1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 */
5
6 /**
7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
8 * Nitro is a hypervisor that has been developed by Amazon.
9 */
10
11 #include <linux/anon_inodes.h>
12 #include <linux/capability.h>
13 #include <linux/cpu.h>
14 #include <linux/device.h>
15 #include <linux/file.h>
16 #include <linux/hugetlb.h>
17 #include <linux/limits.h>
18 #include <linux/list.h>
19 #include <linux/miscdevice.h>
20 #include <linux/mm.h>
21 #include <linux/mman.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/nitro_enclaves.h>
25 #include <linux/pci.h>
26 #include <linux/poll.h>
27 #include <linux/slab.h>
28 #include <linux/types.h>
29 #include <uapi/linux/vm_sockets.h>
30
31 #include "ne_misc_dev.h"
32 #include "ne_pci_dev.h"
33
34 /**
35 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
36 * separated. The NE CPU pool includes CPUs from a single NUMA
37 * node.
38 */
39 #define NE_CPUS_SIZE (512)
40
41 /**
42 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
43 * image in enclave memory.
44 */
45 #define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL)
46
47 /**
48 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
49 * with.
50 */
51 #define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL)
52
53 /**
54 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
55 */
56 #define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL)
57
58 /**
59 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
60 */
61 #define NE_PARENT_VM_CID (3)
62
63 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
64
65 static const struct file_operations ne_fops = {
66 .owner = THIS_MODULE,
67 .llseek = noop_llseek,
68 .unlocked_ioctl = ne_ioctl,
69 };
70
71 static struct miscdevice ne_misc_dev = {
72 .minor = MISC_DYNAMIC_MINOR,
73 .name = "nitro_enclaves",
74 .fops = &ne_fops,
75 .mode = 0660,
76 };
77
78 struct ne_devs ne_devs = {
79 .ne_misc_dev = &ne_misc_dev,
80 };
81
82 /*
83 * TODO: Update logic to create new sysfs entries instead of using
84 * a kernel parameter e.g. if multiple sysfs files needed.
85 */
86 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
87
88 static const struct kernel_param_ops ne_cpu_pool_ops = {
89 .get = param_get_string,
90 .set = ne_set_kernel_param,
91 };
92
93 static char ne_cpus[NE_CPUS_SIZE];
94 static struct kparam_string ne_cpus_arg = {
95 .maxlen = sizeof(ne_cpus),
96 .string = ne_cpus,
97 };
98
99 module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
100 /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
101 MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
102
103 /**
104 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
105 * @avail_threads_per_core: Available full CPU cores to be dedicated to
106 * enclave(s). The cpumasks from the array, indexed
107 * by core id, contain all the threads from the
108 * available cores, that are not set for created
109 * enclave(s). The full CPU cores are part of the
110 * NE CPU pool.
111 * @mutex: Mutex for the access to the NE CPU pool.
112 * @nr_parent_vm_cores : The size of the available threads per core array.
113 * The total number of CPU cores available on the
114 * primary / parent VM.
115 * @nr_threads_per_core: The number of threads that a full CPU core has.
116 * @numa_node: NUMA node of the CPUs in the pool.
117 */
118 struct ne_cpu_pool {
119 cpumask_var_t *avail_threads_per_core;
120 struct mutex mutex;
121 unsigned int nr_parent_vm_cores;
122 unsigned int nr_threads_per_core;
123 int numa_node;
124 };
125
126 static struct ne_cpu_pool ne_cpu_pool;
127
128 /**
129 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
130 * @void: No parameters provided.
131 *
132 * Context: Process context.
133 * Return:
134 * * True if at least one enclave is created.
135 * * False otherwise.
136 */
ne_check_enclaves_created(void)137 static bool ne_check_enclaves_created(void)
138 {
139 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
140 bool ret = false;
141
142 if (!ne_pci_dev)
143 return ret;
144
145 mutex_lock(&ne_pci_dev->enclaves_list_mutex);
146
147 if (!list_empty(&ne_pci_dev->enclaves_list))
148 ret = true;
149
150 mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
151
152 return ret;
153 }
154
155 /**
156 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
157 * as not sharing CPU cores with the primary / parent VM
158 * or not using CPU 0, which should remain available for
159 * the primary / parent VM. Offline the CPUs from the
160 * pool after the checks passed.
161 * @ne_cpu_list: The CPU list used for setting NE CPU pool.
162 *
163 * Context: Process context.
164 * Return:
165 * * 0 on success.
166 * * Negative return value on failure.
167 */
ne_setup_cpu_pool(const char * ne_cpu_list)168 static int ne_setup_cpu_pool(const char *ne_cpu_list)
169 {
170 int core_id = -1;
171 unsigned int cpu = 0;
172 cpumask_var_t cpu_pool;
173 unsigned int cpu_sibling = 0;
174 unsigned int i = 0;
175 int numa_node = -1;
176 int rc = -EINVAL;
177
178 if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
179 return -ENOMEM;
180
181 mutex_lock(&ne_cpu_pool.mutex);
182
183 rc = cpulist_parse(ne_cpu_list, cpu_pool);
184 if (rc < 0) {
185 pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
186
187 goto free_pool_cpumask;
188 }
189
190 cpu = cpumask_any(cpu_pool);
191 if (cpu >= nr_cpu_ids) {
192 pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
193
194 rc = -EINVAL;
195
196 goto free_pool_cpumask;
197 }
198
199 /*
200 * Check if the CPUs are online, to further get info about them
201 * e.g. numa node, core id, siblings.
202 */
203 for_each_cpu(cpu, cpu_pool)
204 if (cpu_is_offline(cpu)) {
205 pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
206 ne_misc_dev.name, cpu);
207
208 rc = -EINVAL;
209
210 goto free_pool_cpumask;
211 }
212
213 /*
214 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
215 */
216 for_each_cpu(cpu, cpu_pool)
217 if (numa_node < 0) {
218 numa_node = cpu_to_node(cpu);
219 if (numa_node < 0) {
220 pr_err("%s: Invalid NUMA node %d\n",
221 ne_misc_dev.name, numa_node);
222
223 rc = -EINVAL;
224
225 goto free_pool_cpumask;
226 }
227 } else {
228 if (numa_node != cpu_to_node(cpu)) {
229 pr_err("%s: CPUs with different NUMA nodes\n",
230 ne_misc_dev.name);
231
232 rc = -EINVAL;
233
234 goto free_pool_cpumask;
235 }
236 }
237
238 /*
239 * Check if CPU 0 and its siblings are included in the provided CPU pool
240 * They should remain available for the primary / parent VM.
241 */
242 if (cpumask_test_cpu(0, cpu_pool)) {
243 pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
244
245 rc = -EINVAL;
246
247 goto free_pool_cpumask;
248 }
249
250 for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
251 if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
252 pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
253 ne_misc_dev.name, cpu_sibling);
254
255 rc = -EINVAL;
256
257 goto free_pool_cpumask;
258 }
259 }
260
261 /*
262 * Check if CPU siblings are included in the provided CPU pool. The
263 * expectation is that full CPU cores are made available in the CPU pool
264 * for enclaves.
265 */
266 for_each_cpu(cpu, cpu_pool) {
267 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
268 if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
269 pr_err("%s: CPU %d is not in CPU pool\n",
270 ne_misc_dev.name, cpu_sibling);
271
272 rc = -EINVAL;
273
274 goto free_pool_cpumask;
275 }
276 }
277 }
278
279 /* Calculate the number of threads from a full CPU core. */
280 cpu = cpumask_any(cpu_pool);
281 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
282 ne_cpu_pool.nr_threads_per_core++;
283
284 ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
285
286 ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
287 sizeof(*ne_cpu_pool.avail_threads_per_core),
288 GFP_KERNEL);
289 if (!ne_cpu_pool.avail_threads_per_core) {
290 rc = -ENOMEM;
291
292 goto free_pool_cpumask;
293 }
294
295 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
296 if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
297 rc = -ENOMEM;
298
299 goto free_cores_cpumask;
300 }
301
302 /*
303 * Split the NE CPU pool in threads per core to keep the CPU topology
304 * after offlining the CPUs.
305 */
306 for_each_cpu(cpu, cpu_pool) {
307 core_id = topology_core_id(cpu);
308 if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
309 pr_err("%s: Invalid core id %d for CPU %d\n",
310 ne_misc_dev.name, core_id, cpu);
311
312 rc = -EINVAL;
313
314 goto clear_cpumask;
315 }
316
317 cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
318 }
319
320 /*
321 * CPUs that are given to enclave(s) should not be considered online
322 * by Linux anymore, as the hypervisor will degrade them to floating.
323 * The physical CPUs (full cores) are carved out of the primary / parent
324 * VM and given to the enclave VM. The same number of vCPUs would run
325 * on less pCPUs for the primary / parent VM.
326 *
327 * We offline them here, to not degrade performance and expose correct
328 * topology to Linux and user space.
329 */
330 for_each_cpu(cpu, cpu_pool) {
331 rc = remove_cpu(cpu);
332 if (rc != 0) {
333 pr_err("%s: CPU %d is not offlined [rc=%d]\n",
334 ne_misc_dev.name, cpu, rc);
335
336 goto online_cpus;
337 }
338 }
339
340 free_cpumask_var(cpu_pool);
341
342 ne_cpu_pool.numa_node = numa_node;
343
344 mutex_unlock(&ne_cpu_pool.mutex);
345
346 return 0;
347
348 online_cpus:
349 for_each_cpu(cpu, cpu_pool)
350 add_cpu(cpu);
351 clear_cpumask:
352 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
353 cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
354 free_cores_cpumask:
355 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
356 free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
357 kfree(ne_cpu_pool.avail_threads_per_core);
358 free_pool_cpumask:
359 free_cpumask_var(cpu_pool);
360 ne_cpu_pool.nr_parent_vm_cores = 0;
361 ne_cpu_pool.nr_threads_per_core = 0;
362 ne_cpu_pool.numa_node = -1;
363 mutex_unlock(&ne_cpu_pool.mutex);
364
365 return rc;
366 }
367
368 /**
369 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
370 * CPU pool.
371 * @void: No parameters provided.
372 *
373 * Context: Process context.
374 */
ne_teardown_cpu_pool(void)375 static void ne_teardown_cpu_pool(void)
376 {
377 unsigned int cpu = 0;
378 unsigned int i = 0;
379 int rc = -EINVAL;
380
381 mutex_lock(&ne_cpu_pool.mutex);
382
383 if (!ne_cpu_pool.nr_parent_vm_cores) {
384 mutex_unlock(&ne_cpu_pool.mutex);
385
386 return;
387 }
388
389 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
390 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
391 rc = add_cpu(cpu);
392 if (rc != 0)
393 pr_err("%s: CPU %d is not onlined [rc=%d]\n",
394 ne_misc_dev.name, cpu, rc);
395 }
396
397 cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
398
399 free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
400 }
401
402 kfree(ne_cpu_pool.avail_threads_per_core);
403 ne_cpu_pool.nr_parent_vm_cores = 0;
404 ne_cpu_pool.nr_threads_per_core = 0;
405 ne_cpu_pool.numa_node = -1;
406
407 mutex_unlock(&ne_cpu_pool.mutex);
408 }
409
410 /**
411 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
412 * @val: NE CPU pool string value.
413 * @kp : NE kernel parameter associated with the NE CPU pool.
414 *
415 * Context: Process context.
416 * Return:
417 * * 0 on success.
418 * * Negative return value on failure.
419 */
ne_set_kernel_param(const char * val,const struct kernel_param * kp)420 static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
421 {
422 char error_val[] = "";
423 int rc = -EINVAL;
424
425 if (!capable(CAP_SYS_ADMIN))
426 return -EPERM;
427
428 if (ne_check_enclaves_created()) {
429 pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
430
431 return -EPERM;
432 }
433
434 ne_teardown_cpu_pool();
435
436 rc = ne_setup_cpu_pool(val);
437 if (rc < 0) {
438 pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
439
440 param_set_copystring(error_val, kp);
441
442 return rc;
443 }
444
445 rc = param_set_copystring(val, kp);
446 if (rc < 0) {
447 pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
448
449 ne_teardown_cpu_pool();
450
451 param_set_copystring(error_val, kp);
452
453 return rc;
454 }
455
456 return 0;
457 }
458
459 /**
460 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
461 * @ne_enclave : Private data associated with the current enclave.
462 * @cpu: CPU to check if already used.
463 *
464 * Context: Process context. This function is called with the ne_enclave mutex held.
465 * Return:
466 * * True if the provided CPU is already used by the enclave.
467 * * False otherwise.
468 */
ne_donated_cpu(struct ne_enclave * ne_enclave,unsigned int cpu)469 static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
470 {
471 if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
472 return true;
473
474 return false;
475 }
476
477 /**
478 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
479 * NE CPU pool.
480 * @void: No parameters provided.
481 *
482 * Context: Process context. This function is called with the ne_enclave and
483 * ne_cpu_pool mutexes held.
484 * Return:
485 * * Core id.
486 * * -1 if no CPU core available in the pool.
487 */
ne_get_unused_core_from_cpu_pool(void)488 static int ne_get_unused_core_from_cpu_pool(void)
489 {
490 int core_id = -1;
491 unsigned int i = 0;
492
493 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
494 if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
495 core_id = i;
496
497 break;
498 }
499
500 return core_id;
501 }
502
503 /**
504 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
505 * the enclave data structure.
506 * @ne_enclave : Private data associated with the current enclave.
507 * @core_id: Core id to get its threads from the NE CPU pool.
508 * @vcpu_id: vCPU id part of the provided core.
509 *
510 * Context: Process context. This function is called with the ne_enclave and
511 * ne_cpu_pool mutexes held.
512 * Return:
513 * * 0 on success.
514 * * Negative return value on failure.
515 */
ne_set_enclave_threads_per_core(struct ne_enclave * ne_enclave,int core_id,u32 vcpu_id)516 static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
517 int core_id, u32 vcpu_id)
518 {
519 unsigned int cpu = 0;
520
521 if (core_id < 0 && vcpu_id == 0) {
522 dev_err_ratelimited(ne_misc_dev.this_device,
523 "No CPUs available in NE CPU pool\n");
524
525 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
526 }
527
528 if (core_id < 0) {
529 dev_err_ratelimited(ne_misc_dev.this_device,
530 "CPU %d is not in NE CPU pool\n", vcpu_id);
531
532 return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
533 }
534
535 if (core_id >= ne_enclave->nr_parent_vm_cores) {
536 dev_err_ratelimited(ne_misc_dev.this_device,
537 "Invalid core id %d - ne_enclave\n", core_id);
538
539 return -NE_ERR_VCPU_INVALID_CPU_CORE;
540 }
541
542 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
543 cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
544
545 cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
546
547 return 0;
548 }
549
550 /**
551 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
552 * remaining sibling(s) of a CPU core or the first
553 * sibling of a new CPU core.
554 * @ne_enclave : Private data associated with the current enclave.
555 * @vcpu_id: vCPU to get from the NE CPU pool.
556 *
557 * Context: Process context. This function is called with the ne_enclave mutex held.
558 * Return:
559 * * 0 on success.
560 * * Negative return value on failure.
561 */
ne_get_cpu_from_cpu_pool(struct ne_enclave * ne_enclave,u32 * vcpu_id)562 static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
563 {
564 int core_id = -1;
565 unsigned int cpu = 0;
566 unsigned int i = 0;
567 int rc = -EINVAL;
568
569 /*
570 * If previously allocated a thread of a core to this enclave, first
571 * check remaining sibling(s) for new CPU allocations, so that full
572 * CPU cores are used for the enclave.
573 */
574 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
575 for_each_cpu(cpu, ne_enclave->threads_per_core[i])
576 if (!ne_donated_cpu(ne_enclave, cpu)) {
577 *vcpu_id = cpu;
578
579 return 0;
580 }
581
582 mutex_lock(&ne_cpu_pool.mutex);
583
584 /*
585 * If no remaining siblings, get a core from the NE CPU pool and keep
586 * track of all the threads in the enclave threads per core data structure.
587 */
588 core_id = ne_get_unused_core_from_cpu_pool();
589
590 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
591 if (rc < 0)
592 goto unlock_mutex;
593
594 *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
595
596 rc = 0;
597
598 unlock_mutex:
599 mutex_unlock(&ne_cpu_pool.mutex);
600
601 return rc;
602 }
603
604 /**
605 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
606 * core associated with the provided vCPU.
607 * @vcpu_id: Provided vCPU id to get its associated core id.
608 *
609 * Context: Process context. This function is called with the ne_enclave and
610 * ne_cpu_pool mutexes held.
611 * Return:
612 * * Core id.
613 * * -1 if the provided vCPU is not in the pool.
614 */
ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)615 static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
616 {
617 int core_id = -1;
618 unsigned int i = 0;
619
620 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
621 if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
622 core_id = i;
623
624 break;
625 }
626
627 return core_id;
628 }
629
630 /**
631 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
632 * from the pool.
633 * @ne_enclave : Private data associated with the current enclave.
634 * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool.
635 *
636 * Context: Process context. This function is called with the ne_enclave mutex held.
637 * Return:
638 * * 0 on success.
639 * * Negative return value on failure.
640 */
ne_check_cpu_in_cpu_pool(struct ne_enclave * ne_enclave,u32 vcpu_id)641 static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
642 {
643 int core_id = -1;
644 unsigned int i = 0;
645 int rc = -EINVAL;
646
647 if (ne_donated_cpu(ne_enclave, vcpu_id)) {
648 dev_err_ratelimited(ne_misc_dev.this_device,
649 "CPU %d already used\n", vcpu_id);
650
651 return -NE_ERR_VCPU_ALREADY_USED;
652 }
653
654 /*
655 * If previously allocated a thread of a core to this enclave, but not
656 * the full core, first check remaining sibling(s).
657 */
658 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
659 if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
660 return 0;
661
662 mutex_lock(&ne_cpu_pool.mutex);
663
664 /*
665 * If no remaining siblings, get from the NE CPU pool the core
666 * associated with the vCPU and keep track of all the threads in the
667 * enclave threads per core data structure.
668 */
669 core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
670
671 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
672 if (rc < 0)
673 goto unlock_mutex;
674
675 rc = 0;
676
677 unlock_mutex:
678 mutex_unlock(&ne_cpu_pool.mutex);
679
680 return rc;
681 }
682
683 /**
684 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
685 * enclave.
686 * @ne_enclave : Private data associated with the current enclave.
687 * @vcpu_id: ID of the CPU to be associated with the given slot,
688 * apic id on x86.
689 *
690 * Context: Process context. This function is called with the ne_enclave mutex held.
691 * Return:
692 * * 0 on success.
693 * * Negative return value on failure.
694 */
ne_add_vcpu_ioctl(struct ne_enclave * ne_enclave,u32 vcpu_id)695 static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
696 {
697 struct ne_pci_dev_cmd_reply cmd_reply = {};
698 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
699 int rc = -EINVAL;
700 struct slot_add_vcpu_req slot_add_vcpu_req = {};
701
702 if (ne_enclave->mm != current->mm)
703 return -EIO;
704
705 slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
706 slot_add_vcpu_req.vcpu_id = vcpu_id;
707
708 rc = ne_do_request(pdev, SLOT_ADD_VCPU,
709 &slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
710 &cmd_reply, sizeof(cmd_reply));
711 if (rc < 0) {
712 dev_err_ratelimited(ne_misc_dev.this_device,
713 "Error in slot add vCPU [rc=%d]\n", rc);
714
715 return rc;
716 }
717
718 cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
719
720 ne_enclave->nr_vcpus++;
721
722 return 0;
723 }
724
725 /**
726 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
727 * region received during the set user
728 * memory region ioctl call.
729 * @ne_enclave : Private data associated with the current enclave.
730 * @mem_region : User space memory region to be sanity checked.
731 *
732 * Context: Process context. This function is called with the ne_enclave mutex held.
733 * Return:
734 * * 0 on success.
735 * * Negative return value on failure.
736 */
ne_sanity_check_user_mem_region(struct ne_enclave * ne_enclave,struct ne_user_memory_region mem_region)737 static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
738 struct ne_user_memory_region mem_region)
739 {
740 struct ne_mem_region *ne_mem_region = NULL;
741
742 if (ne_enclave->mm != current->mm)
743 return -EIO;
744
745 if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
746 dev_err_ratelimited(ne_misc_dev.this_device,
747 "User space memory size is not multiple of 2 MiB\n");
748
749 return -NE_ERR_INVALID_MEM_REGION_SIZE;
750 }
751
752 if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
753 dev_err_ratelimited(ne_misc_dev.this_device,
754 "User space address is not 2 MiB aligned\n");
755
756 return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
757 }
758
759 if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
760 !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
761 mem_region.memory_size)) {
762 dev_err_ratelimited(ne_misc_dev.this_device,
763 "Invalid user space address range\n");
764
765 return -NE_ERR_INVALID_MEM_REGION_ADDR;
766 }
767
768 list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
769 mem_region_list_entry) {
770 u64 memory_size = ne_mem_region->memory_size;
771 u64 userspace_addr = ne_mem_region->userspace_addr;
772
773 if ((userspace_addr <= mem_region.userspace_addr &&
774 mem_region.userspace_addr < (userspace_addr + memory_size)) ||
775 (mem_region.userspace_addr <= userspace_addr &&
776 (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
777 dev_err_ratelimited(ne_misc_dev.this_device,
778 "User space memory region already used\n");
779
780 return -NE_ERR_MEM_REGION_ALREADY_USED;
781 }
782 }
783
784 return 0;
785 }
786
787 /**
788 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
789 * memory region received during the set
790 * user memory region ioctl call.
791 * @ne_enclave : Private data associated with the current enclave.
792 * @mem_region_page: Page from the user space memory region to be sanity checked.
793 *
794 * Context: Process context. This function is called with the ne_enclave mutex held.
795 * Return:
796 * * 0 on success.
797 * * Negative return value on failure.
798 */
ne_sanity_check_user_mem_region_page(struct ne_enclave * ne_enclave,struct page * mem_region_page)799 static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
800 struct page *mem_region_page)
801 {
802 if (!PageHuge(mem_region_page)) {
803 dev_err_ratelimited(ne_misc_dev.this_device,
804 "Not a hugetlbfs page\n");
805
806 return -NE_ERR_MEM_NOT_HUGE_PAGE;
807 }
808
809 if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
810 dev_err_ratelimited(ne_misc_dev.this_device,
811 "Page size not multiple of 2 MiB\n");
812
813 return -NE_ERR_INVALID_PAGE_SIZE;
814 }
815
816 if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
817 dev_err_ratelimited(ne_misc_dev.this_device,
818 "Page is not from NUMA node %d\n",
819 ne_enclave->numa_node);
820
821 return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
822 }
823
824 return 0;
825 }
826
827 /**
828 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
829 * associated with the current enclave.
830 * @ne_enclave : Private data associated with the current enclave.
831 * @mem_region : User space memory region to be associated with the given slot.
832 *
833 * Context: Process context. This function is called with the ne_enclave mutex held.
834 * Return:
835 * * 0 on success.
836 * * Negative return value on failure.
837 */
ne_set_user_memory_region_ioctl(struct ne_enclave * ne_enclave,struct ne_user_memory_region mem_region)838 static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
839 struct ne_user_memory_region mem_region)
840 {
841 long gup_rc = 0;
842 unsigned long i = 0;
843 unsigned long max_nr_pages = 0;
844 unsigned long memory_size = 0;
845 struct ne_mem_region *ne_mem_region = NULL;
846 unsigned long nr_phys_contig_mem_regions = 0;
847 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
848 struct page **phys_contig_mem_regions = NULL;
849 int rc = -EINVAL;
850
851 rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
852 if (rc < 0)
853 return rc;
854
855 ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
856 if (!ne_mem_region)
857 return -ENOMEM;
858
859 max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
860
861 ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
862 GFP_KERNEL);
863 if (!ne_mem_region->pages) {
864 rc = -ENOMEM;
865
866 goto free_mem_region;
867 }
868
869 phys_contig_mem_regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions),
870 GFP_KERNEL);
871 if (!phys_contig_mem_regions) {
872 rc = -ENOMEM;
873
874 goto free_mem_region;
875 }
876
877 do {
878 i = ne_mem_region->nr_pages;
879
880 if (i == max_nr_pages) {
881 dev_err_ratelimited(ne_misc_dev.this_device,
882 "Reached max nr of pages in the pages data struct\n");
883
884 rc = -ENOMEM;
885
886 goto put_pages;
887 }
888
889 gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET,
890 ne_mem_region->pages + i, NULL);
891 if (gup_rc < 0) {
892 rc = gup_rc;
893
894 dev_err_ratelimited(ne_misc_dev.this_device,
895 "Error in get user pages [rc=%d]\n", rc);
896
897 goto put_pages;
898 }
899
900 rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
901 if (rc < 0)
902 goto put_pages;
903
904 /*
905 * TODO: Update once handled non-contiguous memory regions
906 * received from user space or contiguous physical memory regions
907 * larger than 2 MiB e.g. 8 MiB.
908 */
909 phys_contig_mem_regions[i] = ne_mem_region->pages[i];
910
911 memory_size += page_size(ne_mem_region->pages[i]);
912
913 ne_mem_region->nr_pages++;
914 } while (memory_size < mem_region.memory_size);
915
916 /*
917 * TODO: Update once handled non-contiguous memory regions received
918 * from user space or contiguous physical memory regions larger than
919 * 2 MiB e.g. 8 MiB.
920 */
921 nr_phys_contig_mem_regions = ne_mem_region->nr_pages;
922
923 if ((ne_enclave->nr_mem_regions + nr_phys_contig_mem_regions) >
924 ne_enclave->max_mem_regions) {
925 dev_err_ratelimited(ne_misc_dev.this_device,
926 "Reached max memory regions %lld\n",
927 ne_enclave->max_mem_regions);
928
929 rc = -NE_ERR_MEM_MAX_REGIONS;
930
931 goto put_pages;
932 }
933
934 for (i = 0; i < nr_phys_contig_mem_regions; i++) {
935 u64 phys_region_addr = page_to_phys(phys_contig_mem_regions[i]);
936 u64 phys_region_size = page_size(phys_contig_mem_regions[i]);
937
938 if (phys_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
939 dev_err_ratelimited(ne_misc_dev.this_device,
940 "Physical mem region size is not multiple of 2 MiB\n");
941
942 rc = -EINVAL;
943
944 goto put_pages;
945 }
946
947 if (!IS_ALIGNED(phys_region_addr, NE_MIN_MEM_REGION_SIZE)) {
948 dev_err_ratelimited(ne_misc_dev.this_device,
949 "Physical mem region address is not 2 MiB aligned\n");
950
951 rc = -EINVAL;
952
953 goto put_pages;
954 }
955 }
956
957 ne_mem_region->memory_size = mem_region.memory_size;
958 ne_mem_region->userspace_addr = mem_region.userspace_addr;
959
960 list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
961
962 for (i = 0; i < nr_phys_contig_mem_regions; i++) {
963 struct ne_pci_dev_cmd_reply cmd_reply = {};
964 struct slot_add_mem_req slot_add_mem_req = {};
965
966 slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
967 slot_add_mem_req.paddr = page_to_phys(phys_contig_mem_regions[i]);
968 slot_add_mem_req.size = page_size(phys_contig_mem_regions[i]);
969
970 rc = ne_do_request(pdev, SLOT_ADD_MEM,
971 &slot_add_mem_req, sizeof(slot_add_mem_req),
972 &cmd_reply, sizeof(cmd_reply));
973 if (rc < 0) {
974 dev_err_ratelimited(ne_misc_dev.this_device,
975 "Error in slot add mem [rc=%d]\n", rc);
976
977 kfree(phys_contig_mem_regions);
978
979 /*
980 * Exit here without put pages as memory regions may
981 * already been added.
982 */
983 return rc;
984 }
985
986 ne_enclave->mem_size += slot_add_mem_req.size;
987 ne_enclave->nr_mem_regions++;
988 }
989
990 kfree(phys_contig_mem_regions);
991
992 return 0;
993
994 put_pages:
995 for (i = 0; i < ne_mem_region->nr_pages; i++)
996 put_page(ne_mem_region->pages[i]);
997 free_mem_region:
998 kfree(phys_contig_mem_regions);
999 kfree(ne_mem_region->pages);
1000 kfree(ne_mem_region);
1001
1002 return rc;
1003 }
1004
1005 /**
1006 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1007 * such as memory and CPU, have been set.
1008 * @ne_enclave : Private data associated with the current enclave.
1009 * @enclave_start_info : Enclave info that includes enclave cid and flags.
1010 *
1011 * Context: Process context. This function is called with the ne_enclave mutex held.
1012 * Return:
1013 * * 0 on success.
1014 * * Negative return value on failure.
1015 */
ne_start_enclave_ioctl(struct ne_enclave * ne_enclave,struct ne_enclave_start_info * enclave_start_info)1016 static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1017 struct ne_enclave_start_info *enclave_start_info)
1018 {
1019 struct ne_pci_dev_cmd_reply cmd_reply = {};
1020 unsigned int cpu = 0;
1021 struct enclave_start_req enclave_start_req = {};
1022 unsigned int i = 0;
1023 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1024 int rc = -EINVAL;
1025
1026 if (!ne_enclave->nr_mem_regions) {
1027 dev_err_ratelimited(ne_misc_dev.this_device,
1028 "Enclave has no mem regions\n");
1029
1030 return -NE_ERR_NO_MEM_REGIONS_ADDED;
1031 }
1032
1033 if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1034 dev_err_ratelimited(ne_misc_dev.this_device,
1035 "Enclave memory is less than %ld\n",
1036 NE_MIN_ENCLAVE_MEM_SIZE);
1037
1038 return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1039 }
1040
1041 if (!ne_enclave->nr_vcpus) {
1042 dev_err_ratelimited(ne_misc_dev.this_device,
1043 "Enclave has no vCPUs\n");
1044
1045 return -NE_ERR_NO_VCPUS_ADDED;
1046 }
1047
1048 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1049 for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1050 if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
1051 dev_err_ratelimited(ne_misc_dev.this_device,
1052 "Full CPU cores not used\n");
1053
1054 return -NE_ERR_FULL_CORES_NOT_USED;
1055 }
1056
1057 enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1058 enclave_start_req.flags = enclave_start_info->flags;
1059 enclave_start_req.slot_uid = ne_enclave->slot_uid;
1060
1061 rc = ne_do_request(pdev, ENCLAVE_START,
1062 &enclave_start_req, sizeof(enclave_start_req),
1063 &cmd_reply, sizeof(cmd_reply));
1064 if (rc < 0) {
1065 dev_err_ratelimited(ne_misc_dev.this_device,
1066 "Error in enclave start [rc=%d]\n", rc);
1067
1068 return rc;
1069 }
1070
1071 ne_enclave->state = NE_STATE_RUNNING;
1072
1073 enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1074
1075 return 0;
1076 }
1077
1078 /**
1079 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1080 * @file: File associated with this ioctl function.
1081 * @cmd: The command that is set for the ioctl call.
1082 * @arg: The argument that is provided for the ioctl call.
1083 *
1084 * Context: Process context.
1085 * Return:
1086 * * 0 on success.
1087 * * Negative return value on failure.
1088 */
ne_enclave_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1089 static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1090 {
1091 struct ne_enclave *ne_enclave = file->private_data;
1092
1093 switch (cmd) {
1094 case NE_ADD_VCPU: {
1095 int rc = -EINVAL;
1096 u32 vcpu_id = 0;
1097
1098 if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
1099 return -EFAULT;
1100
1101 mutex_lock(&ne_enclave->enclave_info_mutex);
1102
1103 if (ne_enclave->state != NE_STATE_INIT) {
1104 dev_err_ratelimited(ne_misc_dev.this_device,
1105 "Enclave is not in init state\n");
1106
1107 mutex_unlock(&ne_enclave->enclave_info_mutex);
1108
1109 return -NE_ERR_NOT_IN_INIT_STATE;
1110 }
1111
1112 if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1113 ne_enclave->nr_threads_per_core)) {
1114 dev_err_ratelimited(ne_misc_dev.this_device,
1115 "vCPU id higher than max CPU id\n");
1116
1117 mutex_unlock(&ne_enclave->enclave_info_mutex);
1118
1119 return -NE_ERR_INVALID_VCPU;
1120 }
1121
1122 if (!vcpu_id) {
1123 /* Use the CPU pool for choosing a CPU for the enclave. */
1124 rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
1125 if (rc < 0) {
1126 dev_err_ratelimited(ne_misc_dev.this_device,
1127 "Error in get CPU from pool [rc=%d]\n",
1128 rc);
1129
1130 mutex_unlock(&ne_enclave->enclave_info_mutex);
1131
1132 return rc;
1133 }
1134 } else {
1135 /* Check if the provided vCPU is available in the NE CPU pool. */
1136 rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1137 if (rc < 0) {
1138 dev_err_ratelimited(ne_misc_dev.this_device,
1139 "Error in check CPU %d in pool [rc=%d]\n",
1140 vcpu_id, rc);
1141
1142 mutex_unlock(&ne_enclave->enclave_info_mutex);
1143
1144 return rc;
1145 }
1146 }
1147
1148 rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1149 if (rc < 0) {
1150 mutex_unlock(&ne_enclave->enclave_info_mutex);
1151
1152 return rc;
1153 }
1154
1155 mutex_unlock(&ne_enclave->enclave_info_mutex);
1156
1157 if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
1158 return -EFAULT;
1159
1160 return 0;
1161 }
1162
1163 case NE_GET_IMAGE_LOAD_INFO: {
1164 struct ne_image_load_info image_load_info = {};
1165
1166 if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
1167 return -EFAULT;
1168
1169 mutex_lock(&ne_enclave->enclave_info_mutex);
1170
1171 if (ne_enclave->state != NE_STATE_INIT) {
1172 dev_err_ratelimited(ne_misc_dev.this_device,
1173 "Enclave is not in init state\n");
1174
1175 mutex_unlock(&ne_enclave->enclave_info_mutex);
1176
1177 return -NE_ERR_NOT_IN_INIT_STATE;
1178 }
1179
1180 mutex_unlock(&ne_enclave->enclave_info_mutex);
1181
1182 if (!image_load_info.flags ||
1183 image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1184 dev_err_ratelimited(ne_misc_dev.this_device,
1185 "Incorrect flag in enclave image load info\n");
1186
1187 return -NE_ERR_INVALID_FLAG_VALUE;
1188 }
1189
1190 if (image_load_info.flags == NE_EIF_IMAGE)
1191 image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1192
1193 if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
1194 return -EFAULT;
1195
1196 return 0;
1197 }
1198
1199 case NE_SET_USER_MEMORY_REGION: {
1200 struct ne_user_memory_region mem_region = {};
1201 int rc = -EINVAL;
1202
1203 if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
1204 return -EFAULT;
1205
1206 if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1207 dev_err_ratelimited(ne_misc_dev.this_device,
1208 "Incorrect flag for user memory region\n");
1209
1210 return -NE_ERR_INVALID_FLAG_VALUE;
1211 }
1212
1213 mutex_lock(&ne_enclave->enclave_info_mutex);
1214
1215 if (ne_enclave->state != NE_STATE_INIT) {
1216 dev_err_ratelimited(ne_misc_dev.this_device,
1217 "Enclave is not in init state\n");
1218
1219 mutex_unlock(&ne_enclave->enclave_info_mutex);
1220
1221 return -NE_ERR_NOT_IN_INIT_STATE;
1222 }
1223
1224 rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1225 if (rc < 0) {
1226 mutex_unlock(&ne_enclave->enclave_info_mutex);
1227
1228 return rc;
1229 }
1230
1231 mutex_unlock(&ne_enclave->enclave_info_mutex);
1232
1233 return 0;
1234 }
1235
1236 case NE_START_ENCLAVE: {
1237 struct ne_enclave_start_info enclave_start_info = {};
1238 int rc = -EINVAL;
1239
1240 if (copy_from_user(&enclave_start_info, (void __user *)arg,
1241 sizeof(enclave_start_info)))
1242 return -EFAULT;
1243
1244 if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1245 dev_err_ratelimited(ne_misc_dev.this_device,
1246 "Incorrect flag in enclave start info\n");
1247
1248 return -NE_ERR_INVALID_FLAG_VALUE;
1249 }
1250
1251 /*
1252 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1253 * VMADDR_CID_ANY = -1U
1254 * VMADDR_CID_HYPERVISOR = 0
1255 * VMADDR_CID_LOCAL = 1
1256 * VMADDR_CID_HOST = 2
1257 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1258 * http://man7.org/linux/man-pages/man7/vsock.7.html
1259 */
1260 if (enclave_start_info.enclave_cid > 0 &&
1261 enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1262 dev_err_ratelimited(ne_misc_dev.this_device,
1263 "Well-known CID value, not to be used for enclaves\n");
1264
1265 return -NE_ERR_INVALID_ENCLAVE_CID;
1266 }
1267
1268 if (enclave_start_info.enclave_cid == U32_MAX) {
1269 dev_err_ratelimited(ne_misc_dev.this_device,
1270 "Well-known CID value, not to be used for enclaves\n");
1271
1272 return -NE_ERR_INVALID_ENCLAVE_CID;
1273 }
1274
1275 /*
1276 * Do not use the CID of the primary / parent VM for enclaves.
1277 */
1278 if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1279 dev_err_ratelimited(ne_misc_dev.this_device,
1280 "CID of the parent VM, not to be used for enclaves\n");
1281
1282 return -NE_ERR_INVALID_ENCLAVE_CID;
1283 }
1284
1285 /* 64-bit CIDs are not yet supported for the vsock device. */
1286 if (enclave_start_info.enclave_cid > U32_MAX) {
1287 dev_err_ratelimited(ne_misc_dev.this_device,
1288 "64-bit CIDs not yet supported for the vsock device\n");
1289
1290 return -NE_ERR_INVALID_ENCLAVE_CID;
1291 }
1292
1293 mutex_lock(&ne_enclave->enclave_info_mutex);
1294
1295 if (ne_enclave->state != NE_STATE_INIT) {
1296 dev_err_ratelimited(ne_misc_dev.this_device,
1297 "Enclave is not in init state\n");
1298
1299 mutex_unlock(&ne_enclave->enclave_info_mutex);
1300
1301 return -NE_ERR_NOT_IN_INIT_STATE;
1302 }
1303
1304 rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
1305 if (rc < 0) {
1306 mutex_unlock(&ne_enclave->enclave_info_mutex);
1307
1308 return rc;
1309 }
1310
1311 mutex_unlock(&ne_enclave->enclave_info_mutex);
1312
1313 if (copy_to_user((void __user *)arg, &enclave_start_info,
1314 sizeof(enclave_start_info)))
1315 return -EFAULT;
1316
1317 return 0;
1318 }
1319
1320 default:
1321 return -ENOTTY;
1322 }
1323
1324 return 0;
1325 }
1326
1327 /**
1328 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1329 * from the enclave data structure.
1330 * @ne_enclave : Private data associated with the current enclave.
1331 *
1332 * Context: Process context. This function is called with the ne_enclave mutex held.
1333 */
ne_enclave_remove_all_mem_region_entries(struct ne_enclave * ne_enclave)1334 static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1335 {
1336 unsigned long i = 0;
1337 struct ne_mem_region *ne_mem_region = NULL;
1338 struct ne_mem_region *ne_mem_region_tmp = NULL;
1339
1340 list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1341 &ne_enclave->mem_regions_list,
1342 mem_region_list_entry) {
1343 list_del(&ne_mem_region->mem_region_list_entry);
1344
1345 for (i = 0; i < ne_mem_region->nr_pages; i++)
1346 put_page(ne_mem_region->pages[i]);
1347
1348 kfree(ne_mem_region->pages);
1349
1350 kfree(ne_mem_region);
1351 }
1352 }
1353
1354 /**
1355 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1356 * the enclave data structure.
1357 * @ne_enclave : Private data associated with the current enclave.
1358 *
1359 * Context: Process context. This function is called with the ne_enclave mutex held.
1360 */
ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave * ne_enclave)1361 static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1362 {
1363 unsigned int cpu = 0;
1364 unsigned int i = 0;
1365
1366 mutex_lock(&ne_cpu_pool.mutex);
1367
1368 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1369 for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1370 /* Update the available NE CPU pool. */
1371 cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
1372
1373 free_cpumask_var(ne_enclave->threads_per_core[i]);
1374 }
1375
1376 mutex_unlock(&ne_cpu_pool.mutex);
1377
1378 kfree(ne_enclave->threads_per_core);
1379
1380 free_cpumask_var(ne_enclave->vcpu_ids);
1381 }
1382
1383 /**
1384 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1385 * structure that is part of the NE PCI
1386 * device private data.
1387 * @ne_enclave : Private data associated with the current enclave.
1388 * @ne_pci_dev : Private data associated with the PCI device.
1389 *
1390 * Context: Process context. This function is called with the ne_pci_dev enclave
1391 * mutex held.
1392 */
ne_pci_dev_remove_enclave_entry(struct ne_enclave * ne_enclave,struct ne_pci_dev * ne_pci_dev)1393 static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1394 struct ne_pci_dev *ne_pci_dev)
1395 {
1396 struct ne_enclave *ne_enclave_entry = NULL;
1397 struct ne_enclave *ne_enclave_entry_tmp = NULL;
1398
1399 list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1400 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1401 if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1402 list_del(&ne_enclave_entry->enclave_list_entry);
1403
1404 break;
1405 }
1406 }
1407 }
1408
1409 /**
1410 * ne_enclave_release() - Release function provided by the enclave file.
1411 * @inode: Inode associated with this file release function.
1412 * @file: File associated with this release function.
1413 *
1414 * Context: Process context.
1415 * Return:
1416 * * 0 on success.
1417 * * Negative return value on failure.
1418 */
ne_enclave_release(struct inode * inode,struct file * file)1419 static int ne_enclave_release(struct inode *inode, struct file *file)
1420 {
1421 struct ne_pci_dev_cmd_reply cmd_reply = {};
1422 struct enclave_stop_req enclave_stop_request = {};
1423 struct ne_enclave *ne_enclave = file->private_data;
1424 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1425 struct pci_dev *pdev = ne_pci_dev->pdev;
1426 int rc = -EINVAL;
1427 struct slot_free_req slot_free_req = {};
1428
1429 if (!ne_enclave)
1430 return 0;
1431
1432 /*
1433 * Early exit in case there is an error in the enclave creation logic
1434 * and fput() is called on the cleanup path.
1435 */
1436 if (!ne_enclave->slot_uid)
1437 return 0;
1438
1439 /*
1440 * Acquire the enclave list mutex before the enclave mutex
1441 * in order to avoid deadlocks with @ref ne_event_work_handler.
1442 */
1443 mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1444 mutex_lock(&ne_enclave->enclave_info_mutex);
1445
1446 if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1447 enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1448
1449 rc = ne_do_request(pdev, ENCLAVE_STOP,
1450 &enclave_stop_request, sizeof(enclave_stop_request),
1451 &cmd_reply, sizeof(cmd_reply));
1452 if (rc < 0) {
1453 dev_err_ratelimited(ne_misc_dev.this_device,
1454 "Error in enclave stop [rc=%d]\n", rc);
1455
1456 goto unlock_mutex;
1457 }
1458
1459 memset(&cmd_reply, 0, sizeof(cmd_reply));
1460 }
1461
1462 slot_free_req.slot_uid = ne_enclave->slot_uid;
1463
1464 rc = ne_do_request(pdev, SLOT_FREE,
1465 &slot_free_req, sizeof(slot_free_req),
1466 &cmd_reply, sizeof(cmd_reply));
1467 if (rc < 0) {
1468 dev_err_ratelimited(ne_misc_dev.this_device,
1469 "Error in slot free [rc=%d]\n", rc);
1470
1471 goto unlock_mutex;
1472 }
1473
1474 ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1475 ne_enclave_remove_all_mem_region_entries(ne_enclave);
1476 ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1477
1478 mutex_unlock(&ne_enclave->enclave_info_mutex);
1479 mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1480
1481 kfree(ne_enclave);
1482
1483 return 0;
1484
1485 unlock_mutex:
1486 mutex_unlock(&ne_enclave->enclave_info_mutex);
1487 mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1488
1489 return rc;
1490 }
1491
1492 /**
1493 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1494 * @file: File associated with this poll function.
1495 * @wait: Poll table data structure.
1496 *
1497 * Context: Process context.
1498 * Return:
1499 * * Poll mask.
1500 */
ne_enclave_poll(struct file * file,poll_table * wait)1501 static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1502 {
1503 __poll_t mask = 0;
1504 struct ne_enclave *ne_enclave = file->private_data;
1505
1506 poll_wait(file, &ne_enclave->eventq, wait);
1507
1508 if (ne_enclave->has_event)
1509 mask |= EPOLLHUP;
1510
1511 return mask;
1512 }
1513
1514 static const struct file_operations ne_enclave_fops = {
1515 .owner = THIS_MODULE,
1516 .llseek = noop_llseek,
1517 .poll = ne_enclave_poll,
1518 .unlocked_ioctl = ne_enclave_ioctl,
1519 .release = ne_enclave_release,
1520 };
1521
1522 /**
1523 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1524 * enclave file descriptor to be further used for enclave
1525 * resources handling e.g. memory regions and CPUs.
1526 * @ne_pci_dev : Private data associated with the PCI device.
1527 * @slot_uid: User pointer to store the generated unique slot id
1528 * associated with an enclave to.
1529 *
1530 * Context: Process context. This function is called with the ne_pci_dev enclave
1531 * mutex held.
1532 * Return:
1533 * * Enclave fd on success.
1534 * * Negative return value on failure.
1535 */
ne_create_vm_ioctl(struct ne_pci_dev * ne_pci_dev,u64 __user * slot_uid)1536 static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1537 {
1538 struct ne_pci_dev_cmd_reply cmd_reply = {};
1539 int enclave_fd = -1;
1540 struct file *enclave_file = NULL;
1541 unsigned int i = 0;
1542 struct ne_enclave *ne_enclave = NULL;
1543 struct pci_dev *pdev = ne_pci_dev->pdev;
1544 int rc = -EINVAL;
1545 struct slot_alloc_req slot_alloc_req = {};
1546
1547 mutex_lock(&ne_cpu_pool.mutex);
1548
1549 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1550 if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
1551 break;
1552
1553 if (i == ne_cpu_pool.nr_parent_vm_cores) {
1554 dev_err_ratelimited(ne_misc_dev.this_device,
1555 "No CPUs available in CPU pool\n");
1556
1557 mutex_unlock(&ne_cpu_pool.mutex);
1558
1559 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1560 }
1561
1562 mutex_unlock(&ne_cpu_pool.mutex);
1563
1564 ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
1565 if (!ne_enclave)
1566 return -ENOMEM;
1567
1568 mutex_lock(&ne_cpu_pool.mutex);
1569
1570 ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1571 ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1572 ne_enclave->numa_node = ne_cpu_pool.numa_node;
1573
1574 mutex_unlock(&ne_cpu_pool.mutex);
1575
1576 ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
1577 sizeof(*ne_enclave->threads_per_core), GFP_KERNEL);
1578 if (!ne_enclave->threads_per_core) {
1579 rc = -ENOMEM;
1580
1581 goto free_ne_enclave;
1582 }
1583
1584 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1585 if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1586 rc = -ENOMEM;
1587
1588 goto free_cpumask;
1589 }
1590
1591 if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
1592 rc = -ENOMEM;
1593
1594 goto free_cpumask;
1595 }
1596
1597 enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1598 if (enclave_fd < 0) {
1599 rc = enclave_fd;
1600
1601 dev_err_ratelimited(ne_misc_dev.this_device,
1602 "Error in getting unused fd [rc=%d]\n", rc);
1603
1604 goto free_cpumask;
1605 }
1606
1607 enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
1608 if (IS_ERR(enclave_file)) {
1609 rc = PTR_ERR(enclave_file);
1610
1611 dev_err_ratelimited(ne_misc_dev.this_device,
1612 "Error in anon inode get file [rc=%d]\n", rc);
1613
1614 goto put_fd;
1615 }
1616
1617 rc = ne_do_request(pdev, SLOT_ALLOC,
1618 &slot_alloc_req, sizeof(slot_alloc_req),
1619 &cmd_reply, sizeof(cmd_reply));
1620 if (rc < 0) {
1621 dev_err_ratelimited(ne_misc_dev.this_device,
1622 "Error in slot alloc [rc=%d]\n", rc);
1623
1624 goto put_file;
1625 }
1626
1627 init_waitqueue_head(&ne_enclave->eventq);
1628 ne_enclave->has_event = false;
1629 mutex_init(&ne_enclave->enclave_info_mutex);
1630 ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1631 INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
1632 ne_enclave->mm = current->mm;
1633 ne_enclave->slot_uid = cmd_reply.slot_uid;
1634 ne_enclave->state = NE_STATE_INIT;
1635
1636 list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
1637
1638 if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
1639 /*
1640 * As we're holding the only reference to 'enclave_file', fput()
1641 * will call ne_enclave_release() which will do a proper cleanup
1642 * of all so far allocated resources, leaving only the unused fd
1643 * for us to free.
1644 */
1645 fput(enclave_file);
1646 put_unused_fd(enclave_fd);
1647
1648 return -EFAULT;
1649 }
1650
1651 fd_install(enclave_fd, enclave_file);
1652
1653 return enclave_fd;
1654
1655 put_file:
1656 fput(enclave_file);
1657 put_fd:
1658 put_unused_fd(enclave_fd);
1659 free_cpumask:
1660 free_cpumask_var(ne_enclave->vcpu_ids);
1661 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1662 free_cpumask_var(ne_enclave->threads_per_core[i]);
1663 kfree(ne_enclave->threads_per_core);
1664 free_ne_enclave:
1665 kfree(ne_enclave);
1666
1667 return rc;
1668 }
1669
1670 /**
1671 * ne_ioctl() - Ioctl function provided by the NE misc device.
1672 * @file: File associated with this ioctl function.
1673 * @cmd: The command that is set for the ioctl call.
1674 * @arg: The argument that is provided for the ioctl call.
1675 *
1676 * Context: Process context.
1677 * Return:
1678 * * Ioctl result (e.g. enclave file descriptor) on success.
1679 * * Negative return value on failure.
1680 */
ne_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1681 static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682 {
1683 switch (cmd) {
1684 case NE_CREATE_VM: {
1685 int enclave_fd = -1;
1686 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1687 u64 __user *slot_uid = (void __user *)arg;
1688
1689 mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1690 enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1691 mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
1692
1693 return enclave_fd;
1694 }
1695
1696 default:
1697 return -ENOTTY;
1698 }
1699
1700 return 0;
1701 }
1702
ne_init(void)1703 static int __init ne_init(void)
1704 {
1705 mutex_init(&ne_cpu_pool.mutex);
1706
1707 return pci_register_driver(&ne_pci_driver);
1708 }
1709
ne_exit(void)1710 static void __exit ne_exit(void)
1711 {
1712 pci_unregister_driver(&ne_pci_driver);
1713
1714 ne_teardown_cpu_pool();
1715 }
1716
1717 module_init(ne_init);
1718 module_exit(ne_exit);
1719
1720 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1721 MODULE_DESCRIPTION("Nitro Enclaves Driver");
1722 MODULE_LICENSE("GPL v2");
1723