1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * inode.c -- user mode filesystem api for usb gadget controllers
4 *
5 * Copyright (C) 2003-2004 David Brownell
6 * Copyright (C) 2003 Agilent Technologies
7 */
8
9
10 /* #define VERBOSE_DEBUG */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/fs_context.h>
16 #include <linux/pagemap.h>
17 #include <linux/uts.h>
18 #include <linux/wait.h>
19 #include <linux/compiler.h>
20 #include <linux/uaccess.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/kthread.h>
25 #include <linux/aio.h>
26 #include <linux/uio.h>
27 #include <linux/refcount.h>
28 #include <linux/delay.h>
29 #include <linux/device.h>
30 #include <linux/moduleparam.h>
31
32 #include <linux/usb/gadgetfs.h>
33 #include <linux/usb/gadget.h>
34
35
36 /*
37 * The gadgetfs API maps each endpoint to a file descriptor so that you
38 * can use standard synchronous read/write calls for I/O. There's some
39 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode
40 * drivers show how this works in practice. You can also use AIO to
41 * eliminate I/O gaps between requests, to help when streaming data.
42 *
43 * Key parts that must be USB-specific are protocols defining how the
44 * read/write operations relate to the hardware state machines. There
45 * are two types of files. One type is for the device, implementing ep0.
46 * The other type is for each IN or OUT endpoint. In both cases, the
47 * user mode driver must configure the hardware before using it.
48 *
49 * - First, dev_config() is called when /dev/gadget/$CHIP is configured
50 * (by writing configuration and device descriptors). Afterwards it
51 * may serve as a source of device events, used to handle all control
52 * requests other than basic enumeration.
53 *
54 * - Then, after a SET_CONFIGURATION control request, ep_config() is
55 * called when each /dev/gadget/ep* file is configured (by writing
56 * endpoint descriptors). Afterwards these files are used to write()
57 * IN data or to read() OUT data. To halt the endpoint, a "wrong
58 * direction" request is issued (like reading an IN endpoint).
59 *
60 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
61 * not possible on all hardware. For example, precise fault handling with
62 * respect to data left in endpoint fifos after aborted operations; or
63 * selective clearing of endpoint halts, to implement SET_INTERFACE.
64 */
65
66 #define DRIVER_DESC "USB Gadget filesystem"
67 #define DRIVER_VERSION "24 Aug 2004"
68
69 static const char driver_desc [] = DRIVER_DESC;
70 static const char shortname [] = "gadgetfs";
71
72 MODULE_DESCRIPTION (DRIVER_DESC);
73 MODULE_AUTHOR ("David Brownell");
74 MODULE_LICENSE ("GPL");
75
76 static int ep_open(struct inode *, struct file *);
77
78
79 /*----------------------------------------------------------------------*/
80
81 #define GADGETFS_MAGIC 0xaee71ee7
82
83 /* /dev/gadget/$CHIP represents ep0 and the whole device */
84 enum ep0_state {
85 /* DISABLED is the initial state. */
86 STATE_DEV_DISABLED = 0,
87
88 /* Only one open() of /dev/gadget/$CHIP; only one file tracks
89 * ep0/device i/o modes and binding to the controller. Driver
90 * must always write descriptors to initialize the device, then
91 * the device becomes UNCONNECTED until enumeration.
92 */
93 STATE_DEV_OPENED,
94
95 /* From then on, ep0 fd is in either of two basic modes:
96 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
97 * - SETUP: read/write will transfer control data and succeed;
98 * or if "wrong direction", performs protocol stall
99 */
100 STATE_DEV_UNCONNECTED,
101 STATE_DEV_CONNECTED,
102 STATE_DEV_SETUP,
103
104 /* UNBOUND means the driver closed ep0, so the device won't be
105 * accessible again (DEV_DISABLED) until all fds are closed.
106 */
107 STATE_DEV_UNBOUND,
108 };
109
110 /* enough for the whole queue: most events invalidate others */
111 #define N_EVENT 5
112
113 #define RBUF_SIZE 256
114
115 struct dev_data {
116 spinlock_t lock;
117 refcount_t count;
118 int udc_usage;
119 enum ep0_state state; /* P: lock */
120 struct usb_gadgetfs_event event [N_EVENT];
121 unsigned ev_next;
122 struct fasync_struct *fasync;
123 u8 current_config;
124
125 /* drivers reading ep0 MUST handle control requests (SETUP)
126 * reported that way; else the host will time out.
127 */
128 unsigned usermode_setup : 1,
129 setup_in : 1,
130 setup_can_stall : 1,
131 setup_out_ready : 1,
132 setup_out_error : 1,
133 setup_abort : 1,
134 gadget_registered : 1;
135 unsigned setup_wLength;
136
137 /* the rest is basically write-once */
138 struct usb_config_descriptor *config, *hs_config;
139 struct usb_device_descriptor *dev;
140 struct usb_request *req;
141 struct usb_gadget *gadget;
142 struct list_head epfiles;
143 void *buf;
144 wait_queue_head_t wait;
145 struct super_block *sb;
146 struct dentry *dentry;
147
148 /* except this scratch i/o buffer for ep0 */
149 u8 rbuf[RBUF_SIZE];
150 };
151
get_dev(struct dev_data * data)152 static inline void get_dev (struct dev_data *data)
153 {
154 refcount_inc (&data->count);
155 }
156
put_dev(struct dev_data * data)157 static void put_dev (struct dev_data *data)
158 {
159 if (likely (!refcount_dec_and_test (&data->count)))
160 return;
161 /* needs no more cleanup */
162 BUG_ON (waitqueue_active (&data->wait));
163 kfree (data);
164 }
165
dev_new(void)166 static struct dev_data *dev_new (void)
167 {
168 struct dev_data *dev;
169
170 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
171 if (!dev)
172 return NULL;
173 dev->state = STATE_DEV_DISABLED;
174 refcount_set (&dev->count, 1);
175 spin_lock_init (&dev->lock);
176 INIT_LIST_HEAD (&dev->epfiles);
177 init_waitqueue_head (&dev->wait);
178 return dev;
179 }
180
181 /*----------------------------------------------------------------------*/
182
183 /* other /dev/gadget/$ENDPOINT files represent endpoints */
184 enum ep_state {
185 STATE_EP_DISABLED = 0,
186 STATE_EP_READY,
187 STATE_EP_ENABLED,
188 STATE_EP_UNBOUND,
189 };
190
191 struct ep_data {
192 struct mutex lock;
193 enum ep_state state;
194 refcount_t count;
195 struct dev_data *dev;
196 /* must hold dev->lock before accessing ep or req */
197 struct usb_ep *ep;
198 struct usb_request *req;
199 ssize_t status;
200 char name [16];
201 struct usb_endpoint_descriptor desc, hs_desc;
202 struct list_head epfiles;
203 wait_queue_head_t wait;
204 struct dentry *dentry;
205 };
206
get_ep(struct ep_data * data)207 static inline void get_ep (struct ep_data *data)
208 {
209 refcount_inc (&data->count);
210 }
211
put_ep(struct ep_data * data)212 static void put_ep (struct ep_data *data)
213 {
214 if (likely (!refcount_dec_and_test (&data->count)))
215 return;
216 put_dev (data->dev);
217 /* needs no more cleanup */
218 BUG_ON (!list_empty (&data->epfiles));
219 BUG_ON (waitqueue_active (&data->wait));
220 kfree (data);
221 }
222
223 /*----------------------------------------------------------------------*/
224
225 /* most "how to use the hardware" policy choices are in userspace:
226 * mapping endpoint roles (which the driver needs) to the capabilities
227 * which the usb controller has. most of those capabilities are exposed
228 * implicitly, starting with the driver name and then endpoint names.
229 */
230
231 static const char *CHIP;
232 static DEFINE_MUTEX(sb_mutex); /* Serialize superblock operations */
233
234 /*----------------------------------------------------------------------*/
235
236 /* NOTE: don't use dev_printk calls before binding to the gadget
237 * at the end of ep0 configuration, or after unbind.
238 */
239
240 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
241 #define xprintk(d,level,fmt,args...) \
242 printk(level "%s: " fmt , shortname , ## args)
243
244 #ifdef DEBUG
245 #define DBG(dev,fmt,args...) \
246 xprintk(dev , KERN_DEBUG , fmt , ## args)
247 #else
248 #define DBG(dev,fmt,args...) \
249 do { } while (0)
250 #endif /* DEBUG */
251
252 #ifdef VERBOSE_DEBUG
253 #define VDEBUG DBG
254 #else
255 #define VDEBUG(dev,fmt,args...) \
256 do { } while (0)
257 #endif /* DEBUG */
258
259 #define ERROR(dev,fmt,args...) \
260 xprintk(dev , KERN_ERR , fmt , ## args)
261 #define INFO(dev,fmt,args...) \
262 xprintk(dev , KERN_INFO , fmt , ## args)
263
264
265 /*----------------------------------------------------------------------*/
266
267 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
268 *
269 * After opening, configure non-control endpoints. Then use normal
270 * stream read() and write() requests; and maybe ioctl() to get more
271 * precise FIFO status when recovering from cancellation.
272 */
273
epio_complete(struct usb_ep * ep,struct usb_request * req)274 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
275 {
276 struct ep_data *epdata = ep->driver_data;
277
278 if (!req->context)
279 return;
280 if (req->status)
281 epdata->status = req->status;
282 else
283 epdata->status = req->actual;
284 complete ((struct completion *)req->context);
285 }
286
287 /* tasklock endpoint, returning when it's connected.
288 * still need dev->lock to use epdata->ep.
289 */
290 static int
get_ready_ep(unsigned f_flags,struct ep_data * epdata,bool is_write)291 get_ready_ep (unsigned f_flags, struct ep_data *epdata, bool is_write)
292 {
293 int val;
294
295 if (f_flags & O_NONBLOCK) {
296 if (!mutex_trylock(&epdata->lock))
297 goto nonblock;
298 if (epdata->state != STATE_EP_ENABLED &&
299 (!is_write || epdata->state != STATE_EP_READY)) {
300 mutex_unlock(&epdata->lock);
301 nonblock:
302 val = -EAGAIN;
303 } else
304 val = 0;
305 return val;
306 }
307
308 val = mutex_lock_interruptible(&epdata->lock);
309 if (val < 0)
310 return val;
311
312 switch (epdata->state) {
313 case STATE_EP_ENABLED:
314 return 0;
315 case STATE_EP_READY: /* not configured yet */
316 if (is_write)
317 return 0;
318 fallthrough;
319 case STATE_EP_UNBOUND: /* clean disconnect */
320 break;
321 // case STATE_EP_DISABLED: /* "can't happen" */
322 default: /* error! */
323 pr_debug ("%s: ep %p not available, state %d\n",
324 shortname, epdata, epdata->state);
325 }
326 mutex_unlock(&epdata->lock);
327 return -ENODEV;
328 }
329
330 static ssize_t
ep_io(struct ep_data * epdata,void * buf,unsigned len)331 ep_io (struct ep_data *epdata, void *buf, unsigned len)
332 {
333 DECLARE_COMPLETION_ONSTACK (done);
334 int value;
335
336 spin_lock_irq (&epdata->dev->lock);
337 if (likely (epdata->ep != NULL)) {
338 struct usb_request *req = epdata->req;
339
340 req->context = &done;
341 req->complete = epio_complete;
342 req->buf = buf;
343 req->length = len;
344 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
345 } else
346 value = -ENODEV;
347 spin_unlock_irq (&epdata->dev->lock);
348
349 if (likely (value == 0)) {
350 value = wait_for_completion_interruptible(&done);
351 if (value != 0) {
352 spin_lock_irq (&epdata->dev->lock);
353 if (likely (epdata->ep != NULL)) {
354 DBG (epdata->dev, "%s i/o interrupted\n",
355 epdata->name);
356 usb_ep_dequeue (epdata->ep, epdata->req);
357 spin_unlock_irq (&epdata->dev->lock);
358
359 wait_for_completion(&done);
360 if (epdata->status == -ECONNRESET)
361 epdata->status = -EINTR;
362 } else {
363 spin_unlock_irq (&epdata->dev->lock);
364
365 DBG (epdata->dev, "endpoint gone\n");
366 wait_for_completion(&done);
367 epdata->status = -ENODEV;
368 }
369 }
370 return epdata->status;
371 }
372 return value;
373 }
374
375 static int
ep_release(struct inode * inode,struct file * fd)376 ep_release (struct inode *inode, struct file *fd)
377 {
378 struct ep_data *data = fd->private_data;
379 int value;
380
381 value = mutex_lock_interruptible(&data->lock);
382 if (value < 0)
383 return value;
384
385 /* clean up if this can be reopened */
386 if (data->state != STATE_EP_UNBOUND) {
387 data->state = STATE_EP_DISABLED;
388 data->desc.bDescriptorType = 0;
389 data->hs_desc.bDescriptorType = 0;
390 usb_ep_disable(data->ep);
391 }
392 mutex_unlock(&data->lock);
393 put_ep (data);
394 return 0;
395 }
396
ep_ioctl(struct file * fd,unsigned code,unsigned long value)397 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
398 {
399 struct ep_data *data = fd->private_data;
400 int status;
401
402 if ((status = get_ready_ep (fd->f_flags, data, false)) < 0)
403 return status;
404
405 spin_lock_irq (&data->dev->lock);
406 if (likely (data->ep != NULL)) {
407 switch (code) {
408 case GADGETFS_FIFO_STATUS:
409 status = usb_ep_fifo_status (data->ep);
410 break;
411 case GADGETFS_FIFO_FLUSH:
412 usb_ep_fifo_flush (data->ep);
413 break;
414 case GADGETFS_CLEAR_HALT:
415 status = usb_ep_clear_halt (data->ep);
416 break;
417 default:
418 status = -ENOTTY;
419 }
420 } else
421 status = -ENODEV;
422 spin_unlock_irq (&data->dev->lock);
423 mutex_unlock(&data->lock);
424 return status;
425 }
426
427 /*----------------------------------------------------------------------*/
428
429 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
430
431 struct kiocb_priv {
432 struct usb_request *req;
433 struct ep_data *epdata;
434 struct kiocb *iocb;
435 struct mm_struct *mm;
436 struct work_struct work;
437 void *buf;
438 struct iov_iter to;
439 const void *to_free;
440 unsigned actual;
441 };
442
ep_aio_cancel(struct kiocb * iocb)443 static int ep_aio_cancel(struct kiocb *iocb)
444 {
445 struct kiocb_priv *priv = iocb->private;
446 struct ep_data *epdata;
447 int value;
448
449 local_irq_disable();
450 epdata = priv->epdata;
451 // spin_lock(&epdata->dev->lock);
452 if (likely(epdata && epdata->ep && priv->req))
453 value = usb_ep_dequeue (epdata->ep, priv->req);
454 else
455 value = -EINVAL;
456 // spin_unlock(&epdata->dev->lock);
457 local_irq_enable();
458
459 return value;
460 }
461
ep_user_copy_worker(struct work_struct * work)462 static void ep_user_copy_worker(struct work_struct *work)
463 {
464 struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
465 struct mm_struct *mm = priv->mm;
466 struct kiocb *iocb = priv->iocb;
467 size_t ret;
468
469 kthread_use_mm(mm);
470 ret = copy_to_iter(priv->buf, priv->actual, &priv->to);
471 kthread_unuse_mm(mm);
472 if (!ret)
473 ret = -EFAULT;
474
475 /* completing the iocb can drop the ctx and mm, don't touch mm after */
476 iocb->ki_complete(iocb, ret, ret);
477
478 kfree(priv->buf);
479 kfree(priv->to_free);
480 kfree(priv);
481 }
482
ep_aio_complete(struct usb_ep * ep,struct usb_request * req)483 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
484 {
485 struct kiocb *iocb = req->context;
486 struct kiocb_priv *priv = iocb->private;
487 struct ep_data *epdata = priv->epdata;
488
489 /* lock against disconnect (and ideally, cancel) */
490 spin_lock(&epdata->dev->lock);
491 priv->req = NULL;
492 priv->epdata = NULL;
493
494 /* if this was a write or a read returning no data then we
495 * don't need to copy anything to userspace, so we can
496 * complete the aio request immediately.
497 */
498 if (priv->to_free == NULL || unlikely(req->actual == 0)) {
499 kfree(req->buf);
500 kfree(priv->to_free);
501 kfree(priv);
502 iocb->private = NULL;
503 /* aio_complete() reports bytes-transferred _and_ faults */
504
505 iocb->ki_complete(iocb, req->actual ? req->actual : req->status,
506 req->status);
507 } else {
508 /* ep_copy_to_user() won't report both; we hide some faults */
509 if (unlikely(0 != req->status))
510 DBG(epdata->dev, "%s fault %d len %d\n",
511 ep->name, req->status, req->actual);
512
513 priv->buf = req->buf;
514 priv->actual = req->actual;
515 INIT_WORK(&priv->work, ep_user_copy_worker);
516 schedule_work(&priv->work);
517 }
518
519 usb_ep_free_request(ep, req);
520 spin_unlock(&epdata->dev->lock);
521 put_ep(epdata);
522 }
523
ep_aio(struct kiocb * iocb,struct kiocb_priv * priv,struct ep_data * epdata,char * buf,size_t len)524 static ssize_t ep_aio(struct kiocb *iocb,
525 struct kiocb_priv *priv,
526 struct ep_data *epdata,
527 char *buf,
528 size_t len)
529 {
530 struct usb_request *req;
531 ssize_t value;
532
533 iocb->private = priv;
534 priv->iocb = iocb;
535
536 kiocb_set_cancel_fn(iocb, ep_aio_cancel);
537 get_ep(epdata);
538 priv->epdata = epdata;
539 priv->actual = 0;
540 priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
541
542 /* each kiocb is coupled to one usb_request, but we can't
543 * allocate or submit those if the host disconnected.
544 */
545 spin_lock_irq(&epdata->dev->lock);
546 value = -ENODEV;
547 if (unlikely(epdata->ep == NULL))
548 goto fail;
549
550 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
551 value = -ENOMEM;
552 if (unlikely(!req))
553 goto fail;
554
555 priv->req = req;
556 req->buf = buf;
557 req->length = len;
558 req->complete = ep_aio_complete;
559 req->context = iocb;
560 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
561 if (unlikely(0 != value)) {
562 usb_ep_free_request(epdata->ep, req);
563 goto fail;
564 }
565 spin_unlock_irq(&epdata->dev->lock);
566 return -EIOCBQUEUED;
567
568 fail:
569 spin_unlock_irq(&epdata->dev->lock);
570 kfree(priv->to_free);
571 kfree(priv);
572 put_ep(epdata);
573 return value;
574 }
575
576 static ssize_t
ep_read_iter(struct kiocb * iocb,struct iov_iter * to)577 ep_read_iter(struct kiocb *iocb, struct iov_iter *to)
578 {
579 struct file *file = iocb->ki_filp;
580 struct ep_data *epdata = file->private_data;
581 size_t len = iov_iter_count(to);
582 ssize_t value;
583 char *buf;
584
585 if ((value = get_ready_ep(file->f_flags, epdata, false)) < 0)
586 return value;
587
588 /* halt any endpoint by doing a "wrong direction" i/o call */
589 if (usb_endpoint_dir_in(&epdata->desc)) {
590 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
591 !is_sync_kiocb(iocb)) {
592 mutex_unlock(&epdata->lock);
593 return -EINVAL;
594 }
595 DBG (epdata->dev, "%s halt\n", epdata->name);
596 spin_lock_irq(&epdata->dev->lock);
597 if (likely(epdata->ep != NULL))
598 usb_ep_set_halt(epdata->ep);
599 spin_unlock_irq(&epdata->dev->lock);
600 mutex_unlock(&epdata->lock);
601 return -EBADMSG;
602 }
603
604 buf = kmalloc(len, GFP_KERNEL);
605 if (unlikely(!buf)) {
606 mutex_unlock(&epdata->lock);
607 return -ENOMEM;
608 }
609 if (is_sync_kiocb(iocb)) {
610 value = ep_io(epdata, buf, len);
611 if (value >= 0 && (copy_to_iter(buf, value, to) != value))
612 value = -EFAULT;
613 } else {
614 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
615 value = -ENOMEM;
616 if (!priv)
617 goto fail;
618 priv->to_free = dup_iter(&priv->to, to, GFP_KERNEL);
619 if (!priv->to_free) {
620 kfree(priv);
621 goto fail;
622 }
623 value = ep_aio(iocb, priv, epdata, buf, len);
624 if (value == -EIOCBQUEUED)
625 buf = NULL;
626 }
627 fail:
628 kfree(buf);
629 mutex_unlock(&epdata->lock);
630 return value;
631 }
632
633 static ssize_t ep_config(struct ep_data *, const char *, size_t);
634
635 static ssize_t
ep_write_iter(struct kiocb * iocb,struct iov_iter * from)636 ep_write_iter(struct kiocb *iocb, struct iov_iter *from)
637 {
638 struct file *file = iocb->ki_filp;
639 struct ep_data *epdata = file->private_data;
640 size_t len = iov_iter_count(from);
641 bool configured;
642 ssize_t value;
643 char *buf;
644
645 if ((value = get_ready_ep(file->f_flags, epdata, true)) < 0)
646 return value;
647
648 configured = epdata->state == STATE_EP_ENABLED;
649
650 /* halt any endpoint by doing a "wrong direction" i/o call */
651 if (configured && !usb_endpoint_dir_in(&epdata->desc)) {
652 if (usb_endpoint_xfer_isoc(&epdata->desc) ||
653 !is_sync_kiocb(iocb)) {
654 mutex_unlock(&epdata->lock);
655 return -EINVAL;
656 }
657 DBG (epdata->dev, "%s halt\n", epdata->name);
658 spin_lock_irq(&epdata->dev->lock);
659 if (likely(epdata->ep != NULL))
660 usb_ep_set_halt(epdata->ep);
661 spin_unlock_irq(&epdata->dev->lock);
662 mutex_unlock(&epdata->lock);
663 return -EBADMSG;
664 }
665
666 buf = kmalloc(len, GFP_KERNEL);
667 if (unlikely(!buf)) {
668 mutex_unlock(&epdata->lock);
669 return -ENOMEM;
670 }
671
672 if (unlikely(!copy_from_iter_full(buf, len, from))) {
673 value = -EFAULT;
674 goto out;
675 }
676
677 if (unlikely(!configured)) {
678 value = ep_config(epdata, buf, len);
679 } else if (is_sync_kiocb(iocb)) {
680 value = ep_io(epdata, buf, len);
681 } else {
682 struct kiocb_priv *priv = kzalloc(sizeof *priv, GFP_KERNEL);
683 value = -ENOMEM;
684 if (priv) {
685 value = ep_aio(iocb, priv, epdata, buf, len);
686 if (value == -EIOCBQUEUED)
687 buf = NULL;
688 }
689 }
690 out:
691 kfree(buf);
692 mutex_unlock(&epdata->lock);
693 return value;
694 }
695
696 /*----------------------------------------------------------------------*/
697
698 /* used after endpoint configuration */
699 static const struct file_operations ep_io_operations = {
700 .owner = THIS_MODULE,
701
702 .open = ep_open,
703 .release = ep_release,
704 .llseek = no_llseek,
705 .unlocked_ioctl = ep_ioctl,
706 .read_iter = ep_read_iter,
707 .write_iter = ep_write_iter,
708 };
709
710 /* ENDPOINT INITIALIZATION
711 *
712 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
713 * status = write (fd, descriptors, sizeof descriptors)
714 *
715 * That write establishes the endpoint configuration, configuring
716 * the controller to process bulk, interrupt, or isochronous transfers
717 * at the right maxpacket size, and so on.
718 *
719 * The descriptors are message type 1, identified by a host order u32
720 * at the beginning of what's written. Descriptor order is: full/low
721 * speed descriptor, then optional high speed descriptor.
722 */
723 static ssize_t
ep_config(struct ep_data * data,const char * buf,size_t len)724 ep_config (struct ep_data *data, const char *buf, size_t len)
725 {
726 struct usb_ep *ep;
727 u32 tag;
728 int value, length = len;
729
730 if (data->state != STATE_EP_READY) {
731 value = -EL2HLT;
732 goto fail;
733 }
734
735 value = len;
736 if (len < USB_DT_ENDPOINT_SIZE + 4)
737 goto fail0;
738
739 /* we might need to change message format someday */
740 memcpy(&tag, buf, 4);
741 if (tag != 1) {
742 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
743 goto fail0;
744 }
745 buf += 4;
746 len -= 4;
747
748 /* NOTE: audio endpoint extensions not accepted here;
749 * just don't include the extra bytes.
750 */
751
752 /* full/low speed descriptor, then high speed */
753 memcpy(&data->desc, buf, USB_DT_ENDPOINT_SIZE);
754 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
755 || data->desc.bDescriptorType != USB_DT_ENDPOINT)
756 goto fail0;
757 if (len != USB_DT_ENDPOINT_SIZE) {
758 if (len != 2 * USB_DT_ENDPOINT_SIZE)
759 goto fail0;
760 memcpy(&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
761 USB_DT_ENDPOINT_SIZE);
762 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
763 || data->hs_desc.bDescriptorType
764 != USB_DT_ENDPOINT) {
765 DBG(data->dev, "config %s, bad hs length or type\n",
766 data->name);
767 goto fail0;
768 }
769 }
770
771 spin_lock_irq (&data->dev->lock);
772 if (data->dev->state == STATE_DEV_UNBOUND) {
773 value = -ENOENT;
774 goto gone;
775 } else {
776 ep = data->ep;
777 if (ep == NULL) {
778 value = -ENODEV;
779 goto gone;
780 }
781 }
782 switch (data->dev->gadget->speed) {
783 case USB_SPEED_LOW:
784 case USB_SPEED_FULL:
785 ep->desc = &data->desc;
786 break;
787 case USB_SPEED_HIGH:
788 /* fails if caller didn't provide that descriptor... */
789 ep->desc = &data->hs_desc;
790 break;
791 default:
792 DBG(data->dev, "unconnected, %s init abandoned\n",
793 data->name);
794 value = -EINVAL;
795 goto gone;
796 }
797 value = usb_ep_enable(ep);
798 if (value == 0) {
799 data->state = STATE_EP_ENABLED;
800 value = length;
801 }
802 gone:
803 spin_unlock_irq (&data->dev->lock);
804 if (value < 0) {
805 fail:
806 data->desc.bDescriptorType = 0;
807 data->hs_desc.bDescriptorType = 0;
808 }
809 return value;
810 fail0:
811 value = -EINVAL;
812 goto fail;
813 }
814
815 static int
ep_open(struct inode * inode,struct file * fd)816 ep_open (struct inode *inode, struct file *fd)
817 {
818 struct ep_data *data = inode->i_private;
819 int value = -EBUSY;
820
821 if (mutex_lock_interruptible(&data->lock) != 0)
822 return -EINTR;
823 spin_lock_irq (&data->dev->lock);
824 if (data->dev->state == STATE_DEV_UNBOUND)
825 value = -ENOENT;
826 else if (data->state == STATE_EP_DISABLED) {
827 value = 0;
828 data->state = STATE_EP_READY;
829 get_ep (data);
830 fd->private_data = data;
831 VDEBUG (data->dev, "%s ready\n", data->name);
832 } else
833 DBG (data->dev, "%s state %d\n",
834 data->name, data->state);
835 spin_unlock_irq (&data->dev->lock);
836 mutex_unlock(&data->lock);
837 return value;
838 }
839
840 /*----------------------------------------------------------------------*/
841
842 /* EP0 IMPLEMENTATION can be partly in userspace.
843 *
844 * Drivers that use this facility receive various events, including
845 * control requests the kernel doesn't handle. Drivers that don't
846 * use this facility may be too simple-minded for real applications.
847 */
848
ep0_readable(struct dev_data * dev)849 static inline void ep0_readable (struct dev_data *dev)
850 {
851 wake_up (&dev->wait);
852 kill_fasync (&dev->fasync, SIGIO, POLL_IN);
853 }
854
clean_req(struct usb_ep * ep,struct usb_request * req)855 static void clean_req (struct usb_ep *ep, struct usb_request *req)
856 {
857 struct dev_data *dev = ep->driver_data;
858
859 if (req->buf != dev->rbuf) {
860 kfree(req->buf);
861 req->buf = dev->rbuf;
862 }
863 req->complete = epio_complete;
864 dev->setup_out_ready = 0;
865 }
866
ep0_complete(struct usb_ep * ep,struct usb_request * req)867 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
868 {
869 struct dev_data *dev = ep->driver_data;
870 unsigned long flags;
871 int free = 1;
872
873 /* for control OUT, data must still get to userspace */
874 spin_lock_irqsave(&dev->lock, flags);
875 if (!dev->setup_in) {
876 dev->setup_out_error = (req->status != 0);
877 if (!dev->setup_out_error)
878 free = 0;
879 dev->setup_out_ready = 1;
880 ep0_readable (dev);
881 }
882
883 /* clean up as appropriate */
884 if (free && req->buf != &dev->rbuf)
885 clean_req (ep, req);
886 req->complete = epio_complete;
887 spin_unlock_irqrestore(&dev->lock, flags);
888 }
889
setup_req(struct usb_ep * ep,struct usb_request * req,u16 len)890 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
891 {
892 struct dev_data *dev = ep->driver_data;
893
894 if (dev->setup_out_ready) {
895 DBG (dev, "ep0 request busy!\n");
896 return -EBUSY;
897 }
898 if (len > sizeof (dev->rbuf))
899 req->buf = kmalloc(len, GFP_ATOMIC);
900 if (req->buf == NULL) {
901 req->buf = dev->rbuf;
902 return -ENOMEM;
903 }
904 req->complete = ep0_complete;
905 req->length = len;
906 req->zero = 0;
907 return 0;
908 }
909
910 static ssize_t
ep0_read(struct file * fd,char __user * buf,size_t len,loff_t * ptr)911 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
912 {
913 struct dev_data *dev = fd->private_data;
914 ssize_t retval;
915 enum ep0_state state;
916
917 spin_lock_irq (&dev->lock);
918 if (dev->state <= STATE_DEV_OPENED) {
919 retval = -EINVAL;
920 goto done;
921 }
922
923 /* report fd mode change before acting on it */
924 if (dev->setup_abort) {
925 dev->setup_abort = 0;
926 retval = -EIDRM;
927 goto done;
928 }
929
930 /* control DATA stage */
931 if ((state = dev->state) == STATE_DEV_SETUP) {
932
933 if (dev->setup_in) { /* stall IN */
934 VDEBUG(dev, "ep0in stall\n");
935 (void) usb_ep_set_halt (dev->gadget->ep0);
936 retval = -EL2HLT;
937 dev->state = STATE_DEV_CONNECTED;
938
939 } else if (len == 0) { /* ack SET_CONFIGURATION etc */
940 struct usb_ep *ep = dev->gadget->ep0;
941 struct usb_request *req = dev->req;
942
943 if ((retval = setup_req (ep, req, 0)) == 0) {
944 ++dev->udc_usage;
945 spin_unlock_irq (&dev->lock);
946 retval = usb_ep_queue (ep, req, GFP_KERNEL);
947 spin_lock_irq (&dev->lock);
948 --dev->udc_usage;
949 }
950 dev->state = STATE_DEV_CONNECTED;
951
952 /* assume that was SET_CONFIGURATION */
953 if (dev->current_config) {
954 unsigned power;
955
956 if (gadget_is_dualspeed(dev->gadget)
957 && (dev->gadget->speed
958 == USB_SPEED_HIGH))
959 power = dev->hs_config->bMaxPower;
960 else
961 power = dev->config->bMaxPower;
962 usb_gadget_vbus_draw(dev->gadget, 2 * power);
963 }
964
965 } else { /* collect OUT data */
966 if ((fd->f_flags & O_NONBLOCK) != 0
967 && !dev->setup_out_ready) {
968 retval = -EAGAIN;
969 goto done;
970 }
971 spin_unlock_irq (&dev->lock);
972 retval = wait_event_interruptible (dev->wait,
973 dev->setup_out_ready != 0);
974
975 /* FIXME state could change from under us */
976 spin_lock_irq (&dev->lock);
977 if (retval)
978 goto done;
979
980 if (dev->state != STATE_DEV_SETUP) {
981 retval = -ECANCELED;
982 goto done;
983 }
984 dev->state = STATE_DEV_CONNECTED;
985
986 if (dev->setup_out_error)
987 retval = -EIO;
988 else {
989 len = min (len, (size_t)dev->req->actual);
990 ++dev->udc_usage;
991 spin_unlock_irq(&dev->lock);
992 if (copy_to_user (buf, dev->req->buf, len))
993 retval = -EFAULT;
994 else
995 retval = len;
996 spin_lock_irq(&dev->lock);
997 --dev->udc_usage;
998 clean_req (dev->gadget->ep0, dev->req);
999 /* NOTE userspace can't yet choose to stall */
1000 }
1001 }
1002 goto done;
1003 }
1004
1005 /* else normal: return event data */
1006 if (len < sizeof dev->event [0]) {
1007 retval = -EINVAL;
1008 goto done;
1009 }
1010 len -= len % sizeof (struct usb_gadgetfs_event);
1011 dev->usermode_setup = 1;
1012
1013 scan:
1014 /* return queued events right away */
1015 if (dev->ev_next != 0) {
1016 unsigned i, n;
1017
1018 n = len / sizeof (struct usb_gadgetfs_event);
1019 if (dev->ev_next < n)
1020 n = dev->ev_next;
1021
1022 /* ep0 i/o has special semantics during STATE_DEV_SETUP */
1023 for (i = 0; i < n; i++) {
1024 if (dev->event [i].type == GADGETFS_SETUP) {
1025 dev->state = STATE_DEV_SETUP;
1026 n = i + 1;
1027 break;
1028 }
1029 }
1030 spin_unlock_irq (&dev->lock);
1031 len = n * sizeof (struct usb_gadgetfs_event);
1032 if (copy_to_user (buf, &dev->event, len))
1033 retval = -EFAULT;
1034 else
1035 retval = len;
1036 if (len > 0) {
1037 /* NOTE this doesn't guard against broken drivers;
1038 * concurrent ep0 readers may lose events.
1039 */
1040 spin_lock_irq (&dev->lock);
1041 if (dev->ev_next > n) {
1042 memmove(&dev->event[0], &dev->event[n],
1043 sizeof (struct usb_gadgetfs_event)
1044 * (dev->ev_next - n));
1045 }
1046 dev->ev_next -= n;
1047 spin_unlock_irq (&dev->lock);
1048 }
1049 return retval;
1050 }
1051 if (fd->f_flags & O_NONBLOCK) {
1052 retval = -EAGAIN;
1053 goto done;
1054 }
1055
1056 switch (state) {
1057 default:
1058 DBG (dev, "fail %s, state %d\n", __func__, state);
1059 retval = -ESRCH;
1060 break;
1061 case STATE_DEV_UNCONNECTED:
1062 case STATE_DEV_CONNECTED:
1063 spin_unlock_irq (&dev->lock);
1064 DBG (dev, "%s wait\n", __func__);
1065
1066 /* wait for events */
1067 retval = wait_event_interruptible (dev->wait,
1068 dev->ev_next != 0);
1069 if (retval < 0)
1070 return retval;
1071 spin_lock_irq (&dev->lock);
1072 goto scan;
1073 }
1074
1075 done:
1076 spin_unlock_irq (&dev->lock);
1077 return retval;
1078 }
1079
1080 static struct usb_gadgetfs_event *
next_event(struct dev_data * dev,enum usb_gadgetfs_event_type type)1081 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1082 {
1083 struct usb_gadgetfs_event *event;
1084 unsigned i;
1085
1086 switch (type) {
1087 /* these events purge the queue */
1088 case GADGETFS_DISCONNECT:
1089 if (dev->state == STATE_DEV_SETUP)
1090 dev->setup_abort = 1;
1091 fallthrough;
1092 case GADGETFS_CONNECT:
1093 dev->ev_next = 0;
1094 break;
1095 case GADGETFS_SETUP: /* previous request timed out */
1096 case GADGETFS_SUSPEND: /* same effect */
1097 /* these events can't be repeated */
1098 for (i = 0; i != dev->ev_next; i++) {
1099 if (dev->event [i].type != type)
1100 continue;
1101 DBG(dev, "discard old event[%d] %d\n", i, type);
1102 dev->ev_next--;
1103 if (i == dev->ev_next)
1104 break;
1105 /* indices start at zero, for simplicity */
1106 memmove (&dev->event [i], &dev->event [i + 1],
1107 sizeof (struct usb_gadgetfs_event)
1108 * (dev->ev_next - i));
1109 }
1110 break;
1111 default:
1112 BUG ();
1113 }
1114 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1115 event = &dev->event [dev->ev_next++];
1116 BUG_ON (dev->ev_next > N_EVENT);
1117 memset (event, 0, sizeof *event);
1118 event->type = type;
1119 return event;
1120 }
1121
1122 static ssize_t
ep0_write(struct file * fd,const char __user * buf,size_t len,loff_t * ptr)1123 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1124 {
1125 struct dev_data *dev = fd->private_data;
1126 ssize_t retval = -ESRCH;
1127
1128 /* report fd mode change before acting on it */
1129 if (dev->setup_abort) {
1130 dev->setup_abort = 0;
1131 retval = -EIDRM;
1132
1133 /* data and/or status stage for control request */
1134 } else if (dev->state == STATE_DEV_SETUP) {
1135
1136 len = min_t(size_t, len, dev->setup_wLength);
1137 if (dev->setup_in) {
1138 retval = setup_req (dev->gadget->ep0, dev->req, len);
1139 if (retval == 0) {
1140 dev->state = STATE_DEV_CONNECTED;
1141 ++dev->udc_usage;
1142 spin_unlock_irq (&dev->lock);
1143 if (copy_from_user (dev->req->buf, buf, len))
1144 retval = -EFAULT;
1145 else {
1146 if (len < dev->setup_wLength)
1147 dev->req->zero = 1;
1148 retval = usb_ep_queue (
1149 dev->gadget->ep0, dev->req,
1150 GFP_KERNEL);
1151 }
1152 spin_lock_irq(&dev->lock);
1153 --dev->udc_usage;
1154 if (retval < 0) {
1155 clean_req (dev->gadget->ep0, dev->req);
1156 } else
1157 retval = len;
1158
1159 return retval;
1160 }
1161
1162 /* can stall some OUT transfers */
1163 } else if (dev->setup_can_stall) {
1164 VDEBUG(dev, "ep0out stall\n");
1165 (void) usb_ep_set_halt (dev->gadget->ep0);
1166 retval = -EL2HLT;
1167 dev->state = STATE_DEV_CONNECTED;
1168 } else {
1169 DBG(dev, "bogus ep0out stall!\n");
1170 }
1171 } else
1172 DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1173
1174 return retval;
1175 }
1176
1177 static int
ep0_fasync(int f,struct file * fd,int on)1178 ep0_fasync (int f, struct file *fd, int on)
1179 {
1180 struct dev_data *dev = fd->private_data;
1181 // caller must F_SETOWN before signal delivery happens
1182 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1183 return fasync_helper (f, fd, on, &dev->fasync);
1184 }
1185
1186 static struct usb_gadget_driver gadgetfs_driver;
1187
1188 static int
dev_release(struct inode * inode,struct file * fd)1189 dev_release (struct inode *inode, struct file *fd)
1190 {
1191 struct dev_data *dev = fd->private_data;
1192
1193 /* closing ep0 === shutdown all */
1194
1195 if (dev->gadget_registered) {
1196 usb_gadget_unregister_driver (&gadgetfs_driver);
1197 dev->gadget_registered = false;
1198 }
1199
1200 /* at this point "good" hardware has disconnected the
1201 * device from USB; the host won't see it any more.
1202 * alternatively, all host requests will time out.
1203 */
1204
1205 kfree (dev->buf);
1206 dev->buf = NULL;
1207
1208 /* other endpoints were all decoupled from this device */
1209 spin_lock_irq(&dev->lock);
1210 dev->state = STATE_DEV_DISABLED;
1211 spin_unlock_irq(&dev->lock);
1212
1213 put_dev (dev);
1214 return 0;
1215 }
1216
1217 static __poll_t
ep0_poll(struct file * fd,poll_table * wait)1218 ep0_poll (struct file *fd, poll_table *wait)
1219 {
1220 struct dev_data *dev = fd->private_data;
1221 __poll_t mask = 0;
1222
1223 if (dev->state <= STATE_DEV_OPENED)
1224 return DEFAULT_POLLMASK;
1225
1226 poll_wait(fd, &dev->wait, wait);
1227
1228 spin_lock_irq(&dev->lock);
1229
1230 /* report fd mode change before acting on it */
1231 if (dev->setup_abort) {
1232 dev->setup_abort = 0;
1233 mask = EPOLLHUP;
1234 goto out;
1235 }
1236
1237 if (dev->state == STATE_DEV_SETUP) {
1238 if (dev->setup_in || dev->setup_can_stall)
1239 mask = EPOLLOUT;
1240 } else {
1241 if (dev->ev_next != 0)
1242 mask = EPOLLIN;
1243 }
1244 out:
1245 spin_unlock_irq(&dev->lock);
1246 return mask;
1247 }
1248
dev_ioctl(struct file * fd,unsigned code,unsigned long value)1249 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1250 {
1251 struct dev_data *dev = fd->private_data;
1252 struct usb_gadget *gadget = dev->gadget;
1253 long ret = -ENOTTY;
1254
1255 spin_lock_irq(&dev->lock);
1256 if (dev->state == STATE_DEV_OPENED ||
1257 dev->state == STATE_DEV_UNBOUND) {
1258 /* Not bound to a UDC */
1259 } else if (gadget->ops->ioctl) {
1260 ++dev->udc_usage;
1261 spin_unlock_irq(&dev->lock);
1262
1263 ret = gadget->ops->ioctl (gadget, code, value);
1264
1265 spin_lock_irq(&dev->lock);
1266 --dev->udc_usage;
1267 }
1268 spin_unlock_irq(&dev->lock);
1269
1270 return ret;
1271 }
1272
1273 /*----------------------------------------------------------------------*/
1274
1275 /* The in-kernel gadget driver handles most ep0 issues, in particular
1276 * enumerating the single configuration (as provided from user space).
1277 *
1278 * Unrecognized ep0 requests may be handled in user space.
1279 */
1280
make_qualifier(struct dev_data * dev)1281 static void make_qualifier (struct dev_data *dev)
1282 {
1283 struct usb_qualifier_descriptor qual;
1284 struct usb_device_descriptor *desc;
1285
1286 qual.bLength = sizeof qual;
1287 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1288 qual.bcdUSB = cpu_to_le16 (0x0200);
1289
1290 desc = dev->dev;
1291 qual.bDeviceClass = desc->bDeviceClass;
1292 qual.bDeviceSubClass = desc->bDeviceSubClass;
1293 qual.bDeviceProtocol = desc->bDeviceProtocol;
1294
1295 /* assumes ep0 uses the same value for both speeds ... */
1296 qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1297
1298 qual.bNumConfigurations = 1;
1299 qual.bRESERVED = 0;
1300
1301 memcpy (dev->rbuf, &qual, sizeof qual);
1302 }
1303
1304 static int
config_buf(struct dev_data * dev,u8 type,unsigned index)1305 config_buf (struct dev_data *dev, u8 type, unsigned index)
1306 {
1307 int len;
1308 int hs = 0;
1309
1310 /* only one configuration */
1311 if (index > 0)
1312 return -EINVAL;
1313
1314 if (gadget_is_dualspeed(dev->gadget)) {
1315 hs = (dev->gadget->speed == USB_SPEED_HIGH);
1316 if (type == USB_DT_OTHER_SPEED_CONFIG)
1317 hs = !hs;
1318 }
1319 if (hs) {
1320 dev->req->buf = dev->hs_config;
1321 len = le16_to_cpu(dev->hs_config->wTotalLength);
1322 } else {
1323 dev->req->buf = dev->config;
1324 len = le16_to_cpu(dev->config->wTotalLength);
1325 }
1326 ((u8 *)dev->req->buf) [1] = type;
1327 return len;
1328 }
1329
1330 static int
gadgetfs_setup(struct usb_gadget * gadget,const struct usb_ctrlrequest * ctrl)1331 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1332 {
1333 struct dev_data *dev = get_gadget_data (gadget);
1334 struct usb_request *req = dev->req;
1335 int value = -EOPNOTSUPP;
1336 struct usb_gadgetfs_event *event;
1337 u16 w_value = le16_to_cpu(ctrl->wValue);
1338 u16 w_length = le16_to_cpu(ctrl->wLength);
1339
1340 if (w_length > RBUF_SIZE) {
1341 if (ctrl->bRequestType & USB_DIR_IN) {
1342 /* Cast away the const, we are going to overwrite on purpose. */
1343 __le16 *temp = (__le16 *)&ctrl->wLength;
1344
1345 *temp = cpu_to_le16(RBUF_SIZE);
1346 w_length = RBUF_SIZE;
1347 } else {
1348 return value;
1349 }
1350 }
1351
1352 spin_lock (&dev->lock);
1353 dev->setup_abort = 0;
1354 if (dev->state == STATE_DEV_UNCONNECTED) {
1355 if (gadget_is_dualspeed(gadget)
1356 && gadget->speed == USB_SPEED_HIGH
1357 && dev->hs_config == NULL) {
1358 spin_unlock(&dev->lock);
1359 ERROR (dev, "no high speed config??\n");
1360 return -EINVAL;
1361 }
1362
1363 dev->state = STATE_DEV_CONNECTED;
1364
1365 INFO (dev, "connected\n");
1366 event = next_event (dev, GADGETFS_CONNECT);
1367 event->u.speed = gadget->speed;
1368 ep0_readable (dev);
1369
1370 /* host may have given up waiting for response. we can miss control
1371 * requests handled lower down (device/endpoint status and features);
1372 * then ep0_{read,write} will report the wrong status. controller
1373 * driver will have aborted pending i/o.
1374 */
1375 } else if (dev->state == STATE_DEV_SETUP)
1376 dev->setup_abort = 1;
1377
1378 req->buf = dev->rbuf;
1379 req->context = NULL;
1380 switch (ctrl->bRequest) {
1381
1382 case USB_REQ_GET_DESCRIPTOR:
1383 if (ctrl->bRequestType != USB_DIR_IN)
1384 goto unrecognized;
1385 switch (w_value >> 8) {
1386
1387 case USB_DT_DEVICE:
1388 value = min (w_length, (u16) sizeof *dev->dev);
1389 dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1390 req->buf = dev->dev;
1391 break;
1392 case USB_DT_DEVICE_QUALIFIER:
1393 if (!dev->hs_config)
1394 break;
1395 value = min (w_length, (u16)
1396 sizeof (struct usb_qualifier_descriptor));
1397 make_qualifier (dev);
1398 break;
1399 case USB_DT_OTHER_SPEED_CONFIG:
1400 case USB_DT_CONFIG:
1401 value = config_buf (dev,
1402 w_value >> 8,
1403 w_value & 0xff);
1404 if (value >= 0)
1405 value = min (w_length, (u16) value);
1406 break;
1407 case USB_DT_STRING:
1408 goto unrecognized;
1409
1410 default: // all others are errors
1411 break;
1412 }
1413 break;
1414
1415 /* currently one config, two speeds */
1416 case USB_REQ_SET_CONFIGURATION:
1417 if (ctrl->bRequestType != 0)
1418 goto unrecognized;
1419 if (0 == (u8) w_value) {
1420 value = 0;
1421 dev->current_config = 0;
1422 usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1423 // user mode expected to disable endpoints
1424 } else {
1425 u8 config, power;
1426
1427 if (gadget_is_dualspeed(gadget)
1428 && gadget->speed == USB_SPEED_HIGH) {
1429 config = dev->hs_config->bConfigurationValue;
1430 power = dev->hs_config->bMaxPower;
1431 } else {
1432 config = dev->config->bConfigurationValue;
1433 power = dev->config->bMaxPower;
1434 }
1435
1436 if (config == (u8) w_value) {
1437 value = 0;
1438 dev->current_config = config;
1439 usb_gadget_vbus_draw(gadget, 2 * power);
1440 }
1441 }
1442
1443 /* report SET_CONFIGURATION like any other control request,
1444 * except that usermode may not stall this. the next
1445 * request mustn't be allowed start until this finishes:
1446 * endpoints and threads set up, etc.
1447 *
1448 * NOTE: older PXA hardware (before PXA 255: without UDCCFR)
1449 * has bad/racey automagic that prevents synchronizing here.
1450 * even kernel mode drivers often miss them.
1451 */
1452 if (value == 0) {
1453 INFO (dev, "configuration #%d\n", dev->current_config);
1454 usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1455 if (dev->usermode_setup) {
1456 dev->setup_can_stall = 0;
1457 goto delegate;
1458 }
1459 }
1460 break;
1461
1462 #ifndef CONFIG_USB_PXA25X
1463 /* PXA automagically handles this request too */
1464 case USB_REQ_GET_CONFIGURATION:
1465 if (ctrl->bRequestType != 0x80)
1466 goto unrecognized;
1467 *(u8 *)req->buf = dev->current_config;
1468 value = min (w_length, (u16) 1);
1469 break;
1470 #endif
1471
1472 default:
1473 unrecognized:
1474 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1475 dev->usermode_setup ? "delegate" : "fail",
1476 ctrl->bRequestType, ctrl->bRequest,
1477 w_value, le16_to_cpu(ctrl->wIndex), w_length);
1478
1479 /* if there's an ep0 reader, don't stall */
1480 if (dev->usermode_setup) {
1481 dev->setup_can_stall = 1;
1482 delegate:
1483 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1484 ? 1 : 0;
1485 dev->setup_wLength = w_length;
1486 dev->setup_out_ready = 0;
1487 dev->setup_out_error = 0;
1488
1489 /* read DATA stage for OUT right away */
1490 if (unlikely (!dev->setup_in && w_length)) {
1491 value = setup_req (gadget->ep0, dev->req,
1492 w_length);
1493 if (value < 0)
1494 break;
1495
1496 ++dev->udc_usage;
1497 spin_unlock (&dev->lock);
1498 value = usb_ep_queue (gadget->ep0, dev->req,
1499 GFP_KERNEL);
1500 spin_lock (&dev->lock);
1501 --dev->udc_usage;
1502 if (value < 0) {
1503 clean_req (gadget->ep0, dev->req);
1504 break;
1505 }
1506
1507 /* we can't currently stall these */
1508 dev->setup_can_stall = 0;
1509 }
1510
1511 /* state changes when reader collects event */
1512 event = next_event (dev, GADGETFS_SETUP);
1513 event->u.setup = *ctrl;
1514 ep0_readable (dev);
1515 spin_unlock (&dev->lock);
1516 return 0;
1517 }
1518 }
1519
1520 /* proceed with data transfer and status phases? */
1521 if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1522 req->length = value;
1523 req->zero = value < w_length;
1524
1525 ++dev->udc_usage;
1526 spin_unlock (&dev->lock);
1527 value = usb_ep_queue (gadget->ep0, req, GFP_KERNEL);
1528 spin_lock(&dev->lock);
1529 --dev->udc_usage;
1530 spin_unlock(&dev->lock);
1531 if (value < 0) {
1532 DBG (dev, "ep_queue --> %d\n", value);
1533 req->status = 0;
1534 }
1535 return value;
1536 }
1537
1538 /* device stalls when value < 0 */
1539 spin_unlock (&dev->lock);
1540 return value;
1541 }
1542
destroy_ep_files(struct dev_data * dev)1543 static void destroy_ep_files (struct dev_data *dev)
1544 {
1545 DBG (dev, "%s %d\n", __func__, dev->state);
1546
1547 /* dev->state must prevent interference */
1548 spin_lock_irq (&dev->lock);
1549 while (!list_empty(&dev->epfiles)) {
1550 struct ep_data *ep;
1551 struct inode *parent;
1552 struct dentry *dentry;
1553
1554 /* break link to FS */
1555 ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1556 list_del_init (&ep->epfiles);
1557 spin_unlock_irq (&dev->lock);
1558
1559 dentry = ep->dentry;
1560 ep->dentry = NULL;
1561 parent = d_inode(dentry->d_parent);
1562
1563 /* break link to controller */
1564 mutex_lock(&ep->lock);
1565 if (ep->state == STATE_EP_ENABLED)
1566 (void) usb_ep_disable (ep->ep);
1567 ep->state = STATE_EP_UNBOUND;
1568 usb_ep_free_request (ep->ep, ep->req);
1569 ep->ep = NULL;
1570 mutex_unlock(&ep->lock);
1571
1572 wake_up (&ep->wait);
1573 put_ep (ep);
1574
1575 /* break link to dcache */
1576 inode_lock(parent);
1577 d_delete (dentry);
1578 dput (dentry);
1579 inode_unlock(parent);
1580
1581 spin_lock_irq (&dev->lock);
1582 }
1583 spin_unlock_irq (&dev->lock);
1584 }
1585
1586
1587 static struct dentry *
1588 gadgetfs_create_file (struct super_block *sb, char const *name,
1589 void *data, const struct file_operations *fops);
1590
activate_ep_files(struct dev_data * dev)1591 static int activate_ep_files (struct dev_data *dev)
1592 {
1593 struct usb_ep *ep;
1594 struct ep_data *data;
1595
1596 gadget_for_each_ep (ep, dev->gadget) {
1597
1598 data = kzalloc(sizeof(*data), GFP_KERNEL);
1599 if (!data)
1600 goto enomem0;
1601 data->state = STATE_EP_DISABLED;
1602 mutex_init(&data->lock);
1603 init_waitqueue_head (&data->wait);
1604
1605 strncpy (data->name, ep->name, sizeof (data->name) - 1);
1606 refcount_set (&data->count, 1);
1607 data->dev = dev;
1608 get_dev (dev);
1609
1610 data->ep = ep;
1611 ep->driver_data = data;
1612
1613 data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1614 if (!data->req)
1615 goto enomem1;
1616
1617 data->dentry = gadgetfs_create_file (dev->sb, data->name,
1618 data, &ep_io_operations);
1619 if (!data->dentry)
1620 goto enomem2;
1621 list_add_tail (&data->epfiles, &dev->epfiles);
1622 }
1623 return 0;
1624
1625 enomem2:
1626 usb_ep_free_request (ep, data->req);
1627 enomem1:
1628 put_dev (dev);
1629 kfree (data);
1630 enomem0:
1631 DBG (dev, "%s enomem\n", __func__);
1632 destroy_ep_files (dev);
1633 return -ENOMEM;
1634 }
1635
1636 static void
gadgetfs_unbind(struct usb_gadget * gadget)1637 gadgetfs_unbind (struct usb_gadget *gadget)
1638 {
1639 struct dev_data *dev = get_gadget_data (gadget);
1640
1641 DBG (dev, "%s\n", __func__);
1642
1643 spin_lock_irq (&dev->lock);
1644 dev->state = STATE_DEV_UNBOUND;
1645 while (dev->udc_usage > 0) {
1646 spin_unlock_irq(&dev->lock);
1647 usleep_range(1000, 2000);
1648 spin_lock_irq(&dev->lock);
1649 }
1650 spin_unlock_irq (&dev->lock);
1651
1652 destroy_ep_files (dev);
1653 gadget->ep0->driver_data = NULL;
1654 set_gadget_data (gadget, NULL);
1655
1656 /* we've already been disconnected ... no i/o is active */
1657 if (dev->req)
1658 usb_ep_free_request (gadget->ep0, dev->req);
1659 DBG (dev, "%s done\n", __func__);
1660 put_dev (dev);
1661 }
1662
1663 static struct dev_data *the_device;
1664
gadgetfs_bind(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1665 static int gadgetfs_bind(struct usb_gadget *gadget,
1666 struct usb_gadget_driver *driver)
1667 {
1668 struct dev_data *dev = the_device;
1669
1670 if (!dev)
1671 return -ESRCH;
1672 if (0 != strcmp (CHIP, gadget->name)) {
1673 pr_err("%s expected %s controller not %s\n",
1674 shortname, CHIP, gadget->name);
1675 return -ENODEV;
1676 }
1677
1678 set_gadget_data (gadget, dev);
1679 dev->gadget = gadget;
1680 gadget->ep0->driver_data = dev;
1681
1682 /* preallocate control response and buffer */
1683 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1684 if (!dev->req)
1685 goto enomem;
1686 dev->req->context = NULL;
1687 dev->req->complete = epio_complete;
1688
1689 if (activate_ep_files (dev) < 0)
1690 goto enomem;
1691
1692 INFO (dev, "bound to %s driver\n", gadget->name);
1693 spin_lock_irq(&dev->lock);
1694 dev->state = STATE_DEV_UNCONNECTED;
1695 spin_unlock_irq(&dev->lock);
1696 get_dev (dev);
1697 return 0;
1698
1699 enomem:
1700 gadgetfs_unbind (gadget);
1701 return -ENOMEM;
1702 }
1703
1704 static void
gadgetfs_disconnect(struct usb_gadget * gadget)1705 gadgetfs_disconnect (struct usb_gadget *gadget)
1706 {
1707 struct dev_data *dev = get_gadget_data (gadget);
1708 unsigned long flags;
1709
1710 spin_lock_irqsave (&dev->lock, flags);
1711 if (dev->state == STATE_DEV_UNCONNECTED)
1712 goto exit;
1713 dev->state = STATE_DEV_UNCONNECTED;
1714
1715 INFO (dev, "disconnected\n");
1716 next_event (dev, GADGETFS_DISCONNECT);
1717 ep0_readable (dev);
1718 exit:
1719 spin_unlock_irqrestore (&dev->lock, flags);
1720 }
1721
1722 static void
gadgetfs_suspend(struct usb_gadget * gadget)1723 gadgetfs_suspend (struct usb_gadget *gadget)
1724 {
1725 struct dev_data *dev = get_gadget_data (gadget);
1726 unsigned long flags;
1727
1728 INFO (dev, "suspended from state %d\n", dev->state);
1729 spin_lock_irqsave(&dev->lock, flags);
1730 switch (dev->state) {
1731 case STATE_DEV_SETUP: // VERY odd... host died??
1732 case STATE_DEV_CONNECTED:
1733 case STATE_DEV_UNCONNECTED:
1734 next_event (dev, GADGETFS_SUSPEND);
1735 ep0_readable (dev);
1736 fallthrough;
1737 default:
1738 break;
1739 }
1740 spin_unlock_irqrestore(&dev->lock, flags);
1741 }
1742
1743 static struct usb_gadget_driver gadgetfs_driver = {
1744 .function = (char *) driver_desc,
1745 .bind = gadgetfs_bind,
1746 .unbind = gadgetfs_unbind,
1747 .setup = gadgetfs_setup,
1748 .reset = gadgetfs_disconnect,
1749 .disconnect = gadgetfs_disconnect,
1750 .suspend = gadgetfs_suspend,
1751
1752 .driver = {
1753 .name = shortname,
1754 },
1755 };
1756
1757 /*----------------------------------------------------------------------*/
1758 /* DEVICE INITIALIZATION
1759 *
1760 * fd = open ("/dev/gadget/$CHIP", O_RDWR)
1761 * status = write (fd, descriptors, sizeof descriptors)
1762 *
1763 * That write establishes the device configuration, so the kernel can
1764 * bind to the controller ... guaranteeing it can handle enumeration
1765 * at all necessary speeds. Descriptor order is:
1766 *
1767 * . message tag (u32, host order) ... for now, must be zero; it
1768 * would change to support features like multi-config devices
1769 * . full/low speed config ... all wTotalLength bytes (with interface,
1770 * class, altsetting, endpoint, and other descriptors)
1771 * . high speed config ... all descriptors, for high speed operation;
1772 * this one's optional except for high-speed hardware
1773 * . device descriptor
1774 *
1775 * Endpoints are not yet enabled. Drivers must wait until device
1776 * configuration and interface altsetting changes create
1777 * the need to configure (or unconfigure) them.
1778 *
1779 * After initialization, the device stays active for as long as that
1780 * $CHIP file is open. Events must then be read from that descriptor,
1781 * such as configuration notifications.
1782 */
1783
is_valid_config(struct usb_config_descriptor * config,unsigned int total)1784 static int is_valid_config(struct usb_config_descriptor *config,
1785 unsigned int total)
1786 {
1787 return config->bDescriptorType == USB_DT_CONFIG
1788 && config->bLength == USB_DT_CONFIG_SIZE
1789 && total >= USB_DT_CONFIG_SIZE
1790 && config->bConfigurationValue != 0
1791 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1792 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1793 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1794 /* FIXME check lengths: walk to end */
1795 }
1796
1797 static ssize_t
dev_config(struct file * fd,const char __user * buf,size_t len,loff_t * ptr)1798 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1799 {
1800 struct dev_data *dev = fd->private_data;
1801 ssize_t value, length = len;
1802 unsigned total;
1803 u32 tag;
1804 char *kbuf;
1805
1806 spin_lock_irq(&dev->lock);
1807 if (dev->state > STATE_DEV_OPENED) {
1808 value = ep0_write(fd, buf, len, ptr);
1809 spin_unlock_irq(&dev->lock);
1810 return value;
1811 }
1812 spin_unlock_irq(&dev->lock);
1813
1814 if ((len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4)) ||
1815 (len > PAGE_SIZE * 4))
1816 return -EINVAL;
1817
1818 /* we might need to change message format someday */
1819 if (copy_from_user (&tag, buf, 4))
1820 return -EFAULT;
1821 if (tag != 0)
1822 return -EINVAL;
1823 buf += 4;
1824 length -= 4;
1825
1826 kbuf = memdup_user(buf, length);
1827 if (IS_ERR(kbuf))
1828 return PTR_ERR(kbuf);
1829
1830 spin_lock_irq (&dev->lock);
1831 value = -EINVAL;
1832 if (dev->buf) {
1833 spin_unlock_irq(&dev->lock);
1834 kfree(kbuf);
1835 return value;
1836 }
1837 dev->buf = kbuf;
1838
1839 /* full or low speed config */
1840 dev->config = (void *) kbuf;
1841 total = le16_to_cpu(dev->config->wTotalLength);
1842 if (!is_valid_config(dev->config, total) ||
1843 total > length - USB_DT_DEVICE_SIZE)
1844 goto fail;
1845 kbuf += total;
1846 length -= total;
1847
1848 /* optional high speed config */
1849 if (kbuf [1] == USB_DT_CONFIG) {
1850 dev->hs_config = (void *) kbuf;
1851 total = le16_to_cpu(dev->hs_config->wTotalLength);
1852 if (!is_valid_config(dev->hs_config, total) ||
1853 total > length - USB_DT_DEVICE_SIZE)
1854 goto fail;
1855 kbuf += total;
1856 length -= total;
1857 } else {
1858 dev->hs_config = NULL;
1859 }
1860
1861 /* could support multiple configs, using another encoding! */
1862
1863 /* device descriptor (tweaked for paranoia) */
1864 if (length != USB_DT_DEVICE_SIZE)
1865 goto fail;
1866 dev->dev = (void *)kbuf;
1867 if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1868 || dev->dev->bDescriptorType != USB_DT_DEVICE
1869 || dev->dev->bNumConfigurations != 1)
1870 goto fail;
1871 dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1872
1873 /* triggers gadgetfs_bind(); then we can enumerate. */
1874 spin_unlock_irq (&dev->lock);
1875 if (dev->hs_config)
1876 gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1877 else
1878 gadgetfs_driver.max_speed = USB_SPEED_FULL;
1879
1880 value = usb_gadget_probe_driver(&gadgetfs_driver);
1881 if (value != 0) {
1882 spin_lock_irq(&dev->lock);
1883 goto fail;
1884 } else {
1885 /* at this point "good" hardware has for the first time
1886 * let the USB the host see us. alternatively, if users
1887 * unplug/replug that will clear all the error state.
1888 *
1889 * note: everything running before here was guaranteed
1890 * to choke driver model style diagnostics. from here
1891 * on, they can work ... except in cleanup paths that
1892 * kick in after the ep0 descriptor is closed.
1893 */
1894 value = len;
1895 dev->gadget_registered = true;
1896 }
1897 return value;
1898
1899 fail:
1900 dev->config = NULL;
1901 dev->hs_config = NULL;
1902 dev->dev = NULL;
1903 spin_unlock_irq (&dev->lock);
1904 pr_debug ("%s: %s fail %zd, %p\n", shortname, __func__, value, dev);
1905 kfree (dev->buf);
1906 dev->buf = NULL;
1907 return value;
1908 }
1909
1910 static int
dev_open(struct inode * inode,struct file * fd)1911 dev_open (struct inode *inode, struct file *fd)
1912 {
1913 struct dev_data *dev = inode->i_private;
1914 int value = -EBUSY;
1915
1916 spin_lock_irq(&dev->lock);
1917 if (dev->state == STATE_DEV_DISABLED) {
1918 dev->ev_next = 0;
1919 dev->state = STATE_DEV_OPENED;
1920 fd->private_data = dev;
1921 get_dev (dev);
1922 value = 0;
1923 }
1924 spin_unlock_irq(&dev->lock);
1925 return value;
1926 }
1927
1928 static const struct file_operations ep0_operations = {
1929 .llseek = no_llseek,
1930
1931 .open = dev_open,
1932 .read = ep0_read,
1933 .write = dev_config,
1934 .fasync = ep0_fasync,
1935 .poll = ep0_poll,
1936 .unlocked_ioctl = dev_ioctl,
1937 .release = dev_release,
1938 };
1939
1940 /*----------------------------------------------------------------------*/
1941
1942 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1943 *
1944 * Mounting the filesystem creates a controller file, used first for
1945 * device configuration then later for event monitoring.
1946 */
1947
1948
1949 /* FIXME PAM etc could set this security policy without mount options
1950 * if epfiles inherited ownership and permissons from ep0 ...
1951 */
1952
1953 static unsigned default_uid;
1954 static unsigned default_gid;
1955 static unsigned default_perm = S_IRUSR | S_IWUSR;
1956
1957 module_param (default_uid, uint, 0644);
1958 module_param (default_gid, uint, 0644);
1959 module_param (default_perm, uint, 0644);
1960
1961
1962 static struct inode *
gadgetfs_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,int mode)1963 gadgetfs_make_inode (struct super_block *sb,
1964 void *data, const struct file_operations *fops,
1965 int mode)
1966 {
1967 struct inode *inode = new_inode (sb);
1968
1969 if (inode) {
1970 inode->i_ino = get_next_ino();
1971 inode->i_mode = mode;
1972 inode->i_uid = make_kuid(&init_user_ns, default_uid);
1973 inode->i_gid = make_kgid(&init_user_ns, default_gid);
1974 inode->i_atime = inode->i_mtime = inode->i_ctime
1975 = current_time(inode);
1976 inode->i_private = data;
1977 inode->i_fop = fops;
1978 }
1979 return inode;
1980 }
1981
1982 /* creates in fs root directory, so non-renamable and non-linkable.
1983 * so inode and dentry are paired, until device reconfig.
1984 */
1985 static struct dentry *
gadgetfs_create_file(struct super_block * sb,char const * name,void * data,const struct file_operations * fops)1986 gadgetfs_create_file (struct super_block *sb, char const *name,
1987 void *data, const struct file_operations *fops)
1988 {
1989 struct dentry *dentry;
1990 struct inode *inode;
1991
1992 dentry = d_alloc_name(sb->s_root, name);
1993 if (!dentry)
1994 return NULL;
1995
1996 inode = gadgetfs_make_inode (sb, data, fops,
1997 S_IFREG | (default_perm & S_IRWXUGO));
1998 if (!inode) {
1999 dput(dentry);
2000 return NULL;
2001 }
2002 d_add (dentry, inode);
2003 return dentry;
2004 }
2005
2006 static const struct super_operations gadget_fs_operations = {
2007 .statfs = simple_statfs,
2008 .drop_inode = generic_delete_inode,
2009 };
2010
2011 static int
gadgetfs_fill_super(struct super_block * sb,struct fs_context * fc)2012 gadgetfs_fill_super (struct super_block *sb, struct fs_context *fc)
2013 {
2014 struct inode *inode;
2015 struct dev_data *dev;
2016 int rc;
2017
2018 mutex_lock(&sb_mutex);
2019
2020 if (the_device) {
2021 rc = -ESRCH;
2022 goto Done;
2023 }
2024
2025 CHIP = usb_get_gadget_udc_name();
2026 if (!CHIP) {
2027 rc = -ENODEV;
2028 goto Done;
2029 }
2030
2031 /* superblock */
2032 sb->s_blocksize = PAGE_SIZE;
2033 sb->s_blocksize_bits = PAGE_SHIFT;
2034 sb->s_magic = GADGETFS_MAGIC;
2035 sb->s_op = &gadget_fs_operations;
2036 sb->s_time_gran = 1;
2037
2038 /* root inode */
2039 inode = gadgetfs_make_inode (sb,
2040 NULL, &simple_dir_operations,
2041 S_IFDIR | S_IRUGO | S_IXUGO);
2042 if (!inode)
2043 goto Enomem;
2044 inode->i_op = &simple_dir_inode_operations;
2045 if (!(sb->s_root = d_make_root (inode)))
2046 goto Enomem;
2047
2048 /* the ep0 file is named after the controller we expect;
2049 * user mode code can use it for sanity checks, like we do.
2050 */
2051 dev = dev_new ();
2052 if (!dev)
2053 goto Enomem;
2054
2055 dev->sb = sb;
2056 dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &ep0_operations);
2057 if (!dev->dentry) {
2058 put_dev(dev);
2059 goto Enomem;
2060 }
2061
2062 /* other endpoint files are available after hardware setup,
2063 * from binding to a controller.
2064 */
2065 the_device = dev;
2066 rc = 0;
2067 goto Done;
2068
2069 Enomem:
2070 kfree(CHIP);
2071 CHIP = NULL;
2072 rc = -ENOMEM;
2073
2074 Done:
2075 mutex_unlock(&sb_mutex);
2076 return rc;
2077 }
2078
2079 /* "mount -t gadgetfs path /dev/gadget" ends up here */
gadgetfs_get_tree(struct fs_context * fc)2080 static int gadgetfs_get_tree(struct fs_context *fc)
2081 {
2082 return get_tree_single(fc, gadgetfs_fill_super);
2083 }
2084
2085 static const struct fs_context_operations gadgetfs_context_ops = {
2086 .get_tree = gadgetfs_get_tree,
2087 };
2088
gadgetfs_init_fs_context(struct fs_context * fc)2089 static int gadgetfs_init_fs_context(struct fs_context *fc)
2090 {
2091 fc->ops = &gadgetfs_context_ops;
2092 return 0;
2093 }
2094
2095 static void
gadgetfs_kill_sb(struct super_block * sb)2096 gadgetfs_kill_sb (struct super_block *sb)
2097 {
2098 mutex_lock(&sb_mutex);
2099 kill_litter_super (sb);
2100 if (the_device) {
2101 put_dev (the_device);
2102 the_device = NULL;
2103 }
2104 kfree(CHIP);
2105 CHIP = NULL;
2106 mutex_unlock(&sb_mutex);
2107 }
2108
2109 /*----------------------------------------------------------------------*/
2110
2111 static struct file_system_type gadgetfs_type = {
2112 .owner = THIS_MODULE,
2113 .name = shortname,
2114 .init_fs_context = gadgetfs_init_fs_context,
2115 .kill_sb = gadgetfs_kill_sb,
2116 };
2117 MODULE_ALIAS_FS("gadgetfs");
2118
2119 /*----------------------------------------------------------------------*/
2120
init(void)2121 static int __init init (void)
2122 {
2123 int status;
2124
2125 status = register_filesystem (&gadgetfs_type);
2126 if (status == 0)
2127 pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2128 shortname, driver_desc);
2129 return status;
2130 }
2131 module_init (init);
2132
cleanup(void)2133 static void __exit cleanup (void)
2134 {
2135 pr_debug ("unregister %s\n", shortname);
2136 unregister_filesystem (&gadgetfs_type);
2137 }
2138 module_exit (cleanup);
2139
2140