmd;
1634 struct nvme_command c;
1635 unsigned timeout = 0;
1636 int status;
1637
1638 if (!capable(CAP_SYS_ADMIN))
1639 return -EACCES;
1640 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1641 return -EFAULT;
1642 if (cmd.flags)
1643 return -EINVAL;
1644
1645 memset(&c, 0, sizeof(c));
1646 c.common.opcode = cmd.opcode;
1647 c.common.flags = cmd.flags;
1648 c.common.nsid = cpu_to_le32(cmd.nsid);
1649 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1650 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1651 c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1652 c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1653 c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1654 c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1655 c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1656 c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1657
1658 if (cmd.timeout_ms)
1659 timeout = msecs_to_jiffies(cmd.timeout_ms);
1660
1661 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1662 nvme_to_user_ptr(cmd.addr), cmd.data_len,
1663 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1664 0, &cmd.result, timeout);
1665
1666 if (status >= 0) {
1667 if (put_user(cmd.result, &ucmd->result))
1668 return -EFAULT;
1669 }
1670
1671 return status;
1672 }
1673
1674 /*
1675 * Issue ioctl requests on the first available path. Note that unlike normal
1676 * block layer requests we will not retry failed request on another controller.
1677 */
nvme_get_ns_from_disk(struct gendisk * disk,struct nvme_ns_head ** head,int * srcu_idx)1678 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1679 struct nvme_ns_head **head, int *srcu_idx)
1680 {
1681 #ifdef CONFIG_NVME_MULTIPATH
1682 if (disk->fops == &nvme_ns_head_ops) {
1683 struct nvme_ns *ns;
1684
1685 *head = disk->private_data;
1686 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1687 ns = nvme_find_path(*head);
1688 if (!ns)
1689 srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1690 return ns;
1691 }
1692 #endif
1693 *head = NULL;
1694 *srcu_idx = -1;
1695 return disk->private_data;
1696 }
1697
nvme_put_ns_from_disk(struct nvme_ns_head * head,int idx)1698 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1699 {
1700 if (head)
1701 srcu_read_unlock(&head->srcu, idx);
1702 }
1703
is_ctrl_ioctl(unsigned int cmd)1704 static bool is_ctrl_ioctl(unsigned int cmd)
1705 {
1706 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1707 return true;
1708 if (is_sed_ioctl(cmd))
1709 return true;
1710 return false;
1711 }
1712
nvme_handle_ctrl_ioctl(struct nvme_ns * ns,unsigned int cmd,void __user * argp,struct nvme_ns_head * head,int srcu_idx)1713 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1714 void __user *argp,
1715 struct nvme_ns_head *head,
1716 int srcu_idx)
1717 {
1718 struct nvme_ctrl *ctrl = ns->ctrl;
1719 int ret;
1720
1721 nvme_get_ctrl(ns->ctrl);
1722 nvme_put_ns_from_disk(head, srcu_idx);
1723
1724 switch (cmd) {
1725 case NVME_IOCTL_ADMIN_CMD:
1726 ret = nvme_user_cmd(ctrl, NULL, argp);
1727 break;
1728 case NVME_IOCTL_ADMIN64_CMD:
1729 ret = nvme_user_cmd64(ctrl, NULL, argp);
1730 break;
1731 default:
1732 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1733 break;
1734 }
1735 nvme_put_ctrl(ctrl);
1736 return ret;
1737 }
1738
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1739 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1740 unsigned int cmd, unsigned long arg)
1741 {
1742 struct nvme_ns_head *head = NULL;
1743 void __user *argp = (void __user *)arg;
1744 struct nvme_ns *ns;
1745 int srcu_idx, ret;
1746
1747 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1748 if (unlikely(!ns))
1749 return -EWOULDBLOCK;
1750
1751 /*
1752 * Handle ioctls that apply to the controller instead of the namespace
1753 * seperately and drop the ns SRCU reference early. This avoids a
1754 * deadlock when deleting namespaces using the passthrough interface.
1755 */
1756 if (is_ctrl_ioctl(cmd))
1757 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1758
1759 switch (cmd) {
1760 case NVME_IOCTL_ID:
1761 force_successful_syscall_return();
1762 ret = ns->head->ns_id;
1763 break;
1764 case NVME_IOCTL_IO_CMD:
1765 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1766 break;
1767 case NVME_IOCTL_SUBMIT_IO:
1768 ret = nvme_submit_io(ns, argp);
1769 break;
1770 case NVME_IOCTL_IO64_CMD:
1771 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1772 break;
1773 default:
1774 if (ns->ndev)
1775 ret = nvme_nvm_ioctl(ns, cmd, arg);
1776 else
1777 ret = -ENOTTY;
1778 }
1779
1780 nvme_put_ns_from_disk(head, srcu_idx);
1781 return ret;
1782 }
1783
1784 #ifdef CONFIG_COMPAT
1785 struct nvme_user_io32 {
1786 __u8 opcode;
1787 __u8 flags;
1788 __u16 control;
1789 __u16 nblocks;
1790 __u16 rsvd;
1791 __u64 metadata;
1792 __u64 addr;
1793 __u64 slba;
1794 __u32 dsmgmt;
1795 __u32 reftag;
1796 __u16 apptag;
1797 __u16 appmask;
1798 } __attribute__((__packed__));
1799
1800 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
1801
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1802 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1803 unsigned int cmd, unsigned long arg)
1804 {
1805 /*
1806 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1807 * between 32 bit programs and 64 bit kernel.
1808 * The cause is that the results of sizeof(struct nvme_user_io),
1809 * which is used to define NVME_IOCTL_SUBMIT_IO,
1810 * are not same between 32 bit compiler and 64 bit compiler.
1811 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1812 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1813 * Other IOCTL numbers are same between 32 bit and 64 bit.
1814 * So there is nothing to do regarding to other IOCTL numbers.
1815 */
1816 if (cmd == NVME_IOCTL_SUBMIT_IO32)
1817 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1818
1819 return nvme_ioctl(bdev, mode, cmd, arg);
1820 }
1821 #else
1822 #define nvme_compat_ioctl NULL
1823 #endif /* CONFIG_COMPAT */
1824
nvme_open(struct block_device * bdev,fmode_t mode)1825 static int nvme_open(struct block_device *bdev, fmode_t mode)
1826 {
1827 struct nvme_ns *ns = bdev->bd_disk->private_data;
1828
1829 #ifdef CONFIG_NVME_MULTIPATH
1830 /* should never be called due to GENHD_FL_HIDDEN */
1831 if (WARN_ON_ONCE(ns->head->disk))
1832 goto fail;
1833 #endif
1834 if (!kref_get_unless_zero(&ns->kref))
1835 goto fail;
1836 if (!try_module_get(ns->ctrl->ops->module))
1837 goto fail_put_ns;
1838
1839 return 0;
1840
1841 fail_put_ns:
1842 nvme_put_ns(ns);
1843 fail:
1844 return -ENXIO;
1845 }
1846
nvme_release(struct gendisk * disk,fmode_t mode)1847 static void nvme_release(struct gendisk *disk, fmode_t mode)
1848 {
1849 struct nvme_ns *ns = disk->private_data;
1850
1851 module_put(ns->ctrl->ops->module);
1852 nvme_put_ns(ns);
1853 }
1854
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1855 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1856 {
1857 /* some standard values */
1858 geo->heads = 1 << 6;
1859 geo->sectors = 1 << 5;
1860 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1861 return 0;
1862 }
1863
1864 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1865 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1866 u32 max_integrity_segments)
1867 {
1868 struct blk_integrity integrity;
1869
1870 memset(&integrity, 0, sizeof(integrity));
1871 switch (pi_type) {
1872 case NVME_NS_DPS_PI_TYPE3:
1873 integrity.profile = &t10_pi_type3_crc;
1874 integrity.tag_size = sizeof(u16) + sizeof(u32);
1875 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1876 break;
1877 case NVME_NS_DPS_PI_TYPE1:
1878 case NVME_NS_DPS_PI_TYPE2:
1879 integrity.profile = &t10_pi_type1_crc;
1880 integrity.tag_size = sizeof(u16);
1881 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1882 break;
1883 default:
1884 integrity.profile = NULL;
1885 break;
1886 }
1887 integrity.tuple_size = ms;
1888 blk_integrity_register(disk, &integrity);
1889 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1890 }
1891 #else
nvme_init_integrity(struct gendisk * disk,u16 ms,u8 pi_type,u32 max_integrity_segments)1892 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1893 u32 max_integrity_segments)
1894 {
1895 }
1896 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1897
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1898 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1899 {
1900 struct nvme_ctrl *ctrl = ns->ctrl;
1901 struct request_queue *queue = disk->queue;
1902 u32 size = queue_logical_block_size(queue);
1903
1904 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1905 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1906 return;
1907 }
1908
1909 if (ctrl->nr_streams && ns->sws && ns->sgs)
1910 size *= ns->sws * ns->sgs;
1911
1912 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1913 NVME_DSM_MAX_RANGES);
1914
1915 queue->limits.discard_alignment = 0;
1916 queue->limits.discard_granularity = size;
1917
1918 /* If discard is already enabled, don't reset queue limits */
1919 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1920 return;
1921
1922 blk_queue_max_discard_sectors(queue, UINT_MAX);
1923 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1924
1925 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1926 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1927 }
1928
1929 /*
1930 * Even though NVMe spec explicitly states that MDTS is not applicable to the
1931 * write-zeroes, we are cautious and limit the size to the controllers
1932 * max_hw_sectors value, which is based on the MDTS field and possibly other
1933 * limiting factors.
1934 */
nvme_config_write_zeroes(struct request_queue * q,struct nvme_ctrl * ctrl)1935 static void nvme_config_write_zeroes(struct request_queue *q,
1936 struct nvme_ctrl *ctrl)
1937 {
1938 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
1939 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1940 blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
1941 }
1942
nvme_ns_ids_valid(struct nvme_ns_ids * ids)1943 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1944 {
1945 return !uuid_is_null(&ids->uuid) ||
1946 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1947 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1948 }
1949
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1950 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1951 {
1952 return uuid_equal(&a->uuid, &b->uuid) &&
1953 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1954 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1955 a->csi == b->csi;
1956 }
1957
nvme_setup_streams_ns(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u32 * phys_bs,u32 * io_opt)1958 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1959 u32 *phys_bs, u32 *io_opt)
1960 {
1961 struct streams_directive_params s;
1962 int ret;
1963
1964 if (!ctrl->nr_streams)
1965 return 0;
1966
1967 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1968 if (ret)
1969 return ret;
1970
1971 ns->sws = le32_to_cpu(s.sws);
1972 ns->sgs = le16_to_cpu(s.sgs);
1973
1974 if (ns->sws) {
1975 *phys_bs = ns->sws * (1 << ns->lba_shift);
1976 if (ns->sgs)
1977 *io_opt = *phys_bs * ns->sgs;
1978 }
1979
1980 return 0;
1981 }
1982
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1983 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1984 {
1985 struct nvme_ctrl *ctrl = ns->ctrl;
1986
1987 /*
1988 * The PI implementation requires the metadata size to be equal to the
1989 * t10 pi tuple size.
1990 */
1991 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1992 if (ns->ms == sizeof(struct t10_pi_tuple))
1993 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1994 else
1995 ns->pi_type = 0;
1996
1997 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1998 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1999 return 0;
2000 if (ctrl->ops->flags & NVME_F_FABRICS) {
2001 /*
2002 * The NVMe over Fabrics specification only supports metadata as
2003 * part of the extended data LBA. We rely on HCA/HBA support to
2004 * remap the separate metadata buffer from the block layer.
2005 */
2006 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
2007 return -EINVAL;
2008 if (ctrl->max_integrity_segments)
2009 ns->features |=
2010 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
2011 } else {
2012 /*
2013 * For PCIe controllers, we can't easily remap the separate
2014 * metadata buffer from the block layer and thus require a
2015 * separate metadata buffer for block layer metadata/PI support.
2016 * We allow extended LBAs for the passthrough interface, though.
2017 */
2018 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2019 ns->features |= NVME_NS_EXT_LBAS;
2020 else
2021 ns->features |= NVME_NS_METADATA_SUPPORTED;
2022 }
2023
2024 return 0;
2025 }
2026
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)2027 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2028 struct request_queue *q)
2029 {
2030 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2031
2032 if (ctrl->max_hw_sectors) {
2033 u32 max_segments =
2034 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
2035
2036 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2037 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2038 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2039 }
2040 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
2041 blk_queue_dma_alignment(q, 3);
2042 blk_queue_write_cache(q, vwc, vwc);
2043 }
2044
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)2045 static void nvme_update_disk_info(struct gendisk *disk,
2046 struct nvme_ns *ns, struct nvme_id_ns *id)
2047 {
2048 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
2049 unsigned short bs = 1 << ns->lba_shift;
2050 u32 atomic_bs, phys_bs, io_opt = 0;
2051
2052 /*
2053 * The block layer can't support LBA sizes larger than the page size
2054 * yet, so catch this early and don't allow block I/O.
2055 */
2056 if (ns->lba_shift > PAGE_SHIFT) {
2057 capacity = 0;
2058 bs = (1 << 9);
2059 }
2060
2061 blk_integrity_unregister(disk);
2062
2063 atomic_bs = phys_bs = bs;
2064 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2065 if (id->nabo == 0) {
2066 /*
2067 * Bit 1 indicates whether NAWUPF is defined for this namespace
2068 * and whether it should be used instead of AWUPF. If NAWUPF ==
2069 * 0 then AWUPF must be used instead.
2070 */
2071 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2072 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2073 else
2074 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2075 }
2076
2077 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2078 /* NPWG = Namespace Preferred Write Granularity */
2079 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2080 /* NOWS = Namespace Optimal Write Size */
2081 io_opt = bs * (1 + le16_to_cpu(id->nows));
2082 }
2083
2084 blk_queue_logical_block_size(disk->queue, bs);
2085 /*
2086 * Linux filesystems assume writing a single physical block is
2087 * an atomic operation. Hence limit the physical block size to the
2088 * value of the Atomic Write Unit Power Fail parameter.
2089 */
2090 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2091 blk_queue_io_min(disk->queue, phys_bs);
2092 blk_queue_io_opt(disk->queue, io_opt);
2093
2094 /*
2095 * Register a metadata profile for PI, or the plain non-integrity NVMe
2096 * metadata masquerading as Type 0 if supported, otherwise reject block
2097 * I/O to namespaces with metadata except when the namespace supports
2098 * PI, as it can strip/insert in that case.
2099 */
2100 if (ns->ms) {
2101 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2102 (ns->features & NVME_NS_METADATA_SUPPORTED))
2103 nvme_init_integrity(disk, ns->ms, ns->pi_type,
2104 ns->ctrl->max_integrity_segments);
2105 else if (!nvme_ns_has_pi(ns))
2106 capacity = 0;
2107 }
2108
2109 set_capacity_revalidate_and_notify(disk, capacity, false);
2110
2111 nvme_config_discard(disk, ns);
2112 nvme_config_write_zeroes(disk->queue, ns->ctrl);
2113
2114 if (id->nsattr & NVME_NS_ATTR_RO)
2115 set_disk_ro(disk, true);
2116 }
2117
nvme_first_scan(struct gendisk * disk)2118 static inline bool nvme_first_scan(struct gendisk *disk)
2119 {
2120 /* nvme_alloc_ns() scans the disk prior to adding it */
2121 return !(disk->flags & GENHD_FL_UP);
2122 }
2123
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)2124 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2125 {
2126 struct nvme_ctrl *ctrl = ns->ctrl;
2127 u32 iob;
2128
2129 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2130 is_power_of_2(ctrl->max_hw_sectors))
2131 iob = ctrl->max_hw_sectors;
2132 else
2133 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2134
2135 if (!iob)
2136 return;
2137
2138 if (!is_power_of_2(iob)) {
2139 if (nvme_first_scan(ns->disk))
2140 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2141 ns->disk->disk_name, iob);
2142 return;
2143 }
2144
2145 if (blk_queue_is_zoned(ns->disk->queue)) {
2146 if (nvme_first_scan(ns->disk))
2147 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2148 ns->disk->disk_name);
2149 return;
2150 }
2151
2152 blk_queue_chunk_sectors(ns->queue, iob);
2153 }
2154
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_id_ns * id)2155 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2156 {
2157 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2158 int ret;
2159
2160 blk_mq_freeze_queue(ns->disk->queue);
2161 ns->lba_shift = id->lbaf[lbaf].ds;
2162 nvme_set_queue_limits(ns->ctrl, ns->queue);
2163
2164 if (ns->head->ids.csi == NVME_CSI_ZNS) {
2165 ret = nvme_update_zone_info(ns, lbaf);
2166 if (ret)
2167 goto out_unfreeze;
2168 }
2169
2170 ret = nvme_configure_metadata(ns, id);
2171 if (ret)
2172 goto out_unfreeze;
2173 nvme_set_chunk_sectors(ns, id);
2174 nvme_update_disk_info(ns->disk, ns, id);
2175 blk_mq_unfreeze_queue(ns->disk->queue);
2176
2177 if (blk_queue_is_zoned(ns->queue)) {
2178 ret = nvme_revalidate_zones(ns);
2179 if (ret && !nvme_first_scan(ns->disk))
2180 return ret;
2181 }
2182
2183 #ifdef CONFIG_NVME_MULTIPATH
2184 if (ns->head->disk) {
2185 blk_mq_freeze_queue(ns->head->disk->queue);
2186 nvme_update_disk_info(ns->head->disk, ns, id);
2187 blk_stack_limits(&ns->head->disk->queue->limits,
2188 &ns->queue->limits, 0);
2189 blk_queue_update_readahead(ns->head->disk->queue);
2190 nvme_update_bdev_size(ns->head->disk);
2191 blk_mq_unfreeze_queue(ns->head->disk->queue);
2192 }
2193 #endif
2194 return 0;
2195
2196 out_unfreeze:
2197 blk_mq_unfreeze_queue(ns->disk->queue);
2198 return ret;
2199 }
2200
nvme_pr_type(enum pr_type type)2201 static char nvme_pr_type(enum pr_type type)
2202 {
2203 switch (type) {
2204 case PR_WRITE_EXCLUSIVE:
2205 return 1;
2206 case PR_EXCLUSIVE_ACCESS:
2207 return 2;
2208 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2209 return 3;
2210 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2211 return 4;
2212 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2213 return 5;
2214 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2215 return 6;
2216 default:
2217 return 0;
2218 }
2219 };
2220
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)2221 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2222 u64 key, u64 sa_key, u8 op)
2223 {
2224 struct nvme_ns_head *head = NULL;
2225 struct nvme_ns *ns;
2226 struct nvme_command c;
2227 int srcu_idx, ret;
2228 u8 data[16] = { 0, };
2229
2230 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2231 if (unlikely(!ns))
2232 return -EWOULDBLOCK;
2233
2234 put_unaligned_le64(key, &data[0]);
2235 put_unaligned_le64(sa_key, &data[8]);
2236
2237 memset(&c, 0, sizeof(c));
2238 c.common.opcode = op;
2239 c.common.nsid = cpu_to_le32(ns->head->ns_id);
2240 c.common.cdw10 = cpu_to_le32(cdw10);
2241
2242 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2243 nvme_put_ns_from_disk(head, srcu_idx);
2244 return ret;
2245 }
2246
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)2247 static int nvme_pr_register(struct block_device *bdev, u64 old,
2248 u64 new, unsigned flags)
2249 {
2250 u32 cdw10;
2251
2252 if (flags & ~PR_FL_IGNORE_KEY)
2253 return -EOPNOTSUPP;
2254
2255 cdw10 = old ? 2 : 0;
2256 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2257 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2258 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2259 }
2260
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)2261 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2262 enum pr_type type, unsigned flags)
2263 {
2264 u32 cdw10;
2265
2266 if (flags & ~PR_FL_IGNORE_KEY)
2267 return -EOPNOTSUPP;
2268
2269 cdw10 = nvme_pr_type(type) << 8;
2270 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2271 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2272 }
2273
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)2274 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2275 enum pr_type type, bool abort)
2276 {
2277 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2278
2279 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2280 }
2281
nvme_pr_clear(struct block_device * bdev,u64 key)2282 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2283 {
2284 u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2285
2286 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2287 }
2288
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2289 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2290 {
2291 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2292
2293 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2294 }
2295
2296 static const struct pr_ops nvme_pr_ops = {
2297 .pr_register = nvme_pr_register,
2298 .pr_reserve = nvme_pr_reserve,
2299 .pr_release = nvme_pr_release,
2300 .pr_preempt = nvme_pr_preempt,
2301 .pr_clear = nvme_pr_clear,
2302 };
2303
2304 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2305 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2306 bool send)
2307 {
2308 struct nvme_ctrl *ctrl = data;
2309 struct nvme_command cmd;
2310
2311 memset(&cmd, 0, sizeof(cmd));
2312 if (send)
2313 cmd.common.opcode = nvme_admin_security_send;
2314 else
2315 cmd.common.opcode = nvme_admin_security_recv;
2316 cmd.common.nsid = 0;
2317 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2318 cmd.common.cdw11 = cpu_to_le32(len);
2319
2320 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2321 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2322 }
2323 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2324 #endif /* CONFIG_BLK_SED_OPAL */
2325
2326 static const struct block_device_operations nvme_fops = {
2327 .owner = THIS_MODULE,
2328 .ioctl = nvme_ioctl,
2329 .compat_ioctl = nvme_compat_ioctl,
2330 .open = nvme_open,
2331 .release = nvme_release,
2332 .getgeo = nvme_getgeo,
2333 .report_zones = nvme_report_zones,
2334 .pr_ops = &nvme_pr_ops,
2335 };
2336
2337 #ifdef CONFIG_NVME_MULTIPATH
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)2338 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2339 {
2340 struct nvme_ns_head *head = bdev->bd_disk->private_data;
2341
2342 if (!kref_get_unless_zero(&head->ref))
2343 return -ENXIO;
2344 return 0;
2345 }
2346
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)2347 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2348 {
2349 nvme_put_ns_head(disk->private_data);
2350 }
2351
2352 const struct block_device_operations nvme_ns_head_ops = {
2353 .owner = THIS_MODULE,
2354 .submit_bio = nvme_ns_head_submit_bio,
2355 .open = nvme_ns_head_open,
2356 .release = nvme_ns_head_release,
2357 .ioctl = nvme_ioctl,
2358 .compat_ioctl = nvme_compat_ioctl,
2359 .getgeo = nvme_getgeo,
2360 .report_zones = nvme_report_zones,
2361 .pr_ops = &nvme_pr_ops,
2362 };
2363 #endif /* CONFIG_NVME_MULTIPATH */
2364
nvme_wait_ready(struct nvme_ctrl * ctrl,u64 cap,bool enabled)2365 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2366 {
2367 unsigned long timeout =
2368 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2369 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2370 int ret;
2371
2372 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2373 if (csts == ~0)
2374 return -ENODEV;
2375 if ((csts & NVME_CSTS_RDY) == bit)
2376 break;
2377
2378 usleep_range(1000, 2000);
2379 if (fatal_signal_pending(current))
2380 return -EINTR;
2381 if (time_after(jiffies, timeout)) {
2382 dev_err(ctrl->device,
2383 "Device not ready; aborting %s, CSTS=0x%x\n",
2384 enabled ? "initialisation" : "reset", csts);
2385 return -ENODEV;
2386 }
2387 }
2388
2389 return ret;
2390 }
2391
2392 /*
2393 * If the device has been passed off to us in an enabled state, just clear
2394 * the enabled bit. The spec says we should set the 'shutdown notification
2395 * bits', but doing so may cause the device to complete commands to the
2396 * admin queue ... and we don't know what memory that might be pointing at!
2397 */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2398 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2399 {
2400 int ret;
2401
2402 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2403 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2404
2405 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2406 if (ret)
2407 return ret;
2408
2409 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2410 msleep(NVME_QUIRK_DELAY_AMOUNT);
2411
2412 return nvme_wait_ready(ctrl, ctrl->cap, false);
2413 }
2414 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2415
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2416 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2417 {
2418 unsigned dev_page_min;
2419 int ret;
2420
2421 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2422 if (ret) {
2423 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2424 return ret;
2425 }
2426 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2427
2428 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2429 dev_err(ctrl->device,
2430 "Minimum device page size %u too large for host (%u)\n",
2431 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2432 return -ENODEV;
2433 }
2434
2435 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2436 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2437 else
2438 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2439 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2440 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2441 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2442 ctrl->ctrl_config |= NVME_CC_ENABLE;
2443
2444 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2445 if (ret)
2446 return ret;
2447 return nvme_wait_ready(ctrl, ctrl->cap, true);
2448 }
2449 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2450
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2451 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2452 {
2453 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2454 u32 csts;
2455 int ret;
2456
2457 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2458 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2459
2460 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2461 if (ret)
2462 return ret;
2463
2464 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2465 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2466 break;
2467
2468 msleep(100);
2469 if (fatal_signal_pending(current))
2470 return -EINTR;
2471 if (time_after(jiffies, timeout)) {
2472 dev_err(ctrl->device,
2473 "Device shutdown incomplete; abort shutdown\n");
2474 return -ENODEV;
2475 }
2476 }
2477
2478 return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2481
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2482 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2483 {
2484 __le64 ts;
2485 int ret;
2486
2487 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2488 return 0;
2489
2490 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2491 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2492 NULL);
2493 if (ret)
2494 dev_warn_once(ctrl->device,
2495 "could not set timestamp (%d)\n", ret);
2496 return ret;
2497 }
2498
nvme_configure_acre(struct nvme_ctrl * ctrl)2499 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2500 {
2501 struct nvme_feat_host_behavior *host;
2502 int ret;
2503
2504 /* Don't bother enabling the feature if retry delay is not reported */
2505 if (!ctrl->crdt[0])
2506 return 0;
2507
2508 host = kzalloc(sizeof(*host), GFP_KERNEL);
2509 if (!host)
2510 return 0;
2511
2512 host->acre = NVME_ENABLE_ACRE;
2513 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2514 host, sizeof(*host), NULL);
2515 kfree(host);
2516 return ret;
2517 }
2518
nvme_configure_apst(struct nvme_ctrl * ctrl)2519 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2520 {
2521 /*
2522 * APST (Autonomous Power State Transition) lets us program a
2523 * table of power state transitions that the controller will
2524 * perform automatically. We configure it with a simple
2525 * heuristic: we are willing to spend at most 2% of the time
2526 * transitioning between power states. Therefore, when running
2527 * in any given state, we will enter the next lower-power
2528 * non-operational state after waiting 50 * (enlat + exlat)
2529 * microseconds, as long as that state's exit latency is under
2530 * the requested maximum latency.
2531 *
2532 * We will not autonomously enter any non-operational state for
2533 * which the total latency exceeds ps_max_latency_us. Users
2534 * can set ps_max_latency_us to zero to turn off APST.
2535 */
2536
2537 unsigned apste;
2538 struct nvme_feat_auto_pst *table;
2539 u64 max_lat_us = 0;
2540 int max_ps = -1;
2541 int ret;
2542
2543 /*
2544 * If APST isn't supported or if we haven't been initialized yet,
2545 * then don't do anything.
2546 */
2547 if (!ctrl->apsta)
2548 return 0;
2549
2550 if (ctrl->npss > 31) {
2551 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2552 return 0;
2553 }
2554
2555 table = kzalloc(sizeof(*table), GFP_KERNEL);
2556 if (!table)
2557 return 0;
2558
2559 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2560 /* Turn off APST. */
2561 apste = 0;
2562 dev_dbg(ctrl->device, "APST disabled\n");
2563 } else {
2564 __le64 target = cpu_to_le64(0);
2565 int state;
2566
2567 /*
2568 * Walk through all states from lowest- to highest-power.
2569 * According to the spec, lower-numbered states use more
2570 * power. NPSS, despite the name, is the index of the
2571 * lowest-power state, not the number of states.
2572 */
2573 for (state = (int)ctrl->npss; state >= 0; state--) {
2574 u64 total_latency_us, exit_latency_us, transition_ms;
2575
2576 if (target)
2577 table->entries[state] = target;
2578
2579 /*
2580 * Don't allow transitions to the deepest state
2581 * if it's quirked off.
2582 */
2583 if (state == ctrl->npss &&
2584 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2585 continue;
2586
2587 /*
2588 * Is this state a useful non-operational state for
2589 * higher-power states to autonomously transition to?
2590 */
2591 if (!(ctrl->psd[state].flags &
2592 NVME_PS_FLAGS_NON_OP_STATE))
2593 continue;
2594
2595 exit_latency_us =
2596 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2597 if (exit_latency_us > ctrl->ps_max_latency_us)
2598 continue;
2599
2600 total_latency_us =
2601 exit_latency_us +
2602 le32_to_cpu(ctrl->psd[state].entry_lat);
2603
2604 /*
2605 * This state is good. Use it as the APST idle
2606 * target for higher power states.
2607 */
2608 transition_ms = total_latency_us + 19;
2609 do_div(transition_ms, 20);
2610 if (transition_ms > (1 << 24) - 1)
2611 transition_ms = (1 << 24) - 1;
2612
2613 target = cpu_to_le64((state << 3) |
2614 (transition_ms << 8));
2615
2616 if (max_ps == -1)
2617 max_ps = state;
2618
2619 if (total_latency_us > max_lat_us)
2620 max_lat_us = total_latency_us;
2621 }
2622
2623 apste = 1;
2624
2625 if (max_ps == -1) {
2626 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2627 } else {
2628 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2629 max_ps, max_lat_us, (int)sizeof(*table), table);
2630 }
2631 }
2632
2633 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2634 table, sizeof(*table), NULL);
2635 if (ret)
2636 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2637
2638 kfree(table);
2639 return ret;
2640 }
2641
nvme_set_latency_tolerance(struct device * dev,s32 val)2642 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2643 {
2644 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2645 u64 latency;
2646
2647 switch (val) {
2648 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2649 case PM_QOS_LATENCY_ANY:
2650 latency = U64_MAX;
2651 break;
2652
2653 default:
2654 latency = val;
2655 }
2656
2657 if (ctrl->ps_max_latency_us != latency) {
2658 ctrl->ps_max_latency_us = latency;
2659 if (ctrl->state == NVME_CTRL_LIVE)
2660 nvme_configure_apst(ctrl);
2661 }
2662 }
2663
2664 struct nvme_core_quirk_entry {
2665 /*
2666 * NVMe model and firmware strings are padded with spaces. For
2667 * simplicity, strings in the quirk table are padded with NULLs
2668 * instead.
2669 */
2670 u16 vid;
2671 const char *mn;
2672 const char *fr;
2673 unsigned long quirks;
2674 };
2675
2676 static const struct nvme_core_quirk_entry core_quirks[] = {
2677 {
2678 /*
2679 * This Toshiba device seems to die using any APST states. See:
2680 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2681 */
2682 .vid = 0x1179,
2683 .mn = "THNSF5256GPUK TOSHIBA",
2684 .quirks = NVME_QUIRK_NO_APST,
2685 },
2686 {
2687 /*
2688 * This LiteON CL1-3D*-Q11 firmware version has a race
2689 * condition associated with actions related to suspend to idle
2690 * LiteON has resolved the problem in future firmware
2691 */
2692 .vid = 0x14a4,
2693 .fr = "22301111",
2694 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2695 },
2696 {
2697 /*
2698 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2699 * aborts I/O during any load, but more easily reproducible
2700 * with discards (fstrim).
2701 *
2702 * The device is left in a state where it is also not possible
2703 * to use "nvme set-feature" to disable APST, but booting with
2704 * nvme_core.default_ps_max_latency=0 works.
2705 */
2706 .vid = 0x1e0f,
2707 .mn = "KCD6XVUL6T40",
2708 .quirks = NVME_QUIRK_NO_APST,
2709 },
2710 {
2711 /*
2712 * The external Samsung X5 SSD fails initialization without a
2713 * delay before checking if it is ready and has a whole set of
2714 * other problems. To make this even more interesting, it
2715 * shares the PCI ID with internal Samsung 970 Evo Plus that
2716 * does not need or want these quirks.
2717 */
2718 .vid = 0x144d,
2719 .mn = "Samsung Portable SSD X5",
2720 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2721 NVME_QUIRK_NO_DEEPEST_PS |
2722 NVME_QUIRK_IGNORE_DEV_SUBNQN,
2723 }
2724 };
2725
2726 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2727 static bool string_matches(const char *idstr, const char *match, size_t len)
2728 {
2729 size_t matchlen;
2730
2731 if (!match)
2732 return true;
2733
2734 matchlen = strlen(match);
2735 WARN_ON_ONCE(matchlen > len);
2736
2737 if (memcmp(idstr, match, matchlen))
2738 return false;
2739
2740 for (; matchlen < len; matchlen++)
2741 if (idstr[matchlen] != ' ')
2742 return false;
2743
2744 return true;
2745 }
2746
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2747 static bool quirk_matches(const struct nvme_id_ctrl *id,
2748 const struct nvme_core_quirk_entry *q)
2749 {
2750 return q->vid == le16_to_cpu(id->vid) &&
2751 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2752 string_matches(id->fr, q->fr, sizeof(id->fr));
2753 }
2754
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2755 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2756 struct nvme_id_ctrl *id)
2757 {
2758 size_t nqnlen;
2759 int off;
2760
2761 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2762 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2763 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2764 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2765 return;
2766 }
2767
2768 if (ctrl->vs >= NVME_VS(1, 2, 1))
2769 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2770 }
2771
2772 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2773 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2774 "nqn.2014.08.org.nvmexpress:%04x%04x",
2775 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2776 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2777 off += sizeof(id->sn);
2778 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2779 off += sizeof(id->mn);
2780 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2781 }
2782
nvme_release_subsystem(struct device * dev)2783 static void nvme_release_subsystem(struct device *dev)
2784 {
2785 struct nvme_subsystem *subsys =
2786 container_of(dev, struct nvme_subsystem, dev);
2787
2788 if (subsys->instance >= 0)
2789 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2790 kfree(subsys);
2791 }
2792
nvme_destroy_subsystem(struct kref * ref)2793 static void nvme_destroy_subsystem(struct kref *ref)
2794 {
2795 struct nvme_subsystem *subsys =
2796 container_of(ref, struct nvme_subsystem, ref);
2797
2798 mutex_lock(&nvme_subsystems_lock);
2799 list_del(&subsys->entry);
2800 mutex_unlock(&nvme_subsystems_lock);
2801
2802 ida_destroy(&subsys->ns_ida);
2803 device_del(&subsys->dev);
2804 put_device(&subsys->dev);
2805 }
2806
nvme_put_subsystem(struct nvme_subsystem * subsys)2807 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2808 {
2809 kref_put(&subsys->ref, nvme_destroy_subsystem);
2810 }
2811
__nvme_find_get_subsystem(const char * subsysnqn)2812 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2813 {
2814 struct nvme_subsystem *subsys;
2815
2816 lockdep_assert_held(&nvme_subsystems_lock);
2817
2818 /*
2819 * Fail matches for discovery subsystems. This results
2820 * in each discovery controller bound to a unique subsystem.
2821 * This avoids issues with validating controller values
2822 * that can only be true when there is a single unique subsystem.
2823 * There may be multiple and completely independent entities
2824 * that provide discovery controllers.
2825 */
2826 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2827 return NULL;
2828
2829 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2830 if (strcmp(subsys->subnqn, subsysnqn))
2831 continue;
2832 if (!kref_get_unless_zero(&subsys->ref))
2833 continue;
2834 return subsys;
2835 }
2836
2837 return NULL;
2838 }
2839
2840 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2841 struct device_attribute subsys_attr_##_name = \
2842 __ATTR(_name, _mode, _show, NULL)
2843
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2844 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2845 struct device_attribute *attr,
2846 char *buf)
2847 {
2848 struct nvme_subsystem *subsys =
2849 container_of(dev, struct nvme_subsystem, dev);
2850
2851 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2852 }
2853 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2854
2855 #define nvme_subsys_show_str_function(field) \
2856 static ssize_t subsys_##field##_show(struct device *dev, \
2857 struct device_attribute *attr, char *buf) \
2858 { \
2859 struct nvme_subsystem *subsys = \
2860 container_of(dev, struct nvme_subsystem, dev); \
2861 return sysfs_emit(buf, "%.*s\n", \
2862 (int)sizeof(subsys->field), subsys->field); \
2863 } \
2864 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2865
2866 nvme_subsys_show_str_function(model);
2867 nvme_subsys_show_str_function(serial);
2868 nvme_subsys_show_str_function(firmware_rev);
2869
2870 static struct attribute *nvme_subsys_attrs[] = {
2871 &subsys_attr_model.attr,
2872 &subsys_attr_serial.attr,
2873 &subsys_attr_firmware_rev.attr,
2874 &subsys_attr_subsysnqn.attr,
2875 #ifdef CONFIG_NVME_MULTIPATH
2876 &subsys_attr_iopolicy.attr,
2877 #endif
2878 NULL,
2879 };
2880
2881 static struct attribute_group nvme_subsys_attrs_group = {
2882 .attrs = nvme_subsys_attrs,
2883 };
2884
2885 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2886 &nvme_subsys_attrs_group,
2887 NULL,
2888 };
2889
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2890 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2891 {
2892 return ctrl->opts && ctrl->opts->discovery_nqn;
2893 }
2894
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2895 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2896 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2897 {
2898 struct nvme_ctrl *tmp;
2899
2900 lockdep_assert_held(&nvme_subsystems_lock);
2901
2902 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2903 if (nvme_state_terminal(tmp))
2904 continue;
2905
2906 if (tmp->cntlid == ctrl->cntlid) {
2907 dev_err(ctrl->device,
2908 "Duplicate cntlid %u with %s, rejecting\n",
2909 ctrl->cntlid, dev_name(tmp->device));
2910 return false;
2911 }
2912
2913 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2914 nvme_discovery_ctrl(ctrl))
2915 continue;
2916
2917 dev_err(ctrl->device,
2918 "Subsystem does not support multiple controllers\n");
2919 return false;
2920 }
2921
2922 return true;
2923 }
2924
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2925 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2926 {
2927 struct nvme_subsystem *subsys, *found;
2928 int ret;
2929
2930 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2931 if (!subsys)
2932 return -ENOMEM;
2933
2934 subsys->instance = -1;
2935 mutex_init(&subsys->lock);
2936 kref_init(&subsys->ref);
2937 INIT_LIST_HEAD(&subsys->ctrls);
2938 INIT_LIST_HEAD(&subsys->nsheads);
2939 nvme_init_subnqn(subsys, ctrl, id);
2940 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2941 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2942 subsys->vendor_id = le16_to_cpu(id->vid);
2943 subsys->cmic = id->cmic;
2944 subsys->awupf = le16_to_cpu(id->awupf);
2945 #ifdef CONFIG_NVME_MULTIPATH
2946 subsys->iopolicy = NVME_IOPOLICY_NUMA;
2947 #endif
2948
2949 subsys->dev.class = nvme_subsys_class;
2950 subsys->dev.release = nvme_release_subsystem;
2951 subsys->dev.groups = nvme_subsys_attrs_groups;
2952 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2953 device_initialize(&subsys->dev);
2954
2955 mutex_lock(&nvme_subsystems_lock);
2956 found = __nvme_find_get_subsystem(subsys->subnqn);
2957 if (found) {
2958 put_device(&subsys->dev);
2959 subsys = found;
2960
2961 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2962 ret = -EINVAL;
2963 goto out_put_subsystem;
2964 }
2965 } else {
2966 ret = device_add(&subsys->dev);
2967 if (ret) {
2968 dev_err(ctrl->device,
2969 "failed to register subsystem device.\n");
2970 put_device(&subsys->dev);
2971 goto out_unlock;
2972 }
2973 ida_init(&subsys->ns_ida);
2974 list_add_tail(&subsys->entry, &nvme_subsystems);
2975 }
2976
2977 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2978 dev_name(ctrl->device));
2979 if (ret) {
2980 dev_err(ctrl->device,
2981 "failed to create sysfs link from subsystem.\n");
2982 goto out_put_subsystem;
2983 }
2984
2985 if (!found)
2986 subsys->instance = ctrl->instance;
2987 ctrl->subsys = subsys;
2988 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2989 mutex_unlock(&nvme_subsystems_lock);
2990 return 0;
2991
2992 out_put_subsystem:
2993 nvme_put_subsystem(subsys);
2994 out_unlock:
2995 mutex_unlock(&nvme_subsystems_lock);
2996 return ret;
2997 }
2998
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2999 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3000 void *log, size_t size, u64 offset)
3001 {
3002 struct nvme_command c = { };
3003 u32 dwlen = nvme_bytes_to_numd(size);
3004
3005 c.get_log_page.opcode = nvme_admin_get_log_page;
3006 c.get_log_page.nsid = cpu_to_le32(nsid);
3007 c.get_log_page.lid = log_page;
3008 c.get_log_page.lsp = lsp;
3009 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3010 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3011 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3012 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3013 c.get_log_page.csi = csi;
3014
3015 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3016 }
3017
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3018 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3019 struct nvme_effects_log **log)
3020 {
3021 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
3022 int ret;
3023
3024 if (cel)
3025 goto out;
3026
3027 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3028 if (!cel)
3029 return -ENOMEM;
3030
3031 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3032 cel, sizeof(*cel), 0);
3033 if (ret) {
3034 kfree(cel);
3035 return ret;
3036 }
3037
3038 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3039 out:
3040 *log = cel;
3041 return 0;
3042 }
3043
3044 /*
3045 * Initialize the cached copies of the Identify data and various controller
3046 * register in our nvme_ctrl structure. This should be called as soon as
3047 * the admin queue is fully up and running.
3048 */
nvme_init_identify(struct nvme_ctrl * ctrl)3049 int nvme_init_identify(struct nvme_ctrl *ctrl)
3050 {
3051 struct nvme_id_ctrl *id;
3052 int ret, page_shift;
3053 u32 max_hw_sectors;
3054 bool prev_apst_enabled;
3055
3056 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3057 if (ret) {
3058 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3059 return ret;
3060 }
3061 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
3062 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3063
3064 if (ctrl->vs >= NVME_VS(1, 1, 0))
3065 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3066
3067 ret = nvme_identify_ctrl(ctrl, &id);
3068 if (ret) {
3069 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3070 return -EIO;
3071 }
3072
3073 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3074 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3075 if (ret < 0)
3076 goto out_free;
3077 }
3078
3079 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3080 ctrl->cntlid = le16_to_cpu(id->cntlid);
3081
3082 if (!ctrl->identified) {
3083 int i;
3084
3085 /*
3086 * Check for quirks. Quirk can depend on firmware version,
3087 * so, in principle, the set of quirks present can change
3088 * across a reset. As a possible future enhancement, we
3089 * could re-scan for quirks every time we reinitialize
3090 * the device, but we'd have to make sure that the driver
3091 * behaves intelligently if the quirks change.
3092 */
3093 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3094 if (quirk_matches(id, &core_quirks[i]))
3095 ctrl->quirks |= core_quirks[i].quirks;
3096 }
3097
3098 ret = nvme_init_subsystem(ctrl, id);
3099 if (ret)
3100 goto out_free;
3101 }
3102 memcpy(ctrl->subsys->firmware_rev, id->fr,
3103 sizeof(ctrl->subsys->firmware_rev));
3104
3105 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3106 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3107 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3108 }
3109
3110 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3111 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3112 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3113
3114 ctrl->oacs = le16_to_cpu(id->oacs);
3115 ctrl->oncs = le16_to_cpu(id->oncs);
3116 ctrl->mtfa = le16_to_cpu(id->mtfa);
3117 ctrl->oaes = le32_to_cpu(id->oaes);
3118 ctrl->wctemp = le16_to_cpu(id->wctemp);
3119 ctrl->cctemp = le16_to_cpu(id->cctemp);
3120
3121 atomic_set(&ctrl->abort_limit, id->acl + 1);
3122 ctrl->vwc = id->vwc;
3123 if (id->mdts)
3124 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3125 else
3126 max_hw_sectors = UINT_MAX;
3127 ctrl->max_hw_sectors =
3128 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3129
3130 nvme_set_queue_limits(ctrl, ctrl->admin_q);
3131 ctrl->sgls = le32_to_cpu(id->sgls);
3132 ctrl->kas = le16_to_cpu(id->kas);
3133 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3134 ctrl->ctratt = le32_to_cpu(id->ctratt);
3135
3136 if (id->rtd3e) {
3137 /* us -> s */
3138 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3139
3140 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3141 shutdown_timeout, 60);
3142
3143 if (ctrl->shutdown_timeout != shutdown_timeout)
3144 dev_info(ctrl->device,
3145 "Shutdown timeout set to %u seconds\n",
3146 ctrl->shutdown_timeout);
3147 } else
3148 ctrl->shutdown_timeout = shutdown_timeout;
3149
3150 ctrl->npss = id->npss;
3151 ctrl->apsta = id->apsta;
3152 prev_apst_enabled = ctrl->apst_enabled;
3153 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3154 if (force_apst && id->apsta) {
3155 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3156 ctrl->apst_enabled = true;
3157 } else {
3158 ctrl->apst_enabled = false;
3159 }
3160 } else {
3161 ctrl->apst_enabled = id->apsta;
3162 }
3163 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3164
3165 if (ctrl->ops->flags & NVME_F_FABRICS) {
3166 ctrl->icdoff = le16_to_cpu(id->icdoff);
3167 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3168 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3169 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3170
3171 /*
3172 * In fabrics we need to verify the cntlid matches the
3173 * admin connect
3174 */
3175 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3176 dev_err(ctrl->device,
3177 "Mismatching cntlid: Connect %u vs Identify "
3178 "%u, rejecting\n",
3179 ctrl->cntlid, le16_to_cpu(id->cntlid));
3180 ret = -EINVAL;
3181 goto out_free;
3182 }
3183
3184 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3185 dev_err(ctrl->device,
3186 "keep-alive support is mandatory for fabrics\n");
3187 ret = -EINVAL;
3188 goto out_free;
3189 }
3190 } else {
3191 ctrl->hmpre = le32_to_cpu(id->hmpre);
3192 ctrl->hmmin = le32_to_cpu(id->hmmin);
3193 ctrl->hmminds = le32_to_cpu(id->hmminds);
3194 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3195 }
3196
3197 ret = nvme_mpath_init_identify(ctrl, id);
3198 kfree(id);
3199
3200 if (ret < 0)
3201 return ret;
3202
3203 if (ctrl->apst_enabled && !prev_apst_enabled)
3204 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3205 else if (!ctrl->apst_enabled && prev_apst_enabled)
3206 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3207
3208 ret = nvme_configure_apst(ctrl);
3209 if (ret < 0)
3210 return ret;
3211
3212 ret = nvme_configure_timestamp(ctrl);
3213 if (ret < 0)
3214 return ret;
3215
3216 ret = nvme_configure_directives(ctrl);
3217 if (ret < 0)
3218 return ret;
3219
3220 ret = nvme_configure_acre(ctrl);
3221 if (ret < 0)
3222 return ret;
3223
3224 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3225 /*
3226 * Do not return errors unless we are in a controller reset,
3227 * the controller works perfectly fine without hwmon.
3228 */
3229 ret = nvme_hwmon_init(ctrl);
3230 if (ret == -EINTR)
3231 return ret;
3232 }
3233
3234 ctrl->identified = true;
3235
3236 return 0;
3237
3238 out_free:
3239 kfree(id);
3240 return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(nvme_init_identify);
3243
nvme_dev_open(struct inode * inode,struct file * file)3244 static int nvme_dev_open(struct inode *inode, struct file *file)
3245 {
3246 struct nvme_ctrl *ctrl =
3247 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3248
3249 switch (ctrl->state) {
3250 case NVME_CTRL_LIVE:
3251 break;
3252 default:
3253 return -EWOULDBLOCK;
3254 }
3255
3256 nvme_get_ctrl(ctrl);
3257 if (!try_module_get(ctrl->ops->module)) {
3258 nvme_put_ctrl(ctrl);
3259 return -EINVAL;
3260 }
3261
3262 file->private_data = ctrl;
3263 return 0;
3264 }
3265
nvme_dev_release(struct inode * inode,struct file * file)3266 static int nvme_dev_release(struct inode *inode, struct file *file)
3267 {
3268 struct nvme_ctrl *ctrl =
3269 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3270
3271 module_put(ctrl->ops->module);
3272 nvme_put_ctrl(ctrl);
3273 return 0;
3274 }
3275
nvme_dev_user_cmd(struct nvme_ctrl * ctrl,void __user * argp)3276 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3277 {
3278 struct nvme_ns *ns;
3279 int ret;
3280
3281 down_read(&ctrl->namespaces_rwsem);
3282 if (list_empty(&ctrl->namespaces)) {
3283 ret = -ENOTTY;
3284 goto out_unlock;
3285 }
3286
3287 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3288 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3289 dev_warn(ctrl->device,
3290 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3291 ret = -EINVAL;
3292 goto out_unlock;
3293 }
3294
3295 dev_warn(ctrl->device,
3296 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3297 kref_get(&ns->kref);
3298 up_read(&ctrl->namespaces_rwsem);
3299
3300 ret = nvme_user_cmd(ctrl, ns, argp);
3301 nvme_put_ns(ns);
3302 return ret;
3303
3304 out_unlock:
3305 up_read(&ctrl->namespaces_rwsem);
3306 return ret;
3307 }
3308
nvme_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3309 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3310 unsigned long arg)
3311 {
3312 struct nvme_ctrl *ctrl = file->private_data;
3313 void __user *argp = (void __user *)arg;
3314
3315 switch (cmd) {
3316 case NVME_IOCTL_ADMIN_CMD:
3317 return nvme_user_cmd(ctrl, NULL, argp);
3318 case NVME_IOCTL_ADMIN64_CMD:
3319 return nvme_user_cmd64(ctrl, NULL, argp);
3320 case NVME_IOCTL_IO_CMD:
3321 return nvme_dev_user_cmd(ctrl, argp);
3322 case NVME_IOCTL_RESET:
3323 if (!capable(CAP_SYS_ADMIN))
3324 return -EACCES;
3325 dev_warn(ctrl->device, "resetting controller\n");
3326 return nvme_reset_ctrl_sync(ctrl);
3327 case NVME_IOCTL_SUBSYS_RESET:
3328 if (!capable(CAP_SYS_ADMIN))
3329 return -EACCES;
3330 return nvme_reset_subsystem(ctrl);
3331 case NVME_IOCTL_RESCAN:
3332 if (!capable(CAP_SYS_ADMIN))
3333 return -EACCES;
3334 nvme_queue_scan(ctrl);
3335 return 0;
3336 default:
3337 return -ENOTTY;
3338 }
3339 }
3340
3341 static const struct file_operations nvme_dev_fops = {
3342 .owner = THIS_MODULE,
3343 .open = nvme_dev_open,
3344 .release = nvme_dev_release,
3345 .unlocked_ioctl = nvme_dev_ioctl,
3346 .compat_ioctl = compat_ptr_ioctl,
3347 };
3348
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3349 static ssize_t nvme_sysfs_reset(struct device *dev,
3350 struct device_attribute *attr, const char *buf,
3351 size_t count)
3352 {
3353 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3354 int ret;
3355
3356 ret = nvme_reset_ctrl_sync(ctrl);
3357 if (ret < 0)
3358 return ret;
3359 return count;
3360 }
3361 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3362
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3363 static ssize_t nvme_sysfs_rescan(struct device *dev,
3364 struct device_attribute *attr, const char *buf,
3365 size_t count)
3366 {
3367 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3368
3369 nvme_queue_scan(ctrl);
3370 return count;
3371 }
3372 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3373
dev_to_ns_head(struct device * dev)3374 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3375 {
3376 struct gendisk *disk = dev_to_disk(dev);
3377
3378 if (disk->fops == &nvme_fops)
3379 return nvme_get_ns_from_dev(dev)->head;
3380 else
3381 return disk->private_data;
3382 }
3383
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3384 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3385 char *buf)
3386 {
3387 struct nvme_ns_head *head = dev_to_ns_head(dev);
3388 struct nvme_ns_ids *ids = &head->ids;
3389 struct nvme_subsystem *subsys = head->subsys;
3390 int serial_len = sizeof(subsys->serial);
3391 int model_len = sizeof(subsys->model);
3392
3393 if (!uuid_is_null(&ids->uuid))
3394 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3395
3396 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3397 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3398
3399 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3400 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3401
3402 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3403 subsys->serial[serial_len - 1] == '\0'))
3404 serial_len--;
3405 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3406 subsys->model[model_len - 1] == '\0'))
3407 model_len--;
3408
3409 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3410 serial_len, subsys->serial, model_len, subsys->model,
3411 head->ns_id);
3412 }
3413 static DEVICE_ATTR_RO(wwid);
3414
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3415 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3416 char *buf)
3417 {
3418 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3419 }
3420 static DEVICE_ATTR_RO(nguid);
3421
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3422 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3423 char *buf)
3424 {
3425 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3426
3427 /* For backward compatibility expose the NGUID to userspace if
3428 * we have no UUID set
3429 */
3430 if (uuid_is_null(&ids->uuid)) {
3431 dev_warn_ratelimited(dev,
3432 "No UUID available providing old NGUID\n");
3433 return sysfs_emit(buf, "%pU\n", ids->nguid);
3434 }
3435 return sysfs_emit(buf, "%pU\n", &ids->uuid);
3436 }
3437 static DEVICE_ATTR_RO(uuid);
3438
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3439 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3440 char *buf)
3441 {
3442 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3443 }
3444 static DEVICE_ATTR_RO(eui);
3445
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3446 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3447 char *buf)
3448 {
3449 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3450 }
3451 static DEVICE_ATTR_RO(nsid);
3452
3453 static struct attribute *nvme_ns_id_attrs[] = {
3454 &dev_attr_wwid.attr,
3455 &dev_attr_uuid.attr,
3456 &dev_attr_nguid.attr,
3457 &dev_attr_eui.attr,
3458 &dev_attr_nsid.attr,
3459 #ifdef CONFIG_NVME_MULTIPATH
3460 &dev_attr_ana_grpid.attr,
3461 &dev_attr_ana_state.attr,
3462 #endif
3463 NULL,
3464 };
3465
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3466 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3467 struct attribute *a, int n)
3468 {
3469 struct device *dev = container_of(kobj, struct device, kobj);
3470 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3471
3472 if (a == &dev_attr_uuid.attr) {
3473 if (uuid_is_null(&ids->uuid) &&
3474 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3475 return 0;
3476 }
3477 if (a == &dev_attr_nguid.attr) {
3478 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3479 return 0;
3480 }
3481 if (a == &dev_attr_eui.attr) {
3482 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3483 return 0;
3484 }
3485 #ifdef CONFIG_NVME_MULTIPATH
3486 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3487 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3488 return 0;
3489 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3490 return 0;
3491 }
3492 #endif
3493 return a->mode;
3494 }
3495
3496 static const struct attribute_group nvme_ns_id_attr_group = {
3497 .attrs = nvme_ns_id_attrs,
3498 .is_visible = nvme_ns_id_attrs_are_visible,
3499 };
3500
3501 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3502 &nvme_ns_id_attr_group,
3503 #ifdef CONFIG_NVM
3504 &nvme_nvm_attr_group,
3505 #endif
3506 NULL,
3507 };
3508
3509 #define nvme_show_str_function(field) \
3510 static ssize_t field##_show(struct device *dev, \
3511 struct device_attribute *attr, char *buf) \
3512 { \
3513 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3514 return sysfs_emit(buf, "%.*s\n", \
3515 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
3516 } \
3517 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3518
3519 nvme_show_str_function(model);
3520 nvme_show_str_function(serial);
3521 nvme_show_str_function(firmware_rev);
3522
3523 #define nvme_show_int_function(field) \
3524 static ssize_t field##_show(struct device *dev, \
3525 struct device_attribute *attr, char *buf) \
3526 { \
3527 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
3528 return sysfs_emit(buf, "%d\n", ctrl->field); \
3529 } \
3530 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3531
3532 nvme_show_int_function(cntlid);
3533 nvme_show_int_function(numa_node);
3534 nvme_show_int_function(queue_count);
3535 nvme_show_int_function(sqsize);
3536
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3537 static ssize_t nvme_sysfs_delete(struct device *dev,
3538 struct device_attribute *attr, const char *buf,
3539 size_t count)
3540 {
3541 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3542
3543 if (device_remove_file_self(dev, attr))
3544 nvme_delete_ctrl_sync(ctrl);
3545 return count;
3546 }
3547 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3548
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3549 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3550 struct device_attribute *attr,
3551 char *buf)
3552 {
3553 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3554
3555 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3556 }
3557 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3558
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3559 static ssize_t nvme_sysfs_show_state(struct device *dev,
3560 struct device_attribute *attr,
3561 char *buf)
3562 {
3563 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3564 static const char *const state_name[] = {
3565 [NVME_CTRL_NEW] = "new",
3566 [NVME_CTRL_LIVE] = "live",
3567 [NVME_CTRL_RESETTING] = "resetting",
3568 [NVME_CTRL_CONNECTING] = "connecting",
3569 [NVME_CTRL_DELETING] = "deleting",
3570 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3571 [NVME_CTRL_DEAD] = "dead",
3572 };
3573
3574 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3575 state_name[ctrl->state])
3576 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3577
3578 return sysfs_emit(buf, "unknown state\n");
3579 }
3580
3581 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3582
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3583 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3584 struct device_attribute *attr,
3585 char *buf)
3586 {
3587 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3588
3589 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3590 }
3591 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3592
nvme_sysfs_show_hostnqn(struct device * dev,struct device_attribute * attr,char * buf)3593 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3594 struct device_attribute *attr,
3595 char *buf)
3596 {
3597 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3598
3599 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3600 }
3601 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3602
nvme_sysfs_show_hostid(struct device * dev,struct device_attribute * attr,char * buf)3603 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3604 struct device_attribute *attr,
3605 char *buf)
3606 {
3607 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3608
3609 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3610 }
3611 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3612
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3613 static ssize_t nvme_sysfs_show_address(struct device *dev,
3614 struct device_attribute *attr,
3615 char *buf)
3616 {
3617 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3618
3619 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3620 }
3621 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3622
nvme_ctrl_loss_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3623 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3624 struct device_attribute *attr, char *buf)
3625 {
3626 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3627 struct nvmf_ctrl_options *opts = ctrl->opts;
3628
3629 if (ctrl->opts->max_reconnects == -1)
3630 return sysfs_emit(buf, "off\n");
3631 return sysfs_emit(buf, "%d\n",
3632 opts->max_reconnects * opts->reconnect_delay);
3633 }
3634
nvme_ctrl_loss_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3635 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3636 struct device_attribute *attr, const char *buf, size_t count)
3637 {
3638 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3639 struct nvmf_ctrl_options *opts = ctrl->opts;
3640 int ctrl_loss_tmo, err;
3641
3642 err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3643 if (err)
3644 return -EINVAL;
3645
3646 else if (ctrl_loss_tmo < 0)
3647 opts->max_reconnects = -1;
3648 else
3649 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3650 opts->reconnect_delay);
3651 return count;
3652 }
3653 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3654 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3655
nvme_ctrl_reconnect_delay_show(struct device * dev,struct device_attribute * attr,char * buf)3656 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3657 struct device_attribute *attr, char *buf)
3658 {
3659 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3660
3661 if (ctrl->opts->reconnect_delay == -1)
3662 return sysfs_emit(buf, "off\n");
3663 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3664 }
3665
nvme_ctrl_reconnect_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3666 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3667 struct device_attribute *attr, const char *buf, size_t count)
3668 {
3669 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3670 unsigned int v;
3671 int err;
3672
3673 err = kstrtou32(buf, 10, &v);
3674 if (err)
3675 return err;
3676
3677 ctrl->opts->reconnect_delay = v;
3678 return count;
3679 }
3680 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3681 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3682
3683 static struct attribute *nvme_dev_attrs[] = {
3684 &dev_attr_reset_controller.attr,
3685 &dev_attr_rescan_controller.attr,
3686 &dev_attr_model.attr,
3687 &dev_attr_serial.attr,
3688 &dev_attr_firmware_rev.attr,
3689 &dev_attr_cntlid.attr,
3690 &dev_attr_delete_controller.attr,
3691 &dev_attr_transport.attr,
3692 &dev_attr_subsysnqn.attr,
3693 &dev_attr_address.attr,
3694 &dev_attr_state.attr,
3695 &dev_attr_numa_node.attr,
3696 &dev_attr_queue_count.attr,
3697 &dev_attr_sqsize.attr,
3698 &dev_attr_hostnqn.attr,
3699 &dev_attr_hostid.attr,
3700 &dev_attr_ctrl_loss_tmo.attr,
3701 &dev_attr_reconnect_delay.attr,
3702 NULL
3703 };
3704
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3705 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3706 struct attribute *a, int n)
3707 {
3708 struct device *dev = container_of(kobj, struct device, kobj);
3709 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3710
3711 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3712 return 0;
3713 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3714 return 0;
3715 if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3716 return 0;
3717 if (a == &dev_attr_hostid.attr && !ctrl->opts)
3718 return 0;
3719 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3720 return 0;
3721 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3722 return 0;
3723
3724 return a->mode;
3725 }
3726
3727 static struct attribute_group nvme_dev_attrs_group = {
3728 .attrs = nvme_dev_attrs,
3729 .is_visible = nvme_dev_attrs_are_visible,
3730 };
3731
3732 static const struct attribute_group *nvme_dev_attr_groups[] = {
3733 &nvme_dev_attrs_group,
3734 NULL,
3735 };
3736
nvme_find_ns_head(struct nvme_subsystem * subsys,unsigned nsid)3737 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3738 unsigned nsid)
3739 {
3740 struct nvme_ns_head *h;
3741
3742 lockdep_assert_held(&subsys->lock);
3743
3744 list_for_each_entry(h, &subsys->nsheads, entry) {
3745 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3746 return h;
3747 }
3748
3749 return NULL;
3750 }
3751
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3752 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3753 struct nvme_ns_ids *ids)
3754 {
3755 struct nvme_ns_head *h;
3756
3757 lockdep_assert_held(&subsys->lock);
3758
3759 list_for_each_entry(h, &subsys->nsheads, entry) {
3760 if (nvme_ns_ids_valid(ids) && nvme_ns_ids_equal(ids, &h->ids))
3761 return -EINVAL;
3762 }
3763
3764 return 0;
3765 }
3766
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3767 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3768 unsigned nsid, struct nvme_ns_ids *ids)
3769 {
3770 struct nvme_ns_head *head;
3771 size_t size = sizeof(*head);
3772 int ret = -ENOMEM;
3773
3774 #ifdef CONFIG_NVME_MULTIPATH
3775 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3776 #endif
3777
3778 head = kzalloc(size, GFP_KERNEL);
3779 if (!head)
3780 goto out;
3781 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3782 if (ret < 0)
3783 goto out_free_head;
3784 head->instance = ret;
3785 INIT_LIST_HEAD(&head->list);
3786 ret = init_srcu_struct(&head->srcu);
3787 if (ret)
3788 goto out_ida_remove;
3789 head->subsys = ctrl->subsys;
3790 head->ns_id = nsid;
3791 head->ids = *ids;
3792 kref_init(&head->ref);
3793
3794 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &head->ids);
3795 if (ret) {
3796 dev_err(ctrl->device,
3797 "duplicate IDs for nsid %d\n", nsid);
3798 goto out_cleanup_srcu;
3799 }
3800
3801 if (head->ids.csi) {
3802 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3803 if (ret)
3804 goto out_cleanup_srcu;
3805 } else
3806 head->effects = ctrl->effects;
3807
3808 ret = nvme_mpath_alloc_disk(ctrl, head);
3809 if (ret)
3810 goto out_cleanup_srcu;
3811
3812 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3813
3814 kref_get(&ctrl->subsys->ref);
3815
3816 return head;
3817 out_cleanup_srcu:
3818 cleanup_srcu_struct(&head->srcu);
3819 out_ida_remove:
3820 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3821 out_free_head:
3822 kfree(head);
3823 out:
3824 if (ret > 0)
3825 ret = blk_status_to_errno(nvme_error_status(ret));
3826 return ERR_PTR(ret);
3827 }
3828
nvme_init_ns_head(struct nvme_ns * ns,unsigned nsid,struct nvme_ns_ids * ids,bool is_shared)3829 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3830 struct nvme_ns_ids *ids, bool is_shared)
3831 {
3832 struct nvme_ctrl *ctrl = ns->ctrl;
3833 struct nvme_ns_head *head = NULL;
3834 int ret = 0;
3835
3836 mutex_lock(&ctrl->subsys->lock);
3837 head = nvme_find_ns_head(ctrl->subsys, nsid);
3838 if (!head) {
3839 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3840 if (IS_ERR(head)) {
3841 ret = PTR_ERR(head);
3842 goto out_unlock;
3843 }
3844 head->shared = is_shared;
3845 } else {
3846 ret = -EINVAL;
3847 if (!is_shared || !head->shared) {
3848 dev_err(ctrl->device,
3849 "Duplicate unshared namespace %d\n", nsid);
3850 goto out_put_ns_head;
3851 }
3852 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3853 dev_err(ctrl->device,
3854 "IDs don't match for shared namespace %d\n",
3855 nsid);
3856 goto out_put_ns_head;
3857 }
3858 }
3859
3860 list_add_tail(&ns->siblings, &head->list);
3861 ns->head = head;
3862 mutex_unlock(&ctrl->subsys->lock);
3863 return 0;
3864
3865 out_put_ns_head:
3866 nvme_put_ns_head(head);
3867 out_unlock:
3868 mutex_unlock(&ctrl->subsys->lock);
3869 return ret;
3870 }
3871
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)3872 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3873 {
3874 struct nvme_ns *ns, *ret = NULL;
3875
3876 down_read(&ctrl->namespaces_rwsem);
3877 list_for_each_entry(ns, &ctrl->namespaces, list) {
3878 if (ns->head->ns_id == nsid) {
3879 if (!kref_get_unless_zero(&ns->kref))
3880 continue;
3881 ret = ns;
3882 break;
3883 }
3884 if (ns->head->ns_id > nsid)
3885 break;
3886 }
3887 up_read(&ctrl->namespaces_rwsem);
3888 return ret;
3889 }
3890 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3891
3892 /*
3893 * Add the namespace to the controller list while keeping the list ordered.
3894 */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)3895 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3896 {
3897 struct nvme_ns *tmp;
3898
3899 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3900 if (tmp->head->ns_id < ns->head->ns_id) {
3901 list_add(&ns->list, &tmp->list);
3902 return;
3903 }
3904 }
3905 list_add(&ns->list, &ns->ctrl->namespaces);
3906 }
3907
nvme_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_ns_ids * ids)3908 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3909 struct nvme_ns_ids *ids)
3910 {
3911 struct nvme_ns *ns;
3912 struct gendisk *disk;
3913 struct nvme_id_ns *id;
3914 char disk_name[DISK_NAME_LEN];
3915 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3916
3917 if (nvme_identify_ns(ctrl, nsid, ids, &id))
3918 return;
3919
3920 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3921 if (!ns)
3922 goto out_free_id;
3923
3924 ns->queue = blk_mq_init_queue(ctrl->tagset);
3925 if (IS_ERR(ns->queue))
3926 goto out_free_ns;
3927
3928 if (ctrl->opts && ctrl->opts->data_digest)
3929 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3930
3931 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3932 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3933 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3934
3935 ns->queue->queuedata = ns;
3936 ns->ctrl = ctrl;
3937 kref_init(&ns->kref);
3938
3939 ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3940 if (ret)
3941 goto out_free_queue;
3942 nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3943
3944 disk = alloc_disk_node(0, node);
3945 if (!disk)
3946 goto out_unlink_ns;
3947
3948 disk->fops = &nvme_fops;
3949 disk->private_data = ns;
3950 disk->queue = ns->queue;
3951 disk->flags = flags;
3952 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3953 ns->disk = disk;
3954
3955 if (nvme_update_ns_info(ns, id))
3956 goto out_put_disk;
3957
3958 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3959 ret = nvme_nvm_register(ns, disk_name, node);
3960 if (ret) {
3961 dev_warn(ctrl->device, "LightNVM init failure\n");
3962 goto out_put_disk;
3963 }
3964 }
3965
3966 down_write(&ctrl->namespaces_rwsem);
3967 nvme_ns_add_to_ctrl_list(ns);
3968 up_write(&ctrl->namespaces_rwsem);
3969 nvme_get_ctrl(ctrl);
3970
3971 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3972
3973 nvme_mpath_add_disk(ns, id);
3974 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3975 kfree(id);
3976
3977 return;
3978 out_put_disk:
3979 /* prevent double queue cleanup */
3980 ns->disk->queue = NULL;
3981 put_disk(ns->disk);
3982 out_unlink_ns:
3983 mutex_lock(&ctrl->subsys->lock);
3984 list_del_rcu(&ns->siblings);
3985 if (list_empty(&ns->head->list))
3986 list_del_init(&ns->head->entry);
3987 mutex_unlock(&ctrl->subsys->lock);
3988 nvme_put_ns_head(ns->head);
3989 out_free_queue:
3990 blk_cleanup_queue(ns->queue);
3991 out_free_ns:
3992 kfree(ns);
3993 out_free_id:
3994 kfree(id);
3995 }
3996
nvme_ns_remove(struct nvme_ns * ns)3997 static void nvme_ns_remove(struct nvme_ns *ns)
3998 {
3999 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4000 return;
4001
4002 set_capacity(ns->disk, 0);
4003 nvme_fault_inject_fini(&ns->fault_inject);
4004
4005 mutex_lock(&ns->ctrl->subsys->lock);
4006 list_del_rcu(&ns->siblings);
4007 if (list_empty(&ns->head->list))
4008 list_del_init(&ns->head->entry);
4009 mutex_unlock(&ns->ctrl->subsys->lock);
4010
4011 synchronize_rcu(); /* guarantee not available in head->list */
4012 nvme_mpath_clear_current_path(ns);
4013 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
4014
4015 if (ns->disk->flags & GENHD_FL_UP) {
4016 del_gendisk(ns->disk);
4017 blk_cleanup_queue(ns->queue);
4018 if (blk_get_integrity(ns->disk))
4019 blk_integrity_unregister(ns->disk);
4020 }
4021
4022 down_write(&ns->ctrl->namespaces_rwsem);
4023 list_del_init(&ns->list);
4024 up_write(&ns->ctrl->namespaces_rwsem);
4025
4026 nvme_mpath_check_last_path(ns);
4027 nvme_put_ns(ns);
4028 }
4029
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4030 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4031 {
4032 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4033
4034 if (ns) {
4035 nvme_ns_remove(ns);
4036 nvme_put_ns(ns);
4037 }
4038 }
4039
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_ids * ids)4040 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
4041 {
4042 struct nvme_id_ns *id;
4043 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4044
4045 if (test_bit(NVME_NS_DEAD, &ns->flags))
4046 goto out;
4047
4048 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
4049 if (ret)
4050 goto out;
4051
4052 ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4053 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
4054 dev_err(ns->ctrl->device,
4055 "identifiers changed for nsid %d\n", ns->head->ns_id);
4056 goto out_free_id;
4057 }
4058
4059 ret = nvme_update_ns_info(ns, id);
4060
4061 out_free_id:
4062 kfree(id);
4063 out:
4064 /*
4065 * Only remove the namespace if we got a fatal error back from the
4066 * device, otherwise ignore the error and just move on.
4067 *
4068 * TODO: we should probably schedule a delayed retry here.
4069 */
4070 if (ret > 0 && (ret & NVME_SC_DNR))
4071 nvme_ns_remove(ns);
4072 else
4073 revalidate_disk_size(ns->disk, true);
4074 }
4075
nvme_validate_or_alloc_ns(struct nvme_ctrl * ctrl,unsigned nsid)4076 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4077 {
4078 struct nvme_ns_ids ids = { };
4079 struct nvme_ns *ns;
4080
4081 if (nvme_identify_ns_descs(ctrl, nsid, &ids))
4082 return;
4083
4084 ns = nvme_find_get_ns(ctrl, nsid);
4085 if (ns) {
4086 nvme_validate_ns(ns, &ids);
4087 nvme_put_ns(ns);
4088 return;
4089 }
4090
4091 switch (ids.csi) {
4092 case NVME_CSI_NVM:
4093 nvme_alloc_ns(ctrl, nsid, &ids);
4094 break;
4095 case NVME_CSI_ZNS:
4096 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
4097 dev_warn(ctrl->device,
4098 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
4099 nsid);
4100 break;
4101 }
4102 if (!nvme_multi_css(ctrl)) {
4103 dev_warn(ctrl->device,
4104 "command set not reported for nsid: %d\n",
4105 nsid);
4106 break;
4107 }
4108 nvme_alloc_ns(ctrl, nsid, &ids);
4109 break;
4110 default:
4111 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
4112 ids.csi, nsid);
4113 break;
4114 }
4115 }
4116
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4118 unsigned nsid)
4119 {
4120 struct nvme_ns *ns, *next;
4121 LIST_HEAD(rm_list);
4122
4123 down_write(&ctrl->namespaces_rwsem);
4124 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4125 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4126 list_move_tail(&ns->list, &rm_list);
4127 }
4128 up_write(&ctrl->namespaces_rwsem);
4129
4130 list_for_each_entry_safe(ns, next, &rm_list, list)
4131 nvme_ns_remove(ns);
4132
4133 }
4134
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4135 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4136 {
4137 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4138 __le32 *ns_list;
4139 u32 prev = 0;
4140 int ret = 0, i;
4141
4142 if (nvme_ctrl_limited_cns(ctrl))
4143 return -EOPNOTSUPP;
4144
4145 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4146 if (!ns_list)
4147 return -ENOMEM;
4148
4149 for (;;) {
4150 struct nvme_command cmd = {
4151 .identify.opcode = nvme_admin_identify,
4152 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4153 .identify.nsid = cpu_to_le32(prev),
4154 };
4155
4156 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4157 NVME_IDENTIFY_DATA_SIZE);
4158 if (ret)
4159 goto free;
4160
4161 for (i = 0; i < nr_entries; i++) {
4162 u32 nsid = le32_to_cpu(ns_list[i]);
4163
4164 if (!nsid) /* end of the list? */
4165 goto out;
4166 nvme_validate_or_alloc_ns(ctrl, nsid);
4167 while (++prev < nsid)
4168 nvme_ns_remove_by_nsid(ctrl, prev);
4169 }
4170 }
4171 out:
4172 nvme_remove_invalid_namespaces(ctrl, prev);
4173 free:
4174 kfree(ns_list);
4175 return ret;
4176 }
4177
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4178 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4179 {
4180 struct nvme_id_ctrl *id;
4181 u32 nn, i;
4182
4183 if (nvme_identify_ctrl(ctrl, &id))
4184 return;
4185 nn = le32_to_cpu(id->nn);
4186 kfree(id);
4187
4188 for (i = 1; i <= nn; i++)
4189 nvme_validate_or_alloc_ns(ctrl, i);
4190
4191 nvme_remove_invalid_namespaces(ctrl, nn);
4192 }
4193
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4194 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4195 {
4196 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4197 __le32 *log;
4198 int error;
4199
4200 log = kzalloc(log_size, GFP_KERNEL);
4201 if (!log)
4202 return;
4203
4204 /*
4205 * We need to read the log to clear the AEN, but we don't want to rely
4206 * on it for the changed namespace information as userspace could have
4207 * raced with us in reading the log page, which could cause us to miss
4208 * updates.
4209 */
4210 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4211 NVME_CSI_NVM, log, log_size, 0);
4212 if (error)
4213 dev_warn(ctrl->device,
4214 "reading changed ns log failed: %d\n", error);
4215
4216 kfree(log);
4217 }
4218
nvme_scan_work(struct work_struct * work)4219 static void nvme_scan_work(struct work_struct *work)
4220 {
4221 struct nvme_ctrl *ctrl =
4222 container_of(work, struct nvme_ctrl, scan_work);
4223
4224 /* No tagset on a live ctrl means IO queues could not created */
4225 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4226 return;
4227
4228 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4229 dev_info(ctrl->device, "rescanning namespaces.\n");
4230 nvme_clear_changed_ns_log(ctrl);
4231 }
4232
4233 mutex_lock(&ctrl->scan_lock);
4234 if (nvme_scan_ns_list(ctrl) != 0)
4235 nvme_scan_ns_sequential(ctrl);
4236 mutex_unlock(&ctrl->scan_lock);
4237 }
4238
4239 /*
4240 * This function iterates the namespace list unlocked to allow recovery from
4241 * controller failure. It is up to the caller to ensure the namespace list is
4242 * not modified by scan work while this function is executing.
4243 */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4244 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4245 {
4246 struct nvme_ns *ns, *next;
4247 LIST_HEAD(ns_list);
4248
4249 /*
4250 * make sure to requeue I/O to all namespaces as these
4251 * might result from the scan itself and must complete
4252 * for the scan_work to make progress
4253 */
4254 nvme_mpath_clear_ctrl_paths(ctrl);
4255
4256 /* prevent racing with ns scanning */
4257 flush_work(&ctrl->scan_work);
4258
4259 /*
4260 * The dead states indicates the controller was not gracefully
4261 * disconnected. In that case, we won't be able to flush any data while
4262 * removing the namespaces' disks; fail all the queues now to avoid
4263 * potentially having to clean up the failed sync later.
4264 */
4265 if (ctrl->state == NVME_CTRL_DEAD)
4266 nvme_kill_queues(ctrl);
4267
4268 /* this is a no-op when called from the controller reset handler */
4269 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4270
4271 down_write(&ctrl->namespaces_rwsem);
4272 list_splice_init(&ctrl->namespaces, &ns_list);
4273 up_write(&ctrl->namespaces_rwsem);
4274
4275 list_for_each_entry_safe(ns, next, &ns_list, list)
4276 nvme_ns_remove(ns);
4277 }
4278 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4279
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)4280 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4281 {
4282 struct nvme_ctrl *ctrl =
4283 container_of(dev, struct nvme_ctrl, ctrl_device);
4284 struct nvmf_ctrl_options *opts = ctrl->opts;
4285 int ret;
4286
4287 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4288 if (ret)
4289 return ret;
4290
4291 if (opts) {
4292 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4293 if (ret)
4294 return ret;
4295
4296 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4297 opts->trsvcid ?: "none");
4298 if (ret)
4299 return ret;
4300
4301 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4302 opts->host_traddr ?: "none");
4303 }
4304 return ret;
4305 }
4306
nvme_aen_uevent(struct nvme_ctrl * ctrl)4307 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4308 {
4309 char *envp[2] = { NULL, NULL };
4310 u32 aen_result = ctrl->aen_result;
4311
4312 ctrl->aen_result = 0;
4313 if (!aen_result)
4314 return;
4315
4316 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4317 if (!envp[0])
4318 return;
4319 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4320 kfree(envp[0]);
4321 }
4322
nvme_async_event_work(struct work_struct * work)4323 static void nvme_async_event_work(struct work_struct *work)
4324 {
4325 struct nvme_ctrl *ctrl =
4326 container_of(work, struct nvme_ctrl, async_event_work);
4327
4328 nvme_aen_uevent(ctrl);
4329
4330 /*
4331 * The transport drivers must guarantee AER submission here is safe by
4332 * flushing ctrl async_event_work after changing the controller state
4333 * from LIVE and before freeing the admin queue.
4334 */
4335 if (ctrl->state == NVME_CTRL_LIVE)
4336 ctrl->ops->submit_async_event(ctrl);
4337 }
4338
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4339 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4340 {
4341
4342 u32 csts;
4343
4344 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4345 return false;
4346
4347 if (csts == ~0)
4348 return false;
4349
4350 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4351 }
4352
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4353 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4354 {
4355 struct nvme_fw_slot_info_log *log;
4356
4357 log = kmalloc(sizeof(*log), GFP_KERNEL);
4358 if (!log)
4359 return;
4360
4361 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4362 log, sizeof(*log), 0))
4363 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4364 kfree(log);
4365 }
4366
nvme_fw_act_work(struct work_struct * work)4367 static void nvme_fw_act_work(struct work_struct *work)
4368 {
4369 struct nvme_ctrl *ctrl = container_of(work,
4370 struct nvme_ctrl, fw_act_work);
4371 unsigned long fw_act_timeout;
4372
4373 if (ctrl->mtfa)
4374 fw_act_timeout = jiffies +
4375 msecs_to_jiffies(ctrl->mtfa * 100);
4376 else
4377 fw_act_timeout = jiffies +
4378 msecs_to_jiffies(admin_timeout * 1000);
4379
4380 nvme_stop_queues(ctrl);
4381 while (nvme_ctrl_pp_status(ctrl)) {
4382 if (time_after(jiffies, fw_act_timeout)) {
4383 dev_warn(ctrl->device,
4384 "Fw activation timeout, reset controller\n");
4385 nvme_try_sched_reset(ctrl);
4386 return;
4387 }
4388 msleep(100);
4389 }
4390
4391 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4392 return;
4393
4394 nvme_start_queues(ctrl);
4395 /* read FW slot information to clear the AER */
4396 nvme_get_fw_slot_info(ctrl);
4397 }
4398
nvme_aer_type(u32 result)4399 static u32 nvme_aer_type(u32 result)
4400 {
4401 return result & 0x7;
4402 }
4403
nvme_aer_subtype(u32 result)4404 static u32 nvme_aer_subtype(u32 result)
4405 {
4406 return (result & 0xff00) >> 8;
4407 }
4408
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4409 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4410 {
4411 u32 aer_notice_type = nvme_aer_subtype(result);
4412
4413 switch (aer_notice_type) {
4414 case NVME_AER_NOTICE_NS_CHANGED:
4415 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4416 nvme_queue_scan(ctrl);
4417 break;
4418 case NVME_AER_NOTICE_FW_ACT_STARTING:
4419 /*
4420 * We are (ab)using the RESETTING state to prevent subsequent
4421 * recovery actions from interfering with the controller's
4422 * firmware activation.
4423 */
4424 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4425 queue_work(nvme_wq, &ctrl->fw_act_work);
4426 break;
4427 #ifdef CONFIG_NVME_MULTIPATH
4428 case NVME_AER_NOTICE_ANA:
4429 if (!ctrl->ana_log_buf)
4430 break;
4431 queue_work(nvme_wq, &ctrl->ana_work);
4432 break;
4433 #endif
4434 case NVME_AER_NOTICE_DISC_CHANGED:
4435 ctrl->aen_result = result;
4436 break;
4437 default:
4438 dev_warn(ctrl->device, "async event result %08x\n", result);
4439 }
4440 }
4441
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4442 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4443 {
4444 dev_warn(ctrl->device, "resetting controller due to AER\n");
4445 nvme_reset_ctrl(ctrl);
4446 }
4447
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4448 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4449 volatile union nvme_result *res)
4450 {
4451 u32 result = le32_to_cpu(res->u32);
4452 u32 aer_type = nvme_aer_type(result);
4453 u32 aer_subtype = nvme_aer_subtype(result);
4454
4455 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4456 return;
4457
4458 trace_nvme_async_event(ctrl, result);
4459 switch (aer_type) {
4460 case NVME_AER_NOTICE:
4461 nvme_handle_aen_notice(ctrl, result);
4462 break;
4463 case NVME_AER_ERROR:
4464 /*
4465 * For a persistent internal error, don't run async_event_work
4466 * to submit a new AER. The controller reset will do it.
4467 */
4468 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4469 nvme_handle_aer_persistent_error(ctrl);
4470 return;
4471 }
4472 fallthrough;
4473 case NVME_AER_SMART:
4474 case NVME_AER_CSS:
4475 case NVME_AER_VS:
4476 ctrl->aen_result = result;
4477 break;
4478 default:
4479 break;
4480 }
4481 queue_work(nvme_wq, &ctrl->async_event_work);
4482 }
4483 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4484
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4485 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4486 {
4487 nvme_mpath_stop(ctrl);
4488 nvme_stop_keep_alive(ctrl);
4489 flush_work(&ctrl->async_event_work);
4490 cancel_work_sync(&ctrl->fw_act_work);
4491 if (ctrl->ops->stop_ctrl)
4492 ctrl->ops->stop_ctrl(ctrl);
4493 }
4494 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4495
nvme_start_ctrl(struct nvme_ctrl * ctrl)4496 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4497 {
4498 nvme_start_keep_alive(ctrl);
4499
4500 nvme_enable_aen(ctrl);
4501
4502 if (ctrl->queue_count > 1) {
4503 nvme_queue_scan(ctrl);
4504 nvme_start_queues(ctrl);
4505 nvme_mpath_update(ctrl);
4506 }
4507 }
4508 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4509
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4510 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4511 {
4512 nvme_hwmon_exit(ctrl);
4513 nvme_fault_inject_fini(&ctrl->fault_inject);
4514 dev_pm_qos_hide_latency_tolerance(ctrl->device);
4515 cdev_device_del(&ctrl->cdev, ctrl->device);
4516 nvme_put_ctrl(ctrl);
4517 }
4518 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4519
nvme_free_cels(struct nvme_ctrl * ctrl)4520 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4521 {
4522 struct nvme_effects_log *cel;
4523 unsigned long i;
4524
4525 xa_for_each (&ctrl->cels, i, cel) {
4526 xa_erase(&ctrl->cels, i);
4527 kfree(cel);
4528 }
4529
4530 xa_destroy(&ctrl->cels);
4531 }
4532
nvme_free_ctrl(struct device * dev)4533 static void nvme_free_ctrl(struct device *dev)
4534 {
4535 struct nvme_ctrl *ctrl =
4536 container_of(dev, struct nvme_ctrl, ctrl_device);
4537 struct nvme_subsystem *subsys = ctrl->subsys;
4538
4539 if (!subsys || ctrl->instance != subsys->instance)
4540 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4541
4542 nvme_free_cels(ctrl);
4543 nvme_mpath_uninit(ctrl);
4544 __free_page(ctrl->discard_page);
4545
4546 if (subsys) {
4547 mutex_lock(&nvme_subsystems_lock);
4548 list_del(&ctrl->subsys_entry);
4549 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4550 mutex_unlock(&nvme_subsystems_lock);
4551 }
4552
4553 ctrl->ops->free_ctrl(ctrl);
4554
4555 if (subsys)
4556 nvme_put_subsystem(subsys);
4557 }
4558
4559 /*
4560 * Initialize a NVMe controller structures. This needs to be called during
4561 * earliest initialization so that we have the initialized structured around
4562 * during probing.
4563 */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)4564 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4565 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4566 {
4567 int ret;
4568
4569 ctrl->state = NVME_CTRL_NEW;
4570 spin_lock_init(&ctrl->lock);
4571 mutex_init(&ctrl->scan_lock);
4572 INIT_LIST_HEAD(&ctrl->namespaces);
4573 xa_init(&ctrl->cels);
4574 init_rwsem(&ctrl->namespaces_rwsem);
4575 ctrl->dev = dev;
4576 ctrl->ops = ops;
4577 ctrl->quirks = quirks;
4578 ctrl->numa_node = NUMA_NO_NODE;
4579 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4580 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4581 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4582 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4583 init_waitqueue_head(&ctrl->state_wq);
4584
4585 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4586 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4587 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4588
4589 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4590 PAGE_SIZE);
4591 ctrl->discard_page = alloc_page(GFP_KERNEL);
4592 if (!ctrl->discard_page) {
4593 ret = -ENOMEM;
4594 goto out;
4595 }
4596
4597 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4598 if (ret < 0)
4599 goto out;
4600 ctrl->instance = ret;
4601
4602 device_initialize(&ctrl->ctrl_device);
4603 ctrl->device = &ctrl->ctrl_device;
4604 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4605 ctrl->device->class = nvme_class;
4606 ctrl->device->parent = ctrl->dev;
4607 ctrl->device->groups = nvme_dev_attr_groups;
4608 ctrl->device->release = nvme_free_ctrl;
4609 dev_set_drvdata(ctrl->device, ctrl);
4610 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4611 if (ret)
4612 goto out_release_instance;
4613
4614 nvme_get_ctrl(ctrl);
4615 cdev_init(&ctrl->cdev, &nvme_dev_fops);
4616 ctrl->cdev.owner = ops->module;
4617 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4618 if (ret)
4619 goto out_free_name;
4620
4621 /*
4622 * Initialize latency tolerance controls. The sysfs files won't
4623 * be visible to userspace unless the device actually supports APST.
4624 */
4625 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4626 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4627 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4628
4629 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4630 nvme_mpath_init_ctrl(ctrl);
4631
4632 return 0;
4633 out_free_name:
4634 nvme_put_ctrl(ctrl);
4635 kfree_const(ctrl->device->kobj.name);
4636 out_release_instance:
4637 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4638 out:
4639 if (ctrl->discard_page)
4640 __free_page(ctrl->discard_page);
4641 return ret;
4642 }
4643 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4644
nvme_start_ns_queue(struct nvme_ns * ns)4645 static void nvme_start_ns_queue(struct nvme_ns *ns)
4646 {
4647 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
4648 blk_mq_unquiesce_queue(ns->queue);
4649 }
4650
nvme_stop_ns_queue(struct nvme_ns * ns)4651 static void nvme_stop_ns_queue(struct nvme_ns *ns)
4652 {
4653 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
4654 blk_mq_quiesce_queue(ns->queue);
4655 }
4656
4657 /*
4658 * Prepare a queue for teardown.
4659 *
4660 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
4661 * the capacity to 0 after that to avoid blocking dispatchers that may be
4662 * holding bd_butex. This will end buffered writers dirtying pages that can't
4663 * be synced.
4664 */
nvme_set_queue_dying(struct nvme_ns * ns)4665 static void nvme_set_queue_dying(struct nvme_ns *ns)
4666 {
4667 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
4668 return;
4669
4670 blk_set_queue_dying(ns->queue);
4671 nvme_start_ns_queue(ns);
4672
4673 set_capacity(ns->disk, 0);
4674 nvme_update_bdev_size(ns->disk);
4675 }
4676
4677 /**
4678 * nvme_kill_queues(): Ends all namespace queues
4679 * @ctrl: the dead controller that needs to end
4680 *
4681 * Call this function when the driver determines it is unable to get the
4682 * controller in a state capable of servicing IO.
4683 */
nvme_kill_queues(struct nvme_ctrl * ctrl)4684 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4685 {
4686 struct nvme_ns *ns;
4687
4688 down_read(&ctrl->namespaces_rwsem);
4689
4690 /* Forcibly unquiesce queues to avoid blocking dispatch */
4691 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4692 nvme_start_admin_queue(ctrl);
4693
4694 list_for_each_entry(ns, &ctrl->namespaces, list)
4695 nvme_set_queue_dying(ns);
4696
4697 up_read(&ctrl->namespaces_rwsem);
4698 }
4699 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4700
nvme_unfreeze(struct nvme_ctrl * ctrl)4701 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4702 {
4703 struct nvme_ns *ns;
4704
4705 down_read(&ctrl->namespaces_rwsem);
4706 list_for_each_entry(ns, &ctrl->namespaces, list)
4707 blk_mq_unfreeze_queue(ns->queue);
4708 up_read(&ctrl->namespaces_rwsem);
4709 }
4710 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4711
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)4712 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4713 {
4714 struct nvme_ns *ns;
4715
4716 down_read(&ctrl->namespaces_rwsem);
4717 list_for_each_entry(ns, &ctrl->namespaces, list) {
4718 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4719 if (timeout <= 0)
4720 break;
4721 }
4722 up_read(&ctrl->namespaces_rwsem);
4723 return timeout;
4724 }
4725 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4726
nvme_wait_freeze(struct nvme_ctrl * ctrl)4727 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4728 {
4729 struct nvme_ns *ns;
4730
4731 down_read(&ctrl->namespaces_rwsem);
4732 list_for_each_entry(ns, &ctrl->namespaces, list)
4733 blk_mq_freeze_queue_wait(ns->queue);
4734 up_read(&ctrl->namespaces_rwsem);
4735 }
4736 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4737
nvme_start_freeze(struct nvme_ctrl * ctrl)4738 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4739 {
4740 struct nvme_ns *ns;
4741
4742 down_read(&ctrl->namespaces_rwsem);
4743 list_for_each_entry(ns, &ctrl->namespaces, list)
4744 blk_freeze_queue_start(ns->queue);
4745 up_read(&ctrl->namespaces_rwsem);
4746 }
4747 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4748
nvme_stop_queues(struct nvme_ctrl * ctrl)4749 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4750 {
4751 struct nvme_ns *ns;
4752
4753 down_read(&ctrl->namespaces_rwsem);
4754 list_for_each_entry(ns, &ctrl->namespaces, list)
4755 nvme_stop_ns_queue(ns);
4756 up_read(&ctrl->namespaces_rwsem);
4757 }
4758 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4759
nvme_start_queues(struct nvme_ctrl * ctrl)4760 void nvme_start_queues(struct nvme_ctrl *ctrl)
4761 {
4762 struct nvme_ns *ns;
4763
4764 down_read(&ctrl->namespaces_rwsem);
4765 list_for_each_entry(ns, &ctrl->namespaces, list)
4766 nvme_start_ns_queue(ns);
4767 up_read(&ctrl->namespaces_rwsem);
4768 }
4769 EXPORT_SYMBOL_GPL(nvme_start_queues);
4770
nvme_stop_admin_queue(struct nvme_ctrl * ctrl)4771 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
4772 {
4773 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4774 blk_mq_quiesce_queue(ctrl->admin_q);
4775 }
4776 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
4777
nvme_start_admin_queue(struct nvme_ctrl * ctrl)4778 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
4779 {
4780 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4781 blk_mq_unquiesce_queue(ctrl->admin_q);
4782 }
4783 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
4784
nvme_sync_io_queues(struct nvme_ctrl * ctrl)4785 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4786 {
4787 struct nvme_ns *ns;
4788
4789 down_read(&ctrl->namespaces_rwsem);
4790 list_for_each_entry(ns, &ctrl->namespaces, list)
4791 blk_sync_queue(ns->queue);
4792 up_read(&ctrl->namespaces_rwsem);
4793 }
4794 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4795
nvme_sync_queues(struct nvme_ctrl * ctrl)4796 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4797 {
4798 nvme_sync_io_queues(ctrl);
4799 if (ctrl->admin_q)
4800 blk_sync_queue(ctrl->admin_q);
4801 }
4802 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4803
nvme_ctrl_from_file(struct file * file)4804 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4805 {
4806 if (file->f_op != &nvme_dev_fops)
4807 return NULL;
4808 return file->private_data;
4809 }
4810 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4811
4812 /*
4813 * Check we didn't inadvertently grow the command structure sizes:
4814 */
_nvme_check_size(void)4815 static inline void _nvme_check_size(void)
4816 {
4817 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4818 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4819 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4820 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4821 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4822 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4823 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4824 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4825 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4826 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4827 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4828 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4829 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4830 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4831 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4832 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4833 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4834 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4835 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4836 }
4837
4838
nvme_core_init(void)4839 static int __init nvme_core_init(void)
4840 {
4841 int result = -ENOMEM;
4842
4843 _nvme_check_size();
4844
4845 nvme_wq = alloc_workqueue("nvme-wq",
4846 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4847 if (!nvme_wq)
4848 goto out;
4849
4850 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4851 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4852 if (!nvme_reset_wq)
4853 goto destroy_wq;
4854
4855 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4856 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4857 if (!nvme_delete_wq)
4858 goto destroy_reset_wq;
4859
4860 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4861 if (result < 0)
4862 goto destroy_delete_wq;
4863
4864 nvme_class = class_create(THIS_MODULE, "nvme");
4865 if (IS_ERR(nvme_class)) {
4866 result = PTR_ERR(nvme_class);
4867 goto unregister_chrdev;
4868 }
4869 nvme_class->dev_uevent = nvme_class_uevent;
4870
4871 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4872 if (IS_ERR(nvme_subsys_class)) {
4873 result = PTR_ERR(nvme_subsys_class);
4874 goto destroy_class;
4875 }
4876 return 0;
4877
4878 destroy_class:
4879 class_destroy(nvme_class);
4880 unregister_chrdev:
4881 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4882 destroy_delete_wq:
4883 destroy_workqueue(nvme_delete_wq);
4884 destroy_reset_wq:
4885 destroy_workqueue(nvme_reset_wq);
4886 destroy_wq:
4887 destroy_workqueue(nvme_wq);
4888 out:
4889 return result;
4890 }
4891
nvme_core_exit(void)4892 static void __exit nvme_core_exit(void)
4893 {
4894 class_destroy(nvme_subsys_class);
4895 class_destroy(nvme_class);
4896 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4897 destroy_workqueue(nvme_delete_wq);
4898 destroy_workqueue(nvme_reset_wq);
4899 destroy_workqueue(nvme_wq);
4900 ida_destroy(&nvme_instance_ida);
4901 }
4902
4903 MODULE_LICENSE("GPL");
4904 MODULE_VERSION("1.0");
4905 module_init(nvme_core_init);
4906 module_exit(nvme_core_exit);
4907