• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 			 struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
ext4_inode_is_fast_symlink(struct inode * inode)149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
ext4_evict_inode(struct inode * inode)167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 	bool freeze_protected = false;
179 
180 	trace_ext4_evict_inode(inode);
181 
182 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 		ext4_evict_ea_inode(inode);
184 	if (inode->i_nlink) {
185 		/*
186 		 * When journalling data dirty buffers are tracked only in the
187 		 * journal. So although mm thinks everything is clean and
188 		 * ready for reaping the inode might still have some pages to
189 		 * write in the running transaction or waiting to be
190 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
191 		 * (via truncate_inode_pages()) to discard these buffers can
192 		 * cause data loss. Also even if we did not discard these
193 		 * buffers, we would have no way to find them after the inode
194 		 * is reaped and thus user could see stale data if he tries to
195 		 * read them before the transaction is checkpointed. So be
196 		 * careful and force everything to disk here... We use
197 		 * ei->i_datasync_tid to store the newest transaction
198 		 * containing inode's data.
199 		 *
200 		 * Note that directories do not have this problem because they
201 		 * don't use page cache.
202 		 */
203 		if (inode->i_ino != EXT4_JOURNAL_INO &&
204 		    ext4_should_journal_data(inode) &&
205 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
206 		    inode->i_data.nrpages) {
207 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
208 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209 
210 			jbd2_complete_transaction(journal, commit_tid);
211 			filemap_write_and_wait(&inode->i_data);
212 		}
213 		truncate_inode_pages_final(&inode->i_data);
214 
215 		goto no_delete;
216 	}
217 
218 	if (is_bad_inode(inode))
219 		goto no_delete;
220 	dquot_initialize(inode);
221 
222 	if (ext4_should_order_data(inode))
223 		ext4_begin_ordered_truncate(inode, 0);
224 	truncate_inode_pages_final(&inode->i_data);
225 
226 	/*
227 	 * For inodes with journalled data, transaction commit could have
228 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
229 	 * extents converting worker could merge extents and also have dirtied
230 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
231 	 * we still need to remove the inode from the writeback lists.
232 	 */
233 	if (!list_empty_careful(&inode->i_io_list))
234 		inode_io_list_del(inode);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it. When we are in a running transaction though,
239 	 * we are already protected against freezing and we cannot grab further
240 	 * protection due to lock ordering constraints.
241 	 */
242 	if (!ext4_journal_current_handle()) {
243 		sb_start_intwrite(inode->i_sb);
244 		freeze_protected = true;
245 	}
246 
247 	if (!IS_NOQUOTA(inode))
248 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249 
250 	/*
251 	 * Block bitmap, group descriptor, and inode are accounted in both
252 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
253 	 */
254 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
256 	if (IS_ERR(handle)) {
257 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
258 		/*
259 		 * If we're going to skip the normal cleanup, we still need to
260 		 * make sure that the in-core orphan linked list is properly
261 		 * cleaned up.
262 		 */
263 		ext4_orphan_del(NULL, inode);
264 		if (freeze_protected)
265 			sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error_err(inode->i_sb, -err,
292 				       "couldn't truncate inode %lu (err %d)",
293 				       inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		if (freeze_protected)
307 			sb_end_intwrite(inode->i_sb);
308 		ext4_xattr_inode_array_free(ea_inode_array);
309 		goto no_delete;
310 	}
311 
312 	/*
313 	 * Kill off the orphan record which ext4_truncate created.
314 	 * AKPM: I think this can be inside the above `if'.
315 	 * Note that ext4_orphan_del() has to be able to cope with the
316 	 * deletion of a non-existent orphan - this is because we don't
317 	 * know if ext4_truncate() actually created an orphan record.
318 	 * (Well, we could do this if we need to, but heck - it works)
319 	 */
320 	ext4_orphan_del(handle, inode);
321 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
322 
323 	/*
324 	 * One subtle ordering requirement: if anything has gone wrong
325 	 * (transaction abort, IO errors, whatever), then we can still
326 	 * do these next steps (the fs will already have been marked as
327 	 * having errors), but we can't free the inode if the mark_dirty
328 	 * fails.
329 	 */
330 	if (ext4_mark_inode_dirty(handle, inode))
331 		/* If that failed, just do the required in-core inode clear. */
332 		ext4_clear_inode(inode);
333 	else
334 		ext4_free_inode(handle, inode);
335 	ext4_journal_stop(handle);
336 	if (freeze_protected)
337 		sb_end_intwrite(inode->i_sb);
338 	ext4_xattr_inode_array_free(ea_inode_array);
339 	return;
340 no_delete:
341 	/*
342 	 * Check out some where else accidentally dirty the evicting inode,
343 	 * which may probably cause inode use-after-free issues later.
344 	 */
345 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
346 
347 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
348 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
349 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
350 }
351 
352 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)353 qsize_t *ext4_get_reserved_space(struct inode *inode)
354 {
355 	return &EXT4_I(inode)->i_reserved_quota;
356 }
357 #endif
358 
359 /*
360  * Called with i_data_sem down, which is important since we can call
361  * ext4_discard_preallocations() from here.
362  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)363 void ext4_da_update_reserve_space(struct inode *inode,
364 					int used, int quota_claim)
365 {
366 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367 	struct ext4_inode_info *ei = EXT4_I(inode);
368 
369 	spin_lock(&ei->i_block_reservation_lock);
370 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371 	if (unlikely(used > ei->i_reserved_data_blocks)) {
372 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373 			 "with only %d reserved data blocks",
374 			 __func__, inode->i_ino, used,
375 			 ei->i_reserved_data_blocks);
376 		WARN_ON(1);
377 		used = ei->i_reserved_data_blocks;
378 	}
379 
380 	/* Update per-inode reservations */
381 	ei->i_reserved_data_blocks -= used;
382 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383 
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    !inode_is_open_for_write(inode))
405 		ext4_discard_preallocations(inode, 0);
406 }
407 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (ext4_has_feature_journal(inode->i_sb) &&
413 	    (inode->i_ino ==
414 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415 		return 0;
416 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
417 		ext4_error_inode(inode, func, line, map->m_pblk,
418 				 "lblock %lu mapped to illegal pblock %llu "
419 				 "(length %d)", (unsigned long) map->m_lblk,
420 				 map->m_pblk, map->m_len);
421 		return -EFSCORRUPTED;
422 	}
423 	return 0;
424 }
425 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)426 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427 		       ext4_lblk_t len)
428 {
429 	int ret;
430 
431 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
432 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
433 
434 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435 	if (ret > 0)
436 		ret = 0;
437 
438 	return ret;
439 }
440 
441 #define check_block_validity(inode, map)	\
442 	__check_block_validity((inode), __func__, __LINE__, (map))
443 
444 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)445 static void ext4_map_blocks_es_recheck(handle_t *handle,
446 				       struct inode *inode,
447 				       struct ext4_map_blocks *es_map,
448 				       struct ext4_map_blocks *map,
449 				       int flags)
450 {
451 	int retval;
452 
453 	map->m_flags = 0;
454 	/*
455 	 * There is a race window that the result is not the same.
456 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
457 	 * is that we lookup a block mapping in extent status tree with
458 	 * out taking i_data_sem.  So at the time the unwritten extent
459 	 * could be converted.
460 	 */
461 	down_read(&EXT4_I(inode)->i_data_sem);
462 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 	} else {
465 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
466 	}
467 	up_read((&EXT4_I(inode)->i_data_sem));
468 
469 	/*
470 	 * We don't check m_len because extent will be collpased in status
471 	 * tree.  So the m_len might not equal.
472 	 */
473 	if (es_map->m_lblk != map->m_lblk ||
474 	    es_map->m_flags != map->m_flags ||
475 	    es_map->m_pblk != map->m_pblk) {
476 		printk("ES cache assertion failed for inode: %lu "
477 		       "es_cached ex [%d/%d/%llu/%x] != "
478 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
479 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
480 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
481 		       map->m_len, map->m_pblk, map->m_flags,
482 		       retval, flags);
483 	}
484 }
485 #endif /* ES_AGGRESSIVE_TEST */
486 
487 /*
488  * The ext4_map_blocks() function tries to look up the requested blocks,
489  * and returns if the blocks are already mapped.
490  *
491  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492  * and store the allocated blocks in the result buffer head and mark it
493  * mapped.
494  *
495  * If file type is extents based, it will call ext4_ext_map_blocks(),
496  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497  * based files
498  *
499  * On success, it returns the number of blocks being mapped or allocated.  if
500  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, @map is returned as unmapped but we still do fill map->m_len to
505  * indicate the length of a hole starting at map->m_lblk.
506  *
507  * It returns the error in case of allocation failure.
508  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510 		    struct ext4_map_blocks *map, int flags)
511 {
512 	struct extent_status es;
513 	int retval;
514 	int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516 	struct ext4_map_blocks orig_map;
517 
518 	memcpy(&orig_map, map, sizeof(*map));
519 #endif
520 
521 	map->m_flags = 0;
522 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523 		  flags, map->m_len, (unsigned long) map->m_lblk);
524 
525 	/*
526 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
527 	 */
528 	if (unlikely(map->m_len > INT_MAX))
529 		map->m_len = INT_MAX;
530 
531 	/* We can handle the block number less than EXT_MAX_BLOCKS */
532 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533 		return -EFSCORRUPTED;
534 
535 	/* Lookup extent status tree firstly */
536 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539 			map->m_pblk = ext4_es_pblock(&es) +
540 					map->m_lblk - es.es_lblk;
541 			map->m_flags |= ext4_es_is_written(&es) ?
542 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543 			retval = es.es_len - (map->m_lblk - es.es_lblk);
544 			if (retval > map->m_len)
545 				retval = map->m_len;
546 			map->m_len = retval;
547 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548 			map->m_pblk = 0;
549 			retval = es.es_len - (map->m_lblk - es.es_lblk);
550 			if (retval > map->m_len)
551 				retval = map->m_len;
552 			map->m_len = retval;
553 			retval = 0;
554 		} else {
555 			BUG();
556 		}
557 #ifdef ES_AGGRESSIVE_TEST
558 		ext4_map_blocks_es_recheck(handle, inode, map,
559 					   &orig_map, flags);
560 #endif
561 		goto found;
562 	}
563 
564 	/*
565 	 * Try to see if we can get the block without requesting a new
566 	 * file system block.
567 	 */
568 	down_read(&EXT4_I(inode)->i_data_sem);
569 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
571 	} else {
572 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
573 	}
574 	if (retval > 0) {
575 		unsigned int status;
576 
577 		if (unlikely(retval != map->m_len)) {
578 			ext4_warning(inode->i_sb,
579 				     "ES len assertion failed for inode "
580 				     "%lu: retval %d != map->m_len %d",
581 				     inode->i_ino, retval, map->m_len);
582 			WARN_ON(1);
583 		}
584 
585 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588 		    !(status & EXTENT_STATUS_WRITTEN) &&
589 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590 				       map->m_lblk + map->m_len - 1))
591 			status |= EXTENT_STATUS_DELAYED;
592 		ret = ext4_es_insert_extent(inode, map->m_lblk,
593 					    map->m_len, map->m_pblk, status);
594 		if (ret < 0)
595 			retval = ret;
596 	}
597 	up_read((&EXT4_I(inode)->i_data_sem));
598 
599 found:
600 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601 		ret = check_block_validity(inode, map);
602 		if (ret != 0)
603 			return ret;
604 	}
605 
606 	/* If it is only a block(s) look up */
607 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608 		return retval;
609 
610 	/*
611 	 * Returns if the blocks have already allocated
612 	 *
613 	 * Note that if blocks have been preallocated
614 	 * ext4_ext_get_block() returns the create = 0
615 	 * with buffer head unmapped.
616 	 */
617 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618 		/*
619 		 * If we need to convert extent to unwritten
620 		 * we continue and do the actual work in
621 		 * ext4_ext_map_blocks()
622 		 */
623 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624 			return retval;
625 
626 	/*
627 	 * Here we clear m_flags because after allocating an new extent,
628 	 * it will be set again.
629 	 */
630 	map->m_flags &= ~EXT4_MAP_FLAGS;
631 
632 	/*
633 	 * New blocks allocate and/or writing to unwritten extent
634 	 * will possibly result in updating i_data, so we take
635 	 * the write lock of i_data_sem, and call get_block()
636 	 * with create == 1 flag.
637 	 */
638 	down_write(&EXT4_I(inode)->i_data_sem);
639 
640 	/*
641 	 * We need to check for EXT4 here because migrate
642 	 * could have changed the inode type in between
643 	 */
644 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 	} else {
647 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
648 
649 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 			/*
651 			 * We allocated new blocks which will result in
652 			 * i_data's format changing.  Force the migrate
653 			 * to fail by clearing migrate flags
654 			 */
655 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 		}
657 	}
658 
659 	if (retval > 0) {
660 		unsigned int status;
661 
662 		if (unlikely(retval != map->m_len)) {
663 			ext4_warning(inode->i_sb,
664 				     "ES len assertion failed for inode "
665 				     "%lu: retval %d != map->m_len %d",
666 				     inode->i_ino, retval, map->m_len);
667 			WARN_ON(1);
668 		}
669 
670 		/*
671 		 * We have to zeroout blocks before inserting them into extent
672 		 * status tree. Otherwise someone could look them up there and
673 		 * use them before they are really zeroed. We also have to
674 		 * unmap metadata before zeroing as otherwise writeback can
675 		 * overwrite zeros with stale data from block device.
676 		 */
677 		if (flags & EXT4_GET_BLOCKS_ZERO &&
678 		    map->m_flags & EXT4_MAP_MAPPED &&
679 		    map->m_flags & EXT4_MAP_NEW) {
680 			ret = ext4_issue_zeroout(inode, map->m_lblk,
681 						 map->m_pblk, map->m_len);
682 			if (ret) {
683 				retval = ret;
684 				goto out_sem;
685 			}
686 		}
687 
688 		/*
689 		 * If the extent has been zeroed out, we don't need to update
690 		 * extent status tree.
691 		 */
692 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
693 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
694 			if (ext4_es_is_written(&es))
695 				goto out_sem;
696 		}
697 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
698 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
699 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
700 		    !(status & EXTENT_STATUS_WRITTEN) &&
701 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
702 				       map->m_lblk + map->m_len - 1))
703 			status |= EXTENT_STATUS_DELAYED;
704 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
705 					    map->m_pblk, status);
706 		if (ret < 0) {
707 			retval = ret;
708 			goto out_sem;
709 		}
710 	}
711 
712 out_sem:
713 	up_write((&EXT4_I(inode)->i_data_sem));
714 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
715 		ret = check_block_validity(inode, map);
716 		if (ret != 0)
717 			return ret;
718 
719 		/*
720 		 * Inodes with freshly allocated blocks where contents will be
721 		 * visible after transaction commit must be on transaction's
722 		 * ordered data list.
723 		 */
724 		if (map->m_flags & EXT4_MAP_NEW &&
725 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
726 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
727 		    !ext4_is_quota_file(inode) &&
728 		    ext4_should_order_data(inode)) {
729 			loff_t start_byte =
730 				(loff_t)map->m_lblk << inode->i_blkbits;
731 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
732 
733 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
734 				ret = ext4_jbd2_inode_add_wait(handle, inode,
735 						start_byte, length);
736 			else
737 				ret = ext4_jbd2_inode_add_write(handle, inode,
738 						start_byte, length);
739 			if (ret)
740 				return ret;
741 		}
742 	}
743 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
744 				map->m_flags & EXT4_MAP_MAPPED))
745 		ext4_fc_track_range(handle, inode, map->m_lblk,
746 					map->m_lblk + map->m_len - 1);
747 	if (retval < 0)
748 		ext_debug(inode, "failed with err %d\n", retval);
749 	return retval;
750 }
751 
752 /*
753  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
754  * we have to be careful as someone else may be manipulating b_state as well.
755  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)756 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
757 {
758 	unsigned long old_state;
759 	unsigned long new_state;
760 
761 	flags &= EXT4_MAP_FLAGS;
762 
763 	/* Dummy buffer_head? Set non-atomically. */
764 	if (!bh->b_page) {
765 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
766 		return;
767 	}
768 	/*
769 	 * Someone else may be modifying b_state. Be careful! This is ugly but
770 	 * once we get rid of using bh as a container for mapping information
771 	 * to pass to / from get_block functions, this can go away.
772 	 */
773 	do {
774 		old_state = READ_ONCE(bh->b_state);
775 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
776 	} while (unlikely(
777 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
778 }
779 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)780 static int _ext4_get_block(struct inode *inode, sector_t iblock,
781 			   struct buffer_head *bh, int flags)
782 {
783 	struct ext4_map_blocks map;
784 	int ret = 0;
785 
786 	if (ext4_has_inline_data(inode))
787 		return -ERANGE;
788 
789 	map.m_lblk = iblock;
790 	map.m_len = bh->b_size >> inode->i_blkbits;
791 
792 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
793 			      flags);
794 	if (ret > 0) {
795 		map_bh(bh, inode->i_sb, map.m_pblk);
796 		ext4_update_bh_state(bh, map.m_flags);
797 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
798 		ret = 0;
799 	} else if (ret == 0) {
800 		/* hole case, need to fill in bh->b_size */
801 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
802 	}
803 	return ret;
804 }
805 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)806 int ext4_get_block(struct inode *inode, sector_t iblock,
807 		   struct buffer_head *bh, int create)
808 {
809 	return _ext4_get_block(inode, iblock, bh,
810 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
811 }
812 
813 /*
814  * Get block function used when preparing for buffered write if we require
815  * creating an unwritten extent if blocks haven't been allocated.  The extent
816  * will be converted to written after the IO is complete.
817  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
819 			     struct buffer_head *bh_result, int create)
820 {
821 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
822 		   inode->i_ino, create);
823 	return _ext4_get_block(inode, iblock, bh_result,
824 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
825 }
826 
827 /* Maximum number of blocks we map for direct IO at once. */
828 #define DIO_MAX_BLOCKS 4096
829 
830 /*
831  * `handle' can be NULL if create is zero
832  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)833 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
834 				ext4_lblk_t block, int map_flags)
835 {
836 	struct ext4_map_blocks map;
837 	struct buffer_head *bh;
838 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
839 	int err;
840 
841 	J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
842 		 || handle != NULL || create == 0);
843 
844 	map.m_lblk = block;
845 	map.m_len = 1;
846 	err = ext4_map_blocks(handle, inode, &map, map_flags);
847 
848 	if (err == 0)
849 		return create ? ERR_PTR(-ENOSPC) : NULL;
850 	if (err < 0)
851 		return ERR_PTR(err);
852 
853 	bh = sb_getblk(inode->i_sb, map.m_pblk);
854 	if (unlikely(!bh))
855 		return ERR_PTR(-ENOMEM);
856 	if (map.m_flags & EXT4_MAP_NEW) {
857 		J_ASSERT(create != 0);
858 		J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 			 || (handle != NULL));
860 
861 		/*
862 		 * Now that we do not always journal data, we should
863 		 * keep in mind whether this should always journal the
864 		 * new buffer as metadata.  For now, regular file
865 		 * writes use ext4_get_block instead, so it's not a
866 		 * problem.
867 		 */
868 		lock_buffer(bh);
869 		BUFFER_TRACE(bh, "call get_create_access");
870 		err = ext4_journal_get_create_access(handle, bh);
871 		if (unlikely(err)) {
872 			unlock_buffer(bh);
873 			goto errout;
874 		}
875 		if (!buffer_uptodate(bh)) {
876 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
877 			set_buffer_uptodate(bh);
878 		}
879 		unlock_buffer(bh);
880 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
881 		err = ext4_handle_dirty_metadata(handle, inode, bh);
882 		if (unlikely(err))
883 			goto errout;
884 	} else
885 		BUFFER_TRACE(bh, "not a new buffer");
886 	return bh;
887 errout:
888 	brelse(bh);
889 	return ERR_PTR(err);
890 }
891 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)892 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
893 			       ext4_lblk_t block, int map_flags)
894 {
895 	struct buffer_head *bh;
896 	int ret;
897 
898 	bh = ext4_getblk(handle, inode, block, map_flags);
899 	if (IS_ERR(bh))
900 		return bh;
901 	if (!bh || ext4_buffer_uptodate(bh))
902 		return bh;
903 
904 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
905 	if (ret) {
906 		put_bh(bh);
907 		return ERR_PTR(ret);
908 	}
909 	return bh;
910 }
911 
912 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)913 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
914 		     bool wait, struct buffer_head **bhs)
915 {
916 	int i, err;
917 
918 	for (i = 0; i < bh_count; i++) {
919 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
920 		if (IS_ERR(bhs[i])) {
921 			err = PTR_ERR(bhs[i]);
922 			bh_count = i;
923 			goto out_brelse;
924 		}
925 	}
926 
927 	for (i = 0; i < bh_count; i++)
928 		/* Note that NULL bhs[i] is valid because of holes. */
929 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
930 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
931 
932 	if (!wait)
933 		return 0;
934 
935 	for (i = 0; i < bh_count; i++)
936 		if (bhs[i])
937 			wait_on_buffer(bhs[i]);
938 
939 	for (i = 0; i < bh_count; i++) {
940 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
941 			err = -EIO;
942 			goto out_brelse;
943 		}
944 	}
945 	return 0;
946 
947 out_brelse:
948 	for (i = 0; i < bh_count; i++) {
949 		brelse(bhs[i]);
950 		bhs[i] = NULL;
951 	}
952 	return err;
953 }
954 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))955 int ext4_walk_page_buffers(handle_t *handle,
956 			   struct buffer_head *head,
957 			   unsigned from,
958 			   unsigned to,
959 			   int *partial,
960 			   int (*fn)(handle_t *handle,
961 				     struct buffer_head *bh))
962 {
963 	struct buffer_head *bh;
964 	unsigned block_start, block_end;
965 	unsigned blocksize = head->b_size;
966 	int err, ret = 0;
967 	struct buffer_head *next;
968 
969 	for (bh = head, block_start = 0;
970 	     ret == 0 && (bh != head || !block_start);
971 	     block_start = block_end, bh = next) {
972 		next = bh->b_this_page;
973 		block_end = block_start + blocksize;
974 		if (block_end <= from || block_start >= to) {
975 			if (partial && !buffer_uptodate(bh))
976 				*partial = 1;
977 			continue;
978 		}
979 		err = (*fn)(handle, bh);
980 		if (!ret)
981 			ret = err;
982 	}
983 	return ret;
984 }
985 
986 /*
987  * To preserve ordering, it is essential that the hole instantiation and
988  * the data write be encapsulated in a single transaction.  We cannot
989  * close off a transaction and start a new one between the ext4_get_block()
990  * and the commit_write().  So doing the jbd2_journal_start at the start of
991  * prepare_write() is the right place.
992  *
993  * Also, this function can nest inside ext4_writepage().  In that case, we
994  * *know* that ext4_writepage() has generated enough buffer credits to do the
995  * whole page.  So we won't block on the journal in that case, which is good,
996  * because the caller may be PF_MEMALLOC.
997  *
998  * By accident, ext4 can be reentered when a transaction is open via
999  * quota file writes.  If we were to commit the transaction while thus
1000  * reentered, there can be a deadlock - we would be holding a quota
1001  * lock, and the commit would never complete if another thread had a
1002  * transaction open and was blocking on the quota lock - a ranking
1003  * violation.
1004  *
1005  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1006  * will _not_ run commit under these circumstances because handle->h_ref
1007  * is elevated.  We'll still have enough credits for the tiny quotafile
1008  * write.
1009  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1010 int do_journal_get_write_access(handle_t *handle,
1011 				struct buffer_head *bh)
1012 {
1013 	int dirty = buffer_dirty(bh);
1014 	int ret;
1015 
1016 	if (!buffer_mapped(bh) || buffer_freed(bh))
1017 		return 0;
1018 	/*
1019 	 * __block_write_begin() could have dirtied some buffers. Clean
1020 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1021 	 * otherwise about fs integrity issues. Setting of the dirty bit
1022 	 * by __block_write_begin() isn't a real problem here as we clear
1023 	 * the bit before releasing a page lock and thus writeback cannot
1024 	 * ever write the buffer.
1025 	 */
1026 	if (dirty)
1027 		clear_buffer_dirty(bh);
1028 	BUFFER_TRACE(bh, "get write access");
1029 	ret = ext4_journal_get_write_access(handle, bh);
1030 	if (!ret && dirty)
1031 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032 	return ret;
1033 }
1034 
1035 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1036 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1037 				  get_block_t *get_block)
1038 {
1039 	unsigned from = pos & (PAGE_SIZE - 1);
1040 	unsigned to = from + len;
1041 	struct inode *inode = page->mapping->host;
1042 	unsigned block_start, block_end;
1043 	sector_t block;
1044 	int err = 0;
1045 	unsigned blocksize = inode->i_sb->s_blocksize;
1046 	unsigned bbits;
1047 	struct buffer_head *bh, *head, *wait[2];
1048 	int nr_wait = 0;
1049 	int i;
1050 
1051 	BUG_ON(!PageLocked(page));
1052 	BUG_ON(from > PAGE_SIZE);
1053 	BUG_ON(to > PAGE_SIZE);
1054 	BUG_ON(from > to);
1055 
1056 	if (!page_has_buffers(page))
1057 		create_empty_buffers(page, blocksize, 0);
1058 	head = page_buffers(page);
1059 	bbits = ilog2(blocksize);
1060 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1061 
1062 	for (bh = head, block_start = 0; bh != head || !block_start;
1063 	    block++, block_start = block_end, bh = bh->b_this_page) {
1064 		block_end = block_start + blocksize;
1065 		if (block_end <= from || block_start >= to) {
1066 			if (PageUptodate(page)) {
1067 				if (!buffer_uptodate(bh))
1068 					set_buffer_uptodate(bh);
1069 			}
1070 			continue;
1071 		}
1072 		if (buffer_new(bh))
1073 			clear_buffer_new(bh);
1074 		if (!buffer_mapped(bh)) {
1075 			WARN_ON(bh->b_size != blocksize);
1076 			err = get_block(inode, block, bh, 1);
1077 			if (err)
1078 				break;
1079 			if (buffer_new(bh)) {
1080 				if (PageUptodate(page)) {
1081 					clear_buffer_new(bh);
1082 					set_buffer_uptodate(bh);
1083 					mark_buffer_dirty(bh);
1084 					continue;
1085 				}
1086 				if (block_end > to || block_start < from)
1087 					zero_user_segments(page, to, block_end,
1088 							   block_start, from);
1089 				continue;
1090 			}
1091 		}
1092 		if (PageUptodate(page)) {
1093 			if (!buffer_uptodate(bh))
1094 				set_buffer_uptodate(bh);
1095 			continue;
1096 		}
1097 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 		    !buffer_unwritten(bh) &&
1099 		    (block_start < from || block_end > to)) {
1100 			ext4_read_bh_lock(bh, 0, false);
1101 			wait[nr_wait++] = bh;
1102 		}
1103 	}
1104 	/*
1105 	 * If we issued read requests, let them complete.
1106 	 */
1107 	for (i = 0; i < nr_wait; i++) {
1108 		wait_on_buffer(wait[i]);
1109 		if (!buffer_uptodate(wait[i]))
1110 			err = -EIO;
1111 	}
1112 	if (unlikely(err)) {
1113 		page_zero_new_buffers(page, from, to);
1114 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115 		for (i = 0; i < nr_wait; i++) {
1116 			int err2;
1117 
1118 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119 								bh_offset(wait[i]));
1120 			if (err2) {
1121 				clear_buffer_uptodate(wait[i]);
1122 				err = err2;
1123 			}
1124 		}
1125 	}
1126 
1127 	return err;
1128 }
1129 #endif
1130 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1131 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132 			    loff_t pos, unsigned len, unsigned flags,
1133 			    struct page **pagep, void **fsdata)
1134 {
1135 	struct inode *inode = mapping->host;
1136 	int ret, needed_blocks;
1137 	handle_t *handle;
1138 	int retries = 0;
1139 	struct page *page;
1140 	pgoff_t index;
1141 	unsigned from, to;
1142 
1143 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144 		return -EIO;
1145 
1146 	trace_ext4_write_begin(inode, pos, len, flags);
1147 	/*
1148 	 * Reserve one block more for addition to orphan list in case
1149 	 * we allocate blocks but write fails for some reason
1150 	 */
1151 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152 	index = pos >> PAGE_SHIFT;
1153 	from = pos & (PAGE_SIZE - 1);
1154 	to = from + len;
1155 
1156 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158 						    flags, pagep);
1159 		if (ret < 0)
1160 			return ret;
1161 		if (ret == 1)
1162 			return 0;
1163 	}
1164 
1165 	/*
1166 	 * grab_cache_page_write_begin() can take a long time if the
1167 	 * system is thrashing due to memory pressure, or if the page
1168 	 * is being written back.  So grab it first before we start
1169 	 * the transaction handle.  This also allows us to allocate
1170 	 * the page (if needed) without using GFP_NOFS.
1171 	 */
1172 retry_grab:
1173 	page = grab_cache_page_write_begin(mapping, index, flags);
1174 	if (!page)
1175 		return -ENOMEM;
1176 	/*
1177 	 * The same as page allocation, we prealloc buffer heads before
1178 	 * starting the handle.
1179 	 */
1180 	if (!page_has_buffers(page))
1181 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1182 
1183 	unlock_page(page);
1184 
1185 retry_journal:
1186 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1187 	if (IS_ERR(handle)) {
1188 		put_page(page);
1189 		return PTR_ERR(handle);
1190 	}
1191 
1192 	lock_page(page);
1193 	if (page->mapping != mapping) {
1194 		/* The page got truncated from under us */
1195 		unlock_page(page);
1196 		put_page(page);
1197 		ext4_journal_stop(handle);
1198 		goto retry_grab;
1199 	}
1200 	/* In case writeback began while the page was unlocked */
1201 	wait_for_stable_page(page);
1202 
1203 #ifdef CONFIG_FS_ENCRYPTION
1204 	if (ext4_should_dioread_nolock(inode))
1205 		ret = ext4_block_write_begin(page, pos, len,
1206 					     ext4_get_block_unwritten);
1207 	else
1208 		ret = ext4_block_write_begin(page, pos, len,
1209 					     ext4_get_block);
1210 #else
1211 	if (ext4_should_dioread_nolock(inode))
1212 		ret = __block_write_begin(page, pos, len,
1213 					  ext4_get_block_unwritten);
1214 	else
1215 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1216 #endif
1217 	if (!ret && ext4_should_journal_data(inode)) {
1218 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1219 					     from, to, NULL,
1220 					     do_journal_get_write_access);
1221 	}
1222 
1223 	if (ret) {
1224 		bool extended = (pos + len > inode->i_size) &&
1225 				!ext4_verity_in_progress(inode);
1226 
1227 		unlock_page(page);
1228 		/*
1229 		 * __block_write_begin may have instantiated a few blocks
1230 		 * outside i_size.  Trim these off again. Don't need
1231 		 * i_size_read because we hold i_mutex.
1232 		 *
1233 		 * Add inode to orphan list in case we crash before
1234 		 * truncate finishes
1235 		 */
1236 		if (extended && ext4_can_truncate(inode))
1237 			ext4_orphan_add(handle, inode);
1238 
1239 		ext4_journal_stop(handle);
1240 		if (extended) {
1241 			ext4_truncate_failed_write(inode);
1242 			/*
1243 			 * If truncate failed early the inode might
1244 			 * still be on the orphan list; we need to
1245 			 * make sure the inode is removed from the
1246 			 * orphan list in that case.
1247 			 */
1248 			if (inode->i_nlink)
1249 				ext4_orphan_del(NULL, inode);
1250 		}
1251 
1252 		if (ret == -ENOSPC &&
1253 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1254 			goto retry_journal;
1255 		put_page(page);
1256 		return ret;
1257 	}
1258 	*pagep = page;
1259 	return ret;
1260 }
1261 
1262 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264 {
1265 	int ret;
1266 	if (!buffer_mapped(bh) || buffer_freed(bh))
1267 		return 0;
1268 	set_buffer_uptodate(bh);
1269 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270 	clear_buffer_meta(bh);
1271 	clear_buffer_prio(bh);
1272 	return ret;
1273 }
1274 
1275 /*
1276  * We need to pick up the new inode size which generic_commit_write gave us
1277  * `file' can be NULL - eg, when called from page_symlink().
1278  *
1279  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1280  * buffers are managed internally.
1281  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1282 static int ext4_write_end(struct file *file,
1283 			  struct address_space *mapping,
1284 			  loff_t pos, unsigned len, unsigned copied,
1285 			  struct page *page, void *fsdata)
1286 {
1287 	handle_t *handle = ext4_journal_current_handle();
1288 	struct inode *inode = mapping->host;
1289 	loff_t old_size = inode->i_size;
1290 	int ret = 0, ret2;
1291 	int i_size_changed = 0;
1292 	bool verity = ext4_verity_in_progress(inode);
1293 
1294 	trace_ext4_write_end(inode, pos, len, copied);
1295 
1296 	if (ext4_has_inline_data(inode) &&
1297 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1298 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1299 
1300 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1301 	/*
1302 	 * it's important to update i_size while still holding page lock:
1303 	 * page writeout could otherwise come in and zero beyond i_size.
1304 	 *
1305 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1306 	 * blocks are being written past EOF, so skip the i_size update.
1307 	 */
1308 	if (!verity)
1309 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1310 	unlock_page(page);
1311 	put_page(page);
1312 
1313 	if (old_size < pos && !verity)
1314 		pagecache_isize_extended(inode, old_size, pos);
1315 	/*
1316 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1317 	 * makes the holding time of page lock longer. Second, it forces lock
1318 	 * ordering of page lock and transaction start for journaling
1319 	 * filesystems.
1320 	 */
1321 	if (i_size_changed)
1322 		ret = ext4_mark_inode_dirty(handle, inode);
1323 
1324 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1325 		/* if we have allocated more blocks and copied
1326 		 * less. We will have blocks allocated outside
1327 		 * inode->i_size. So truncate them
1328 		 */
1329 		ext4_orphan_add(handle, inode);
1330 
1331 	ret2 = ext4_journal_stop(handle);
1332 	if (!ret)
1333 		ret = ret2;
1334 
1335 	if (pos + len > inode->i_size && !verity) {
1336 		ext4_truncate_failed_write(inode);
1337 		/*
1338 		 * If truncate failed early the inode might still be
1339 		 * on the orphan list; we need to make sure the inode
1340 		 * is removed from the orphan list in that case.
1341 		 */
1342 		if (inode->i_nlink)
1343 			ext4_orphan_del(NULL, inode);
1344 	}
1345 
1346 	return ret ? ret : copied;
1347 }
1348 
1349 /*
1350  * This is a private version of page_zero_new_buffers() which doesn't
1351  * set the buffer to be dirty, since in data=journalled mode we need
1352  * to call ext4_handle_dirty_metadata() instead.
1353  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1354 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1355 					    struct page *page,
1356 					    unsigned from, unsigned to)
1357 {
1358 	unsigned int block_start = 0, block_end;
1359 	struct buffer_head *head, *bh;
1360 
1361 	bh = head = page_buffers(page);
1362 	do {
1363 		block_end = block_start + bh->b_size;
1364 		if (buffer_new(bh)) {
1365 			if (block_end > from && block_start < to) {
1366 				if (!PageUptodate(page)) {
1367 					unsigned start, size;
1368 
1369 					start = max(from, block_start);
1370 					size = min(to, block_end) - start;
1371 
1372 					zero_user(page, start, size);
1373 					write_end_fn(handle, bh);
1374 				}
1375 				clear_buffer_new(bh);
1376 			}
1377 		}
1378 		block_start = block_end;
1379 		bh = bh->b_this_page;
1380 	} while (bh != head);
1381 }
1382 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1383 static int ext4_journalled_write_end(struct file *file,
1384 				     struct address_space *mapping,
1385 				     loff_t pos, unsigned len, unsigned copied,
1386 				     struct page *page, void *fsdata)
1387 {
1388 	handle_t *handle = ext4_journal_current_handle();
1389 	struct inode *inode = mapping->host;
1390 	loff_t old_size = inode->i_size;
1391 	int ret = 0, ret2;
1392 	int partial = 0;
1393 	unsigned from, to;
1394 	int size_changed = 0;
1395 	bool verity = ext4_verity_in_progress(inode);
1396 
1397 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1398 	from = pos & (PAGE_SIZE - 1);
1399 	to = from + len;
1400 
1401 	BUG_ON(!ext4_handle_valid(handle));
1402 
1403 	if (ext4_has_inline_data(inode))
1404 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1405 
1406 	if (unlikely(copied < len) && !PageUptodate(page)) {
1407 		copied = 0;
1408 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1409 	} else {
1410 		if (unlikely(copied < len))
1411 			ext4_journalled_zero_new_buffers(handle, page,
1412 							 from + copied, to);
1413 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1414 					     from + copied, &partial,
1415 					     write_end_fn);
1416 		if (!partial)
1417 			SetPageUptodate(page);
1418 	}
1419 	if (!verity)
1420 		size_changed = ext4_update_inode_size(inode, pos + copied);
1421 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423 	unlock_page(page);
1424 	put_page(page);
1425 
1426 	if (old_size < pos && !verity)
1427 		pagecache_isize_extended(inode, old_size, pos);
1428 
1429 	if (size_changed) {
1430 		ret2 = ext4_mark_inode_dirty(handle, inode);
1431 		if (!ret)
1432 			ret = ret2;
1433 	}
1434 
1435 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1436 		/* if we have allocated more blocks and copied
1437 		 * less. We will have blocks allocated outside
1438 		 * inode->i_size. So truncate them
1439 		 */
1440 		ext4_orphan_add(handle, inode);
1441 
1442 	ret2 = ext4_journal_stop(handle);
1443 	if (!ret)
1444 		ret = ret2;
1445 	if (pos + len > inode->i_size && !verity) {
1446 		ext4_truncate_failed_write(inode);
1447 		/*
1448 		 * If truncate failed early the inode might still be
1449 		 * on the orphan list; we need to make sure the inode
1450 		 * is removed from the orphan list in that case.
1451 		 */
1452 		if (inode->i_nlink)
1453 			ext4_orphan_del(NULL, inode);
1454 	}
1455 
1456 	return ret ? ret : copied;
1457 }
1458 
1459 /*
1460  * Reserve space for a single cluster
1461  */
ext4_da_reserve_space(struct inode * inode)1462 static int ext4_da_reserve_space(struct inode *inode)
1463 {
1464 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465 	struct ext4_inode_info *ei = EXT4_I(inode);
1466 	int ret;
1467 
1468 	/*
1469 	 * We will charge metadata quota at writeout time; this saves
1470 	 * us from metadata over-estimation, though we may go over by
1471 	 * a small amount in the end.  Here we just reserve for data.
1472 	 */
1473 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474 	if (ret)
1475 		return ret;
1476 
1477 	spin_lock(&ei->i_block_reservation_lock);
1478 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479 		spin_unlock(&ei->i_block_reservation_lock);
1480 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481 		return -ENOSPC;
1482 	}
1483 	ei->i_reserved_data_blocks++;
1484 	trace_ext4_da_reserve_space(inode);
1485 	spin_unlock(&ei->i_block_reservation_lock);
1486 
1487 	return 0;       /* success */
1488 }
1489 
ext4_da_release_space(struct inode * inode,int to_free)1490 void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 	struct ext4_inode_info *ei = EXT4_I(inode);
1494 
1495 	if (!to_free)
1496 		return;		/* Nothing to release, exit */
1497 
1498 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499 
1500 	trace_ext4_da_release_space(inode, to_free);
1501 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502 		/*
1503 		 * if there aren't enough reserved blocks, then the
1504 		 * counter is messed up somewhere.  Since this
1505 		 * function is called from invalidate page, it's
1506 		 * harmless to return without any action.
1507 		 */
1508 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509 			 "ino %lu, to_free %d with only %d reserved "
1510 			 "data blocks", inode->i_ino, to_free,
1511 			 ei->i_reserved_data_blocks);
1512 		WARN_ON(1);
1513 		to_free = ei->i_reserved_data_blocks;
1514 	}
1515 	ei->i_reserved_data_blocks -= to_free;
1516 
1517 	/* update fs dirty data blocks counter */
1518 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519 
1520 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521 
1522 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524 
1525 /*
1526  * Delayed allocation stuff
1527  */
1528 
1529 struct mpage_da_data {
1530 	struct inode *inode;
1531 	struct writeback_control *wbc;
1532 
1533 	pgoff_t first_page;	/* The first page to write */
1534 	pgoff_t next_page;	/* Current page to examine */
1535 	pgoff_t last_page;	/* Last page to examine */
1536 	/*
1537 	 * Extent to map - this can be after first_page because that can be
1538 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1539 	 * is delalloc or unwritten.
1540 	 */
1541 	struct ext4_map_blocks map;
1542 	struct ext4_io_submit io_submit;	/* IO submission data */
1543 	unsigned int do_map:1;
1544 	unsigned int scanned_until_end:1;
1545 };
1546 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1547 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1548 				       bool invalidate)
1549 {
1550 	int nr_pages, i;
1551 	pgoff_t index, end;
1552 	struct pagevec pvec;
1553 	struct inode *inode = mpd->inode;
1554 	struct address_space *mapping = inode->i_mapping;
1555 
1556 	/* This is necessary when next_page == 0. */
1557 	if (mpd->first_page >= mpd->next_page)
1558 		return;
1559 
1560 	mpd->scanned_until_end = 0;
1561 	index = mpd->first_page;
1562 	end   = mpd->next_page - 1;
1563 	if (invalidate) {
1564 		ext4_lblk_t start, last;
1565 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1566 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1567 
1568 		/*
1569 		 * avoid racing with extent status tree scans made by
1570 		 * ext4_insert_delayed_block()
1571 		 */
1572 		down_write(&EXT4_I(inode)->i_data_sem);
1573 		ext4_es_remove_extent(inode, start, last - start + 1);
1574 		up_write(&EXT4_I(inode)->i_data_sem);
1575 	}
1576 
1577 	pagevec_init(&pvec);
1578 	while (index <= end) {
1579 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1580 		if (nr_pages == 0)
1581 			break;
1582 		for (i = 0; i < nr_pages; i++) {
1583 			struct page *page = pvec.pages[i];
1584 
1585 			BUG_ON(!PageLocked(page));
1586 			BUG_ON(PageWriteback(page));
1587 			if (invalidate) {
1588 				if (page_mapped(page))
1589 					clear_page_dirty_for_io(page);
1590 				block_invalidatepage(page, 0, PAGE_SIZE);
1591 				ClearPageUptodate(page);
1592 			}
1593 			unlock_page(page);
1594 		}
1595 		pagevec_release(&pvec);
1596 	}
1597 }
1598 
ext4_print_free_blocks(struct inode * inode)1599 static void ext4_print_free_blocks(struct inode *inode)
1600 {
1601 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1602 	struct super_block *sb = inode->i_sb;
1603 	struct ext4_inode_info *ei = EXT4_I(inode);
1604 
1605 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1606 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1607 			ext4_count_free_clusters(sb)));
1608 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1609 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1610 	       (long long) EXT4_C2B(EXT4_SB(sb),
1611 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1612 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1613 	       (long long) EXT4_C2B(EXT4_SB(sb),
1614 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1615 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1616 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1617 		 ei->i_reserved_data_blocks);
1618 	return;
1619 }
1620 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1621 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1622 {
1623 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1624 }
1625 
1626 /*
1627  * ext4_insert_delayed_block - adds a delayed block to the extents status
1628  *                             tree, incrementing the reserved cluster/block
1629  *                             count or making a pending reservation
1630  *                             where needed
1631  *
1632  * @inode - file containing the newly added block
1633  * @lblk - logical block to be added
1634  *
1635  * Returns 0 on success, negative error code on failure.
1636  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1637 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1638 {
1639 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 	int ret;
1641 	bool allocated = false;
1642 	bool reserved = false;
1643 
1644 	/*
1645 	 * If the cluster containing lblk is shared with a delayed,
1646 	 * written, or unwritten extent in a bigalloc file system, it's
1647 	 * already been accounted for and does not need to be reserved.
1648 	 * A pending reservation must be made for the cluster if it's
1649 	 * shared with a written or unwritten extent and doesn't already
1650 	 * have one.  Written and unwritten extents can be purged from the
1651 	 * extents status tree if the system is under memory pressure, so
1652 	 * it's necessary to examine the extent tree if a search of the
1653 	 * extents status tree doesn't get a match.
1654 	 */
1655 	if (sbi->s_cluster_ratio == 1) {
1656 		ret = ext4_da_reserve_space(inode);
1657 		if (ret != 0)   /* ENOSPC */
1658 			goto errout;
1659 		reserved = true;
1660 	} else {   /* bigalloc */
1661 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1662 			if (!ext4_es_scan_clu(inode,
1663 					      &ext4_es_is_mapped, lblk)) {
1664 				ret = ext4_clu_mapped(inode,
1665 						      EXT4_B2C(sbi, lblk));
1666 				if (ret < 0)
1667 					goto errout;
1668 				if (ret == 0) {
1669 					ret = ext4_da_reserve_space(inode);
1670 					if (ret != 0)   /* ENOSPC */
1671 						goto errout;
1672 					reserved = true;
1673 				} else {
1674 					allocated = true;
1675 				}
1676 			} else {
1677 				allocated = true;
1678 			}
1679 		}
1680 	}
1681 
1682 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683 	if (ret && reserved)
1684 		ext4_da_release_space(inode, 1);
1685 
1686 errout:
1687 	return ret;
1688 }
1689 
1690 /*
1691  * This function is grabs code from the very beginning of
1692  * ext4_map_blocks, but assumes that the caller is from delayed write
1693  * time. This function looks up the requested blocks and sets the
1694  * buffer delay bit under the protection of i_data_sem.
1695  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697 			      struct ext4_map_blocks *map,
1698 			      struct buffer_head *bh)
1699 {
1700 	struct extent_status es;
1701 	int retval;
1702 	sector_t invalid_block = ~((sector_t) 0xffff);
1703 #ifdef ES_AGGRESSIVE_TEST
1704 	struct ext4_map_blocks orig_map;
1705 
1706 	memcpy(&orig_map, map, sizeof(*map));
1707 #endif
1708 
1709 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710 		invalid_block = ~0;
1711 
1712 	map->m_flags = 0;
1713 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714 		  (unsigned long) map->m_lblk);
1715 
1716 	/* Lookup extent status tree firstly */
1717 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718 		if (ext4_es_is_hole(&es)) {
1719 			retval = 0;
1720 			down_read(&EXT4_I(inode)->i_data_sem);
1721 			goto add_delayed;
1722 		}
1723 
1724 		/*
1725 		 * Delayed extent could be allocated by fallocate.
1726 		 * So we need to check it.
1727 		 */
1728 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 			map_bh(bh, inode->i_sb, invalid_block);
1730 			set_buffer_new(bh);
1731 			set_buffer_delay(bh);
1732 			return 0;
1733 		}
1734 
1735 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 		retval = es.es_len - (iblock - es.es_lblk);
1737 		if (retval > map->m_len)
1738 			retval = map->m_len;
1739 		map->m_len = retval;
1740 		if (ext4_es_is_written(&es))
1741 			map->m_flags |= EXT4_MAP_MAPPED;
1742 		else if (ext4_es_is_unwritten(&es))
1743 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1744 		else
1745 			BUG();
1746 
1747 #ifdef ES_AGGRESSIVE_TEST
1748 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750 		return retval;
1751 	}
1752 
1753 	/*
1754 	 * Try to see if we can get the block without requesting a new
1755 	 * file system block.
1756 	 */
1757 	down_read(&EXT4_I(inode)->i_data_sem);
1758 	if (ext4_has_inline_data(inode))
1759 		retval = 0;
1760 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762 	else
1763 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764 
1765 add_delayed:
1766 	if (retval == 0) {
1767 		int ret;
1768 
1769 		/*
1770 		 * XXX: __block_prepare_write() unmaps passed block,
1771 		 * is it OK?
1772 		 */
1773 
1774 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1775 		if (ret != 0) {
1776 			retval = ret;
1777 			goto out_unlock;
1778 		}
1779 
1780 		map_bh(bh, inode->i_sb, invalid_block);
1781 		set_buffer_new(bh);
1782 		set_buffer_delay(bh);
1783 	} else if (retval > 0) {
1784 		int ret;
1785 		unsigned int status;
1786 
1787 		if (unlikely(retval != map->m_len)) {
1788 			ext4_warning(inode->i_sb,
1789 				     "ES len assertion failed for inode "
1790 				     "%lu: retval %d != map->m_len %d",
1791 				     inode->i_ino, retval, map->m_len);
1792 			WARN_ON(1);
1793 		}
1794 
1795 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 					    map->m_pblk, status);
1799 		if (ret != 0)
1800 			retval = ret;
1801 	}
1802 
1803 out_unlock:
1804 	up_read((&EXT4_I(inode)->i_data_sem));
1805 
1806 	return retval;
1807 }
1808 
1809 /*
1810  * This is a special get_block_t callback which is used by
1811  * ext4_da_write_begin().  It will either return mapped block or
1812  * reserve space for a single block.
1813  *
1814  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815  * We also have b_blocknr = -1 and b_bdev initialized properly
1816  *
1817  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819  * initialized properly.
1820  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822 			   struct buffer_head *bh, int create)
1823 {
1824 	struct ext4_map_blocks map;
1825 	int ret = 0;
1826 
1827 	BUG_ON(create == 0);
1828 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829 
1830 	map.m_lblk = iblock;
1831 	map.m_len = 1;
1832 
1833 	/*
1834 	 * first, we need to know whether the block is allocated already
1835 	 * preallocated blocks are unmapped but should treated
1836 	 * the same as allocated blocks.
1837 	 */
1838 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1839 	if (ret <= 0)
1840 		return ret;
1841 
1842 	map_bh(bh, inode->i_sb, map.m_pblk);
1843 	ext4_update_bh_state(bh, map.m_flags);
1844 
1845 	if (buffer_unwritten(bh)) {
1846 		/* A delayed write to unwritten bh should be marked
1847 		 * new and mapped.  Mapped ensures that we don't do
1848 		 * get_block multiple times when we write to the same
1849 		 * offset and new ensures that we do proper zero out
1850 		 * for partial write.
1851 		 */
1852 		set_buffer_new(bh);
1853 		set_buffer_mapped(bh);
1854 	}
1855 	return 0;
1856 }
1857 
bget_one(handle_t * handle,struct buffer_head * bh)1858 static int bget_one(handle_t *handle, struct buffer_head *bh)
1859 {
1860 	get_bh(bh);
1861 	return 0;
1862 }
1863 
bput_one(handle_t * handle,struct buffer_head * bh)1864 static int bput_one(handle_t *handle, struct buffer_head *bh)
1865 {
1866 	put_bh(bh);
1867 	return 0;
1868 }
1869 
__ext4_journalled_writepage(struct page * page,unsigned int len)1870 static int __ext4_journalled_writepage(struct page *page,
1871 				       unsigned int len)
1872 {
1873 	struct address_space *mapping = page->mapping;
1874 	struct inode *inode = mapping->host;
1875 	struct buffer_head *page_bufs = NULL;
1876 	handle_t *handle = NULL;
1877 	int ret = 0, err = 0;
1878 	int inline_data = ext4_has_inline_data(inode);
1879 	struct buffer_head *inode_bh = NULL;
1880 
1881 	ClearPageChecked(page);
1882 
1883 	if (inline_data) {
1884 		BUG_ON(page->index != 0);
1885 		BUG_ON(len > ext4_get_max_inline_size(inode));
1886 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1887 		if (inode_bh == NULL)
1888 			goto out;
1889 	} else {
1890 		page_bufs = page_buffers(page);
1891 		if (!page_bufs) {
1892 			BUG();
1893 			goto out;
1894 		}
1895 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1896 				       NULL, bget_one);
1897 	}
1898 	/*
1899 	 * We need to release the page lock before we start the
1900 	 * journal, so grab a reference so the page won't disappear
1901 	 * out from under us.
1902 	 */
1903 	get_page(page);
1904 	unlock_page(page);
1905 
1906 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1907 				    ext4_writepage_trans_blocks(inode));
1908 	if (IS_ERR(handle)) {
1909 		ret = PTR_ERR(handle);
1910 		put_page(page);
1911 		goto out_no_pagelock;
1912 	}
1913 	BUG_ON(!ext4_handle_valid(handle));
1914 
1915 	lock_page(page);
1916 	put_page(page);
1917 	if (page->mapping != mapping) {
1918 		/* The page got truncated from under us */
1919 		ext4_journal_stop(handle);
1920 		ret = 0;
1921 		goto out;
1922 	}
1923 
1924 	if (inline_data) {
1925 		ret = ext4_mark_inode_dirty(handle, inode);
1926 	} else {
1927 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1928 					     do_journal_get_write_access);
1929 
1930 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931 					     write_end_fn);
1932 	}
1933 	if (ret == 0)
1934 		ret = err;
1935 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1936 	if (ret == 0)
1937 		ret = err;
1938 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939 	err = ext4_journal_stop(handle);
1940 	if (!ret)
1941 		ret = err;
1942 
1943 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1944 out:
1945 	unlock_page(page);
1946 out_no_pagelock:
1947 	if (!inline_data && page_bufs)
1948 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1949 				       NULL, bput_one);
1950 	brelse(inode_bh);
1951 	return ret;
1952 }
1953 
cancel_page_dirty_status(struct page * page)1954 static void cancel_page_dirty_status(struct page *page)
1955 {
1956 	struct address_space *mapping = page_mapping(page);
1957 	unsigned long flags;
1958 
1959 	cancel_dirty_page(page);
1960 	xa_lock_irqsave(&mapping->i_pages, flags);
1961 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1962 			PAGECACHE_TAG_DIRTY);
1963 	__xa_clear_mark(&mapping->i_pages, page_index(page),
1964 			PAGECACHE_TAG_TOWRITE);
1965 	xa_unlock_irqrestore(&mapping->i_pages, flags);
1966 }
1967 
1968 /*
1969  * Note that we don't need to start a transaction unless we're journaling data
1970  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1971  * need to file the inode to the transaction's list in ordered mode because if
1972  * we are writing back data added by write(), the inode is already there and if
1973  * we are writing back data modified via mmap(), no one guarantees in which
1974  * transaction the data will hit the disk. In case we are journaling data, we
1975  * cannot start transaction directly because transaction start ranks above page
1976  * lock so we have to do some magic.
1977  *
1978  * This function can get called via...
1979  *   - ext4_writepages after taking page lock (have journal handle)
1980  *   - journal_submit_inode_data_buffers (no journal handle)
1981  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1982  *   - grab_page_cache when doing write_begin (have journal handle)
1983  *
1984  * We don't do any block allocation in this function. If we have page with
1985  * multiple blocks we need to write those buffer_heads that are mapped. This
1986  * is important for mmaped based write. So if we do with blocksize 1K
1987  * truncate(f, 1024);
1988  * a = mmap(f, 0, 4096);
1989  * a[0] = 'a';
1990  * truncate(f, 4096);
1991  * we have in the page first buffer_head mapped via page_mkwrite call back
1992  * but other buffer_heads would be unmapped but dirty (dirty done via the
1993  * do_wp_page). So writepage should write the first block. If we modify
1994  * the mmap area beyond 1024 we will again get a page_fault and the
1995  * page_mkwrite callback will do the block allocation and mark the
1996  * buffer_heads mapped.
1997  *
1998  * We redirty the page if we have any buffer_heads that is either delay or
1999  * unwritten in the page.
2000  *
2001  * We can get recursively called as show below.
2002  *
2003  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2004  *		ext4_writepage()
2005  *
2006  * But since we don't do any block allocation we should not deadlock.
2007  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2008  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2009 static int ext4_writepage(struct page *page,
2010 			  struct writeback_control *wbc)
2011 {
2012 	int ret = 0;
2013 	loff_t size;
2014 	unsigned int len;
2015 	struct buffer_head *page_bufs = NULL;
2016 	struct inode *inode = page->mapping->host;
2017 	struct ext4_io_submit io_submit;
2018 	bool keep_towrite = false;
2019 
2020 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2021 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2022 		unlock_page(page);
2023 		return -EIO;
2024 	}
2025 
2026 	if (WARN_ON(!page_has_buffers(page))) {
2027 		cancel_page_dirty_status(page);
2028 		unlock_page(page);
2029 		return 0;
2030 	}
2031 
2032 	trace_ext4_writepage(page);
2033 	size = i_size_read(inode);
2034 	if (page->index == size >> PAGE_SHIFT &&
2035 	    !ext4_verity_in_progress(inode))
2036 		len = size & ~PAGE_MASK;
2037 	else
2038 		len = PAGE_SIZE;
2039 
2040 	/* Should never happen but for bugs in other kernel subsystems */
2041 	if (!page_has_buffers(page)) {
2042 		ext4_warning_inode(inode,
2043 		   "page %lu does not have buffers attached", page->index);
2044 		ClearPageDirty(page);
2045 		unlock_page(page);
2046 		return 0;
2047 	}
2048 
2049 	page_bufs = page_buffers(page);
2050 	/*
2051 	 * We cannot do block allocation or other extent handling in this
2052 	 * function. If there are buffers needing that, we have to redirty
2053 	 * the page. But we may reach here when we do a journal commit via
2054 	 * journal_submit_inode_data_buffers() and in that case we must write
2055 	 * allocated buffers to achieve data=ordered mode guarantees.
2056 	 *
2057 	 * Also, if there is only one buffer per page (the fs block
2058 	 * size == the page size), if one buffer needs block
2059 	 * allocation or needs to modify the extent tree to clear the
2060 	 * unwritten flag, we know that the page can't be written at
2061 	 * all, so we might as well refuse the write immediately.
2062 	 * Unfortunately if the block size != page size, we can't as
2063 	 * easily detect this case using ext4_walk_page_buffers(), but
2064 	 * for the extremely common case, this is an optimization that
2065 	 * skips a useless round trip through ext4_bio_write_page().
2066 	 */
2067 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 				   ext4_bh_delay_or_unwritten)) {
2069 		redirty_page_for_writepage(wbc, page);
2070 		if ((current->flags & PF_MEMALLOC) ||
2071 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2072 			/*
2073 			 * For memory cleaning there's no point in writing only
2074 			 * some buffers. So just bail out. Warn if we came here
2075 			 * from direct reclaim.
2076 			 */
2077 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078 							== PF_MEMALLOC);
2079 			unlock_page(page);
2080 			return 0;
2081 		}
2082 		keep_towrite = true;
2083 	}
2084 
2085 	if (PageChecked(page) && ext4_should_journal_data(inode))
2086 		/*
2087 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2088 		 * doesn't seem much point in redirtying the page here.
2089 		 */
2090 		return __ext4_journalled_writepage(page, len);
2091 
2092 	ext4_io_submit_init(&io_submit, wbc);
2093 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094 	if (!io_submit.io_end) {
2095 		redirty_page_for_writepage(wbc, page);
2096 		unlock_page(page);
2097 		return -ENOMEM;
2098 	}
2099 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2100 	ext4_io_submit(&io_submit);
2101 	/* Drop io_end reference we got from init */
2102 	ext4_put_io_end_defer(io_submit.io_end);
2103 	return ret;
2104 }
2105 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2106 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107 {
2108 	int len;
2109 	loff_t size;
2110 	int err;
2111 
2112 	BUG_ON(page->index != mpd->first_page);
2113 	clear_page_dirty_for_io(page);
2114 	/*
2115 	 * We have to be very careful here!  Nothing protects writeback path
2116 	 * against i_size changes and the page can be writeably mapped into
2117 	 * page tables. So an application can be growing i_size and writing
2118 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2119 	 * write-protects our page in page tables and the page cannot get
2120 	 * written to again until we release page lock. So only after
2121 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2122 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2123 	 * on the barrier provided by TestClearPageDirty in
2124 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2125 	 * after page tables are updated.
2126 	 */
2127 	size = i_size_read(mpd->inode);
2128 	if (page->index == size >> PAGE_SHIFT &&
2129 	    !ext4_verity_in_progress(mpd->inode))
2130 		len = size & ~PAGE_MASK;
2131 	else
2132 		len = PAGE_SIZE;
2133 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2134 	if (!err)
2135 		mpd->wbc->nr_to_write--;
2136 	mpd->first_page++;
2137 
2138 	return err;
2139 }
2140 
2141 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2142 
2143 /*
2144  * mballoc gives us at most this number of blocks...
2145  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2146  * The rest of mballoc seems to handle chunks up to full group size.
2147  */
2148 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2149 
2150 /*
2151  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2152  *
2153  * @mpd - extent of blocks
2154  * @lblk - logical number of the block in the file
2155  * @bh - buffer head we want to add to the extent
2156  *
2157  * The function is used to collect contig. blocks in the same state. If the
2158  * buffer doesn't require mapping for writeback and we haven't started the
2159  * extent of buffers to map yet, the function returns 'true' immediately - the
2160  * caller can write the buffer right away. Otherwise the function returns true
2161  * if the block has been added to the extent, false if the block couldn't be
2162  * added.
2163  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2164 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2165 				   struct buffer_head *bh)
2166 {
2167 	struct ext4_map_blocks *map = &mpd->map;
2168 
2169 	/* Buffer that doesn't need mapping for writeback? */
2170 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2171 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2172 		/* So far no extent to map => we write the buffer right away */
2173 		if (map->m_len == 0)
2174 			return true;
2175 		return false;
2176 	}
2177 
2178 	/* First block in the extent? */
2179 	if (map->m_len == 0) {
2180 		/* We cannot map unless handle is started... */
2181 		if (!mpd->do_map)
2182 			return false;
2183 		map->m_lblk = lblk;
2184 		map->m_len = 1;
2185 		map->m_flags = bh->b_state & BH_FLAGS;
2186 		return true;
2187 	}
2188 
2189 	/* Don't go larger than mballoc is willing to allocate */
2190 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2191 		return false;
2192 
2193 	/* Can we merge the block to our big extent? */
2194 	if (lblk == map->m_lblk + map->m_len &&
2195 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2196 		map->m_len++;
2197 		return true;
2198 	}
2199 	return false;
2200 }
2201 
2202 /*
2203  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2204  *
2205  * @mpd - extent of blocks for mapping
2206  * @head - the first buffer in the page
2207  * @bh - buffer we should start processing from
2208  * @lblk - logical number of the block in the file corresponding to @bh
2209  *
2210  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2211  * the page for IO if all buffers in this page were mapped and there's no
2212  * accumulated extent of buffers to map or add buffers in the page to the
2213  * extent of buffers to map. The function returns 1 if the caller can continue
2214  * by processing the next page, 0 if it should stop adding buffers to the
2215  * extent to map because we cannot extend it anymore. It can also return value
2216  * < 0 in case of error during IO submission.
2217  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2218 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2219 				   struct buffer_head *head,
2220 				   struct buffer_head *bh,
2221 				   ext4_lblk_t lblk)
2222 {
2223 	struct inode *inode = mpd->inode;
2224 	int err;
2225 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2226 							>> inode->i_blkbits;
2227 
2228 	if (ext4_verity_in_progress(inode))
2229 		blocks = EXT_MAX_BLOCKS;
2230 
2231 	do {
2232 		BUG_ON(buffer_locked(bh));
2233 
2234 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2235 			/* Found extent to map? */
2236 			if (mpd->map.m_len)
2237 				return 0;
2238 			/* Buffer needs mapping and handle is not started? */
2239 			if (!mpd->do_map)
2240 				return 0;
2241 			/* Everything mapped so far and we hit EOF */
2242 			break;
2243 		}
2244 	} while (lblk++, (bh = bh->b_this_page) != head);
2245 	/* So far everything mapped? Submit the page for IO. */
2246 	if (mpd->map.m_len == 0) {
2247 		err = mpage_submit_page(mpd, head->b_page);
2248 		if (err < 0)
2249 			return err;
2250 	}
2251 	if (lblk >= blocks) {
2252 		mpd->scanned_until_end = 1;
2253 		return 0;
2254 	}
2255 	return 1;
2256 }
2257 
2258 /*
2259  * mpage_process_page - update page buffers corresponding to changed extent and
2260  *		       may submit fully mapped page for IO
2261  *
2262  * @mpd		- description of extent to map, on return next extent to map
2263  * @m_lblk	- logical block mapping.
2264  * @m_pblk	- corresponding physical mapping.
2265  * @map_bh	- determines on return whether this page requires any further
2266  *		  mapping or not.
2267  * Scan given page buffers corresponding to changed extent and update buffer
2268  * state according to new extent state.
2269  * We map delalloc buffers to their physical location, clear unwritten bits.
2270  * If the given page is not fully mapped, we update @map to the next extent in
2271  * the given page that needs mapping & return @map_bh as true.
2272  */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2273 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2274 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2275 			      bool *map_bh)
2276 {
2277 	struct buffer_head *head, *bh;
2278 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2279 	ext4_lblk_t lblk = *m_lblk;
2280 	ext4_fsblk_t pblock = *m_pblk;
2281 	int err = 0;
2282 	int blkbits = mpd->inode->i_blkbits;
2283 	ssize_t io_end_size = 0;
2284 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2285 
2286 	bh = head = page_buffers(page);
2287 	do {
2288 		if (lblk < mpd->map.m_lblk)
2289 			continue;
2290 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2291 			/*
2292 			 * Buffer after end of mapped extent.
2293 			 * Find next buffer in the page to map.
2294 			 */
2295 			mpd->map.m_len = 0;
2296 			mpd->map.m_flags = 0;
2297 			io_end_vec->size += io_end_size;
2298 			io_end_size = 0;
2299 
2300 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2301 			if (err > 0)
2302 				err = 0;
2303 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2304 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2305 				if (IS_ERR(io_end_vec)) {
2306 					err = PTR_ERR(io_end_vec);
2307 					goto out;
2308 				}
2309 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2310 			}
2311 			*map_bh = true;
2312 			goto out;
2313 		}
2314 		if (buffer_delay(bh)) {
2315 			clear_buffer_delay(bh);
2316 			bh->b_blocknr = pblock++;
2317 		}
2318 		clear_buffer_unwritten(bh);
2319 		io_end_size += (1 << blkbits);
2320 	} while (lblk++, (bh = bh->b_this_page) != head);
2321 
2322 	io_end_vec->size += io_end_size;
2323 	io_end_size = 0;
2324 	*map_bh = false;
2325 out:
2326 	*m_lblk = lblk;
2327 	*m_pblk = pblock;
2328 	return err;
2329 }
2330 
2331 /*
2332  * mpage_map_buffers - update buffers corresponding to changed extent and
2333  *		       submit fully mapped pages for IO
2334  *
2335  * @mpd - description of extent to map, on return next extent to map
2336  *
2337  * Scan buffers corresponding to changed extent (we expect corresponding pages
2338  * to be already locked) and update buffer state according to new extent state.
2339  * We map delalloc buffers to their physical location, clear unwritten bits,
2340  * and mark buffers as uninit when we perform writes to unwritten extents
2341  * and do extent conversion after IO is finished. If the last page is not fully
2342  * mapped, we update @map to the next extent in the last page that needs
2343  * mapping. Otherwise we submit the page for IO.
2344  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2345 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2346 {
2347 	struct pagevec pvec;
2348 	int nr_pages, i;
2349 	struct inode *inode = mpd->inode;
2350 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2351 	pgoff_t start, end;
2352 	ext4_lblk_t lblk;
2353 	ext4_fsblk_t pblock;
2354 	int err;
2355 	bool map_bh = false;
2356 
2357 	start = mpd->map.m_lblk >> bpp_bits;
2358 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2359 	lblk = start << bpp_bits;
2360 	pblock = mpd->map.m_pblk;
2361 
2362 	pagevec_init(&pvec);
2363 	while (start <= end) {
2364 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2365 						&start, end);
2366 		if (nr_pages == 0)
2367 			break;
2368 		for (i = 0; i < nr_pages; i++) {
2369 			struct page *page = pvec.pages[i];
2370 
2371 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2372 						 &map_bh);
2373 			/*
2374 			 * If map_bh is true, means page may require further bh
2375 			 * mapping, or maybe the page was submitted for IO.
2376 			 * So we return to call further extent mapping.
2377 			 */
2378 			if (err < 0 || map_bh)
2379 				goto out;
2380 			/* Page fully mapped - let IO run! */
2381 			err = mpage_submit_page(mpd, page);
2382 			if (err < 0)
2383 				goto out;
2384 		}
2385 		pagevec_release(&pvec);
2386 	}
2387 	/* Extent fully mapped and matches with page boundary. We are done. */
2388 	mpd->map.m_len = 0;
2389 	mpd->map.m_flags = 0;
2390 	return 0;
2391 out:
2392 	pagevec_release(&pvec);
2393 	return err;
2394 }
2395 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2396 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2397 {
2398 	struct inode *inode = mpd->inode;
2399 	struct ext4_map_blocks *map = &mpd->map;
2400 	int get_blocks_flags;
2401 	int err, dioread_nolock;
2402 
2403 	trace_ext4_da_write_pages_extent(inode, map);
2404 	/*
2405 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2406 	 * to convert an unwritten extent to be initialized (in the case
2407 	 * where we have written into one or more preallocated blocks).  It is
2408 	 * possible that we're going to need more metadata blocks than
2409 	 * previously reserved. However we must not fail because we're in
2410 	 * writeback and there is nothing we can do about it so it might result
2411 	 * in data loss.  So use reserved blocks to allocate metadata if
2412 	 * possible.
2413 	 *
2414 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2415 	 * the blocks in question are delalloc blocks.  This indicates
2416 	 * that the blocks and quotas has already been checked when
2417 	 * the data was copied into the page cache.
2418 	 */
2419 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2420 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2421 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2422 	dioread_nolock = ext4_should_dioread_nolock(inode);
2423 	if (dioread_nolock)
2424 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2425 	if (map->m_flags & BIT(BH_Delay))
2426 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2427 
2428 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2429 	if (err < 0)
2430 		return err;
2431 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2432 		if (!mpd->io_submit.io_end->handle &&
2433 		    ext4_handle_valid(handle)) {
2434 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2435 			handle->h_rsv_handle = NULL;
2436 		}
2437 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2438 	}
2439 
2440 	BUG_ON(map->m_len == 0);
2441 	return 0;
2442 }
2443 
2444 /*
2445  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2446  *				 mpd->len and submit pages underlying it for IO
2447  *
2448  * @handle - handle for journal operations
2449  * @mpd - extent to map
2450  * @give_up_on_write - we set this to true iff there is a fatal error and there
2451  *                     is no hope of writing the data. The caller should discard
2452  *                     dirty pages to avoid infinite loops.
2453  *
2454  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2455  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2456  * them to initialized or split the described range from larger unwritten
2457  * extent. Note that we need not map all the described range since allocation
2458  * can return less blocks or the range is covered by more unwritten extents. We
2459  * cannot map more because we are limited by reserved transaction credits. On
2460  * the other hand we always make sure that the last touched page is fully
2461  * mapped so that it can be written out (and thus forward progress is
2462  * guaranteed). After mapping we submit all mapped pages for IO.
2463  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2464 static int mpage_map_and_submit_extent(handle_t *handle,
2465 				       struct mpage_da_data *mpd,
2466 				       bool *give_up_on_write)
2467 {
2468 	struct inode *inode = mpd->inode;
2469 	struct ext4_map_blocks *map = &mpd->map;
2470 	int err;
2471 	loff_t disksize;
2472 	int progress = 0;
2473 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2474 	struct ext4_io_end_vec *io_end_vec;
2475 
2476 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2477 	if (IS_ERR(io_end_vec))
2478 		return PTR_ERR(io_end_vec);
2479 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2480 	do {
2481 		err = mpage_map_one_extent(handle, mpd);
2482 		if (err < 0) {
2483 			struct super_block *sb = inode->i_sb;
2484 
2485 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2486 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2487 				goto invalidate_dirty_pages;
2488 			/*
2489 			 * Let the uper layers retry transient errors.
2490 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2491 			 * is non-zero, a commit should free up blocks.
2492 			 */
2493 			if ((err == -ENOMEM) ||
2494 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2495 				if (progress)
2496 					goto update_disksize;
2497 				return err;
2498 			}
2499 			ext4_msg(sb, KERN_CRIT,
2500 				 "Delayed block allocation failed for "
2501 				 "inode %lu at logical offset %llu with"
2502 				 " max blocks %u with error %d",
2503 				 inode->i_ino,
2504 				 (unsigned long long)map->m_lblk,
2505 				 (unsigned)map->m_len, -err);
2506 			ext4_msg(sb, KERN_CRIT,
2507 				 "This should not happen!! Data will "
2508 				 "be lost\n");
2509 			if (err == -ENOSPC)
2510 				ext4_print_free_blocks(inode);
2511 		invalidate_dirty_pages:
2512 			*give_up_on_write = true;
2513 			return err;
2514 		}
2515 		progress = 1;
2516 		/*
2517 		 * Update buffer state, submit mapped pages, and get us new
2518 		 * extent to map
2519 		 */
2520 		err = mpage_map_and_submit_buffers(mpd);
2521 		if (err < 0)
2522 			goto update_disksize;
2523 	} while (map->m_len);
2524 
2525 update_disksize:
2526 	/*
2527 	 * Update on-disk size after IO is submitted.  Races with
2528 	 * truncate are avoided by checking i_size under i_data_sem.
2529 	 */
2530 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2531 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2532 		int err2;
2533 		loff_t i_size;
2534 
2535 		down_write(&EXT4_I(inode)->i_data_sem);
2536 		i_size = i_size_read(inode);
2537 		if (disksize > i_size)
2538 			disksize = i_size;
2539 		if (disksize > EXT4_I(inode)->i_disksize)
2540 			EXT4_I(inode)->i_disksize = disksize;
2541 		up_write(&EXT4_I(inode)->i_data_sem);
2542 		err2 = ext4_mark_inode_dirty(handle, inode);
2543 		if (err2) {
2544 			ext4_error_err(inode->i_sb, -err2,
2545 				       "Failed to mark inode %lu dirty",
2546 				       inode->i_ino);
2547 		}
2548 		if (!err)
2549 			err = err2;
2550 	}
2551 	return err;
2552 }
2553 
2554 /*
2555  * Calculate the total number of credits to reserve for one writepages
2556  * iteration. This is called from ext4_writepages(). We map an extent of
2557  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2558  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2559  * bpp - 1 blocks in bpp different extents.
2560  */
ext4_da_writepages_trans_blocks(struct inode * inode)2561 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2562 {
2563 	int bpp = ext4_journal_blocks_per_page(inode);
2564 
2565 	return ext4_meta_trans_blocks(inode,
2566 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2567 }
2568 
2569 /*
2570  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2571  * 				 and underlying extent to map
2572  *
2573  * @mpd - where to look for pages
2574  *
2575  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2576  * IO immediately. When we find a page which isn't mapped we start accumulating
2577  * extent of buffers underlying these pages that needs mapping (formed by
2578  * either delayed or unwritten buffers). We also lock the pages containing
2579  * these buffers. The extent found is returned in @mpd structure (starting at
2580  * mpd->lblk with length mpd->len blocks).
2581  *
2582  * Note that this function can attach bios to one io_end structure which are
2583  * neither logically nor physically contiguous. Although it may seem as an
2584  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2585  * case as we need to track IO to all buffers underlying a page in one io_end.
2586  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2587 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2588 {
2589 	struct address_space *mapping = mpd->inode->i_mapping;
2590 	struct pagevec pvec;
2591 	unsigned int nr_pages;
2592 	long left = mpd->wbc->nr_to_write;
2593 	pgoff_t index = mpd->first_page;
2594 	pgoff_t end = mpd->last_page;
2595 	xa_mark_t tag;
2596 	int i, err = 0;
2597 	int blkbits = mpd->inode->i_blkbits;
2598 	ext4_lblk_t lblk;
2599 	struct buffer_head *head;
2600 
2601 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2602 		tag = PAGECACHE_TAG_TOWRITE;
2603 	else
2604 		tag = PAGECACHE_TAG_DIRTY;
2605 
2606 	pagevec_init(&pvec);
2607 	mpd->map.m_len = 0;
2608 	mpd->next_page = index;
2609 	while (index <= end) {
2610 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2611 				tag);
2612 		if (nr_pages == 0)
2613 			break;
2614 
2615 		for (i = 0; i < nr_pages; i++) {
2616 			struct page *page = pvec.pages[i];
2617 
2618 			/*
2619 			 * Accumulated enough dirty pages? This doesn't apply
2620 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2621 			 * keep going because someone may be concurrently
2622 			 * dirtying pages, and we might have synced a lot of
2623 			 * newly appeared dirty pages, but have not synced all
2624 			 * of the old dirty pages.
2625 			 */
2626 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2627 				goto out;
2628 
2629 			/* If we can't merge this page, we are done. */
2630 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2631 				goto out;
2632 
2633 			lock_page(page);
2634 			/*
2635 			 * If the page is no longer dirty, or its mapping no
2636 			 * longer corresponds to inode we are writing (which
2637 			 * means it has been truncated or invalidated), or the
2638 			 * page is already under writeback and we are not doing
2639 			 * a data integrity writeback, skip the page
2640 			 */
2641 			if (!PageDirty(page) ||
2642 			    (PageWriteback(page) &&
2643 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2644 			    unlikely(page->mapping != mapping)) {
2645 				unlock_page(page);
2646 				continue;
2647 			}
2648 
2649 			if (WARN_ON(!page_has_buffers(page))) {
2650 				cancel_page_dirty_status(page);
2651 				unlock_page(page);
2652 				continue;
2653 			}
2654 
2655 			wait_on_page_writeback(page);
2656 			BUG_ON(PageWriteback(page));
2657 
2658 			/*
2659 			 * Should never happen but for buggy code in
2660 			 * other subsystems that call
2661 			 * set_page_dirty() without properly warning
2662 			 * the file system first.  See [1] for more
2663 			 * information.
2664 			 *
2665 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2666 			 */
2667 			if (!page_has_buffers(page)) {
2668 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2669 				ClearPageDirty(page);
2670 				unlock_page(page);
2671 				continue;
2672 			}
2673 
2674 			if (mpd->map.m_len == 0)
2675 				mpd->first_page = page->index;
2676 			mpd->next_page = page->index + 1;
2677 			/* Add all dirty buffers to mpd */
2678 			lblk = ((ext4_lblk_t)page->index) <<
2679 				(PAGE_SHIFT - blkbits);
2680 			head = page_buffers(page);
2681 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 			if (err <= 0)
2683 				goto out;
2684 			err = 0;
2685 			left--;
2686 		}
2687 		pagevec_release(&pvec);
2688 		cond_resched();
2689 	}
2690 	mpd->scanned_until_end = 1;
2691 	return 0;
2692 out:
2693 	pagevec_release(&pvec);
2694 	return err;
2695 }
2696 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2697 static int ext4_writepages(struct address_space *mapping,
2698 			   struct writeback_control *wbc)
2699 {
2700 	pgoff_t	writeback_index = 0;
2701 	long nr_to_write = wbc->nr_to_write;
2702 	int range_whole = 0;
2703 	int cycled = 1;
2704 	handle_t *handle = NULL;
2705 	struct mpage_da_data mpd;
2706 	struct inode *inode = mapping->host;
2707 	int needed_blocks, rsv_blocks = 0, ret = 0;
2708 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709 	struct blk_plug plug;
2710 	bool give_up_on_write = false;
2711 
2712 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2713 		return -EIO;
2714 
2715 	percpu_down_read(&sbi->s_writepages_rwsem);
2716 	trace_ext4_writepages(inode, wbc);
2717 
2718 	/*
2719 	 * No pages to write? This is mainly a kludge to avoid starting
2720 	 * a transaction for special inodes like journal inode on last iput()
2721 	 * because that could violate lock ordering on umount
2722 	 */
2723 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2724 		goto out_writepages;
2725 
2726 	if (ext4_should_journal_data(inode)) {
2727 		ret = generic_writepages(mapping, wbc);
2728 		goto out_writepages;
2729 	}
2730 
2731 	/*
2732 	 * If the filesystem has aborted, it is read-only, so return
2733 	 * right away instead of dumping stack traces later on that
2734 	 * will obscure the real source of the problem.  We test
2735 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2736 	 * the latter could be true if the filesystem is mounted
2737 	 * read-only, and in that case, ext4_writepages should
2738 	 * *never* be called, so if that ever happens, we would want
2739 	 * the stack trace.
2740 	 */
2741 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2742 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2743 		ret = -EROFS;
2744 		goto out_writepages;
2745 	}
2746 
2747 	/*
2748 	 * If we have inline data and arrive here, it means that
2749 	 * we will soon create the block for the 1st page, so
2750 	 * we'd better clear the inline data here.
2751 	 */
2752 	if (ext4_has_inline_data(inode)) {
2753 		/* Just inode will be modified... */
2754 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2755 		if (IS_ERR(handle)) {
2756 			ret = PTR_ERR(handle);
2757 			goto out_writepages;
2758 		}
2759 		BUG_ON(ext4_test_inode_state(inode,
2760 				EXT4_STATE_MAY_INLINE_DATA));
2761 		ext4_destroy_inline_data(handle, inode);
2762 		ext4_journal_stop(handle);
2763 	}
2764 
2765 	if (ext4_should_dioread_nolock(inode)) {
2766 		/*
2767 		 * We may need to convert up to one extent per block in
2768 		 * the page and we may dirty the inode.
2769 		 */
2770 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2771 						PAGE_SIZE >> inode->i_blkbits);
2772 	}
2773 
2774 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775 		range_whole = 1;
2776 
2777 	if (wbc->range_cyclic) {
2778 		writeback_index = mapping->writeback_index;
2779 		if (writeback_index)
2780 			cycled = 0;
2781 		mpd.first_page = writeback_index;
2782 		mpd.last_page = -1;
2783 	} else {
2784 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786 	}
2787 
2788 	mpd.inode = inode;
2789 	mpd.wbc = wbc;
2790 	ext4_io_submit_init(&mpd.io_submit, wbc);
2791 retry:
2792 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794 	blk_start_plug(&plug);
2795 
2796 	/*
2797 	 * First writeback pages that don't need mapping - we can avoid
2798 	 * starting a transaction unnecessarily and also avoid being blocked
2799 	 * in the block layer on device congestion while having transaction
2800 	 * started.
2801 	 */
2802 	mpd.do_map = 0;
2803 	mpd.scanned_until_end = 0;
2804 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805 	if (!mpd.io_submit.io_end) {
2806 		ret = -ENOMEM;
2807 		goto unplug;
2808 	}
2809 	ret = mpage_prepare_extent_to_map(&mpd);
2810 	/* Unlock pages we didn't use */
2811 	mpage_release_unused_pages(&mpd, false);
2812 	/* Submit prepared bio */
2813 	ext4_io_submit(&mpd.io_submit);
2814 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2815 	mpd.io_submit.io_end = NULL;
2816 	if (ret < 0)
2817 		goto unplug;
2818 
2819 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2820 		/* For each extent of pages we use new io_end */
2821 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822 		if (!mpd.io_submit.io_end) {
2823 			ret = -ENOMEM;
2824 			break;
2825 		}
2826 
2827 		/*
2828 		 * We have two constraints: We find one extent to map and we
2829 		 * must always write out whole page (makes a difference when
2830 		 * blocksize < pagesize) so that we don't block on IO when we
2831 		 * try to write out the rest of the page. Journalled mode is
2832 		 * not supported by delalloc.
2833 		 */
2834 		BUG_ON(ext4_should_journal_data(inode));
2835 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836 
2837 		/* start a new transaction */
2838 		handle = ext4_journal_start_with_reserve(inode,
2839 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840 		if (IS_ERR(handle)) {
2841 			ret = PTR_ERR(handle);
2842 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843 			       "%ld pages, ino %lu; err %d", __func__,
2844 				wbc->nr_to_write, inode->i_ino, ret);
2845 			/* Release allocated io_end */
2846 			ext4_put_io_end(mpd.io_submit.io_end);
2847 			mpd.io_submit.io_end = NULL;
2848 			break;
2849 		}
2850 		mpd.do_map = 1;
2851 
2852 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853 		ret = mpage_prepare_extent_to_map(&mpd);
2854 		if (!ret && mpd.map.m_len)
2855 			ret = mpage_map_and_submit_extent(handle, &mpd,
2856 					&give_up_on_write);
2857 		/*
2858 		 * Caution: If the handle is synchronous,
2859 		 * ext4_journal_stop() can wait for transaction commit
2860 		 * to finish which may depend on writeback of pages to
2861 		 * complete or on page lock to be released.  In that
2862 		 * case, we have to wait until after we have
2863 		 * submitted all the IO, released page locks we hold,
2864 		 * and dropped io_end reference (for extent conversion
2865 		 * to be able to complete) before stopping the handle.
2866 		 */
2867 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2868 			ext4_journal_stop(handle);
2869 			handle = NULL;
2870 			mpd.do_map = 0;
2871 		}
2872 		/* Unlock pages we didn't use */
2873 		mpage_release_unused_pages(&mpd, give_up_on_write);
2874 		/* Submit prepared bio */
2875 		ext4_io_submit(&mpd.io_submit);
2876 
2877 		/*
2878 		 * Drop our io_end reference we got from init. We have
2879 		 * to be careful and use deferred io_end finishing if
2880 		 * we are still holding the transaction as we can
2881 		 * release the last reference to io_end which may end
2882 		 * up doing unwritten extent conversion.
2883 		 */
2884 		if (handle) {
2885 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2886 			ext4_journal_stop(handle);
2887 		} else
2888 			ext4_put_io_end(mpd.io_submit.io_end);
2889 		mpd.io_submit.io_end = NULL;
2890 
2891 		if (ret == -ENOSPC && sbi->s_journal) {
2892 			/*
2893 			 * Commit the transaction which would
2894 			 * free blocks released in the transaction
2895 			 * and try again
2896 			 */
2897 			jbd2_journal_force_commit_nested(sbi->s_journal);
2898 			ret = 0;
2899 			continue;
2900 		}
2901 		/* Fatal error - ENOMEM, EIO... */
2902 		if (ret)
2903 			break;
2904 	}
2905 unplug:
2906 	blk_finish_plug(&plug);
2907 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2908 		cycled = 1;
2909 		mpd.last_page = writeback_index - 1;
2910 		mpd.first_page = 0;
2911 		goto retry;
2912 	}
2913 
2914 	/* Update index */
2915 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2916 		/*
2917 		 * Set the writeback_index so that range_cyclic
2918 		 * mode will write it back later
2919 		 */
2920 		mapping->writeback_index = mpd.first_page;
2921 
2922 out_writepages:
2923 	trace_ext4_writepages_result(inode, wbc, ret,
2924 				     nr_to_write - wbc->nr_to_write);
2925 	percpu_up_read(&sbi->s_writepages_rwsem);
2926 	return ret;
2927 }
2928 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2929 static int ext4_dax_writepages(struct address_space *mapping,
2930 			       struct writeback_control *wbc)
2931 {
2932 	int ret;
2933 	long nr_to_write = wbc->nr_to_write;
2934 	struct inode *inode = mapping->host;
2935 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2936 
2937 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2938 		return -EIO;
2939 
2940 	percpu_down_read(&sbi->s_writepages_rwsem);
2941 	trace_ext4_writepages(inode, wbc);
2942 
2943 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2944 	trace_ext4_writepages_result(inode, wbc, ret,
2945 				     nr_to_write - wbc->nr_to_write);
2946 	percpu_up_read(&sbi->s_writepages_rwsem);
2947 	return ret;
2948 }
2949 
ext4_nonda_switch(struct super_block * sb)2950 static int ext4_nonda_switch(struct super_block *sb)
2951 {
2952 	s64 free_clusters, dirty_clusters;
2953 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2954 
2955 	/*
2956 	 * switch to non delalloc mode if we are running low
2957 	 * on free block. The free block accounting via percpu
2958 	 * counters can get slightly wrong with percpu_counter_batch getting
2959 	 * accumulated on each CPU without updating global counters
2960 	 * Delalloc need an accurate free block accounting. So switch
2961 	 * to non delalloc when we are near to error range.
2962 	 */
2963 	free_clusters =
2964 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2965 	dirty_clusters =
2966 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2967 	/*
2968 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2969 	 */
2970 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2971 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2972 
2973 	if (2 * free_clusters < 3 * dirty_clusters ||
2974 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2975 		/*
2976 		 * free block count is less than 150% of dirty blocks
2977 		 * or free blocks is less than watermark
2978 		 */
2979 		return 1;
2980 	}
2981 	return 0;
2982 }
2983 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2984 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2985 			       loff_t pos, unsigned len, unsigned flags,
2986 			       struct page **pagep, void **fsdata)
2987 {
2988 	int ret, retries = 0;
2989 	struct page *page;
2990 	pgoff_t index;
2991 	struct inode *inode = mapping->host;
2992 
2993 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2994 		return -EIO;
2995 
2996 	index = pos >> PAGE_SHIFT;
2997 
2998 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2999 	    ext4_verity_in_progress(inode)) {
3000 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3001 		return ext4_write_begin(file, mapping, pos,
3002 					len, flags, pagep, fsdata);
3003 	}
3004 	*fsdata = (void *)0;
3005 	trace_ext4_da_write_begin(inode, pos, len, flags);
3006 
3007 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3008 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3009 						      pos, len, flags,
3010 						      pagep, fsdata);
3011 		if (ret < 0)
3012 			return ret;
3013 		if (ret == 1)
3014 			return 0;
3015 	}
3016 
3017 retry:
3018 	page = grab_cache_page_write_begin(mapping, index, flags);
3019 	if (!page)
3020 		return -ENOMEM;
3021 
3022 	/* In case writeback began while the page was unlocked */
3023 	wait_for_stable_page(page);
3024 
3025 #ifdef CONFIG_FS_ENCRYPTION
3026 	ret = ext4_block_write_begin(page, pos, len,
3027 				     ext4_da_get_block_prep);
3028 #else
3029 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3030 #endif
3031 	if (ret < 0) {
3032 		unlock_page(page);
3033 		put_page(page);
3034 		/*
3035 		 * block_write_begin may have instantiated a few blocks
3036 		 * outside i_size.  Trim these off again. Don't need
3037 		 * i_size_read because we hold inode lock.
3038 		 */
3039 		if (pos + len > inode->i_size)
3040 			ext4_truncate_failed_write(inode);
3041 
3042 		if (ret == -ENOSPC &&
3043 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3044 			goto retry;
3045 		return ret;
3046 	}
3047 
3048 	*pagep = page;
3049 	return ret;
3050 }
3051 
3052 /*
3053  * Check if we should update i_disksize
3054  * when write to the end of file but not require block allocation
3055  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3056 static int ext4_da_should_update_i_disksize(struct page *page,
3057 					    unsigned long offset)
3058 {
3059 	struct buffer_head *bh;
3060 	struct inode *inode = page->mapping->host;
3061 	unsigned int idx;
3062 	int i;
3063 
3064 	bh = page_buffers(page);
3065 	idx = offset >> inode->i_blkbits;
3066 
3067 	for (i = 0; i < idx; i++)
3068 		bh = bh->b_this_page;
3069 
3070 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3071 		return 0;
3072 	return 1;
3073 }
3074 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3075 static int ext4_da_write_end(struct file *file,
3076 			     struct address_space *mapping,
3077 			     loff_t pos, unsigned len, unsigned copied,
3078 			     struct page *page, void *fsdata)
3079 {
3080 	struct inode *inode = mapping->host;
3081 	loff_t new_i_size;
3082 	unsigned long start, end;
3083 	int write_mode = (int)(unsigned long)fsdata;
3084 
3085 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3086 		return ext4_write_end(file, mapping, pos,
3087 				      len, copied, page, fsdata);
3088 
3089 	trace_ext4_da_write_end(inode, pos, len, copied);
3090 
3091 	if (write_mode != CONVERT_INLINE_DATA &&
3092 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3093 	    ext4_has_inline_data(inode))
3094 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3095 
3096 	start = pos & (PAGE_SIZE - 1);
3097 	end = start + copied - 1;
3098 
3099 	/*
3100 	 * Since we are holding inode lock, we are sure i_disksize <=
3101 	 * i_size. We also know that if i_disksize < i_size, there are
3102 	 * delalloc writes pending in the range upto i_size. If the end of
3103 	 * the current write is <= i_size, there's no need to touch
3104 	 * i_disksize since writeback will push i_disksize upto i_size
3105 	 * eventually. If the end of the current write is > i_size and
3106 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3107 	 * check), we need to update i_disksize here as neither
3108 	 * ext4_writepage() nor certain ext4_writepages() paths not
3109 	 * allocating blocks update i_disksize.
3110 	 *
3111 	 * Note that we defer inode dirtying to generic_write_end() /
3112 	 * ext4_da_write_inline_data_end().
3113 	 */
3114 	new_i_size = pos + copied;
3115 	if (copied && new_i_size > inode->i_size &&
3116 	    ext4_da_should_update_i_disksize(page, end))
3117 		ext4_update_i_disksize(inode, new_i_size);
3118 
3119 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3120 }
3121 
3122 /*
3123  * Force all delayed allocation blocks to be allocated for a given inode.
3124  */
ext4_alloc_da_blocks(struct inode * inode)3125 int ext4_alloc_da_blocks(struct inode *inode)
3126 {
3127 	trace_ext4_alloc_da_blocks(inode);
3128 
3129 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3130 		return 0;
3131 
3132 	/*
3133 	 * We do something simple for now.  The filemap_flush() will
3134 	 * also start triggering a write of the data blocks, which is
3135 	 * not strictly speaking necessary (and for users of
3136 	 * laptop_mode, not even desirable).  However, to do otherwise
3137 	 * would require replicating code paths in:
3138 	 *
3139 	 * ext4_writepages() ->
3140 	 *    write_cache_pages() ---> (via passed in callback function)
3141 	 *        __mpage_da_writepage() -->
3142 	 *           mpage_add_bh_to_extent()
3143 	 *           mpage_da_map_blocks()
3144 	 *
3145 	 * The problem is that write_cache_pages(), located in
3146 	 * mm/page-writeback.c, marks pages clean in preparation for
3147 	 * doing I/O, which is not desirable if we're not planning on
3148 	 * doing I/O at all.
3149 	 *
3150 	 * We could call write_cache_pages(), and then redirty all of
3151 	 * the pages by calling redirty_page_for_writepage() but that
3152 	 * would be ugly in the extreme.  So instead we would need to
3153 	 * replicate parts of the code in the above functions,
3154 	 * simplifying them because we wouldn't actually intend to
3155 	 * write out the pages, but rather only collect contiguous
3156 	 * logical block extents, call the multi-block allocator, and
3157 	 * then update the buffer heads with the block allocations.
3158 	 *
3159 	 * For now, though, we'll cheat by calling filemap_flush(),
3160 	 * which will map the blocks, and start the I/O, but not
3161 	 * actually wait for the I/O to complete.
3162 	 */
3163 	return filemap_flush(inode->i_mapping);
3164 }
3165 
3166 /*
3167  * bmap() is special.  It gets used by applications such as lilo and by
3168  * the swapper to find the on-disk block of a specific piece of data.
3169  *
3170  * Naturally, this is dangerous if the block concerned is still in the
3171  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3172  * filesystem and enables swap, then they may get a nasty shock when the
3173  * data getting swapped to that swapfile suddenly gets overwritten by
3174  * the original zero's written out previously to the journal and
3175  * awaiting writeback in the kernel's buffer cache.
3176  *
3177  * So, if we see any bmap calls here on a modified, data-journaled file,
3178  * take extra steps to flush any blocks which might be in the cache.
3179  */
ext4_bmap(struct address_space * mapping,sector_t block)3180 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3181 {
3182 	struct inode *inode = mapping->host;
3183 	journal_t *journal;
3184 	sector_t ret = 0;
3185 	int err;
3186 
3187 	inode_lock_shared(inode);
3188 	/*
3189 	 * We can get here for an inline file via the FIBMAP ioctl
3190 	 */
3191 	if (ext4_has_inline_data(inode))
3192 		goto out;
3193 
3194 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3195 			test_opt(inode->i_sb, DELALLOC)) {
3196 		/*
3197 		 * With delalloc we want to sync the file
3198 		 * so that we can make sure we allocate
3199 		 * blocks for file
3200 		 */
3201 		filemap_write_and_wait(mapping);
3202 	}
3203 
3204 	if (EXT4_JOURNAL(inode) &&
3205 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3206 		/*
3207 		 * This is a REALLY heavyweight approach, but the use of
3208 		 * bmap on dirty files is expected to be extremely rare:
3209 		 * only if we run lilo or swapon on a freshly made file
3210 		 * do we expect this to happen.
3211 		 *
3212 		 * (bmap requires CAP_SYS_RAWIO so this does not
3213 		 * represent an unprivileged user DOS attack --- we'd be
3214 		 * in trouble if mortal users could trigger this path at
3215 		 * will.)
3216 		 *
3217 		 * NB. EXT4_STATE_JDATA is not set on files other than
3218 		 * regular files.  If somebody wants to bmap a directory
3219 		 * or symlink and gets confused because the buffer
3220 		 * hasn't yet been flushed to disk, they deserve
3221 		 * everything they get.
3222 		 */
3223 
3224 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3225 		journal = EXT4_JOURNAL(inode);
3226 		jbd2_journal_lock_updates(journal);
3227 		err = jbd2_journal_flush(journal);
3228 		jbd2_journal_unlock_updates(journal);
3229 
3230 		if (err)
3231 			goto out;
3232 	}
3233 
3234 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3235 
3236 out:
3237 	inode_unlock_shared(inode);
3238 	return ret;
3239 }
3240 
ext4_readpage(struct file * file,struct page * page)3241 static int ext4_readpage(struct file *file, struct page *page)
3242 {
3243 	int ret = -EAGAIN;
3244 	struct inode *inode = page->mapping->host;
3245 
3246 	trace_ext4_readpage(page);
3247 
3248 	if (ext4_has_inline_data(inode))
3249 		ret = ext4_readpage_inline(inode, page);
3250 
3251 	if (ret == -EAGAIN)
3252 		return ext4_mpage_readpages(inode, NULL, page);
3253 
3254 	return ret;
3255 }
3256 
ext4_readahead(struct readahead_control * rac)3257 static void ext4_readahead(struct readahead_control *rac)
3258 {
3259 	struct inode *inode = rac->mapping->host;
3260 
3261 	/* If the file has inline data, no need to do readahead. */
3262 	if (ext4_has_inline_data(inode))
3263 		return;
3264 
3265 	ext4_mpage_readpages(inode, rac, NULL);
3266 }
3267 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3268 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3269 				unsigned int length)
3270 {
3271 	trace_ext4_invalidatepage(page, offset, length);
3272 
3273 	/* No journalling happens on data buffers when this function is used */
3274 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3275 
3276 	block_invalidatepage(page, offset, length);
3277 }
3278 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3279 static int __ext4_journalled_invalidatepage(struct page *page,
3280 					    unsigned int offset,
3281 					    unsigned int length)
3282 {
3283 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3284 
3285 	trace_ext4_journalled_invalidatepage(page, offset, length);
3286 
3287 	/*
3288 	 * If it's a full truncate we just forget about the pending dirtying
3289 	 */
3290 	if (offset == 0 && length == PAGE_SIZE)
3291 		ClearPageChecked(page);
3292 
3293 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3294 }
3295 
3296 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3297 static void ext4_journalled_invalidatepage(struct page *page,
3298 					   unsigned int offset,
3299 					   unsigned int length)
3300 {
3301 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3302 }
3303 
ext4_releasepage(struct page * page,gfp_t wait)3304 static int ext4_releasepage(struct page *page, gfp_t wait)
3305 {
3306 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3307 
3308 	trace_ext4_releasepage(page);
3309 
3310 	/* Page has dirty journalled data -> cannot release */
3311 	if (PageChecked(page))
3312 		return 0;
3313 	if (journal)
3314 		return jbd2_journal_try_to_free_buffers(journal, page);
3315 	else
3316 		return try_to_free_buffers(page);
3317 }
3318 
ext4_inode_datasync_dirty(struct inode * inode)3319 static bool ext4_inode_datasync_dirty(struct inode *inode)
3320 {
3321 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3322 
3323 	if (journal) {
3324 		if (jbd2_transaction_committed(journal,
3325 			EXT4_I(inode)->i_datasync_tid))
3326 			return false;
3327 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3328 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3329 		return true;
3330 	}
3331 
3332 	/* Any metadata buffers to write? */
3333 	if (!list_empty(&inode->i_mapping->private_list))
3334 		return true;
3335 	return inode->i_state & I_DIRTY_DATASYNC;
3336 }
3337 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3338 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3339 			   struct ext4_map_blocks *map, loff_t offset,
3340 			   loff_t length)
3341 {
3342 	u8 blkbits = inode->i_blkbits;
3343 
3344 	/*
3345 	 * Writes that span EOF might trigger an I/O size update on completion,
3346 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3347 	 * there is no other metadata changes being made or are pending.
3348 	 */
3349 	iomap->flags = 0;
3350 	if (ext4_inode_datasync_dirty(inode) ||
3351 	    offset + length > i_size_read(inode))
3352 		iomap->flags |= IOMAP_F_DIRTY;
3353 
3354 	if (map->m_flags & EXT4_MAP_NEW)
3355 		iomap->flags |= IOMAP_F_NEW;
3356 
3357 	iomap->bdev = inode->i_sb->s_bdev;
3358 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3359 	iomap->offset = (u64) map->m_lblk << blkbits;
3360 	iomap->length = (u64) map->m_len << blkbits;
3361 
3362 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3363 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3364 		iomap->flags |= IOMAP_F_MERGED;
3365 
3366 	/*
3367 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3368 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3369 	 * set. In order for any allocated unwritten extents to be converted
3370 	 * into written extents correctly within the ->end_io() handler, we
3371 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3372 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3373 	 * been set first.
3374 	 */
3375 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3376 		iomap->type = IOMAP_UNWRITTEN;
3377 		iomap->addr = (u64) map->m_pblk << blkbits;
3378 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3379 		iomap->type = IOMAP_MAPPED;
3380 		iomap->addr = (u64) map->m_pblk << blkbits;
3381 	} else {
3382 		iomap->type = IOMAP_HOLE;
3383 		iomap->addr = IOMAP_NULL_ADDR;
3384 	}
3385 }
3386 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3387 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3388 			    unsigned int flags)
3389 {
3390 	handle_t *handle;
3391 	u8 blkbits = inode->i_blkbits;
3392 	int ret, dio_credits, m_flags = 0, retries = 0;
3393 
3394 	/*
3395 	 * Trim the mapping request to the maximum value that we can map at
3396 	 * once for direct I/O.
3397 	 */
3398 	if (map->m_len > DIO_MAX_BLOCKS)
3399 		map->m_len = DIO_MAX_BLOCKS;
3400 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3401 
3402 retry:
3403 	/*
3404 	 * Either we allocate blocks and then don't get an unwritten extent, so
3405 	 * in that case we have reserved enough credits. Or, the blocks are
3406 	 * already allocated and unwritten. In that case, the extent conversion
3407 	 * fits into the credits as well.
3408 	 */
3409 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3410 	if (IS_ERR(handle))
3411 		return PTR_ERR(handle);
3412 
3413 	/*
3414 	 * DAX and direct I/O are the only two operations that are currently
3415 	 * supported with IOMAP_WRITE.
3416 	 */
3417 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3418 	if (IS_DAX(inode))
3419 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3420 	/*
3421 	 * We use i_size instead of i_disksize here because delalloc writeback
3422 	 * can complete at any point during the I/O and subsequently push the
3423 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3424 	 * happening and thus expose allocated blocks to direct I/O reads.
3425 	 */
3426 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3427 		m_flags = EXT4_GET_BLOCKS_CREATE;
3428 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3429 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3430 
3431 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3432 
3433 	/*
3434 	 * We cannot fill holes in indirect tree based inodes as that could
3435 	 * expose stale data in the case of a crash. Use the magic error code
3436 	 * to fallback to buffered I/O.
3437 	 */
3438 	if (!m_flags && !ret)
3439 		ret = -ENOTBLK;
3440 
3441 	ext4_journal_stop(handle);
3442 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3443 		goto retry;
3444 
3445 	return ret;
3446 }
3447 
3448 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3449 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3450 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3451 {
3452 	int ret;
3453 	struct ext4_map_blocks map;
3454 	u8 blkbits = inode->i_blkbits;
3455 
3456 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3457 		return -EINVAL;
3458 
3459 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3460 		return -ERANGE;
3461 
3462 	/*
3463 	 * Calculate the first and last logical blocks respectively.
3464 	 */
3465 	map.m_lblk = offset >> blkbits;
3466 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3467 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3468 
3469 	if (flags & IOMAP_WRITE) {
3470 		/*
3471 		 * We check here if the blocks are already allocated, then we
3472 		 * don't need to start a journal txn and we can directly return
3473 		 * the mapping information. This could boost performance
3474 		 * especially in multi-threaded overwrite requests.
3475 		 */
3476 		if (offset + length <= i_size_read(inode)) {
3477 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3478 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3479 				goto out;
3480 		}
3481 		ret = ext4_iomap_alloc(inode, &map, flags);
3482 	} else {
3483 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3484 	}
3485 
3486 	if (ret < 0)
3487 		return ret;
3488 out:
3489 	ext4_set_iomap(inode, iomap, &map, offset, length);
3490 
3491 	return 0;
3492 }
3493 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3494 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3495 		loff_t length, unsigned flags, struct iomap *iomap,
3496 		struct iomap *srcmap)
3497 {
3498 	int ret;
3499 
3500 	/*
3501 	 * Even for writes we don't need to allocate blocks, so just pretend
3502 	 * we are reading to save overhead of starting a transaction.
3503 	 */
3504 	flags &= ~IOMAP_WRITE;
3505 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3506 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3507 	return ret;
3508 }
3509 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3510 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3511 			  ssize_t written, unsigned flags, struct iomap *iomap)
3512 {
3513 	/*
3514 	 * Check to see whether an error occurred while writing out the data to
3515 	 * the allocated blocks. If so, return the magic error code so that we
3516 	 * fallback to buffered I/O and attempt to complete the remainder of
3517 	 * the I/O. Any blocks that may have been allocated in preparation for
3518 	 * the direct I/O will be reused during buffered I/O.
3519 	 */
3520 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3521 		return -ENOTBLK;
3522 
3523 	return 0;
3524 }
3525 
3526 const struct iomap_ops ext4_iomap_ops = {
3527 	.iomap_begin		= ext4_iomap_begin,
3528 	.iomap_end		= ext4_iomap_end,
3529 };
3530 
3531 const struct iomap_ops ext4_iomap_overwrite_ops = {
3532 	.iomap_begin		= ext4_iomap_overwrite_begin,
3533 	.iomap_end		= ext4_iomap_end,
3534 };
3535 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3536 static bool ext4_iomap_is_delalloc(struct inode *inode,
3537 				   struct ext4_map_blocks *map)
3538 {
3539 	struct extent_status es;
3540 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3541 
3542 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3543 				  map->m_lblk, end, &es);
3544 
3545 	if (!es.es_len || es.es_lblk > end)
3546 		return false;
3547 
3548 	if (es.es_lblk > map->m_lblk) {
3549 		map->m_len = es.es_lblk - map->m_lblk;
3550 		return false;
3551 	}
3552 
3553 	offset = map->m_lblk - es.es_lblk;
3554 	map->m_len = es.es_len - offset;
3555 
3556 	return true;
3557 }
3558 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3559 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3560 				   loff_t length, unsigned int flags,
3561 				   struct iomap *iomap, struct iomap *srcmap)
3562 {
3563 	int ret;
3564 	bool delalloc = false;
3565 	struct ext4_map_blocks map;
3566 	u8 blkbits = inode->i_blkbits;
3567 
3568 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3569 		return -EINVAL;
3570 
3571 	if (ext4_has_inline_data(inode)) {
3572 		ret = ext4_inline_data_iomap(inode, iomap);
3573 		if (ret != -EAGAIN) {
3574 			if (ret == 0 && offset >= iomap->length)
3575 				ret = -ENOENT;
3576 			return ret;
3577 		}
3578 	}
3579 
3580 	/*
3581 	 * Calculate the first and last logical block respectively.
3582 	 */
3583 	map.m_lblk = offset >> blkbits;
3584 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3585 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3586 
3587 	/*
3588 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3589 	 * So handle it here itself instead of querying ext4_map_blocks().
3590 	 * Since ext4_map_blocks() will warn about it and will return
3591 	 * -EIO error.
3592 	 */
3593 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3594 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3595 
3596 		if (offset >= sbi->s_bitmap_maxbytes) {
3597 			map.m_flags = 0;
3598 			goto set_iomap;
3599 		}
3600 	}
3601 
3602 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3603 	if (ret < 0)
3604 		return ret;
3605 	if (ret == 0)
3606 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3607 
3608 set_iomap:
3609 	ext4_set_iomap(inode, iomap, &map, offset, length);
3610 	if (delalloc && iomap->type == IOMAP_HOLE)
3611 		iomap->type = IOMAP_DELALLOC;
3612 
3613 	return 0;
3614 }
3615 
3616 const struct iomap_ops ext4_iomap_report_ops = {
3617 	.iomap_begin = ext4_iomap_begin_report,
3618 };
3619 
3620 /*
3621  * Pages can be marked dirty completely asynchronously from ext4's journalling
3622  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3623  * much here because ->set_page_dirty is called under VFS locks.  The page is
3624  * not necessarily locked.
3625  *
3626  * We cannot just dirty the page and leave attached buffers clean, because the
3627  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3628  * or jbddirty because all the journalling code will explode.
3629  *
3630  * So what we do is to mark the page "pending dirty" and next time writepage
3631  * is called, propagate that into the buffers appropriately.
3632  */
ext4_journalled_set_page_dirty(struct page * page)3633 static int ext4_journalled_set_page_dirty(struct page *page)
3634 {
3635 	SetPageChecked(page);
3636 	return __set_page_dirty_nobuffers(page);
3637 }
3638 
ext4_set_page_dirty(struct page * page)3639 static int ext4_set_page_dirty(struct page *page)
3640 {
3641 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3642 	WARN_ON_ONCE(!page_has_buffers(page));
3643 	return __set_page_dirty_buffers(page);
3644 }
3645 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3646 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3647 				    struct file *file, sector_t *span)
3648 {
3649 	return iomap_swapfile_activate(sis, file, span,
3650 				       &ext4_iomap_report_ops);
3651 }
3652 
3653 static const struct address_space_operations ext4_aops = {
3654 	.readpage		= ext4_readpage,
3655 	.readahead		= ext4_readahead,
3656 	.writepage		= ext4_writepage,
3657 	.writepages		= ext4_writepages,
3658 	.write_begin		= ext4_write_begin,
3659 	.write_end		= ext4_write_end,
3660 	.set_page_dirty		= ext4_set_page_dirty,
3661 	.bmap			= ext4_bmap,
3662 	.invalidatepage		= ext4_invalidatepage,
3663 	.releasepage		= ext4_releasepage,
3664 	.direct_IO		= noop_direct_IO,
3665 	.migratepage		= buffer_migrate_page,
3666 	.is_partially_uptodate  = block_is_partially_uptodate,
3667 	.error_remove_page	= generic_error_remove_page,
3668 	.swap_activate		= ext4_iomap_swap_activate,
3669 };
3670 
3671 static const struct address_space_operations ext4_journalled_aops = {
3672 	.readpage		= ext4_readpage,
3673 	.readahead		= ext4_readahead,
3674 	.writepage		= ext4_writepage,
3675 	.writepages		= ext4_writepages,
3676 	.write_begin		= ext4_write_begin,
3677 	.write_end		= ext4_journalled_write_end,
3678 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3679 	.bmap			= ext4_bmap,
3680 	.invalidatepage		= ext4_journalled_invalidatepage,
3681 	.releasepage		= ext4_releasepage,
3682 	.direct_IO		= noop_direct_IO,
3683 	.is_partially_uptodate  = block_is_partially_uptodate,
3684 	.error_remove_page	= generic_error_remove_page,
3685 	.swap_activate		= ext4_iomap_swap_activate,
3686 };
3687 
3688 static const struct address_space_operations ext4_da_aops = {
3689 	.readpage		= ext4_readpage,
3690 	.readahead		= ext4_readahead,
3691 	.writepage		= ext4_writepage,
3692 	.writepages		= ext4_writepages,
3693 	.write_begin		= ext4_da_write_begin,
3694 	.write_end		= ext4_da_write_end,
3695 	.set_page_dirty		= ext4_set_page_dirty,
3696 	.bmap			= ext4_bmap,
3697 	.invalidatepage		= ext4_invalidatepage,
3698 	.releasepage		= ext4_releasepage,
3699 	.direct_IO		= noop_direct_IO,
3700 	.migratepage		= buffer_migrate_page,
3701 	.is_partially_uptodate  = block_is_partially_uptodate,
3702 	.error_remove_page	= generic_error_remove_page,
3703 	.swap_activate		= ext4_iomap_swap_activate,
3704 };
3705 
3706 static const struct address_space_operations ext4_dax_aops = {
3707 	.writepages		= ext4_dax_writepages,
3708 	.direct_IO		= noop_direct_IO,
3709 	.set_page_dirty		= noop_set_page_dirty,
3710 	.bmap			= ext4_bmap,
3711 	.invalidatepage		= noop_invalidatepage,
3712 	.swap_activate		= ext4_iomap_swap_activate,
3713 };
3714 
ext4_set_aops(struct inode * inode)3715 void ext4_set_aops(struct inode *inode)
3716 {
3717 	switch (ext4_inode_journal_mode(inode)) {
3718 	case EXT4_INODE_ORDERED_DATA_MODE:
3719 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3720 		break;
3721 	case EXT4_INODE_JOURNAL_DATA_MODE:
3722 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3723 		return;
3724 	default:
3725 		BUG();
3726 	}
3727 	if (IS_DAX(inode))
3728 		inode->i_mapping->a_ops = &ext4_dax_aops;
3729 	else if (test_opt(inode->i_sb, DELALLOC))
3730 		inode->i_mapping->a_ops = &ext4_da_aops;
3731 	else
3732 		inode->i_mapping->a_ops = &ext4_aops;
3733 }
3734 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3735 static int __ext4_block_zero_page_range(handle_t *handle,
3736 		struct address_space *mapping, loff_t from, loff_t length)
3737 {
3738 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3739 	unsigned offset = from & (PAGE_SIZE-1);
3740 	unsigned blocksize, pos;
3741 	ext4_lblk_t iblock;
3742 	struct inode *inode = mapping->host;
3743 	struct buffer_head *bh;
3744 	struct page *page;
3745 	int err = 0;
3746 
3747 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3748 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3749 	if (!page)
3750 		return -ENOMEM;
3751 
3752 	blocksize = inode->i_sb->s_blocksize;
3753 
3754 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3755 
3756 	if (!page_has_buffers(page))
3757 		create_empty_buffers(page, blocksize, 0);
3758 
3759 	/* Find the buffer that contains "offset" */
3760 	bh = page_buffers(page);
3761 	pos = blocksize;
3762 	while (offset >= pos) {
3763 		bh = bh->b_this_page;
3764 		iblock++;
3765 		pos += blocksize;
3766 	}
3767 	if (buffer_freed(bh)) {
3768 		BUFFER_TRACE(bh, "freed: skip");
3769 		goto unlock;
3770 	}
3771 	if (!buffer_mapped(bh)) {
3772 		BUFFER_TRACE(bh, "unmapped");
3773 		ext4_get_block(inode, iblock, bh, 0);
3774 		/* unmapped? It's a hole - nothing to do */
3775 		if (!buffer_mapped(bh)) {
3776 			BUFFER_TRACE(bh, "still unmapped");
3777 			goto unlock;
3778 		}
3779 	}
3780 
3781 	/* Ok, it's mapped. Make sure it's up-to-date */
3782 	if (PageUptodate(page))
3783 		set_buffer_uptodate(bh);
3784 
3785 	if (!buffer_uptodate(bh)) {
3786 		err = ext4_read_bh_lock(bh, 0, true);
3787 		if (err)
3788 			goto unlock;
3789 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3790 			/* We expect the key to be set. */
3791 			BUG_ON(!fscrypt_has_encryption_key(inode));
3792 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3793 							       bh_offset(bh));
3794 			if (err) {
3795 				clear_buffer_uptodate(bh);
3796 				goto unlock;
3797 			}
3798 		}
3799 	}
3800 	if (ext4_should_journal_data(inode)) {
3801 		BUFFER_TRACE(bh, "get write access");
3802 		err = ext4_journal_get_write_access(handle, bh);
3803 		if (err)
3804 			goto unlock;
3805 	}
3806 	zero_user(page, offset, length);
3807 	BUFFER_TRACE(bh, "zeroed end of block");
3808 
3809 	if (ext4_should_journal_data(inode)) {
3810 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3811 	} else {
3812 		err = 0;
3813 		mark_buffer_dirty(bh);
3814 		if (ext4_should_order_data(inode))
3815 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3816 					length);
3817 	}
3818 
3819 unlock:
3820 	unlock_page(page);
3821 	put_page(page);
3822 	return err;
3823 }
3824 
3825 /*
3826  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3827  * starting from file offset 'from'.  The range to be zero'd must
3828  * be contained with in one block.  If the specified range exceeds
3829  * the end of the block it will be shortened to end of the block
3830  * that corresponds to 'from'
3831  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3832 static int ext4_block_zero_page_range(handle_t *handle,
3833 		struct address_space *mapping, loff_t from, loff_t length)
3834 {
3835 	struct inode *inode = mapping->host;
3836 	unsigned offset = from & (PAGE_SIZE-1);
3837 	unsigned blocksize = inode->i_sb->s_blocksize;
3838 	unsigned max = blocksize - (offset & (blocksize - 1));
3839 
3840 	/*
3841 	 * correct length if it does not fall between
3842 	 * 'from' and the end of the block
3843 	 */
3844 	if (length > max || length < 0)
3845 		length = max;
3846 
3847 	if (IS_DAX(inode)) {
3848 		return iomap_zero_range(inode, from, length, NULL,
3849 					&ext4_iomap_ops);
3850 	}
3851 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3852 }
3853 
3854 /*
3855  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3856  * up to the end of the block which corresponds to `from'.
3857  * This required during truncate. We need to physically zero the tail end
3858  * of that block so it doesn't yield old data if the file is later grown.
3859  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3860 static int ext4_block_truncate_page(handle_t *handle,
3861 		struct address_space *mapping, loff_t from)
3862 {
3863 	unsigned offset = from & (PAGE_SIZE-1);
3864 	unsigned length;
3865 	unsigned blocksize;
3866 	struct inode *inode = mapping->host;
3867 
3868 	/* If we are processing an encrypted inode during orphan list handling */
3869 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3870 		return 0;
3871 
3872 	blocksize = inode->i_sb->s_blocksize;
3873 	length = blocksize - (offset & (blocksize - 1));
3874 
3875 	return ext4_block_zero_page_range(handle, mapping, from, length);
3876 }
3877 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3878 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3879 			     loff_t lstart, loff_t length)
3880 {
3881 	struct super_block *sb = inode->i_sb;
3882 	struct address_space *mapping = inode->i_mapping;
3883 	unsigned partial_start, partial_end;
3884 	ext4_fsblk_t start, end;
3885 	loff_t byte_end = (lstart + length - 1);
3886 	int err = 0;
3887 
3888 	partial_start = lstart & (sb->s_blocksize - 1);
3889 	partial_end = byte_end & (sb->s_blocksize - 1);
3890 
3891 	start = lstart >> sb->s_blocksize_bits;
3892 	end = byte_end >> sb->s_blocksize_bits;
3893 
3894 	/* Handle partial zero within the single block */
3895 	if (start == end &&
3896 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3897 		err = ext4_block_zero_page_range(handle, mapping,
3898 						 lstart, length);
3899 		return err;
3900 	}
3901 	/* Handle partial zero out on the start of the range */
3902 	if (partial_start) {
3903 		err = ext4_block_zero_page_range(handle, mapping,
3904 						 lstart, sb->s_blocksize);
3905 		if (err)
3906 			return err;
3907 	}
3908 	/* Handle partial zero out on the end of the range */
3909 	if (partial_end != sb->s_blocksize - 1)
3910 		err = ext4_block_zero_page_range(handle, mapping,
3911 						 byte_end - partial_end,
3912 						 partial_end + 1);
3913 	return err;
3914 }
3915 
ext4_can_truncate(struct inode * inode)3916 int ext4_can_truncate(struct inode *inode)
3917 {
3918 	if (S_ISREG(inode->i_mode))
3919 		return 1;
3920 	if (S_ISDIR(inode->i_mode))
3921 		return 1;
3922 	if (S_ISLNK(inode->i_mode))
3923 		return !ext4_inode_is_fast_symlink(inode);
3924 	return 0;
3925 }
3926 
3927 /*
3928  * We have to make sure i_disksize gets properly updated before we truncate
3929  * page cache due to hole punching or zero range. Otherwise i_disksize update
3930  * can get lost as it may have been postponed to submission of writeback but
3931  * that will never happen after we truncate page cache.
3932  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3933 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3934 				      loff_t len)
3935 {
3936 	handle_t *handle;
3937 	int ret;
3938 
3939 	loff_t size = i_size_read(inode);
3940 
3941 	WARN_ON(!inode_is_locked(inode));
3942 	if (offset > size || offset + len < size)
3943 		return 0;
3944 
3945 	if (EXT4_I(inode)->i_disksize >= size)
3946 		return 0;
3947 
3948 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3949 	if (IS_ERR(handle))
3950 		return PTR_ERR(handle);
3951 	ext4_update_i_disksize(inode, size);
3952 	ret = ext4_mark_inode_dirty(handle, inode);
3953 	ext4_journal_stop(handle);
3954 
3955 	return ret;
3956 }
3957 
ext4_wait_dax_page(struct ext4_inode_info * ei)3958 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3959 {
3960 	up_write(&ei->i_mmap_sem);
3961 	schedule();
3962 	down_write(&ei->i_mmap_sem);
3963 }
3964 
ext4_break_layouts(struct inode * inode)3965 int ext4_break_layouts(struct inode *inode)
3966 {
3967 	struct ext4_inode_info *ei = EXT4_I(inode);
3968 	struct page *page;
3969 	int error;
3970 
3971 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3972 		return -EINVAL;
3973 
3974 	do {
3975 		page = dax_layout_busy_page(inode->i_mapping);
3976 		if (!page)
3977 			return 0;
3978 
3979 		error = ___wait_var_event(&page->_refcount,
3980 				atomic_read(&page->_refcount) == 1,
3981 				TASK_INTERRUPTIBLE, 0, 0,
3982 				ext4_wait_dax_page(ei));
3983 	} while (error == 0);
3984 
3985 	return error;
3986 }
3987 
3988 /*
3989  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3990  * associated with the given offset and length
3991  *
3992  * @inode:  File inode
3993  * @offset: The offset where the hole will begin
3994  * @len:    The length of the hole
3995  *
3996  * Returns: 0 on success or negative on failure
3997  */
3998 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3999 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4000 {
4001 	struct inode *inode = file_inode(file);
4002 	struct super_block *sb = inode->i_sb;
4003 	ext4_lblk_t first_block, stop_block;
4004 	struct address_space *mapping = inode->i_mapping;
4005 	loff_t first_block_offset, last_block_offset, max_length;
4006 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4007 	handle_t *handle;
4008 	unsigned int credits;
4009 	int ret = 0, ret2 = 0;
4010 
4011 	trace_ext4_punch_hole(inode, offset, length, 0);
4012 
4013 	/*
4014 	 * Write out all dirty pages to avoid race conditions
4015 	 * Then release them.
4016 	 */
4017 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4018 		ret = filemap_write_and_wait_range(mapping, offset,
4019 						   offset + length - 1);
4020 		if (ret)
4021 			return ret;
4022 	}
4023 
4024 	inode_lock(inode);
4025 
4026 	/* No need to punch hole beyond i_size */
4027 	if (offset >= inode->i_size)
4028 		goto out_mutex;
4029 
4030 	/*
4031 	 * If the hole extends beyond i_size, set the hole
4032 	 * to end after the page that contains i_size
4033 	 */
4034 	if (offset + length > inode->i_size) {
4035 		length = inode->i_size +
4036 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4037 		   offset;
4038 	}
4039 
4040 	/*
4041 	 * For punch hole the length + offset needs to be within one block
4042 	 * before last range. Adjust the length if it goes beyond that limit.
4043 	 */
4044 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4045 	if (offset + length > max_length)
4046 		length = max_length - offset;
4047 
4048 	if (offset & (sb->s_blocksize - 1) ||
4049 	    (offset + length) & (sb->s_blocksize - 1)) {
4050 		/*
4051 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4052 		 * partial block
4053 		 */
4054 		ret = ext4_inode_attach_jinode(inode);
4055 		if (ret < 0)
4056 			goto out_mutex;
4057 
4058 	}
4059 
4060 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4061 	inode_dio_wait(inode);
4062 
4063 	ret = file_modified(file);
4064 	if (ret)
4065 		goto out_mutex;
4066 
4067 	/*
4068 	 * Prevent page faults from reinstantiating pages we have released from
4069 	 * page cache.
4070 	 */
4071 	down_write(&EXT4_I(inode)->i_mmap_sem);
4072 
4073 	ret = ext4_break_layouts(inode);
4074 	if (ret)
4075 		goto out_dio;
4076 
4077 	first_block_offset = round_up(offset, sb->s_blocksize);
4078 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4079 
4080 	/* Now release the pages and zero block aligned part of pages*/
4081 	if (last_block_offset > first_block_offset) {
4082 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4083 		if (ret)
4084 			goto out_dio;
4085 		truncate_pagecache_range(inode, first_block_offset,
4086 					 last_block_offset);
4087 	}
4088 
4089 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4090 		credits = ext4_writepage_trans_blocks(inode);
4091 	else
4092 		credits = ext4_blocks_for_truncate(inode);
4093 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4094 	if (IS_ERR(handle)) {
4095 		ret = PTR_ERR(handle);
4096 		ext4_std_error(sb, ret);
4097 		goto out_dio;
4098 	}
4099 
4100 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4101 				       length);
4102 	if (ret)
4103 		goto out_stop;
4104 
4105 	first_block = (offset + sb->s_blocksize - 1) >>
4106 		EXT4_BLOCK_SIZE_BITS(sb);
4107 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4108 
4109 	/* If there are blocks to remove, do it */
4110 	if (stop_block > first_block) {
4111 
4112 		down_write(&EXT4_I(inode)->i_data_sem);
4113 		ext4_discard_preallocations(inode, 0);
4114 
4115 		ret = ext4_es_remove_extent(inode, first_block,
4116 					    stop_block - first_block);
4117 		if (ret) {
4118 			up_write(&EXT4_I(inode)->i_data_sem);
4119 			goto out_stop;
4120 		}
4121 
4122 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4123 			ret = ext4_ext_remove_space(inode, first_block,
4124 						    stop_block - 1);
4125 		else
4126 			ret = ext4_ind_remove_space(handle, inode, first_block,
4127 						    stop_block);
4128 
4129 		up_write(&EXT4_I(inode)->i_data_sem);
4130 	}
4131 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4132 	if (IS_SYNC(inode))
4133 		ext4_handle_sync(handle);
4134 
4135 	inode->i_mtime = inode->i_ctime = current_time(inode);
4136 	ret2 = ext4_mark_inode_dirty(handle, inode);
4137 	if (unlikely(ret2))
4138 		ret = ret2;
4139 	if (ret >= 0)
4140 		ext4_update_inode_fsync_trans(handle, inode, 1);
4141 out_stop:
4142 	ext4_journal_stop(handle);
4143 out_dio:
4144 	up_write(&EXT4_I(inode)->i_mmap_sem);
4145 out_mutex:
4146 	inode_unlock(inode);
4147 	return ret;
4148 }
4149 
ext4_inode_attach_jinode(struct inode * inode)4150 int ext4_inode_attach_jinode(struct inode *inode)
4151 {
4152 	struct ext4_inode_info *ei = EXT4_I(inode);
4153 	struct jbd2_inode *jinode;
4154 
4155 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4156 		return 0;
4157 
4158 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4159 	spin_lock(&inode->i_lock);
4160 	if (!ei->jinode) {
4161 		if (!jinode) {
4162 			spin_unlock(&inode->i_lock);
4163 			return -ENOMEM;
4164 		}
4165 		ei->jinode = jinode;
4166 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4167 		jinode = NULL;
4168 	}
4169 	spin_unlock(&inode->i_lock);
4170 	if (unlikely(jinode != NULL))
4171 		jbd2_free_inode(jinode);
4172 	return 0;
4173 }
4174 
4175 /*
4176  * ext4_truncate()
4177  *
4178  * We block out ext4_get_block() block instantiations across the entire
4179  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4180  * simultaneously on behalf of the same inode.
4181  *
4182  * As we work through the truncate and commit bits of it to the journal there
4183  * is one core, guiding principle: the file's tree must always be consistent on
4184  * disk.  We must be able to restart the truncate after a crash.
4185  *
4186  * The file's tree may be transiently inconsistent in memory (although it
4187  * probably isn't), but whenever we close off and commit a journal transaction,
4188  * the contents of (the filesystem + the journal) must be consistent and
4189  * restartable.  It's pretty simple, really: bottom up, right to left (although
4190  * left-to-right works OK too).
4191  *
4192  * Note that at recovery time, journal replay occurs *before* the restart of
4193  * truncate against the orphan inode list.
4194  *
4195  * The committed inode has the new, desired i_size (which is the same as
4196  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4197  * that this inode's truncate did not complete and it will again call
4198  * ext4_truncate() to have another go.  So there will be instantiated blocks
4199  * to the right of the truncation point in a crashed ext4 filesystem.  But
4200  * that's fine - as long as they are linked from the inode, the post-crash
4201  * ext4_truncate() run will find them and release them.
4202  */
ext4_truncate(struct inode * inode)4203 int ext4_truncate(struct inode *inode)
4204 {
4205 	struct ext4_inode_info *ei = EXT4_I(inode);
4206 	unsigned int credits;
4207 	int err = 0, err2;
4208 	handle_t *handle;
4209 	struct address_space *mapping = inode->i_mapping;
4210 
4211 	/*
4212 	 * There is a possibility that we're either freeing the inode
4213 	 * or it's a completely new inode. In those cases we might not
4214 	 * have i_mutex locked because it's not necessary.
4215 	 */
4216 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4217 		WARN_ON(!inode_is_locked(inode));
4218 	trace_ext4_truncate_enter(inode);
4219 
4220 	if (!ext4_can_truncate(inode))
4221 		goto out_trace;
4222 
4223 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4224 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4225 
4226 	if (ext4_has_inline_data(inode)) {
4227 		int has_inline = 1;
4228 
4229 		err = ext4_inline_data_truncate(inode, &has_inline);
4230 		if (err || has_inline)
4231 			goto out_trace;
4232 	}
4233 
4234 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4235 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4236 		err = ext4_inode_attach_jinode(inode);
4237 		if (err)
4238 			goto out_trace;
4239 	}
4240 
4241 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4242 		credits = ext4_writepage_trans_blocks(inode);
4243 	else
4244 		credits = ext4_blocks_for_truncate(inode);
4245 
4246 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4247 	if (IS_ERR(handle)) {
4248 		err = PTR_ERR(handle);
4249 		goto out_trace;
4250 	}
4251 
4252 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4253 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4254 
4255 	/*
4256 	 * We add the inode to the orphan list, so that if this
4257 	 * truncate spans multiple transactions, and we crash, we will
4258 	 * resume the truncate when the filesystem recovers.  It also
4259 	 * marks the inode dirty, to catch the new size.
4260 	 *
4261 	 * Implication: the file must always be in a sane, consistent
4262 	 * truncatable state while each transaction commits.
4263 	 */
4264 	err = ext4_orphan_add(handle, inode);
4265 	if (err)
4266 		goto out_stop;
4267 
4268 	down_write(&EXT4_I(inode)->i_data_sem);
4269 
4270 	ext4_discard_preallocations(inode, 0);
4271 
4272 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273 		err = ext4_ext_truncate(handle, inode);
4274 	else
4275 		ext4_ind_truncate(handle, inode);
4276 
4277 	up_write(&ei->i_data_sem);
4278 	if (err)
4279 		goto out_stop;
4280 
4281 	if (IS_SYNC(inode))
4282 		ext4_handle_sync(handle);
4283 
4284 out_stop:
4285 	/*
4286 	 * If this was a simple ftruncate() and the file will remain alive,
4287 	 * then we need to clear up the orphan record which we created above.
4288 	 * However, if this was a real unlink then we were called by
4289 	 * ext4_evict_inode(), and we allow that function to clean up the
4290 	 * orphan info for us.
4291 	 */
4292 	if (inode->i_nlink)
4293 		ext4_orphan_del(handle, inode);
4294 
4295 	inode->i_mtime = inode->i_ctime = current_time(inode);
4296 	err2 = ext4_mark_inode_dirty(handle, inode);
4297 	if (unlikely(err2 && !err))
4298 		err = err2;
4299 	ext4_journal_stop(handle);
4300 
4301 out_trace:
4302 	trace_ext4_truncate_exit(inode);
4303 	return err;
4304 }
4305 
ext4_inode_peek_iversion(const struct inode * inode)4306 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4307 {
4308 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4309 		return inode_peek_iversion_raw(inode);
4310 	else
4311 		return inode_peek_iversion(inode);
4312 }
4313 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4314 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4315 				 struct ext4_inode_info *ei)
4316 {
4317 	struct inode *inode = &(ei->vfs_inode);
4318 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4319 	struct super_block *sb = inode->i_sb;
4320 
4321 	if (i_blocks <= ~0U) {
4322 		/*
4323 		 * i_blocks can be represented in a 32 bit variable
4324 		 * as multiple of 512 bytes
4325 		 */
4326 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4327 		raw_inode->i_blocks_high = 0;
4328 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4329 		return 0;
4330 	}
4331 
4332 	/*
4333 	 * This should never happen since sb->s_maxbytes should not have
4334 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4335 	 * feature in ext4_fill_super().
4336 	 */
4337 	if (!ext4_has_feature_huge_file(sb))
4338 		return -EFSCORRUPTED;
4339 
4340 	if (i_blocks <= 0xffffffffffffULL) {
4341 		/*
4342 		 * i_blocks can be represented in a 48 bit variable
4343 		 * as multiple of 512 bytes
4344 		 */
4345 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4346 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4347 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4348 	} else {
4349 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4350 		/* i_block is stored in file system block size */
4351 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4352 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4353 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4354 	}
4355 	return 0;
4356 }
4357 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4358 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4359 {
4360 	struct ext4_inode_info *ei = EXT4_I(inode);
4361 	uid_t i_uid;
4362 	gid_t i_gid;
4363 	projid_t i_projid;
4364 	int block;
4365 	int err;
4366 
4367 	err = ext4_inode_blocks_set(raw_inode, ei);
4368 
4369 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4370 	i_uid = i_uid_read(inode);
4371 	i_gid = i_gid_read(inode);
4372 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4373 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4374 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4375 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4376 		/*
4377 		 * Fix up interoperability with old kernels. Otherwise,
4378 		 * old inodes get re-used with the upper 16 bits of the
4379 		 * uid/gid intact.
4380 		 */
4381 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4382 			raw_inode->i_uid_high = 0;
4383 			raw_inode->i_gid_high = 0;
4384 		} else {
4385 			raw_inode->i_uid_high =
4386 				cpu_to_le16(high_16_bits(i_uid));
4387 			raw_inode->i_gid_high =
4388 				cpu_to_le16(high_16_bits(i_gid));
4389 		}
4390 	} else {
4391 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4392 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4393 		raw_inode->i_uid_high = 0;
4394 		raw_inode->i_gid_high = 0;
4395 	}
4396 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4397 
4398 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4399 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4400 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4401 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4402 
4403 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4404 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4405 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4406 		raw_inode->i_file_acl_high =
4407 			cpu_to_le16(ei->i_file_acl >> 32);
4408 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4409 	ext4_isize_set(raw_inode, ei->i_disksize);
4410 
4411 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4412 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4413 		if (old_valid_dev(inode->i_rdev)) {
4414 			raw_inode->i_block[0] =
4415 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4416 			raw_inode->i_block[1] = 0;
4417 		} else {
4418 			raw_inode->i_block[0] = 0;
4419 			raw_inode->i_block[1] =
4420 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4421 			raw_inode->i_block[2] = 0;
4422 		}
4423 	} else if (!ext4_has_inline_data(inode)) {
4424 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4425 			raw_inode->i_block[block] = ei->i_data[block];
4426 	}
4427 
4428 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4429 		u64 ivers = ext4_inode_peek_iversion(inode);
4430 
4431 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4432 		if (ei->i_extra_isize) {
4433 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4434 				raw_inode->i_version_hi =
4435 					cpu_to_le32(ivers >> 32);
4436 			raw_inode->i_extra_isize =
4437 				cpu_to_le16(ei->i_extra_isize);
4438 		}
4439 	}
4440 
4441 	if (i_projid != EXT4_DEF_PROJID &&
4442 	    !ext4_has_feature_project(inode->i_sb))
4443 		err = err ?: -EFSCORRUPTED;
4444 
4445 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4446 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4447 		raw_inode->i_projid = cpu_to_le32(i_projid);
4448 
4449 	ext4_inode_csum_set(inode, raw_inode, ei);
4450 	return err;
4451 }
4452 
4453 /*
4454  * ext4_get_inode_loc returns with an extra refcount against the inode's
4455  * underlying buffer_head on success. If we pass 'inode' and it does not
4456  * have in-inode xattr, we have all inode data in memory that is needed
4457  * to recreate the on-disk version of this inode.
4458  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4459 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4460 				struct inode *inode, struct ext4_iloc *iloc,
4461 				ext4_fsblk_t *ret_block)
4462 {
4463 	struct ext4_group_desc	*gdp;
4464 	struct buffer_head	*bh;
4465 	ext4_fsblk_t		block;
4466 	struct blk_plug		plug;
4467 	int			inodes_per_block, inode_offset;
4468 
4469 	iloc->bh = NULL;
4470 	if (ino < EXT4_ROOT_INO ||
4471 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4472 		return -EFSCORRUPTED;
4473 
4474 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4475 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4476 	if (!gdp)
4477 		return -EIO;
4478 
4479 	/*
4480 	 * Figure out the offset within the block group inode table
4481 	 */
4482 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4483 	inode_offset = ((ino - 1) %
4484 			EXT4_INODES_PER_GROUP(sb));
4485 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4486 
4487 	block = ext4_inode_table(sb, gdp);
4488 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4489 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4490 		ext4_error(sb, "Invalid inode table block %llu in "
4491 			   "block_group %u", block, iloc->block_group);
4492 		return -EFSCORRUPTED;
4493 	}
4494 	block += (inode_offset / inodes_per_block);
4495 
4496 	bh = sb_getblk(sb, block);
4497 	if (unlikely(!bh))
4498 		return -ENOMEM;
4499 	if (!buffer_uptodate(bh)) {
4500 		lock_buffer(bh);
4501 
4502 		if (ext4_buffer_uptodate(bh)) {
4503 			/* someone brought it uptodate while we waited */
4504 			unlock_buffer(bh);
4505 			goto has_buffer;
4506 		}
4507 
4508 		/*
4509 		 * If we have all information of the inode in memory and this
4510 		 * is the only valid inode in the block, we need not read the
4511 		 * block.
4512 		 */
4513 		if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4514 			struct buffer_head *bitmap_bh;
4515 			int i, start;
4516 
4517 			start = inode_offset & ~(inodes_per_block - 1);
4518 
4519 			/* Is the inode bitmap in cache? */
4520 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4521 			if (unlikely(!bitmap_bh))
4522 				goto make_io;
4523 
4524 			/*
4525 			 * If the inode bitmap isn't in cache then the
4526 			 * optimisation may end up performing two reads instead
4527 			 * of one, so skip it.
4528 			 */
4529 			if (!buffer_uptodate(bitmap_bh)) {
4530 				brelse(bitmap_bh);
4531 				goto make_io;
4532 			}
4533 			for (i = start; i < start + inodes_per_block; i++) {
4534 				if (i == inode_offset)
4535 					continue;
4536 				if (ext4_test_bit(i, bitmap_bh->b_data))
4537 					break;
4538 			}
4539 			brelse(bitmap_bh);
4540 			if (i == start + inodes_per_block) {
4541 				struct ext4_inode *raw_inode =
4542 					(struct ext4_inode *) (bh->b_data + iloc->offset);
4543 
4544 				/* all other inodes are free, so skip I/O */
4545 				memset(bh->b_data, 0, bh->b_size);
4546 				if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4547 					ext4_fill_raw_inode(inode, raw_inode);
4548 				set_buffer_uptodate(bh);
4549 				unlock_buffer(bh);
4550 				goto has_buffer;
4551 			}
4552 		}
4553 
4554 make_io:
4555 		/*
4556 		 * If we need to do any I/O, try to pre-readahead extra
4557 		 * blocks from the inode table.
4558 		 */
4559 		blk_start_plug(&plug);
4560 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4561 			ext4_fsblk_t b, end, table;
4562 			unsigned num;
4563 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4564 
4565 			table = ext4_inode_table(sb, gdp);
4566 			/* s_inode_readahead_blks is always a power of 2 */
4567 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4568 			if (table > b)
4569 				b = table;
4570 			end = b + ra_blks;
4571 			num = EXT4_INODES_PER_GROUP(sb);
4572 			if (ext4_has_group_desc_csum(sb))
4573 				num -= ext4_itable_unused_count(sb, gdp);
4574 			table += num / inodes_per_block;
4575 			if (end > table)
4576 				end = table;
4577 			while (b <= end)
4578 				ext4_sb_breadahead_unmovable(sb, b++);
4579 		}
4580 
4581 		/*
4582 		 * There are other valid inodes in the buffer, this inode
4583 		 * has in-inode xattrs, or we don't have this inode in memory.
4584 		 * Read the block from disk.
4585 		 */
4586 		trace_ext4_load_inode(sb, ino);
4587 		ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4588 		blk_finish_plug(&plug);
4589 		wait_on_buffer(bh);
4590 		ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4591 		if (!buffer_uptodate(bh)) {
4592 			if (ret_block)
4593 				*ret_block = block;
4594 			brelse(bh);
4595 			return -EIO;
4596 		}
4597 	}
4598 has_buffer:
4599 	iloc->bh = bh;
4600 	return 0;
4601 }
4602 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4603 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4604 					struct ext4_iloc *iloc)
4605 {
4606 	ext4_fsblk_t err_blk = 0;
4607 	int ret;
4608 
4609 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4610 					&err_blk);
4611 
4612 	if (ret == -EIO)
4613 		ext4_error_inode_block(inode, err_blk, EIO,
4614 					"unable to read itable block");
4615 
4616 	return ret;
4617 }
4618 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4619 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4620 {
4621 	ext4_fsblk_t err_blk = 0;
4622 	int ret;
4623 
4624 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4625 					&err_blk);
4626 
4627 	if (ret == -EIO)
4628 		ext4_error_inode_block(inode, err_blk, EIO,
4629 					"unable to read itable block");
4630 
4631 	return ret;
4632 }
4633 
4634 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4635 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4636 			  struct ext4_iloc *iloc)
4637 {
4638 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4639 }
4640 
ext4_should_enable_dax(struct inode * inode)4641 static bool ext4_should_enable_dax(struct inode *inode)
4642 {
4643 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4644 
4645 	if (test_opt2(inode->i_sb, DAX_NEVER))
4646 		return false;
4647 	if (!S_ISREG(inode->i_mode))
4648 		return false;
4649 	if (ext4_should_journal_data(inode))
4650 		return false;
4651 	if (ext4_has_inline_data(inode))
4652 		return false;
4653 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4654 		return false;
4655 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4656 		return false;
4657 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4658 		return false;
4659 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4660 		return true;
4661 
4662 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4663 }
4664 
ext4_set_inode_flags(struct inode * inode,bool init)4665 void ext4_set_inode_flags(struct inode *inode, bool init)
4666 {
4667 	unsigned int flags = EXT4_I(inode)->i_flags;
4668 	unsigned int new_fl = 0;
4669 
4670 	WARN_ON_ONCE(IS_DAX(inode) && init);
4671 
4672 	if (flags & EXT4_SYNC_FL)
4673 		new_fl |= S_SYNC;
4674 	if (flags & EXT4_APPEND_FL)
4675 		new_fl |= S_APPEND;
4676 	if (flags & EXT4_IMMUTABLE_FL)
4677 		new_fl |= S_IMMUTABLE;
4678 	if (flags & EXT4_NOATIME_FL)
4679 		new_fl |= S_NOATIME;
4680 	if (flags & EXT4_DIRSYNC_FL)
4681 		new_fl |= S_DIRSYNC;
4682 
4683 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4684 	 * here if already set. */
4685 	new_fl |= (inode->i_flags & S_DAX);
4686 	if (init && ext4_should_enable_dax(inode))
4687 		new_fl |= S_DAX;
4688 
4689 	if (flags & EXT4_ENCRYPT_FL)
4690 		new_fl |= S_ENCRYPTED;
4691 	if (flags & EXT4_CASEFOLD_FL)
4692 		new_fl |= S_CASEFOLD;
4693 	if (flags & EXT4_VERITY_FL)
4694 		new_fl |= S_VERITY;
4695 	inode_set_flags(inode, new_fl,
4696 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4697 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4698 }
4699 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4700 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4701 				  struct ext4_inode_info *ei)
4702 {
4703 	blkcnt_t i_blocks ;
4704 	struct inode *inode = &(ei->vfs_inode);
4705 	struct super_block *sb = inode->i_sb;
4706 
4707 	if (ext4_has_feature_huge_file(sb)) {
4708 		/* we are using combined 48 bit field */
4709 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4710 					le32_to_cpu(raw_inode->i_blocks_lo);
4711 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4712 			/* i_blocks represent file system block size */
4713 			return i_blocks  << (inode->i_blkbits - 9);
4714 		} else {
4715 			return i_blocks;
4716 		}
4717 	} else {
4718 		return le32_to_cpu(raw_inode->i_blocks_lo);
4719 	}
4720 }
4721 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4722 static inline int ext4_iget_extra_inode(struct inode *inode,
4723 					 struct ext4_inode *raw_inode,
4724 					 struct ext4_inode_info *ei)
4725 {
4726 	__le32 *magic = (void *)raw_inode +
4727 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4728 
4729 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4730 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4731 		int err;
4732 
4733 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4734 		err = ext4_find_inline_data_nolock(inode);
4735 		if (!err && ext4_has_inline_data(inode))
4736 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4737 		return err;
4738 	} else
4739 		EXT4_I(inode)->i_inline_off = 0;
4740 	return 0;
4741 }
4742 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4743 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4744 {
4745 	if (!ext4_has_feature_project(inode->i_sb))
4746 		return -EOPNOTSUPP;
4747 	*projid = EXT4_I(inode)->i_projid;
4748 	return 0;
4749 }
4750 
4751 /*
4752  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4753  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4754  * set.
4755  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4756 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4757 {
4758 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4759 		inode_set_iversion_raw(inode, val);
4760 	else
4761 		inode_set_iversion_queried(inode, val);
4762 }
4763 
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4764 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4765 
4766 {
4767 	if (flags & EXT4_IGET_EA_INODE) {
4768 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4769 			return "missing EA_INODE flag";
4770 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4771 		    EXT4_I(inode)->i_file_acl)
4772 			return "ea_inode with extended attributes";
4773 	} else {
4774 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4775 			return "unexpected EA_INODE flag";
4776 	}
4777 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4778 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4779 	return NULL;
4780 }
4781 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4782 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4783 			  ext4_iget_flags flags, const char *function,
4784 			  unsigned int line)
4785 {
4786 	struct ext4_iloc iloc;
4787 	struct ext4_inode *raw_inode;
4788 	struct ext4_inode_info *ei;
4789 	struct inode *inode;
4790 	const char *err_str;
4791 	journal_t *journal = EXT4_SB(sb)->s_journal;
4792 	long ret;
4793 	loff_t size;
4794 	int block;
4795 	uid_t i_uid;
4796 	gid_t i_gid;
4797 	projid_t i_projid;
4798 
4799 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4800 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4801 	    (ino < EXT4_ROOT_INO) ||
4802 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4803 		if (flags & EXT4_IGET_HANDLE)
4804 			return ERR_PTR(-ESTALE);
4805 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4806 			     "inode #%lu: comm %s: iget: illegal inode #",
4807 			     ino, current->comm);
4808 		return ERR_PTR(-EFSCORRUPTED);
4809 	}
4810 
4811 	inode = iget_locked(sb, ino);
4812 	if (!inode)
4813 		return ERR_PTR(-ENOMEM);
4814 	if (!(inode->i_state & I_NEW)) {
4815 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4816 			ext4_error_inode(inode, function, line, 0, err_str);
4817 			iput(inode);
4818 			return ERR_PTR(-EFSCORRUPTED);
4819 		}
4820 		return inode;
4821 	}
4822 
4823 	ei = EXT4_I(inode);
4824 	iloc.bh = NULL;
4825 
4826 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4827 	if (ret < 0)
4828 		goto bad_inode;
4829 	raw_inode = ext4_raw_inode(&iloc);
4830 
4831 	if ((flags & EXT4_IGET_HANDLE) &&
4832 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4833 		ret = -ESTALE;
4834 		goto bad_inode;
4835 	}
4836 
4837 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4838 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4839 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4840 			EXT4_INODE_SIZE(inode->i_sb) ||
4841 		    (ei->i_extra_isize & 3)) {
4842 			ext4_error_inode(inode, function, line, 0,
4843 					 "iget: bad extra_isize %u "
4844 					 "(inode size %u)",
4845 					 ei->i_extra_isize,
4846 					 EXT4_INODE_SIZE(inode->i_sb));
4847 			ret = -EFSCORRUPTED;
4848 			goto bad_inode;
4849 		}
4850 	} else
4851 		ei->i_extra_isize = 0;
4852 
4853 	/* Precompute checksum seed for inode metadata */
4854 	if (ext4_has_metadata_csum(sb)) {
4855 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4856 		__u32 csum;
4857 		__le32 inum = cpu_to_le32(inode->i_ino);
4858 		__le32 gen = raw_inode->i_generation;
4859 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4860 				   sizeof(inum));
4861 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4862 					      sizeof(gen));
4863 	}
4864 
4865 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4866 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4867 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4868 		ext4_error_inode_err(inode, function, line, 0,
4869 				EFSBADCRC, "iget: checksum invalid");
4870 		ret = -EFSBADCRC;
4871 		goto bad_inode;
4872 	}
4873 
4874 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4875 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4876 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4877 	if (ext4_has_feature_project(sb) &&
4878 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4879 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4880 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4881 	else
4882 		i_projid = EXT4_DEF_PROJID;
4883 
4884 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4885 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4886 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4887 	}
4888 	i_uid_write(inode, i_uid);
4889 	i_gid_write(inode, i_gid);
4890 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4891 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4892 
4893 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4894 	ei->i_inline_off = 0;
4895 	ei->i_dir_start_lookup = 0;
4896 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4897 	/* We now have enough fields to check if the inode was active or not.
4898 	 * This is needed because nfsd might try to access dead inodes
4899 	 * the test is that same one that e2fsck uses
4900 	 * NeilBrown 1999oct15
4901 	 */
4902 	if (inode->i_nlink == 0) {
4903 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4904 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4905 		    ino != EXT4_BOOT_LOADER_INO) {
4906 			/* this inode is deleted or unallocated */
4907 			if (flags & EXT4_IGET_SPECIAL) {
4908 				ext4_error_inode(inode, function, line, 0,
4909 						 "iget: special inode unallocated");
4910 				ret = -EFSCORRUPTED;
4911 			} else
4912 				ret = -ESTALE;
4913 			goto bad_inode;
4914 		}
4915 		/* The only unlinked inodes we let through here have
4916 		 * valid i_mode and are being read by the orphan
4917 		 * recovery code: that's fine, we're about to complete
4918 		 * the process of deleting those.
4919 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4920 		 * not initialized on a new filesystem. */
4921 	}
4922 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4923 	ext4_set_inode_flags(inode, true);
4924 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4925 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4926 	if (ext4_has_feature_64bit(sb))
4927 		ei->i_file_acl |=
4928 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4929 	inode->i_size = ext4_isize(sb, raw_inode);
4930 	if ((size = i_size_read(inode)) < 0) {
4931 		ext4_error_inode(inode, function, line, 0,
4932 				 "iget: bad i_size value: %lld", size);
4933 		ret = -EFSCORRUPTED;
4934 		goto bad_inode;
4935 	}
4936 	/*
4937 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4938 	 * we'd normally treat htree data as empty space. But with metadata
4939 	 * checksumming that corrupts checksums so forbid that.
4940 	 */
4941 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4942 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4943 		ext4_error_inode(inode, function, line, 0,
4944 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4945 		ret = -EFSCORRUPTED;
4946 		goto bad_inode;
4947 	}
4948 	ei->i_disksize = inode->i_size;
4949 #ifdef CONFIG_QUOTA
4950 	ei->i_reserved_quota = 0;
4951 #endif
4952 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4953 	ei->i_block_group = iloc.block_group;
4954 	ei->i_last_alloc_group = ~0;
4955 	/*
4956 	 * NOTE! The in-memory inode i_data array is in little-endian order
4957 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4958 	 */
4959 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4960 		ei->i_data[block] = raw_inode->i_block[block];
4961 	INIT_LIST_HEAD(&ei->i_orphan);
4962 	ext4_fc_init_inode(&ei->vfs_inode);
4963 
4964 	/*
4965 	 * Set transaction id's of transactions that have to be committed
4966 	 * to finish f[data]sync. We set them to currently running transaction
4967 	 * as we cannot be sure that the inode or some of its metadata isn't
4968 	 * part of the transaction - the inode could have been reclaimed and
4969 	 * now it is reread from disk.
4970 	 */
4971 	if (journal) {
4972 		transaction_t *transaction;
4973 		tid_t tid;
4974 
4975 		read_lock(&journal->j_state_lock);
4976 		if (journal->j_running_transaction)
4977 			transaction = journal->j_running_transaction;
4978 		else
4979 			transaction = journal->j_committing_transaction;
4980 		if (transaction)
4981 			tid = transaction->t_tid;
4982 		else
4983 			tid = journal->j_commit_sequence;
4984 		read_unlock(&journal->j_state_lock);
4985 		ei->i_sync_tid = tid;
4986 		ei->i_datasync_tid = tid;
4987 	}
4988 
4989 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4990 		if (ei->i_extra_isize == 0) {
4991 			/* The extra space is currently unused. Use it. */
4992 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4993 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4994 					    EXT4_GOOD_OLD_INODE_SIZE;
4995 		} else {
4996 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4997 			if (ret)
4998 				goto bad_inode;
4999 		}
5000 	}
5001 
5002 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5003 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5004 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5005 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5006 
5007 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5008 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5009 
5010 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5011 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5012 				ivers |=
5013 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5014 		}
5015 		ext4_inode_set_iversion_queried(inode, ivers);
5016 	}
5017 
5018 	ret = 0;
5019 	if (ei->i_file_acl &&
5020 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5021 		ext4_error_inode(inode, function, line, 0,
5022 				 "iget: bad extended attribute block %llu",
5023 				 ei->i_file_acl);
5024 		ret = -EFSCORRUPTED;
5025 		goto bad_inode;
5026 	} else if (!ext4_has_inline_data(inode)) {
5027 		/* validate the block references in the inode */
5028 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5029 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5030 			(S_ISLNK(inode->i_mode) &&
5031 			!ext4_inode_is_fast_symlink(inode)))) {
5032 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5033 				ret = ext4_ext_check_inode(inode);
5034 			else
5035 				ret = ext4_ind_check_inode(inode);
5036 		}
5037 	}
5038 	if (ret)
5039 		goto bad_inode;
5040 
5041 	if (S_ISREG(inode->i_mode)) {
5042 		inode->i_op = &ext4_file_inode_operations;
5043 		inode->i_fop = &ext4_file_operations;
5044 		ext4_set_aops(inode);
5045 	} else if (S_ISDIR(inode->i_mode)) {
5046 		inode->i_op = &ext4_dir_inode_operations;
5047 		inode->i_fop = &ext4_dir_operations;
5048 	} else if (S_ISLNK(inode->i_mode)) {
5049 		/* VFS does not allow setting these so must be corruption */
5050 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5051 			ext4_error_inode(inode, function, line, 0,
5052 					 "iget: immutable or append flags "
5053 					 "not allowed on symlinks");
5054 			ret = -EFSCORRUPTED;
5055 			goto bad_inode;
5056 		}
5057 		if (IS_ENCRYPTED(inode)) {
5058 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5059 			ext4_set_aops(inode);
5060 		} else if (ext4_inode_is_fast_symlink(inode)) {
5061 			inode->i_link = (char *)ei->i_data;
5062 			inode->i_op = &ext4_fast_symlink_inode_operations;
5063 			nd_terminate_link(ei->i_data, inode->i_size,
5064 				sizeof(ei->i_data) - 1);
5065 		} else {
5066 			inode->i_op = &ext4_symlink_inode_operations;
5067 			ext4_set_aops(inode);
5068 		}
5069 		inode_nohighmem(inode);
5070 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5071 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5072 		inode->i_op = &ext4_special_inode_operations;
5073 		if (raw_inode->i_block[0])
5074 			init_special_inode(inode, inode->i_mode,
5075 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5076 		else
5077 			init_special_inode(inode, inode->i_mode,
5078 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5079 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5080 		make_bad_inode(inode);
5081 	} else {
5082 		ret = -EFSCORRUPTED;
5083 		ext4_error_inode(inode, function, line, 0,
5084 				 "iget: bogus i_mode (%o)", inode->i_mode);
5085 		goto bad_inode;
5086 	}
5087 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5088 		ext4_error_inode(inode, function, line, 0,
5089 				 "casefold flag without casefold feature");
5090 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5091 		ext4_error_inode(inode, function, line, 0, err_str);
5092 		ret = -EFSCORRUPTED;
5093 		goto bad_inode;
5094 	}
5095 
5096 	brelse(iloc.bh);
5097 	unlock_new_inode(inode);
5098 	return inode;
5099 
5100 bad_inode:
5101 	brelse(iloc.bh);
5102 	iget_failed(inode);
5103 	return ERR_PTR(ret);
5104 }
5105 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5106 static void __ext4_update_other_inode_time(struct super_block *sb,
5107 					   unsigned long orig_ino,
5108 					   unsigned long ino,
5109 					   struct ext4_inode *raw_inode)
5110 {
5111 	struct inode *inode;
5112 
5113 	inode = find_inode_by_ino_rcu(sb, ino);
5114 	if (!inode)
5115 		return;
5116 
5117 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5118 			       I_DIRTY_INODE)) ||
5119 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5120 		return;
5121 
5122 	spin_lock(&inode->i_lock);
5123 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5124 				I_DIRTY_INODE)) == 0) &&
5125 	    (inode->i_state & I_DIRTY_TIME)) {
5126 		struct ext4_inode_info	*ei = EXT4_I(inode);
5127 
5128 		inode->i_state &= ~I_DIRTY_TIME;
5129 		spin_unlock(&inode->i_lock);
5130 
5131 		spin_lock(&ei->i_raw_lock);
5132 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5133 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5134 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5135 		ext4_inode_csum_set(inode, raw_inode, ei);
5136 		spin_unlock(&ei->i_raw_lock);
5137 		trace_ext4_other_inode_update_time(inode, orig_ino);
5138 		return;
5139 	}
5140 	spin_unlock(&inode->i_lock);
5141 }
5142 
5143 /*
5144  * Opportunistically update the other time fields for other inodes in
5145  * the same inode table block.
5146  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5147 static void ext4_update_other_inodes_time(struct super_block *sb,
5148 					  unsigned long orig_ino, char *buf)
5149 {
5150 	unsigned long ino;
5151 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5152 	int inode_size = EXT4_INODE_SIZE(sb);
5153 
5154 	/*
5155 	 * Calculate the first inode in the inode table block.  Inode
5156 	 * numbers are one-based.  That is, the first inode in a block
5157 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5158 	 */
5159 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5160 	rcu_read_lock();
5161 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5162 		if (ino == orig_ino)
5163 			continue;
5164 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5165 					       (struct ext4_inode *)buf);
5166 	}
5167 	rcu_read_unlock();
5168 }
5169 
5170 /*
5171  * Post the struct inode info into an on-disk inode location in the
5172  * buffer-cache.  This gobbles the caller's reference to the
5173  * buffer_head in the inode location struct.
5174  *
5175  * The caller must have write access to iloc->bh.
5176  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5177 static int ext4_do_update_inode(handle_t *handle,
5178 				struct inode *inode,
5179 				struct ext4_iloc *iloc)
5180 {
5181 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5182 	struct ext4_inode_info *ei = EXT4_I(inode);
5183 	struct buffer_head *bh = iloc->bh;
5184 	struct super_block *sb = inode->i_sb;
5185 	int err;
5186 	int need_datasync = 0, set_large_file = 0;
5187 
5188 	spin_lock(&ei->i_raw_lock);
5189 
5190 	/*
5191 	 * For fields not tracked in the in-memory inode, initialise them
5192 	 * to zero for new inodes.
5193 	 */
5194 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5195 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5196 
5197 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5198 		need_datasync = 1;
5199 	if (ei->i_disksize > 0x7fffffffULL) {
5200 		if (!ext4_has_feature_large_file(sb) ||
5201 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5202 			set_large_file = 1;
5203 	}
5204 
5205 	err = ext4_fill_raw_inode(inode, raw_inode);
5206 	spin_unlock(&ei->i_raw_lock);
5207 	if (err) {
5208 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5209 		goto out_brelse;
5210 	}
5211 
5212 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5213 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5214 					      bh->b_data);
5215 
5216 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5217 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5218 	if (err)
5219 		goto out_error;
5220 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5221 	if (set_large_file) {
5222 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5223 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5224 		if (err)
5225 			goto out_error;
5226 		lock_buffer(EXT4_SB(sb)->s_sbh);
5227 		ext4_set_feature_large_file(sb);
5228 		ext4_superblock_csum_set(sb);
5229 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5230 		ext4_handle_sync(handle);
5231 		err = ext4_handle_dirty_metadata(handle, NULL,
5232 						 EXT4_SB(sb)->s_sbh);
5233 	}
5234 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5235 out_error:
5236 	ext4_std_error(inode->i_sb, err);
5237 out_brelse:
5238 	brelse(bh);
5239 	return err;
5240 }
5241 
5242 /*
5243  * ext4_write_inode()
5244  *
5245  * We are called from a few places:
5246  *
5247  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5248  *   Here, there will be no transaction running. We wait for any running
5249  *   transaction to commit.
5250  *
5251  * - Within flush work (sys_sync(), kupdate and such).
5252  *   We wait on commit, if told to.
5253  *
5254  * - Within iput_final() -> write_inode_now()
5255  *   We wait on commit, if told to.
5256  *
5257  * In all cases it is actually safe for us to return without doing anything,
5258  * because the inode has been copied into a raw inode buffer in
5259  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5260  * writeback.
5261  *
5262  * Note that we are absolutely dependent upon all inode dirtiers doing the
5263  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5264  * which we are interested.
5265  *
5266  * It would be a bug for them to not do this.  The code:
5267  *
5268  *	mark_inode_dirty(inode)
5269  *	stuff();
5270  *	inode->i_size = expr;
5271  *
5272  * is in error because write_inode() could occur while `stuff()' is running,
5273  * and the new i_size will be lost.  Plus the inode will no longer be on the
5274  * superblock's dirty inode list.
5275  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5276 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5277 {
5278 	int err;
5279 
5280 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5281 	    sb_rdonly(inode->i_sb))
5282 		return 0;
5283 
5284 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5285 		return -EIO;
5286 
5287 	if (EXT4_SB(inode->i_sb)->s_journal) {
5288 		if (ext4_journal_current_handle()) {
5289 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290 			dump_stack();
5291 			return -EIO;
5292 		}
5293 
5294 		/*
5295 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5296 		 * ext4_sync_fs() will force the commit after everything is
5297 		 * written.
5298 		 */
5299 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300 			return 0;
5301 
5302 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5303 						EXT4_I(inode)->i_sync_tid);
5304 	} else {
5305 		struct ext4_iloc iloc;
5306 
5307 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5308 		if (err)
5309 			return err;
5310 		/*
5311 		 * sync(2) will flush the whole buffer cache. No need to do
5312 		 * it here separately for each inode.
5313 		 */
5314 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5315 			sync_dirty_buffer(iloc.bh);
5316 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5317 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5318 					       "IO error syncing inode");
5319 			err = -EIO;
5320 		}
5321 		brelse(iloc.bh);
5322 	}
5323 	return err;
5324 }
5325 
5326 /*
5327  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5328  * buffers that are attached to a page stradding i_size and are undergoing
5329  * commit. In that case we have to wait for commit to finish and try again.
5330  */
ext4_wait_for_tail_page_commit(struct inode * inode)5331 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5332 {
5333 	struct page *page;
5334 	unsigned offset;
5335 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5336 	tid_t commit_tid = 0;
5337 	int ret;
5338 
5339 	offset = inode->i_size & (PAGE_SIZE - 1);
5340 	/*
5341 	 * If the page is fully truncated, we don't need to wait for any commit
5342 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5343 	 * strip all buffers from the page but keep the page dirty which can then
5344 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5345 	 * buffers). Also we don't need to wait for any commit if all buffers in
5346 	 * the page remain valid. This is most beneficial for the common case of
5347 	 * blocksize == PAGESIZE.
5348 	 */
5349 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5350 		return;
5351 	while (1) {
5352 		page = find_lock_page(inode->i_mapping,
5353 				      inode->i_size >> PAGE_SHIFT);
5354 		if (!page)
5355 			return;
5356 		ret = __ext4_journalled_invalidatepage(page, offset,
5357 						PAGE_SIZE - offset);
5358 		unlock_page(page);
5359 		put_page(page);
5360 		if (ret != -EBUSY)
5361 			return;
5362 		commit_tid = 0;
5363 		read_lock(&journal->j_state_lock);
5364 		if (journal->j_committing_transaction)
5365 			commit_tid = journal->j_committing_transaction->t_tid;
5366 		read_unlock(&journal->j_state_lock);
5367 		if (commit_tid)
5368 			jbd2_log_wait_commit(journal, commit_tid);
5369 	}
5370 }
5371 
5372 /*
5373  * ext4_setattr()
5374  *
5375  * Called from notify_change.
5376  *
5377  * We want to trap VFS attempts to truncate the file as soon as
5378  * possible.  In particular, we want to make sure that when the VFS
5379  * shrinks i_size, we put the inode on the orphan list and modify
5380  * i_disksize immediately, so that during the subsequent flushing of
5381  * dirty pages and freeing of disk blocks, we can guarantee that any
5382  * commit will leave the blocks being flushed in an unused state on
5383  * disk.  (On recovery, the inode will get truncated and the blocks will
5384  * be freed, so we have a strong guarantee that no future commit will
5385  * leave these blocks visible to the user.)
5386  *
5387  * Another thing we have to assure is that if we are in ordered mode
5388  * and inode is still attached to the committing transaction, we must
5389  * we start writeout of all the dirty pages which are being truncated.
5390  * This way we are sure that all the data written in the previous
5391  * transaction are already on disk (truncate waits for pages under
5392  * writeback).
5393  *
5394  * Called with inode->i_mutex down.
5395  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5396 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5397 {
5398 	struct inode *inode = d_inode(dentry);
5399 	int error, rc = 0;
5400 	int orphan = 0;
5401 	const unsigned int ia_valid = attr->ia_valid;
5402 
5403 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5404 		return -EIO;
5405 
5406 	if (unlikely(IS_IMMUTABLE(inode)))
5407 		return -EPERM;
5408 
5409 	if (unlikely(IS_APPEND(inode) &&
5410 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5411 				  ATTR_GID | ATTR_TIMES_SET))))
5412 		return -EPERM;
5413 
5414 	error = setattr_prepare(dentry, attr);
5415 	if (error)
5416 		return error;
5417 
5418 	error = fscrypt_prepare_setattr(dentry, attr);
5419 	if (error)
5420 		return error;
5421 
5422 	error = fsverity_prepare_setattr(dentry, attr);
5423 	if (error)
5424 		return error;
5425 
5426 	if (is_quota_modification(inode, attr)) {
5427 		error = dquot_initialize(inode);
5428 		if (error)
5429 			return error;
5430 	}
5431 
5432 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5433 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5434 		handle_t *handle;
5435 
5436 		/* (user+group)*(old+new) structure, inode write (sb,
5437 		 * inode block, ? - but truncate inode update has it) */
5438 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5439 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5440 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5441 		if (IS_ERR(handle)) {
5442 			error = PTR_ERR(handle);
5443 			goto err_out;
5444 		}
5445 
5446 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5447 		 * counts xattr inode references.
5448 		 */
5449 		down_read(&EXT4_I(inode)->xattr_sem);
5450 		error = dquot_transfer(inode, attr);
5451 		up_read(&EXT4_I(inode)->xattr_sem);
5452 
5453 		if (error) {
5454 			ext4_journal_stop(handle);
5455 			return error;
5456 		}
5457 		/* Update corresponding info in inode so that everything is in
5458 		 * one transaction */
5459 		if (attr->ia_valid & ATTR_UID)
5460 			inode->i_uid = attr->ia_uid;
5461 		if (attr->ia_valid & ATTR_GID)
5462 			inode->i_gid = attr->ia_gid;
5463 		error = ext4_mark_inode_dirty(handle, inode);
5464 		ext4_journal_stop(handle);
5465 		if (unlikely(error)) {
5466 			return error;
5467 		}
5468 	}
5469 
5470 	if (attr->ia_valid & ATTR_SIZE) {
5471 		handle_t *handle;
5472 		loff_t oldsize = inode->i_size;
5473 		loff_t old_disksize;
5474 		int shrink = (attr->ia_size < inode->i_size);
5475 
5476 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5477 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5478 
5479 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5480 				return -EFBIG;
5481 			}
5482 		}
5483 		if (!S_ISREG(inode->i_mode)) {
5484 			return -EINVAL;
5485 		}
5486 
5487 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5488 			inode_inc_iversion(inode);
5489 
5490 		if (shrink) {
5491 			if (ext4_should_order_data(inode)) {
5492 				error = ext4_begin_ordered_truncate(inode,
5493 							    attr->ia_size);
5494 				if (error)
5495 					goto err_out;
5496 			}
5497 			/*
5498 			 * Blocks are going to be removed from the inode. Wait
5499 			 * for dio in flight.
5500 			 */
5501 			inode_dio_wait(inode);
5502 		}
5503 
5504 		down_write(&EXT4_I(inode)->i_mmap_sem);
5505 
5506 		rc = ext4_break_layouts(inode);
5507 		if (rc) {
5508 			up_write(&EXT4_I(inode)->i_mmap_sem);
5509 			goto err_out;
5510 		}
5511 
5512 		if (attr->ia_size != inode->i_size) {
5513 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5514 			if (IS_ERR(handle)) {
5515 				error = PTR_ERR(handle);
5516 				goto out_mmap_sem;
5517 			}
5518 			if (ext4_handle_valid(handle) && shrink) {
5519 				error = ext4_orphan_add(handle, inode);
5520 				orphan = 1;
5521 			}
5522 			/*
5523 			 * Update c/mtime on truncate up, ext4_truncate() will
5524 			 * update c/mtime in shrink case below
5525 			 */
5526 			if (!shrink) {
5527 				inode->i_mtime = current_time(inode);
5528 				inode->i_ctime = inode->i_mtime;
5529 			}
5530 
5531 			if (shrink)
5532 				ext4_fc_track_range(handle, inode,
5533 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5534 					inode->i_sb->s_blocksize_bits,
5535 					EXT_MAX_BLOCKS - 1);
5536 			else
5537 				ext4_fc_track_range(
5538 					handle, inode,
5539 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5540 					inode->i_sb->s_blocksize_bits,
5541 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5542 					inode->i_sb->s_blocksize_bits);
5543 
5544 			down_write(&EXT4_I(inode)->i_data_sem);
5545 			old_disksize = EXT4_I(inode)->i_disksize;
5546 			EXT4_I(inode)->i_disksize = attr->ia_size;
5547 			rc = ext4_mark_inode_dirty(handle, inode);
5548 			if (!error)
5549 				error = rc;
5550 			/*
5551 			 * We have to update i_size under i_data_sem together
5552 			 * with i_disksize to avoid races with writeback code
5553 			 * running ext4_wb_update_i_disksize().
5554 			 */
5555 			if (!error)
5556 				i_size_write(inode, attr->ia_size);
5557 			else
5558 				EXT4_I(inode)->i_disksize = old_disksize;
5559 			up_write(&EXT4_I(inode)->i_data_sem);
5560 			ext4_journal_stop(handle);
5561 			if (error)
5562 				goto out_mmap_sem;
5563 			if (!shrink) {
5564 				pagecache_isize_extended(inode, oldsize,
5565 							 inode->i_size);
5566 			} else if (ext4_should_journal_data(inode)) {
5567 				ext4_wait_for_tail_page_commit(inode);
5568 			}
5569 		}
5570 
5571 		/*
5572 		 * Truncate pagecache after we've waited for commit
5573 		 * in data=journal mode to make pages freeable.
5574 		 */
5575 		truncate_pagecache(inode, inode->i_size);
5576 		/*
5577 		 * Call ext4_truncate() even if i_size didn't change to
5578 		 * truncate possible preallocated blocks.
5579 		 */
5580 		if (attr->ia_size <= oldsize) {
5581 			rc = ext4_truncate(inode);
5582 			if (rc)
5583 				error = rc;
5584 		}
5585 out_mmap_sem:
5586 		up_write(&EXT4_I(inode)->i_mmap_sem);
5587 	}
5588 
5589 	if (!error) {
5590 		setattr_copy(inode, attr);
5591 		mark_inode_dirty(inode);
5592 	}
5593 
5594 	/*
5595 	 * If the call to ext4_truncate failed to get a transaction handle at
5596 	 * all, we need to clean up the in-core orphan list manually.
5597 	 */
5598 	if (orphan && inode->i_nlink)
5599 		ext4_orphan_del(NULL, inode);
5600 
5601 	if (!error && (ia_valid & ATTR_MODE))
5602 		rc = posix_acl_chmod(inode, inode->i_mode);
5603 
5604 err_out:
5605 	if  (error)
5606 		ext4_std_error(inode->i_sb, error);
5607 	if (!error)
5608 		error = rc;
5609 	return error;
5610 }
5611 
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5612 int ext4_getattr(const struct path *path, struct kstat *stat,
5613 		 u32 request_mask, unsigned int query_flags)
5614 {
5615 	struct inode *inode = d_inode(path->dentry);
5616 	struct ext4_inode *raw_inode;
5617 	struct ext4_inode_info *ei = EXT4_I(inode);
5618 	unsigned int flags;
5619 
5620 	if ((request_mask & STATX_BTIME) &&
5621 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5622 		stat->result_mask |= STATX_BTIME;
5623 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5624 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5625 	}
5626 
5627 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5628 	if (flags & EXT4_APPEND_FL)
5629 		stat->attributes |= STATX_ATTR_APPEND;
5630 	if (flags & EXT4_COMPR_FL)
5631 		stat->attributes |= STATX_ATTR_COMPRESSED;
5632 	if (flags & EXT4_ENCRYPT_FL)
5633 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5634 	if (flags & EXT4_IMMUTABLE_FL)
5635 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5636 	if (flags & EXT4_NODUMP_FL)
5637 		stat->attributes |= STATX_ATTR_NODUMP;
5638 	if (flags & EXT4_VERITY_FL)
5639 		stat->attributes |= STATX_ATTR_VERITY;
5640 
5641 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5642 				  STATX_ATTR_COMPRESSED |
5643 				  STATX_ATTR_ENCRYPTED |
5644 				  STATX_ATTR_IMMUTABLE |
5645 				  STATX_ATTR_NODUMP |
5646 				  STATX_ATTR_VERITY);
5647 
5648 	generic_fillattr(inode, stat);
5649 	return 0;
5650 }
5651 
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5652 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5653 		      u32 request_mask, unsigned int query_flags)
5654 {
5655 	struct inode *inode = d_inode(path->dentry);
5656 	u64 delalloc_blocks;
5657 
5658 	ext4_getattr(path, stat, request_mask, query_flags);
5659 
5660 	/*
5661 	 * If there is inline data in the inode, the inode will normally not
5662 	 * have data blocks allocated (it may have an external xattr block).
5663 	 * Report at least one sector for such files, so tools like tar, rsync,
5664 	 * others don't incorrectly think the file is completely sparse.
5665 	 */
5666 	if (unlikely(ext4_has_inline_data(inode)))
5667 		stat->blocks += (stat->size + 511) >> 9;
5668 
5669 	/*
5670 	 * We can't update i_blocks if the block allocation is delayed
5671 	 * otherwise in the case of system crash before the real block
5672 	 * allocation is done, we will have i_blocks inconsistent with
5673 	 * on-disk file blocks.
5674 	 * We always keep i_blocks updated together with real
5675 	 * allocation. But to not confuse with user, stat
5676 	 * will return the blocks that include the delayed allocation
5677 	 * blocks for this file.
5678 	 */
5679 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5680 				   EXT4_I(inode)->i_reserved_data_blocks);
5681 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5682 	return 0;
5683 }
5684 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5685 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5686 				   int pextents)
5687 {
5688 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5689 		return ext4_ind_trans_blocks(inode, lblocks);
5690 	return ext4_ext_index_trans_blocks(inode, pextents);
5691 }
5692 
5693 /*
5694  * Account for index blocks, block groups bitmaps and block group
5695  * descriptor blocks if modify datablocks and index blocks
5696  * worse case, the indexs blocks spread over different block groups
5697  *
5698  * If datablocks are discontiguous, they are possible to spread over
5699  * different block groups too. If they are contiguous, with flexbg,
5700  * they could still across block group boundary.
5701  *
5702  * Also account for superblock, inode, quota and xattr blocks
5703  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5704 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5705 				  int pextents)
5706 {
5707 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5708 	int gdpblocks;
5709 	int idxblocks;
5710 	int ret = 0;
5711 
5712 	/*
5713 	 * How many index blocks need to touch to map @lblocks logical blocks
5714 	 * to @pextents physical extents?
5715 	 */
5716 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5717 
5718 	ret = idxblocks;
5719 
5720 	/*
5721 	 * Now let's see how many group bitmaps and group descriptors need
5722 	 * to account
5723 	 */
5724 	groups = idxblocks + pextents;
5725 	gdpblocks = groups;
5726 	if (groups > ngroups)
5727 		groups = ngroups;
5728 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5729 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5730 
5731 	/* bitmaps and block group descriptor blocks */
5732 	ret += groups + gdpblocks;
5733 
5734 	/* Blocks for super block, inode, quota and xattr blocks */
5735 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5736 
5737 	return ret;
5738 }
5739 
5740 /*
5741  * Calculate the total number of credits to reserve to fit
5742  * the modification of a single pages into a single transaction,
5743  * which may include multiple chunks of block allocations.
5744  *
5745  * This could be called via ext4_write_begin()
5746  *
5747  * We need to consider the worse case, when
5748  * one new block per extent.
5749  */
ext4_writepage_trans_blocks(struct inode * inode)5750 int ext4_writepage_trans_blocks(struct inode *inode)
5751 {
5752 	int bpp = ext4_journal_blocks_per_page(inode);
5753 	int ret;
5754 
5755 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5756 
5757 	/* Account for data blocks for journalled mode */
5758 	if (ext4_should_journal_data(inode))
5759 		ret += bpp;
5760 	return ret;
5761 }
5762 
5763 /*
5764  * Calculate the journal credits for a chunk of data modification.
5765  *
5766  * This is called from DIO, fallocate or whoever calling
5767  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5768  *
5769  * journal buffers for data blocks are not included here, as DIO
5770  * and fallocate do no need to journal data buffers.
5771  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5772 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5773 {
5774 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5775 }
5776 
5777 /*
5778  * The caller must have previously called ext4_reserve_inode_write().
5779  * Give this, we know that the caller already has write access to iloc->bh.
5780  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5781 int ext4_mark_iloc_dirty(handle_t *handle,
5782 			 struct inode *inode, struct ext4_iloc *iloc)
5783 {
5784 	int err = 0;
5785 
5786 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5787 		put_bh(iloc->bh);
5788 		return -EIO;
5789 	}
5790 	ext4_fc_track_inode(handle, inode);
5791 
5792 	/*
5793 	 * ea_inodes are using i_version for storing reference count, don't
5794 	 * mess with it
5795 	 */
5796 	if (IS_I_VERSION(inode) &&
5797 	    !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5798 		inode_inc_iversion(inode);
5799 
5800 	/* the do_update_inode consumes one bh->b_count */
5801 	get_bh(iloc->bh);
5802 
5803 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5804 	err = ext4_do_update_inode(handle, inode, iloc);
5805 	put_bh(iloc->bh);
5806 	return err;
5807 }
5808 
5809 /*
5810  * On success, We end up with an outstanding reference count against
5811  * iloc->bh.  This _must_ be cleaned up later.
5812  */
5813 
5814 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5815 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5816 			 struct ext4_iloc *iloc)
5817 {
5818 	int err;
5819 
5820 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5821 		return -EIO;
5822 
5823 	err = ext4_get_inode_loc(inode, iloc);
5824 	if (!err) {
5825 		BUFFER_TRACE(iloc->bh, "get_write_access");
5826 		err = ext4_journal_get_write_access(handle, iloc->bh);
5827 		if (err) {
5828 			brelse(iloc->bh);
5829 			iloc->bh = NULL;
5830 		}
5831 	}
5832 	ext4_std_error(inode->i_sb, err);
5833 	return err;
5834 }
5835 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5836 static int __ext4_expand_extra_isize(struct inode *inode,
5837 				     unsigned int new_extra_isize,
5838 				     struct ext4_iloc *iloc,
5839 				     handle_t *handle, int *no_expand)
5840 {
5841 	struct ext4_inode *raw_inode;
5842 	struct ext4_xattr_ibody_header *header;
5843 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5844 	struct ext4_inode_info *ei = EXT4_I(inode);
5845 	int error;
5846 
5847 	/* this was checked at iget time, but double check for good measure */
5848 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5849 	    (ei->i_extra_isize & 3)) {
5850 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5851 				 ei->i_extra_isize,
5852 				 EXT4_INODE_SIZE(inode->i_sb));
5853 		return -EFSCORRUPTED;
5854 	}
5855 	if ((new_extra_isize < ei->i_extra_isize) ||
5856 	    (new_extra_isize < 4) ||
5857 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5858 		return -EINVAL;	/* Should never happen */
5859 
5860 	raw_inode = ext4_raw_inode(iloc);
5861 
5862 	header = IHDR(inode, raw_inode);
5863 
5864 	/* No extended attributes present */
5865 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5866 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5867 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5868 		       EXT4_I(inode)->i_extra_isize, 0,
5869 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5870 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5871 		return 0;
5872 	}
5873 
5874 	/*
5875 	 * We may need to allocate external xattr block so we need quotas
5876 	 * initialized. Here we can be called with various locks held so we
5877 	 * cannot affort to initialize quotas ourselves. So just bail.
5878 	 */
5879 	if (dquot_initialize_needed(inode))
5880 		return -EAGAIN;
5881 
5882 	/* try to expand with EAs present */
5883 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5884 					   raw_inode, handle);
5885 	if (error) {
5886 		/*
5887 		 * Inode size expansion failed; don't try again
5888 		 */
5889 		*no_expand = 1;
5890 	}
5891 
5892 	return error;
5893 }
5894 
5895 /*
5896  * Expand an inode by new_extra_isize bytes.
5897  * Returns 0 on success or negative error number on failure.
5898  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5899 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5900 					  unsigned int new_extra_isize,
5901 					  struct ext4_iloc iloc,
5902 					  handle_t *handle)
5903 {
5904 	int no_expand;
5905 	int error;
5906 
5907 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5908 		return -EOVERFLOW;
5909 
5910 	/*
5911 	 * In nojournal mode, we can immediately attempt to expand
5912 	 * the inode.  When journaled, we first need to obtain extra
5913 	 * buffer credits since we may write into the EA block
5914 	 * with this same handle. If journal_extend fails, then it will
5915 	 * only result in a minor loss of functionality for that inode.
5916 	 * If this is felt to be critical, then e2fsck should be run to
5917 	 * force a large enough s_min_extra_isize.
5918 	 */
5919 	if (ext4_journal_extend(handle,
5920 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5921 		return -ENOSPC;
5922 
5923 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5924 		return -EBUSY;
5925 
5926 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5927 					  handle, &no_expand);
5928 	ext4_write_unlock_xattr(inode, &no_expand);
5929 
5930 	return error;
5931 }
5932 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5933 int ext4_expand_extra_isize(struct inode *inode,
5934 			    unsigned int new_extra_isize,
5935 			    struct ext4_iloc *iloc)
5936 {
5937 	handle_t *handle;
5938 	int no_expand;
5939 	int error, rc;
5940 
5941 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5942 		brelse(iloc->bh);
5943 		return -EOVERFLOW;
5944 	}
5945 
5946 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5947 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5948 	if (IS_ERR(handle)) {
5949 		error = PTR_ERR(handle);
5950 		brelse(iloc->bh);
5951 		return error;
5952 	}
5953 
5954 	ext4_write_lock_xattr(inode, &no_expand);
5955 
5956 	BUFFER_TRACE(iloc->bh, "get_write_access");
5957 	error = ext4_journal_get_write_access(handle, iloc->bh);
5958 	if (error) {
5959 		brelse(iloc->bh);
5960 		goto out_unlock;
5961 	}
5962 
5963 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5964 					  handle, &no_expand);
5965 
5966 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5967 	if (!error)
5968 		error = rc;
5969 
5970 out_unlock:
5971 	ext4_write_unlock_xattr(inode, &no_expand);
5972 	ext4_journal_stop(handle);
5973 	return error;
5974 }
5975 
5976 /*
5977  * What we do here is to mark the in-core inode as clean with respect to inode
5978  * dirtiness (it may still be data-dirty).
5979  * This means that the in-core inode may be reaped by prune_icache
5980  * without having to perform any I/O.  This is a very good thing,
5981  * because *any* task may call prune_icache - even ones which
5982  * have a transaction open against a different journal.
5983  *
5984  * Is this cheating?  Not really.  Sure, we haven't written the
5985  * inode out, but prune_icache isn't a user-visible syncing function.
5986  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5987  * we start and wait on commits.
5988  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5989 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5990 				const char *func, unsigned int line)
5991 {
5992 	struct ext4_iloc iloc;
5993 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994 	int err;
5995 
5996 	might_sleep();
5997 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5998 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5999 	if (err)
6000 		goto out;
6001 
6002 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6003 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6004 					       iloc, handle);
6005 
6006 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6007 out:
6008 	if (unlikely(err))
6009 		ext4_error_inode_err(inode, func, line, 0, err,
6010 					"mark_inode_dirty error");
6011 	return err;
6012 }
6013 
6014 /*
6015  * ext4_dirty_inode() is called from __mark_inode_dirty()
6016  *
6017  * We're really interested in the case where a file is being extended.
6018  * i_size has been changed by generic_commit_write() and we thus need
6019  * to include the updated inode in the current transaction.
6020  *
6021  * Also, dquot_alloc_block() will always dirty the inode when blocks
6022  * are allocated to the file.
6023  *
6024  * If the inode is marked synchronous, we don't honour that here - doing
6025  * so would cause a commit on atime updates, which we don't bother doing.
6026  * We handle synchronous inodes at the highest possible level.
6027  *
6028  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6029  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6030  * to copy into the on-disk inode structure are the timestamp files.
6031  */
ext4_dirty_inode(struct inode * inode,int flags)6032 void ext4_dirty_inode(struct inode *inode, int flags)
6033 {
6034 	handle_t *handle;
6035 
6036 	if (flags == I_DIRTY_TIME)
6037 		return;
6038 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039 	if (IS_ERR(handle))
6040 		goto out;
6041 
6042 	ext4_mark_inode_dirty(handle, inode);
6043 
6044 	ext4_journal_stop(handle);
6045 out:
6046 	return;
6047 }
6048 
ext4_change_inode_journal_flag(struct inode * inode,int val)6049 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6050 {
6051 	journal_t *journal;
6052 	handle_t *handle;
6053 	int err;
6054 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6055 
6056 	/*
6057 	 * We have to be very careful here: changing a data block's
6058 	 * journaling status dynamically is dangerous.  If we write a
6059 	 * data block to the journal, change the status and then delete
6060 	 * that block, we risk forgetting to revoke the old log record
6061 	 * from the journal and so a subsequent replay can corrupt data.
6062 	 * So, first we make sure that the journal is empty and that
6063 	 * nobody is changing anything.
6064 	 */
6065 
6066 	journal = EXT4_JOURNAL(inode);
6067 	if (!journal)
6068 		return 0;
6069 	if (is_journal_aborted(journal))
6070 		return -EROFS;
6071 
6072 	/* Wait for all existing dio workers */
6073 	inode_dio_wait(inode);
6074 
6075 	/*
6076 	 * Before flushing the journal and switching inode's aops, we have
6077 	 * to flush all dirty data the inode has. There can be outstanding
6078 	 * delayed allocations, there can be unwritten extents created by
6079 	 * fallocate or buffered writes in dioread_nolock mode covered by
6080 	 * dirty data which can be converted only after flushing the dirty
6081 	 * data (and journalled aops don't know how to handle these cases).
6082 	 */
6083 	if (val) {
6084 		down_write(&EXT4_I(inode)->i_mmap_sem);
6085 		err = filemap_write_and_wait(inode->i_mapping);
6086 		if (err < 0) {
6087 			up_write(&EXT4_I(inode)->i_mmap_sem);
6088 			return err;
6089 		}
6090 	}
6091 
6092 	percpu_down_write(&sbi->s_writepages_rwsem);
6093 	jbd2_journal_lock_updates(journal);
6094 
6095 	/*
6096 	 * OK, there are no updates running now, and all cached data is
6097 	 * synced to disk.  We are now in a completely consistent state
6098 	 * which doesn't have anything in the journal, and we know that
6099 	 * no filesystem updates are running, so it is safe to modify
6100 	 * the inode's in-core data-journaling state flag now.
6101 	 */
6102 
6103 	if (val)
6104 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6105 	else {
6106 		err = jbd2_journal_flush(journal);
6107 		if (err < 0) {
6108 			jbd2_journal_unlock_updates(journal);
6109 			percpu_up_write(&sbi->s_writepages_rwsem);
6110 			return err;
6111 		}
6112 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6113 	}
6114 	ext4_set_aops(inode);
6115 
6116 	jbd2_journal_unlock_updates(journal);
6117 	percpu_up_write(&sbi->s_writepages_rwsem);
6118 
6119 	if (val)
6120 		up_write(&EXT4_I(inode)->i_mmap_sem);
6121 
6122 	/* Finally we can mark the inode as dirty. */
6123 
6124 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6125 	if (IS_ERR(handle))
6126 		return PTR_ERR(handle);
6127 
6128 	ext4_fc_mark_ineligible(inode->i_sb,
6129 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6130 	err = ext4_mark_inode_dirty(handle, inode);
6131 	ext4_handle_sync(handle);
6132 	ext4_journal_stop(handle);
6133 	ext4_std_error(inode->i_sb, err);
6134 
6135 	return err;
6136 }
6137 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6138 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6139 {
6140 	return !buffer_mapped(bh);
6141 }
6142 
ext4_page_mkwrite(struct vm_fault * vmf)6143 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6144 {
6145 	struct vm_area_struct *vma = vmf->vma;
6146 	struct page *page = vmf->page;
6147 	loff_t size;
6148 	unsigned long len;
6149 	int err;
6150 	vm_fault_t ret;
6151 	struct file *file = vma->vm_file;
6152 	struct inode *inode = file_inode(file);
6153 	struct address_space *mapping = inode->i_mapping;
6154 	handle_t *handle;
6155 	get_block_t *get_block;
6156 	int retries = 0;
6157 
6158 	if (unlikely(IS_IMMUTABLE(inode)))
6159 		return VM_FAULT_SIGBUS;
6160 
6161 	sb_start_pagefault(inode->i_sb);
6162 	file_update_time(vma->vm_file);
6163 
6164 	down_read(&EXT4_I(inode)->i_mmap_sem);
6165 
6166 	err = ext4_convert_inline_data(inode);
6167 	if (err)
6168 		goto out_ret;
6169 
6170 	/*
6171 	 * On data journalling we skip straight to the transaction handle:
6172 	 * there's no delalloc; page truncated will be checked later; the
6173 	 * early return w/ all buffers mapped (calculates size/len) can't
6174 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6175 	 */
6176 	if (ext4_should_journal_data(inode))
6177 		goto retry_alloc;
6178 
6179 	/* Delalloc case is easy... */
6180 	if (test_opt(inode->i_sb, DELALLOC) &&
6181 	    !ext4_nonda_switch(inode->i_sb)) {
6182 		do {
6183 			err = block_page_mkwrite(vma, vmf,
6184 						   ext4_da_get_block_prep);
6185 		} while (err == -ENOSPC &&
6186 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6187 		goto out_ret;
6188 	}
6189 
6190 	lock_page(page);
6191 	size = i_size_read(inode);
6192 	/* Page got truncated from under us? */
6193 	if (page->mapping != mapping || page_offset(page) > size) {
6194 		unlock_page(page);
6195 		ret = VM_FAULT_NOPAGE;
6196 		goto out;
6197 	}
6198 
6199 	if (page->index == size >> PAGE_SHIFT)
6200 		len = size & ~PAGE_MASK;
6201 	else
6202 		len = PAGE_SIZE;
6203 	/*
6204 	 * Return if we have all the buffers mapped. This avoids the need to do
6205 	 * journal_start/journal_stop which can block and take a long time
6206 	 *
6207 	 * This cannot be done for data journalling, as we have to add the
6208 	 * inode to the transaction's list to writeprotect pages on commit.
6209 	 */
6210 	if (page_has_buffers(page)) {
6211 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6212 					    0, len, NULL,
6213 					    ext4_bh_unmapped)) {
6214 			/* Wait so that we don't change page under IO */
6215 			wait_for_stable_page(page);
6216 			ret = VM_FAULT_LOCKED;
6217 			goto out;
6218 		}
6219 	}
6220 	unlock_page(page);
6221 	/* OK, we need to fill the hole... */
6222 	if (ext4_should_dioread_nolock(inode))
6223 		get_block = ext4_get_block_unwritten;
6224 	else
6225 		get_block = ext4_get_block;
6226 retry_alloc:
6227 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6228 				    ext4_writepage_trans_blocks(inode));
6229 	if (IS_ERR(handle)) {
6230 		ret = VM_FAULT_SIGBUS;
6231 		goto out;
6232 	}
6233 	/*
6234 	 * Data journalling can't use block_page_mkwrite() because it
6235 	 * will set_buffer_dirty() before do_journal_get_write_access()
6236 	 * thus might hit warning messages for dirty metadata buffers.
6237 	 */
6238 	if (!ext4_should_journal_data(inode)) {
6239 		err = block_page_mkwrite(vma, vmf, get_block);
6240 	} else {
6241 		lock_page(page);
6242 		size = i_size_read(inode);
6243 		/* Page got truncated from under us? */
6244 		if (page->mapping != mapping || page_offset(page) > size) {
6245 			ret = VM_FAULT_NOPAGE;
6246 			goto out_error;
6247 		}
6248 
6249 		if (page->index == size >> PAGE_SHIFT)
6250 			len = size & ~PAGE_MASK;
6251 		else
6252 			len = PAGE_SIZE;
6253 
6254 		err = __block_write_begin(page, 0, len, ext4_get_block);
6255 		if (!err) {
6256 			ret = VM_FAULT_SIGBUS;
6257 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6258 					0, len, NULL, do_journal_get_write_access))
6259 				goto out_error;
6260 			if (ext4_walk_page_buffers(handle, page_buffers(page),
6261 					0, len, NULL, write_end_fn))
6262 				goto out_error;
6263 			if (ext4_jbd2_inode_add_write(handle, inode,
6264 						      page_offset(page), len))
6265 				goto out_error;
6266 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6267 		} else {
6268 			unlock_page(page);
6269 		}
6270 	}
6271 	ext4_journal_stop(handle);
6272 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6273 		goto retry_alloc;
6274 out_ret:
6275 	ret = block_page_mkwrite_return(err);
6276 out:
6277 	up_read(&EXT4_I(inode)->i_mmap_sem);
6278 	sb_end_pagefault(inode->i_sb);
6279 	return ret;
6280 out_error:
6281 	unlock_page(page);
6282 	ext4_journal_stop(handle);
6283 	goto out;
6284 }
6285 
ext4_filemap_fault(struct vm_fault * vmf)6286 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287 {
6288 	struct inode *inode = file_inode(vmf->vma->vm_file);
6289 	vm_fault_t ret;
6290 
6291 	down_read(&EXT4_I(inode)->i_mmap_sem);
6292 	ret = filemap_fault(vmf);
6293 	up_read(&EXT4_I(inode)->i_mmap_sem);
6294 
6295 	return ret;
6296 }
6297