1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
ext4_inode_is_fast_symlink(struct inode * inode)149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155 if (ext4_has_inline_data(inode))
156 return 0;
157
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 }
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165 * Called at the last iput() if i_nlink is zero.
166 */
ext4_evict_inode(struct inode * inode)167 void ext4_evict_inode(struct inode *inode)
168 {
169 handle_t *handle;
170 int err;
171 /*
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 */
176 int extra_credits = 6;
177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 bool freeze_protected = false;
179
180 trace_ext4_evict_inode(inode);
181
182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 ext4_evict_ea_inode(inode);
184 if (inode->i_nlink) {
185 /*
186 * When journalling data dirty buffers are tracked only in the
187 * journal. So although mm thinks everything is clean and
188 * ready for reaping the inode might still have some pages to
189 * write in the running transaction or waiting to be
190 * checkpointed. Thus calling jbd2_journal_invalidatepage()
191 * (via truncate_inode_pages()) to discard these buffers can
192 * cause data loss. Also even if we did not discard these
193 * buffers, we would have no way to find them after the inode
194 * is reaped and thus user could see stale data if he tries to
195 * read them before the transaction is checkpointed. So be
196 * careful and force everything to disk here... We use
197 * ei->i_datasync_tid to store the newest transaction
198 * containing inode's data.
199 *
200 * Note that directories do not have this problem because they
201 * don't use page cache.
202 */
203 if (inode->i_ino != EXT4_JOURNAL_INO &&
204 ext4_should_journal_data(inode) &&
205 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
206 inode->i_data.nrpages) {
207 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
208 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209
210 jbd2_complete_transaction(journal, commit_tid);
211 filemap_write_and_wait(&inode->i_data);
212 }
213 truncate_inode_pages_final(&inode->i_data);
214
215 goto no_delete;
216 }
217
218 if (is_bad_inode(inode))
219 goto no_delete;
220 dquot_initialize(inode);
221
222 if (ext4_should_order_data(inode))
223 ext4_begin_ordered_truncate(inode, 0);
224 truncate_inode_pages_final(&inode->i_data);
225
226 /*
227 * For inodes with journalled data, transaction commit could have
228 * dirtied the inode. And for inodes with dioread_nolock, unwritten
229 * extents converting worker could merge extents and also have dirtied
230 * the inode. Flush worker is ignoring it because of I_FREEING flag but
231 * we still need to remove the inode from the writeback lists.
232 */
233 if (!list_empty_careful(&inode->i_io_list))
234 inode_io_list_del(inode);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it. When we are in a running transaction though,
239 * we are already protected against freezing and we cannot grab further
240 * protection due to lock ordering constraints.
241 */
242 if (!ext4_journal_current_handle()) {
243 sb_start_intwrite(inode->i_sb);
244 freeze_protected = true;
245 }
246
247 if (!IS_NOQUOTA(inode))
248 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
249
250 /*
251 * Block bitmap, group descriptor, and inode are accounted in both
252 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
253 */
254 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 ext4_blocks_for_truncate(inode) + extra_credits - 3);
256 if (IS_ERR(handle)) {
257 ext4_std_error(inode->i_sb, PTR_ERR(handle));
258 /*
259 * If we're going to skip the normal cleanup, we still need to
260 * make sure that the in-core orphan linked list is properly
261 * cleaned up.
262 */
263 ext4_orphan_del(NULL, inode);
264 if (freeze_protected)
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error_err(inode->i_sb, -err,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 if (freeze_protected)
307 sb_end_intwrite(inode->i_sb);
308 ext4_xattr_inode_array_free(ea_inode_array);
309 goto no_delete;
310 }
311
312 /*
313 * Kill off the orphan record which ext4_truncate created.
314 * AKPM: I think this can be inside the above `if'.
315 * Note that ext4_orphan_del() has to be able to cope with the
316 * deletion of a non-existent orphan - this is because we don't
317 * know if ext4_truncate() actually created an orphan record.
318 * (Well, we could do this if we need to, but heck - it works)
319 */
320 ext4_orphan_del(handle, inode);
321 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
322
323 /*
324 * One subtle ordering requirement: if anything has gone wrong
325 * (transaction abort, IO errors, whatever), then we can still
326 * do these next steps (the fs will already have been marked as
327 * having errors), but we can't free the inode if the mark_dirty
328 * fails.
329 */
330 if (ext4_mark_inode_dirty(handle, inode))
331 /* If that failed, just do the required in-core inode clear. */
332 ext4_clear_inode(inode);
333 else
334 ext4_free_inode(handle, inode);
335 ext4_journal_stop(handle);
336 if (freeze_protected)
337 sb_end_intwrite(inode->i_sb);
338 ext4_xattr_inode_array_free(ea_inode_array);
339 return;
340 no_delete:
341 /*
342 * Check out some where else accidentally dirty the evicting inode,
343 * which may probably cause inode use-after-free issues later.
344 */
345 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
346
347 if (!list_empty(&EXT4_I(inode)->i_fc_list))
348 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
349 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
350 }
351
352 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)353 qsize_t *ext4_get_reserved_space(struct inode *inode)
354 {
355 return &EXT4_I(inode)->i_reserved_quota;
356 }
357 #endif
358
359 /*
360 * Called with i_data_sem down, which is important since we can call
361 * ext4_discard_preallocations() from here.
362 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)363 void ext4_da_update_reserve_space(struct inode *inode,
364 int used, int quota_claim)
365 {
366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
367 struct ext4_inode_info *ei = EXT4_I(inode);
368
369 spin_lock(&ei->i_block_reservation_lock);
370 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
371 if (unlikely(used > ei->i_reserved_data_blocks)) {
372 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
373 "with only %d reserved data blocks",
374 __func__, inode->i_ino, used,
375 ei->i_reserved_data_blocks);
376 WARN_ON(1);
377 used = ei->i_reserved_data_blocks;
378 }
379
380 /* Update per-inode reservations */
381 ei->i_reserved_data_blocks -= used;
382 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
383
384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 else {
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
393 * not re-claim the quota for fallocated blocks.
394 */
395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 }
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
403 if ((ei->i_reserved_data_blocks == 0) &&
404 !inode_is_open_for_write(inode))
405 ext4_discard_preallocations(inode, 0);
406 }
407
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)408 static int __check_block_validity(struct inode *inode, const char *func,
409 unsigned int line,
410 struct ext4_map_blocks *map)
411 {
412 if (ext4_has_feature_journal(inode->i_sb) &&
413 (inode->i_ino ==
414 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
415 return 0;
416 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
417 ext4_error_inode(inode, func, line, map->m_pblk,
418 "lblock %lu mapped to illegal pblock %llu "
419 "(length %d)", (unsigned long) map->m_lblk,
420 map->m_pblk, map->m_len);
421 return -EFSCORRUPTED;
422 }
423 return 0;
424 }
425
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)426 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427 ext4_lblk_t len)
428 {
429 int ret;
430
431 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
432 return fscrypt_zeroout_range(inode, lblk, pblk, len);
433
434 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435 if (ret > 0)
436 ret = 0;
437
438 return ret;
439 }
440
441 #define check_block_validity(inode, map) \
442 __check_block_validity((inode), __func__, __LINE__, (map))
443
444 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)445 static void ext4_map_blocks_es_recheck(handle_t *handle,
446 struct inode *inode,
447 struct ext4_map_blocks *es_map,
448 struct ext4_map_blocks *map,
449 int flags)
450 {
451 int retval;
452
453 map->m_flags = 0;
454 /*
455 * There is a race window that the result is not the same.
456 * e.g. xfstests #223 when dioread_nolock enables. The reason
457 * is that we lookup a block mapping in extent status tree with
458 * out taking i_data_sem. So at the time the unwritten extent
459 * could be converted.
460 */
461 down_read(&EXT4_I(inode)->i_data_sem);
462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463 retval = ext4_ext_map_blocks(handle, inode, map, 0);
464 } else {
465 retval = ext4_ind_map_blocks(handle, inode, map, 0);
466 }
467 up_read((&EXT4_I(inode)->i_data_sem));
468
469 /*
470 * We don't check m_len because extent will be collpased in status
471 * tree. So the m_len might not equal.
472 */
473 if (es_map->m_lblk != map->m_lblk ||
474 es_map->m_flags != map->m_flags ||
475 es_map->m_pblk != map->m_pblk) {
476 printk("ES cache assertion failed for inode: %lu "
477 "es_cached ex [%d/%d/%llu/%x] != "
478 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
479 inode->i_ino, es_map->m_lblk, es_map->m_len,
480 es_map->m_pblk, es_map->m_flags, map->m_lblk,
481 map->m_len, map->m_pblk, map->m_flags,
482 retval, flags);
483 }
484 }
485 #endif /* ES_AGGRESSIVE_TEST */
486
487 /*
488 * The ext4_map_blocks() function tries to look up the requested blocks,
489 * and returns if the blocks are already mapped.
490 *
491 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
492 * and store the allocated blocks in the result buffer head and mark it
493 * mapped.
494 *
495 * If file type is extents based, it will call ext4_ext_map_blocks(),
496 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497 * based files
498 *
499 * On success, it returns the number of blocks being mapped or allocated. if
500 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
501 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
504 * that case, @map is returned as unmapped but we still do fill map->m_len to
505 * indicate the length of a hole starting at map->m_lblk.
506 *
507 * It returns the error in case of allocation failure.
508 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)509 int ext4_map_blocks(handle_t *handle, struct inode *inode,
510 struct ext4_map_blocks *map, int flags)
511 {
512 struct extent_status es;
513 int retval;
514 int ret = 0;
515 #ifdef ES_AGGRESSIVE_TEST
516 struct ext4_map_blocks orig_map;
517
518 memcpy(&orig_map, map, sizeof(*map));
519 #endif
520
521 map->m_flags = 0;
522 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
523 flags, map->m_len, (unsigned long) map->m_lblk);
524
525 /*
526 * ext4_map_blocks returns an int, and m_len is an unsigned int
527 */
528 if (unlikely(map->m_len > INT_MAX))
529 map->m_len = INT_MAX;
530
531 /* We can handle the block number less than EXT_MAX_BLOCKS */
532 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
533 return -EFSCORRUPTED;
534
535 /* Lookup extent status tree firstly */
536 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
537 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
538 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
539 map->m_pblk = ext4_es_pblock(&es) +
540 map->m_lblk - es.es_lblk;
541 map->m_flags |= ext4_es_is_written(&es) ?
542 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
543 retval = es.es_len - (map->m_lblk - es.es_lblk);
544 if (retval > map->m_len)
545 retval = map->m_len;
546 map->m_len = retval;
547 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
548 map->m_pblk = 0;
549 retval = es.es_len - (map->m_lblk - es.es_lblk);
550 if (retval > map->m_len)
551 retval = map->m_len;
552 map->m_len = retval;
553 retval = 0;
554 } else {
555 BUG();
556 }
557 #ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
559 &orig_map, flags);
560 #endif
561 goto found;
562 }
563
564 /*
565 * Try to see if we can get the block without requesting a new
566 * file system block.
567 */
568 down_read(&EXT4_I(inode)->i_data_sem);
569 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570 retval = ext4_ext_map_blocks(handle, inode, map, 0);
571 } else {
572 retval = ext4_ind_map_blocks(handle, inode, map, 0);
573 }
574 if (retval > 0) {
575 unsigned int status;
576
577 if (unlikely(retval != map->m_len)) {
578 ext4_warning(inode->i_sb,
579 "ES len assertion failed for inode "
580 "%lu: retval %d != map->m_len %d",
581 inode->i_ino, retval, map->m_len);
582 WARN_ON(1);
583 }
584
585 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588 !(status & EXTENT_STATUS_WRITTEN) &&
589 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590 map->m_lblk + map->m_len - 1))
591 status |= EXTENT_STATUS_DELAYED;
592 ret = ext4_es_insert_extent(inode, map->m_lblk,
593 map->m_len, map->m_pblk, status);
594 if (ret < 0)
595 retval = ret;
596 }
597 up_read((&EXT4_I(inode)->i_data_sem));
598
599 found:
600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601 ret = check_block_validity(inode, map);
602 if (ret != 0)
603 return ret;
604 }
605
606 /* If it is only a block(s) look up */
607 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608 return retval;
609
610 /*
611 * Returns if the blocks have already allocated
612 *
613 * Note that if blocks have been preallocated
614 * ext4_ext_get_block() returns the create = 0
615 * with buffer head unmapped.
616 */
617 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618 /*
619 * If we need to convert extent to unwritten
620 * we continue and do the actual work in
621 * ext4_ext_map_blocks()
622 */
623 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624 return retval;
625
626 /*
627 * Here we clear m_flags because after allocating an new extent,
628 * it will be set again.
629 */
630 map->m_flags &= ~EXT4_MAP_FLAGS;
631
632 /*
633 * New blocks allocate and/or writing to unwritten extent
634 * will possibly result in updating i_data, so we take
635 * the write lock of i_data_sem, and call get_block()
636 * with create == 1 flag.
637 */
638 down_write(&EXT4_I(inode)->i_data_sem);
639
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 } else {
647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 }
657 }
658
659 if (retval > 0) {
660 unsigned int status;
661
662 if (unlikely(retval != map->m_len)) {
663 ext4_warning(inode->i_sb,
664 "ES len assertion failed for inode "
665 "%lu: retval %d != map->m_len %d",
666 inode->i_ino, retval, map->m_len);
667 WARN_ON(1);
668 }
669
670 /*
671 * We have to zeroout blocks before inserting them into extent
672 * status tree. Otherwise someone could look them up there and
673 * use them before they are really zeroed. We also have to
674 * unmap metadata before zeroing as otherwise writeback can
675 * overwrite zeros with stale data from block device.
676 */
677 if (flags & EXT4_GET_BLOCKS_ZERO &&
678 map->m_flags & EXT4_MAP_MAPPED &&
679 map->m_flags & EXT4_MAP_NEW) {
680 ret = ext4_issue_zeroout(inode, map->m_lblk,
681 map->m_pblk, map->m_len);
682 if (ret) {
683 retval = ret;
684 goto out_sem;
685 }
686 }
687
688 /*
689 * If the extent has been zeroed out, we don't need to update
690 * extent status tree.
691 */
692 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
693 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
694 if (ext4_es_is_written(&es))
695 goto out_sem;
696 }
697 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
698 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
699 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
700 !(status & EXTENT_STATUS_WRITTEN) &&
701 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
702 map->m_lblk + map->m_len - 1))
703 status |= EXTENT_STATUS_DELAYED;
704 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
705 map->m_pblk, status);
706 if (ret < 0) {
707 retval = ret;
708 goto out_sem;
709 }
710 }
711
712 out_sem:
713 up_write((&EXT4_I(inode)->i_data_sem));
714 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
715 ret = check_block_validity(inode, map);
716 if (ret != 0)
717 return ret;
718
719 /*
720 * Inodes with freshly allocated blocks where contents will be
721 * visible after transaction commit must be on transaction's
722 * ordered data list.
723 */
724 if (map->m_flags & EXT4_MAP_NEW &&
725 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
726 !(flags & EXT4_GET_BLOCKS_ZERO) &&
727 !ext4_is_quota_file(inode) &&
728 ext4_should_order_data(inode)) {
729 loff_t start_byte =
730 (loff_t)map->m_lblk << inode->i_blkbits;
731 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
732
733 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
734 ret = ext4_jbd2_inode_add_wait(handle, inode,
735 start_byte, length);
736 else
737 ret = ext4_jbd2_inode_add_write(handle, inode,
738 start_byte, length);
739 if (ret)
740 return ret;
741 }
742 }
743 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
744 map->m_flags & EXT4_MAP_MAPPED))
745 ext4_fc_track_range(handle, inode, map->m_lblk,
746 map->m_lblk + map->m_len - 1);
747 if (retval < 0)
748 ext_debug(inode, "failed with err %d\n", retval);
749 return retval;
750 }
751
752 /*
753 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
754 * we have to be careful as someone else may be manipulating b_state as well.
755 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)756 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
757 {
758 unsigned long old_state;
759 unsigned long new_state;
760
761 flags &= EXT4_MAP_FLAGS;
762
763 /* Dummy buffer_head? Set non-atomically. */
764 if (!bh->b_page) {
765 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
766 return;
767 }
768 /*
769 * Someone else may be modifying b_state. Be careful! This is ugly but
770 * once we get rid of using bh as a container for mapping information
771 * to pass to / from get_block functions, this can go away.
772 */
773 do {
774 old_state = READ_ONCE(bh->b_state);
775 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
776 } while (unlikely(
777 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
778 }
779
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)780 static int _ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int flags)
782 {
783 struct ext4_map_blocks map;
784 int ret = 0;
785
786 if (ext4_has_inline_data(inode))
787 return -ERANGE;
788
789 map.m_lblk = iblock;
790 map.m_len = bh->b_size >> inode->i_blkbits;
791
792 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
793 flags);
794 if (ret > 0) {
795 map_bh(bh, inode->i_sb, map.m_pblk);
796 ext4_update_bh_state(bh, map.m_flags);
797 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
798 ret = 0;
799 } else if (ret == 0) {
800 /* hole case, need to fill in bh->b_size */
801 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
802 }
803 return ret;
804 }
805
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)806 int ext4_get_block(struct inode *inode, sector_t iblock,
807 struct buffer_head *bh, int create)
808 {
809 return _ext4_get_block(inode, iblock, bh,
810 create ? EXT4_GET_BLOCKS_CREATE : 0);
811 }
812
813 /*
814 * Get block function used when preparing for buffered write if we require
815 * creating an unwritten extent if blocks haven't been allocated. The extent
816 * will be converted to written after the IO is complete.
817 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)818 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
819 struct buffer_head *bh_result, int create)
820 {
821 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
822 inode->i_ino, create);
823 return _ext4_get_block(inode, iblock, bh_result,
824 EXT4_GET_BLOCKS_IO_CREATE_EXT);
825 }
826
827 /* Maximum number of blocks we map for direct IO at once. */
828 #define DIO_MAX_BLOCKS 4096
829
830 /*
831 * `handle' can be NULL if create is zero
832 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)833 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
834 ext4_lblk_t block, int map_flags)
835 {
836 struct ext4_map_blocks map;
837 struct buffer_head *bh;
838 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
839 int err;
840
841 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
842 || handle != NULL || create == 0);
843
844 map.m_lblk = block;
845 map.m_len = 1;
846 err = ext4_map_blocks(handle, inode, &map, map_flags);
847
848 if (err == 0)
849 return create ? ERR_PTR(-ENOSPC) : NULL;
850 if (err < 0)
851 return ERR_PTR(err);
852
853 bh = sb_getblk(inode->i_sb, map.m_pblk);
854 if (unlikely(!bh))
855 return ERR_PTR(-ENOMEM);
856 if (map.m_flags & EXT4_MAP_NEW) {
857 J_ASSERT(create != 0);
858 J_ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
859 || (handle != NULL));
860
861 /*
862 * Now that we do not always journal data, we should
863 * keep in mind whether this should always journal the
864 * new buffer as metadata. For now, regular file
865 * writes use ext4_get_block instead, so it's not a
866 * problem.
867 */
868 lock_buffer(bh);
869 BUFFER_TRACE(bh, "call get_create_access");
870 err = ext4_journal_get_create_access(handle, bh);
871 if (unlikely(err)) {
872 unlock_buffer(bh);
873 goto errout;
874 }
875 if (!buffer_uptodate(bh)) {
876 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
877 set_buffer_uptodate(bh);
878 }
879 unlock_buffer(bh);
880 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
881 err = ext4_handle_dirty_metadata(handle, inode, bh);
882 if (unlikely(err))
883 goto errout;
884 } else
885 BUFFER_TRACE(bh, "not a new buffer");
886 return bh;
887 errout:
888 brelse(bh);
889 return ERR_PTR(err);
890 }
891
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)892 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
893 ext4_lblk_t block, int map_flags)
894 {
895 struct buffer_head *bh;
896 int ret;
897
898 bh = ext4_getblk(handle, inode, block, map_flags);
899 if (IS_ERR(bh))
900 return bh;
901 if (!bh || ext4_buffer_uptodate(bh))
902 return bh;
903
904 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
905 if (ret) {
906 put_bh(bh);
907 return ERR_PTR(ret);
908 }
909 return bh;
910 }
911
912 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)913 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
914 bool wait, struct buffer_head **bhs)
915 {
916 int i, err;
917
918 for (i = 0; i < bh_count; i++) {
919 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
920 if (IS_ERR(bhs[i])) {
921 err = PTR_ERR(bhs[i]);
922 bh_count = i;
923 goto out_brelse;
924 }
925 }
926
927 for (i = 0; i < bh_count; i++)
928 /* Note that NULL bhs[i] is valid because of holes. */
929 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
930 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
931
932 if (!wait)
933 return 0;
934
935 for (i = 0; i < bh_count; i++)
936 if (bhs[i])
937 wait_on_buffer(bhs[i]);
938
939 for (i = 0; i < bh_count; i++) {
940 if (bhs[i] && !buffer_uptodate(bhs[i])) {
941 err = -EIO;
942 goto out_brelse;
943 }
944 }
945 return 0;
946
947 out_brelse:
948 for (i = 0; i < bh_count; i++) {
949 brelse(bhs[i]);
950 bhs[i] = NULL;
951 }
952 return err;
953 }
954
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))955 int ext4_walk_page_buffers(handle_t *handle,
956 struct buffer_head *head,
957 unsigned from,
958 unsigned to,
959 int *partial,
960 int (*fn)(handle_t *handle,
961 struct buffer_head *bh))
962 {
963 struct buffer_head *bh;
964 unsigned block_start, block_end;
965 unsigned blocksize = head->b_size;
966 int err, ret = 0;
967 struct buffer_head *next;
968
969 for (bh = head, block_start = 0;
970 ret == 0 && (bh != head || !block_start);
971 block_start = block_end, bh = next) {
972 next = bh->b_this_page;
973 block_end = block_start + blocksize;
974 if (block_end <= from || block_start >= to) {
975 if (partial && !buffer_uptodate(bh))
976 *partial = 1;
977 continue;
978 }
979 err = (*fn)(handle, bh);
980 if (!ret)
981 ret = err;
982 }
983 return ret;
984 }
985
986 /*
987 * To preserve ordering, it is essential that the hole instantiation and
988 * the data write be encapsulated in a single transaction. We cannot
989 * close off a transaction and start a new one between the ext4_get_block()
990 * and the commit_write(). So doing the jbd2_journal_start at the start of
991 * prepare_write() is the right place.
992 *
993 * Also, this function can nest inside ext4_writepage(). In that case, we
994 * *know* that ext4_writepage() has generated enough buffer credits to do the
995 * whole page. So we won't block on the journal in that case, which is good,
996 * because the caller may be PF_MEMALLOC.
997 *
998 * By accident, ext4 can be reentered when a transaction is open via
999 * quota file writes. If we were to commit the transaction while thus
1000 * reentered, there can be a deadlock - we would be holding a quota
1001 * lock, and the commit would never complete if another thread had a
1002 * transaction open and was blocking on the quota lock - a ranking
1003 * violation.
1004 *
1005 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1006 * will _not_ run commit under these circumstances because handle->h_ref
1007 * is elevated. We'll still have enough credits for the tiny quotafile
1008 * write.
1009 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1010 int do_journal_get_write_access(handle_t *handle,
1011 struct buffer_head *bh)
1012 {
1013 int dirty = buffer_dirty(bh);
1014 int ret;
1015
1016 if (!buffer_mapped(bh) || buffer_freed(bh))
1017 return 0;
1018 /*
1019 * __block_write_begin() could have dirtied some buffers. Clean
1020 * the dirty bit as jbd2_journal_get_write_access() could complain
1021 * otherwise about fs integrity issues. Setting of the dirty bit
1022 * by __block_write_begin() isn't a real problem here as we clear
1023 * the bit before releasing a page lock and thus writeback cannot
1024 * ever write the buffer.
1025 */
1026 if (dirty)
1027 clear_buffer_dirty(bh);
1028 BUFFER_TRACE(bh, "get write access");
1029 ret = ext4_journal_get_write_access(handle, bh);
1030 if (!ret && dirty)
1031 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1032 return ret;
1033 }
1034
1035 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1036 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1037 get_block_t *get_block)
1038 {
1039 unsigned from = pos & (PAGE_SIZE - 1);
1040 unsigned to = from + len;
1041 struct inode *inode = page->mapping->host;
1042 unsigned block_start, block_end;
1043 sector_t block;
1044 int err = 0;
1045 unsigned blocksize = inode->i_sb->s_blocksize;
1046 unsigned bbits;
1047 struct buffer_head *bh, *head, *wait[2];
1048 int nr_wait = 0;
1049 int i;
1050
1051 BUG_ON(!PageLocked(page));
1052 BUG_ON(from > PAGE_SIZE);
1053 BUG_ON(to > PAGE_SIZE);
1054 BUG_ON(from > to);
1055
1056 if (!page_has_buffers(page))
1057 create_empty_buffers(page, blocksize, 0);
1058 head = page_buffers(page);
1059 bbits = ilog2(blocksize);
1060 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1061
1062 for (bh = head, block_start = 0; bh != head || !block_start;
1063 block++, block_start = block_end, bh = bh->b_this_page) {
1064 block_end = block_start + blocksize;
1065 if (block_end <= from || block_start >= to) {
1066 if (PageUptodate(page)) {
1067 if (!buffer_uptodate(bh))
1068 set_buffer_uptodate(bh);
1069 }
1070 continue;
1071 }
1072 if (buffer_new(bh))
1073 clear_buffer_new(bh);
1074 if (!buffer_mapped(bh)) {
1075 WARN_ON(bh->b_size != blocksize);
1076 err = get_block(inode, block, bh, 1);
1077 if (err)
1078 break;
1079 if (buffer_new(bh)) {
1080 if (PageUptodate(page)) {
1081 clear_buffer_new(bh);
1082 set_buffer_uptodate(bh);
1083 mark_buffer_dirty(bh);
1084 continue;
1085 }
1086 if (block_end > to || block_start < from)
1087 zero_user_segments(page, to, block_end,
1088 block_start, from);
1089 continue;
1090 }
1091 }
1092 if (PageUptodate(page)) {
1093 if (!buffer_uptodate(bh))
1094 set_buffer_uptodate(bh);
1095 continue;
1096 }
1097 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1098 !buffer_unwritten(bh) &&
1099 (block_start < from || block_end > to)) {
1100 ext4_read_bh_lock(bh, 0, false);
1101 wait[nr_wait++] = bh;
1102 }
1103 }
1104 /*
1105 * If we issued read requests, let them complete.
1106 */
1107 for (i = 0; i < nr_wait; i++) {
1108 wait_on_buffer(wait[i]);
1109 if (!buffer_uptodate(wait[i]))
1110 err = -EIO;
1111 }
1112 if (unlikely(err)) {
1113 page_zero_new_buffers(page, from, to);
1114 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1115 for (i = 0; i < nr_wait; i++) {
1116 int err2;
1117
1118 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1119 bh_offset(wait[i]));
1120 if (err2) {
1121 clear_buffer_uptodate(wait[i]);
1122 err = err2;
1123 }
1124 }
1125 }
1126
1127 return err;
1128 }
1129 #endif
1130
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1131 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1132 loff_t pos, unsigned len, unsigned flags,
1133 struct page **pagep, void **fsdata)
1134 {
1135 struct inode *inode = mapping->host;
1136 int ret, needed_blocks;
1137 handle_t *handle;
1138 int retries = 0;
1139 struct page *page;
1140 pgoff_t index;
1141 unsigned from, to;
1142
1143 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1144 return -EIO;
1145
1146 trace_ext4_write_begin(inode, pos, len, flags);
1147 /*
1148 * Reserve one block more for addition to orphan list in case
1149 * we allocate blocks but write fails for some reason
1150 */
1151 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1152 index = pos >> PAGE_SHIFT;
1153 from = pos & (PAGE_SIZE - 1);
1154 to = from + len;
1155
1156 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1157 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1158 flags, pagep);
1159 if (ret < 0)
1160 return ret;
1161 if (ret == 1)
1162 return 0;
1163 }
1164
1165 /*
1166 * grab_cache_page_write_begin() can take a long time if the
1167 * system is thrashing due to memory pressure, or if the page
1168 * is being written back. So grab it first before we start
1169 * the transaction handle. This also allows us to allocate
1170 * the page (if needed) without using GFP_NOFS.
1171 */
1172 retry_grab:
1173 page = grab_cache_page_write_begin(mapping, index, flags);
1174 if (!page)
1175 return -ENOMEM;
1176 /*
1177 * The same as page allocation, we prealloc buffer heads before
1178 * starting the handle.
1179 */
1180 if (!page_has_buffers(page))
1181 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1182
1183 unlock_page(page);
1184
1185 retry_journal:
1186 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1187 if (IS_ERR(handle)) {
1188 put_page(page);
1189 return PTR_ERR(handle);
1190 }
1191
1192 lock_page(page);
1193 if (page->mapping != mapping) {
1194 /* The page got truncated from under us */
1195 unlock_page(page);
1196 put_page(page);
1197 ext4_journal_stop(handle);
1198 goto retry_grab;
1199 }
1200 /* In case writeback began while the page was unlocked */
1201 wait_for_stable_page(page);
1202
1203 #ifdef CONFIG_FS_ENCRYPTION
1204 if (ext4_should_dioread_nolock(inode))
1205 ret = ext4_block_write_begin(page, pos, len,
1206 ext4_get_block_unwritten);
1207 else
1208 ret = ext4_block_write_begin(page, pos, len,
1209 ext4_get_block);
1210 #else
1211 if (ext4_should_dioread_nolock(inode))
1212 ret = __block_write_begin(page, pos, len,
1213 ext4_get_block_unwritten);
1214 else
1215 ret = __block_write_begin(page, pos, len, ext4_get_block);
1216 #endif
1217 if (!ret && ext4_should_journal_data(inode)) {
1218 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1219 from, to, NULL,
1220 do_journal_get_write_access);
1221 }
1222
1223 if (ret) {
1224 bool extended = (pos + len > inode->i_size) &&
1225 !ext4_verity_in_progress(inode);
1226
1227 unlock_page(page);
1228 /*
1229 * __block_write_begin may have instantiated a few blocks
1230 * outside i_size. Trim these off again. Don't need
1231 * i_size_read because we hold i_mutex.
1232 *
1233 * Add inode to orphan list in case we crash before
1234 * truncate finishes
1235 */
1236 if (extended && ext4_can_truncate(inode))
1237 ext4_orphan_add(handle, inode);
1238
1239 ext4_journal_stop(handle);
1240 if (extended) {
1241 ext4_truncate_failed_write(inode);
1242 /*
1243 * If truncate failed early the inode might
1244 * still be on the orphan list; we need to
1245 * make sure the inode is removed from the
1246 * orphan list in that case.
1247 */
1248 if (inode->i_nlink)
1249 ext4_orphan_del(NULL, inode);
1250 }
1251
1252 if (ret == -ENOSPC &&
1253 ext4_should_retry_alloc(inode->i_sb, &retries))
1254 goto retry_journal;
1255 put_page(page);
1256 return ret;
1257 }
1258 *pagep = page;
1259 return ret;
1260 }
1261
1262 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264 {
1265 int ret;
1266 if (!buffer_mapped(bh) || buffer_freed(bh))
1267 return 0;
1268 set_buffer_uptodate(bh);
1269 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270 clear_buffer_meta(bh);
1271 clear_buffer_prio(bh);
1272 return ret;
1273 }
1274
1275 /*
1276 * We need to pick up the new inode size which generic_commit_write gave us
1277 * `file' can be NULL - eg, when called from page_symlink().
1278 *
1279 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1280 * buffers are managed internally.
1281 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1282 static int ext4_write_end(struct file *file,
1283 struct address_space *mapping,
1284 loff_t pos, unsigned len, unsigned copied,
1285 struct page *page, void *fsdata)
1286 {
1287 handle_t *handle = ext4_journal_current_handle();
1288 struct inode *inode = mapping->host;
1289 loff_t old_size = inode->i_size;
1290 int ret = 0, ret2;
1291 int i_size_changed = 0;
1292 bool verity = ext4_verity_in_progress(inode);
1293
1294 trace_ext4_write_end(inode, pos, len, copied);
1295
1296 if (ext4_has_inline_data(inode) &&
1297 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1298 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1299
1300 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1301 /*
1302 * it's important to update i_size while still holding page lock:
1303 * page writeout could otherwise come in and zero beyond i_size.
1304 *
1305 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1306 * blocks are being written past EOF, so skip the i_size update.
1307 */
1308 if (!verity)
1309 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1310 unlock_page(page);
1311 put_page(page);
1312
1313 if (old_size < pos && !verity)
1314 pagecache_isize_extended(inode, old_size, pos);
1315 /*
1316 * Don't mark the inode dirty under page lock. First, it unnecessarily
1317 * makes the holding time of page lock longer. Second, it forces lock
1318 * ordering of page lock and transaction start for journaling
1319 * filesystems.
1320 */
1321 if (i_size_changed)
1322 ret = ext4_mark_inode_dirty(handle, inode);
1323
1324 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1325 /* if we have allocated more blocks and copied
1326 * less. We will have blocks allocated outside
1327 * inode->i_size. So truncate them
1328 */
1329 ext4_orphan_add(handle, inode);
1330
1331 ret2 = ext4_journal_stop(handle);
1332 if (!ret)
1333 ret = ret2;
1334
1335 if (pos + len > inode->i_size && !verity) {
1336 ext4_truncate_failed_write(inode);
1337 /*
1338 * If truncate failed early the inode might still be
1339 * on the orphan list; we need to make sure the inode
1340 * is removed from the orphan list in that case.
1341 */
1342 if (inode->i_nlink)
1343 ext4_orphan_del(NULL, inode);
1344 }
1345
1346 return ret ? ret : copied;
1347 }
1348
1349 /*
1350 * This is a private version of page_zero_new_buffers() which doesn't
1351 * set the buffer to be dirty, since in data=journalled mode we need
1352 * to call ext4_handle_dirty_metadata() instead.
1353 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1354 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1355 struct page *page,
1356 unsigned from, unsigned to)
1357 {
1358 unsigned int block_start = 0, block_end;
1359 struct buffer_head *head, *bh;
1360
1361 bh = head = page_buffers(page);
1362 do {
1363 block_end = block_start + bh->b_size;
1364 if (buffer_new(bh)) {
1365 if (block_end > from && block_start < to) {
1366 if (!PageUptodate(page)) {
1367 unsigned start, size;
1368
1369 start = max(from, block_start);
1370 size = min(to, block_end) - start;
1371
1372 zero_user(page, start, size);
1373 write_end_fn(handle, bh);
1374 }
1375 clear_buffer_new(bh);
1376 }
1377 }
1378 block_start = block_end;
1379 bh = bh->b_this_page;
1380 } while (bh != head);
1381 }
1382
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1383 static int ext4_journalled_write_end(struct file *file,
1384 struct address_space *mapping,
1385 loff_t pos, unsigned len, unsigned copied,
1386 struct page *page, void *fsdata)
1387 {
1388 handle_t *handle = ext4_journal_current_handle();
1389 struct inode *inode = mapping->host;
1390 loff_t old_size = inode->i_size;
1391 int ret = 0, ret2;
1392 int partial = 0;
1393 unsigned from, to;
1394 int size_changed = 0;
1395 bool verity = ext4_verity_in_progress(inode);
1396
1397 trace_ext4_journalled_write_end(inode, pos, len, copied);
1398 from = pos & (PAGE_SIZE - 1);
1399 to = from + len;
1400
1401 BUG_ON(!ext4_handle_valid(handle));
1402
1403 if (ext4_has_inline_data(inode))
1404 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1405
1406 if (unlikely(copied < len) && !PageUptodate(page)) {
1407 copied = 0;
1408 ext4_journalled_zero_new_buffers(handle, page, from, to);
1409 } else {
1410 if (unlikely(copied < len))
1411 ext4_journalled_zero_new_buffers(handle, page,
1412 from + copied, to);
1413 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1414 from + copied, &partial,
1415 write_end_fn);
1416 if (!partial)
1417 SetPageUptodate(page);
1418 }
1419 if (!verity)
1420 size_changed = ext4_update_inode_size(inode, pos + copied);
1421 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423 unlock_page(page);
1424 put_page(page);
1425
1426 if (old_size < pos && !verity)
1427 pagecache_isize_extended(inode, old_size, pos);
1428
1429 if (size_changed) {
1430 ret2 = ext4_mark_inode_dirty(handle, inode);
1431 if (!ret)
1432 ret = ret2;
1433 }
1434
1435 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1436 /* if we have allocated more blocks and copied
1437 * less. We will have blocks allocated outside
1438 * inode->i_size. So truncate them
1439 */
1440 ext4_orphan_add(handle, inode);
1441
1442 ret2 = ext4_journal_stop(handle);
1443 if (!ret)
1444 ret = ret2;
1445 if (pos + len > inode->i_size && !verity) {
1446 ext4_truncate_failed_write(inode);
1447 /*
1448 * If truncate failed early the inode might still be
1449 * on the orphan list; we need to make sure the inode
1450 * is removed from the orphan list in that case.
1451 */
1452 if (inode->i_nlink)
1453 ext4_orphan_del(NULL, inode);
1454 }
1455
1456 return ret ? ret : copied;
1457 }
1458
1459 /*
1460 * Reserve space for a single cluster
1461 */
ext4_da_reserve_space(struct inode * inode)1462 static int ext4_da_reserve_space(struct inode *inode)
1463 {
1464 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465 struct ext4_inode_info *ei = EXT4_I(inode);
1466 int ret;
1467
1468 /*
1469 * We will charge metadata quota at writeout time; this saves
1470 * us from metadata over-estimation, though we may go over by
1471 * a small amount in the end. Here we just reserve for data.
1472 */
1473 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474 if (ret)
1475 return ret;
1476
1477 spin_lock(&ei->i_block_reservation_lock);
1478 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479 spin_unlock(&ei->i_block_reservation_lock);
1480 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481 return -ENOSPC;
1482 }
1483 ei->i_reserved_data_blocks++;
1484 trace_ext4_da_reserve_space(inode);
1485 spin_unlock(&ei->i_block_reservation_lock);
1486
1487 return 0; /* success */
1488 }
1489
ext4_da_release_space(struct inode * inode,int to_free)1490 void ext4_da_release_space(struct inode *inode, int to_free)
1491 {
1492 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493 struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495 if (!to_free)
1496 return; /* Nothing to release, exit */
1497
1498 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500 trace_ext4_da_release_space(inode, to_free);
1501 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502 /*
1503 * if there aren't enough reserved blocks, then the
1504 * counter is messed up somewhere. Since this
1505 * function is called from invalidate page, it's
1506 * harmless to return without any action.
1507 */
1508 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509 "ino %lu, to_free %d with only %d reserved "
1510 "data blocks", inode->i_ino, to_free,
1511 ei->i_reserved_data_blocks);
1512 WARN_ON(1);
1513 to_free = ei->i_reserved_data_blocks;
1514 }
1515 ei->i_reserved_data_blocks -= to_free;
1516
1517 /* update fs dirty data blocks counter */
1518 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523 }
1524
1525 /*
1526 * Delayed allocation stuff
1527 */
1528
1529 struct mpage_da_data {
1530 struct inode *inode;
1531 struct writeback_control *wbc;
1532
1533 pgoff_t first_page; /* The first page to write */
1534 pgoff_t next_page; /* Current page to examine */
1535 pgoff_t last_page; /* Last page to examine */
1536 /*
1537 * Extent to map - this can be after first_page because that can be
1538 * fully mapped. We somewhat abuse m_flags to store whether the extent
1539 * is delalloc or unwritten.
1540 */
1541 struct ext4_map_blocks map;
1542 struct ext4_io_submit io_submit; /* IO submission data */
1543 unsigned int do_map:1;
1544 unsigned int scanned_until_end:1;
1545 };
1546
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1547 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1548 bool invalidate)
1549 {
1550 int nr_pages, i;
1551 pgoff_t index, end;
1552 struct pagevec pvec;
1553 struct inode *inode = mpd->inode;
1554 struct address_space *mapping = inode->i_mapping;
1555
1556 /* This is necessary when next_page == 0. */
1557 if (mpd->first_page >= mpd->next_page)
1558 return;
1559
1560 mpd->scanned_until_end = 0;
1561 index = mpd->first_page;
1562 end = mpd->next_page - 1;
1563 if (invalidate) {
1564 ext4_lblk_t start, last;
1565 start = index << (PAGE_SHIFT - inode->i_blkbits);
1566 last = end << (PAGE_SHIFT - inode->i_blkbits);
1567
1568 /*
1569 * avoid racing with extent status tree scans made by
1570 * ext4_insert_delayed_block()
1571 */
1572 down_write(&EXT4_I(inode)->i_data_sem);
1573 ext4_es_remove_extent(inode, start, last - start + 1);
1574 up_write(&EXT4_I(inode)->i_data_sem);
1575 }
1576
1577 pagevec_init(&pvec);
1578 while (index <= end) {
1579 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1580 if (nr_pages == 0)
1581 break;
1582 for (i = 0; i < nr_pages; i++) {
1583 struct page *page = pvec.pages[i];
1584
1585 BUG_ON(!PageLocked(page));
1586 BUG_ON(PageWriteback(page));
1587 if (invalidate) {
1588 if (page_mapped(page))
1589 clear_page_dirty_for_io(page);
1590 block_invalidatepage(page, 0, PAGE_SIZE);
1591 ClearPageUptodate(page);
1592 }
1593 unlock_page(page);
1594 }
1595 pagevec_release(&pvec);
1596 }
1597 }
1598
ext4_print_free_blocks(struct inode * inode)1599 static void ext4_print_free_blocks(struct inode *inode)
1600 {
1601 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1602 struct super_block *sb = inode->i_sb;
1603 struct ext4_inode_info *ei = EXT4_I(inode);
1604
1605 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1606 EXT4_C2B(EXT4_SB(inode->i_sb),
1607 ext4_count_free_clusters(sb)));
1608 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1609 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1610 (long long) EXT4_C2B(EXT4_SB(sb),
1611 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1612 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1613 (long long) EXT4_C2B(EXT4_SB(sb),
1614 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1615 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1616 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1617 ei->i_reserved_data_blocks);
1618 return;
1619 }
1620
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1621 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1622 {
1623 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1624 }
1625
1626 /*
1627 * ext4_insert_delayed_block - adds a delayed block to the extents status
1628 * tree, incrementing the reserved cluster/block
1629 * count or making a pending reservation
1630 * where needed
1631 *
1632 * @inode - file containing the newly added block
1633 * @lblk - logical block to be added
1634 *
1635 * Returns 0 on success, negative error code on failure.
1636 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1637 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1638 {
1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 int ret;
1641 bool allocated = false;
1642 bool reserved = false;
1643
1644 /*
1645 * If the cluster containing lblk is shared with a delayed,
1646 * written, or unwritten extent in a bigalloc file system, it's
1647 * already been accounted for and does not need to be reserved.
1648 * A pending reservation must be made for the cluster if it's
1649 * shared with a written or unwritten extent and doesn't already
1650 * have one. Written and unwritten extents can be purged from the
1651 * extents status tree if the system is under memory pressure, so
1652 * it's necessary to examine the extent tree if a search of the
1653 * extents status tree doesn't get a match.
1654 */
1655 if (sbi->s_cluster_ratio == 1) {
1656 ret = ext4_da_reserve_space(inode);
1657 if (ret != 0) /* ENOSPC */
1658 goto errout;
1659 reserved = true;
1660 } else { /* bigalloc */
1661 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1662 if (!ext4_es_scan_clu(inode,
1663 &ext4_es_is_mapped, lblk)) {
1664 ret = ext4_clu_mapped(inode,
1665 EXT4_B2C(sbi, lblk));
1666 if (ret < 0)
1667 goto errout;
1668 if (ret == 0) {
1669 ret = ext4_da_reserve_space(inode);
1670 if (ret != 0) /* ENOSPC */
1671 goto errout;
1672 reserved = true;
1673 } else {
1674 allocated = true;
1675 }
1676 } else {
1677 allocated = true;
1678 }
1679 }
1680 }
1681
1682 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1683 if (ret && reserved)
1684 ext4_da_release_space(inode, 1);
1685
1686 errout:
1687 return ret;
1688 }
1689
1690 /*
1691 * This function is grabs code from the very beginning of
1692 * ext4_map_blocks, but assumes that the caller is from delayed write
1693 * time. This function looks up the requested blocks and sets the
1694 * buffer delay bit under the protection of i_data_sem.
1695 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1696 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1697 struct ext4_map_blocks *map,
1698 struct buffer_head *bh)
1699 {
1700 struct extent_status es;
1701 int retval;
1702 sector_t invalid_block = ~((sector_t) 0xffff);
1703 #ifdef ES_AGGRESSIVE_TEST
1704 struct ext4_map_blocks orig_map;
1705
1706 memcpy(&orig_map, map, sizeof(*map));
1707 #endif
1708
1709 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1710 invalid_block = ~0;
1711
1712 map->m_flags = 0;
1713 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1714 (unsigned long) map->m_lblk);
1715
1716 /* Lookup extent status tree firstly */
1717 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1718 if (ext4_es_is_hole(&es)) {
1719 retval = 0;
1720 down_read(&EXT4_I(inode)->i_data_sem);
1721 goto add_delayed;
1722 }
1723
1724 /*
1725 * Delayed extent could be allocated by fallocate.
1726 * So we need to check it.
1727 */
1728 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1729 map_bh(bh, inode->i_sb, invalid_block);
1730 set_buffer_new(bh);
1731 set_buffer_delay(bh);
1732 return 0;
1733 }
1734
1735 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1736 retval = es.es_len - (iblock - es.es_lblk);
1737 if (retval > map->m_len)
1738 retval = map->m_len;
1739 map->m_len = retval;
1740 if (ext4_es_is_written(&es))
1741 map->m_flags |= EXT4_MAP_MAPPED;
1742 else if (ext4_es_is_unwritten(&es))
1743 map->m_flags |= EXT4_MAP_UNWRITTEN;
1744 else
1745 BUG();
1746
1747 #ifdef ES_AGGRESSIVE_TEST
1748 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1749 #endif
1750 return retval;
1751 }
1752
1753 /*
1754 * Try to see if we can get the block without requesting a new
1755 * file system block.
1756 */
1757 down_read(&EXT4_I(inode)->i_data_sem);
1758 if (ext4_has_inline_data(inode))
1759 retval = 0;
1760 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1761 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1762 else
1763 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1764
1765 add_delayed:
1766 if (retval == 0) {
1767 int ret;
1768
1769 /*
1770 * XXX: __block_prepare_write() unmaps passed block,
1771 * is it OK?
1772 */
1773
1774 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1775 if (ret != 0) {
1776 retval = ret;
1777 goto out_unlock;
1778 }
1779
1780 map_bh(bh, inode->i_sb, invalid_block);
1781 set_buffer_new(bh);
1782 set_buffer_delay(bh);
1783 } else if (retval > 0) {
1784 int ret;
1785 unsigned int status;
1786
1787 if (unlikely(retval != map->m_len)) {
1788 ext4_warning(inode->i_sb,
1789 "ES len assertion failed for inode "
1790 "%lu: retval %d != map->m_len %d",
1791 inode->i_ino, retval, map->m_len);
1792 WARN_ON(1);
1793 }
1794
1795 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1796 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1797 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 map->m_pblk, status);
1799 if (ret != 0)
1800 retval = ret;
1801 }
1802
1803 out_unlock:
1804 up_read((&EXT4_I(inode)->i_data_sem));
1805
1806 return retval;
1807 }
1808
1809 /*
1810 * This is a special get_block_t callback which is used by
1811 * ext4_da_write_begin(). It will either return mapped block or
1812 * reserve space for a single block.
1813 *
1814 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1815 * We also have b_blocknr = -1 and b_bdev initialized properly
1816 *
1817 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1818 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1819 * initialized properly.
1820 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1821 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1822 struct buffer_head *bh, int create)
1823 {
1824 struct ext4_map_blocks map;
1825 int ret = 0;
1826
1827 BUG_ON(create == 0);
1828 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1829
1830 map.m_lblk = iblock;
1831 map.m_len = 1;
1832
1833 /*
1834 * first, we need to know whether the block is allocated already
1835 * preallocated blocks are unmapped but should treated
1836 * the same as allocated blocks.
1837 */
1838 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1839 if (ret <= 0)
1840 return ret;
1841
1842 map_bh(bh, inode->i_sb, map.m_pblk);
1843 ext4_update_bh_state(bh, map.m_flags);
1844
1845 if (buffer_unwritten(bh)) {
1846 /* A delayed write to unwritten bh should be marked
1847 * new and mapped. Mapped ensures that we don't do
1848 * get_block multiple times when we write to the same
1849 * offset and new ensures that we do proper zero out
1850 * for partial write.
1851 */
1852 set_buffer_new(bh);
1853 set_buffer_mapped(bh);
1854 }
1855 return 0;
1856 }
1857
bget_one(handle_t * handle,struct buffer_head * bh)1858 static int bget_one(handle_t *handle, struct buffer_head *bh)
1859 {
1860 get_bh(bh);
1861 return 0;
1862 }
1863
bput_one(handle_t * handle,struct buffer_head * bh)1864 static int bput_one(handle_t *handle, struct buffer_head *bh)
1865 {
1866 put_bh(bh);
1867 return 0;
1868 }
1869
__ext4_journalled_writepage(struct page * page,unsigned int len)1870 static int __ext4_journalled_writepage(struct page *page,
1871 unsigned int len)
1872 {
1873 struct address_space *mapping = page->mapping;
1874 struct inode *inode = mapping->host;
1875 struct buffer_head *page_bufs = NULL;
1876 handle_t *handle = NULL;
1877 int ret = 0, err = 0;
1878 int inline_data = ext4_has_inline_data(inode);
1879 struct buffer_head *inode_bh = NULL;
1880
1881 ClearPageChecked(page);
1882
1883 if (inline_data) {
1884 BUG_ON(page->index != 0);
1885 BUG_ON(len > ext4_get_max_inline_size(inode));
1886 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1887 if (inode_bh == NULL)
1888 goto out;
1889 } else {
1890 page_bufs = page_buffers(page);
1891 if (!page_bufs) {
1892 BUG();
1893 goto out;
1894 }
1895 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1896 NULL, bget_one);
1897 }
1898 /*
1899 * We need to release the page lock before we start the
1900 * journal, so grab a reference so the page won't disappear
1901 * out from under us.
1902 */
1903 get_page(page);
1904 unlock_page(page);
1905
1906 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1907 ext4_writepage_trans_blocks(inode));
1908 if (IS_ERR(handle)) {
1909 ret = PTR_ERR(handle);
1910 put_page(page);
1911 goto out_no_pagelock;
1912 }
1913 BUG_ON(!ext4_handle_valid(handle));
1914
1915 lock_page(page);
1916 put_page(page);
1917 if (page->mapping != mapping) {
1918 /* The page got truncated from under us */
1919 ext4_journal_stop(handle);
1920 ret = 0;
1921 goto out;
1922 }
1923
1924 if (inline_data) {
1925 ret = ext4_mark_inode_dirty(handle, inode);
1926 } else {
1927 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1928 do_journal_get_write_access);
1929
1930 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931 write_end_fn);
1932 }
1933 if (ret == 0)
1934 ret = err;
1935 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1936 if (ret == 0)
1937 ret = err;
1938 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939 err = ext4_journal_stop(handle);
1940 if (!ret)
1941 ret = err;
1942
1943 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1944 out:
1945 unlock_page(page);
1946 out_no_pagelock:
1947 if (!inline_data && page_bufs)
1948 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1949 NULL, bput_one);
1950 brelse(inode_bh);
1951 return ret;
1952 }
1953
cancel_page_dirty_status(struct page * page)1954 static void cancel_page_dirty_status(struct page *page)
1955 {
1956 struct address_space *mapping = page_mapping(page);
1957 unsigned long flags;
1958
1959 cancel_dirty_page(page);
1960 xa_lock_irqsave(&mapping->i_pages, flags);
1961 __xa_clear_mark(&mapping->i_pages, page_index(page),
1962 PAGECACHE_TAG_DIRTY);
1963 __xa_clear_mark(&mapping->i_pages, page_index(page),
1964 PAGECACHE_TAG_TOWRITE);
1965 xa_unlock_irqrestore(&mapping->i_pages, flags);
1966 }
1967
1968 /*
1969 * Note that we don't need to start a transaction unless we're journaling data
1970 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1971 * need to file the inode to the transaction's list in ordered mode because if
1972 * we are writing back data added by write(), the inode is already there and if
1973 * we are writing back data modified via mmap(), no one guarantees in which
1974 * transaction the data will hit the disk. In case we are journaling data, we
1975 * cannot start transaction directly because transaction start ranks above page
1976 * lock so we have to do some magic.
1977 *
1978 * This function can get called via...
1979 * - ext4_writepages after taking page lock (have journal handle)
1980 * - journal_submit_inode_data_buffers (no journal handle)
1981 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1982 * - grab_page_cache when doing write_begin (have journal handle)
1983 *
1984 * We don't do any block allocation in this function. If we have page with
1985 * multiple blocks we need to write those buffer_heads that are mapped. This
1986 * is important for mmaped based write. So if we do with blocksize 1K
1987 * truncate(f, 1024);
1988 * a = mmap(f, 0, 4096);
1989 * a[0] = 'a';
1990 * truncate(f, 4096);
1991 * we have in the page first buffer_head mapped via page_mkwrite call back
1992 * but other buffer_heads would be unmapped but dirty (dirty done via the
1993 * do_wp_page). So writepage should write the first block. If we modify
1994 * the mmap area beyond 1024 we will again get a page_fault and the
1995 * page_mkwrite callback will do the block allocation and mark the
1996 * buffer_heads mapped.
1997 *
1998 * We redirty the page if we have any buffer_heads that is either delay or
1999 * unwritten in the page.
2000 *
2001 * We can get recursively called as show below.
2002 *
2003 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2004 * ext4_writepage()
2005 *
2006 * But since we don't do any block allocation we should not deadlock.
2007 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2008 */
ext4_writepage(struct page * page,struct writeback_control * wbc)2009 static int ext4_writepage(struct page *page,
2010 struct writeback_control *wbc)
2011 {
2012 int ret = 0;
2013 loff_t size;
2014 unsigned int len;
2015 struct buffer_head *page_bufs = NULL;
2016 struct inode *inode = page->mapping->host;
2017 struct ext4_io_submit io_submit;
2018 bool keep_towrite = false;
2019
2020 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2021 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2022 unlock_page(page);
2023 return -EIO;
2024 }
2025
2026 if (WARN_ON(!page_has_buffers(page))) {
2027 cancel_page_dirty_status(page);
2028 unlock_page(page);
2029 return 0;
2030 }
2031
2032 trace_ext4_writepage(page);
2033 size = i_size_read(inode);
2034 if (page->index == size >> PAGE_SHIFT &&
2035 !ext4_verity_in_progress(inode))
2036 len = size & ~PAGE_MASK;
2037 else
2038 len = PAGE_SIZE;
2039
2040 /* Should never happen but for bugs in other kernel subsystems */
2041 if (!page_has_buffers(page)) {
2042 ext4_warning_inode(inode,
2043 "page %lu does not have buffers attached", page->index);
2044 ClearPageDirty(page);
2045 unlock_page(page);
2046 return 0;
2047 }
2048
2049 page_bufs = page_buffers(page);
2050 /*
2051 * We cannot do block allocation or other extent handling in this
2052 * function. If there are buffers needing that, we have to redirty
2053 * the page. But we may reach here when we do a journal commit via
2054 * journal_submit_inode_data_buffers() and in that case we must write
2055 * allocated buffers to achieve data=ordered mode guarantees.
2056 *
2057 * Also, if there is only one buffer per page (the fs block
2058 * size == the page size), if one buffer needs block
2059 * allocation or needs to modify the extent tree to clear the
2060 * unwritten flag, we know that the page can't be written at
2061 * all, so we might as well refuse the write immediately.
2062 * Unfortunately if the block size != page size, we can't as
2063 * easily detect this case using ext4_walk_page_buffers(), but
2064 * for the extremely common case, this is an optimization that
2065 * skips a useless round trip through ext4_bio_write_page().
2066 */
2067 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 ext4_bh_delay_or_unwritten)) {
2069 redirty_page_for_writepage(wbc, page);
2070 if ((current->flags & PF_MEMALLOC) ||
2071 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2072 /*
2073 * For memory cleaning there's no point in writing only
2074 * some buffers. So just bail out. Warn if we came here
2075 * from direct reclaim.
2076 */
2077 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078 == PF_MEMALLOC);
2079 unlock_page(page);
2080 return 0;
2081 }
2082 keep_towrite = true;
2083 }
2084
2085 if (PageChecked(page) && ext4_should_journal_data(inode))
2086 /*
2087 * It's mmapped pagecache. Add buffers and journal it. There
2088 * doesn't seem much point in redirtying the page here.
2089 */
2090 return __ext4_journalled_writepage(page, len);
2091
2092 ext4_io_submit_init(&io_submit, wbc);
2093 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094 if (!io_submit.io_end) {
2095 redirty_page_for_writepage(wbc, page);
2096 unlock_page(page);
2097 return -ENOMEM;
2098 }
2099 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2100 ext4_io_submit(&io_submit);
2101 /* Drop io_end reference we got from init */
2102 ext4_put_io_end_defer(io_submit.io_end);
2103 return ret;
2104 }
2105
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2106 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107 {
2108 int len;
2109 loff_t size;
2110 int err;
2111
2112 BUG_ON(page->index != mpd->first_page);
2113 clear_page_dirty_for_io(page);
2114 /*
2115 * We have to be very careful here! Nothing protects writeback path
2116 * against i_size changes and the page can be writeably mapped into
2117 * page tables. So an application can be growing i_size and writing
2118 * data through mmap while writeback runs. clear_page_dirty_for_io()
2119 * write-protects our page in page tables and the page cannot get
2120 * written to again until we release page lock. So only after
2121 * clear_page_dirty_for_io() we are safe to sample i_size for
2122 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2123 * on the barrier provided by TestClearPageDirty in
2124 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2125 * after page tables are updated.
2126 */
2127 size = i_size_read(mpd->inode);
2128 if (page->index == size >> PAGE_SHIFT &&
2129 !ext4_verity_in_progress(mpd->inode))
2130 len = size & ~PAGE_MASK;
2131 else
2132 len = PAGE_SIZE;
2133 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2134 if (!err)
2135 mpd->wbc->nr_to_write--;
2136 mpd->first_page++;
2137
2138 return err;
2139 }
2140
2141 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2142
2143 /*
2144 * mballoc gives us at most this number of blocks...
2145 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2146 * The rest of mballoc seems to handle chunks up to full group size.
2147 */
2148 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2149
2150 /*
2151 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2152 *
2153 * @mpd - extent of blocks
2154 * @lblk - logical number of the block in the file
2155 * @bh - buffer head we want to add to the extent
2156 *
2157 * The function is used to collect contig. blocks in the same state. If the
2158 * buffer doesn't require mapping for writeback and we haven't started the
2159 * extent of buffers to map yet, the function returns 'true' immediately - the
2160 * caller can write the buffer right away. Otherwise the function returns true
2161 * if the block has been added to the extent, false if the block couldn't be
2162 * added.
2163 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2164 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2165 struct buffer_head *bh)
2166 {
2167 struct ext4_map_blocks *map = &mpd->map;
2168
2169 /* Buffer that doesn't need mapping for writeback? */
2170 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2171 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2172 /* So far no extent to map => we write the buffer right away */
2173 if (map->m_len == 0)
2174 return true;
2175 return false;
2176 }
2177
2178 /* First block in the extent? */
2179 if (map->m_len == 0) {
2180 /* We cannot map unless handle is started... */
2181 if (!mpd->do_map)
2182 return false;
2183 map->m_lblk = lblk;
2184 map->m_len = 1;
2185 map->m_flags = bh->b_state & BH_FLAGS;
2186 return true;
2187 }
2188
2189 /* Don't go larger than mballoc is willing to allocate */
2190 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2191 return false;
2192
2193 /* Can we merge the block to our big extent? */
2194 if (lblk == map->m_lblk + map->m_len &&
2195 (bh->b_state & BH_FLAGS) == map->m_flags) {
2196 map->m_len++;
2197 return true;
2198 }
2199 return false;
2200 }
2201
2202 /*
2203 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2204 *
2205 * @mpd - extent of blocks for mapping
2206 * @head - the first buffer in the page
2207 * @bh - buffer we should start processing from
2208 * @lblk - logical number of the block in the file corresponding to @bh
2209 *
2210 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2211 * the page for IO if all buffers in this page were mapped and there's no
2212 * accumulated extent of buffers to map or add buffers in the page to the
2213 * extent of buffers to map. The function returns 1 if the caller can continue
2214 * by processing the next page, 0 if it should stop adding buffers to the
2215 * extent to map because we cannot extend it anymore. It can also return value
2216 * < 0 in case of error during IO submission.
2217 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2218 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2219 struct buffer_head *head,
2220 struct buffer_head *bh,
2221 ext4_lblk_t lblk)
2222 {
2223 struct inode *inode = mpd->inode;
2224 int err;
2225 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2226 >> inode->i_blkbits;
2227
2228 if (ext4_verity_in_progress(inode))
2229 blocks = EXT_MAX_BLOCKS;
2230
2231 do {
2232 BUG_ON(buffer_locked(bh));
2233
2234 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2235 /* Found extent to map? */
2236 if (mpd->map.m_len)
2237 return 0;
2238 /* Buffer needs mapping and handle is not started? */
2239 if (!mpd->do_map)
2240 return 0;
2241 /* Everything mapped so far and we hit EOF */
2242 break;
2243 }
2244 } while (lblk++, (bh = bh->b_this_page) != head);
2245 /* So far everything mapped? Submit the page for IO. */
2246 if (mpd->map.m_len == 0) {
2247 err = mpage_submit_page(mpd, head->b_page);
2248 if (err < 0)
2249 return err;
2250 }
2251 if (lblk >= blocks) {
2252 mpd->scanned_until_end = 1;
2253 return 0;
2254 }
2255 return 1;
2256 }
2257
2258 /*
2259 * mpage_process_page - update page buffers corresponding to changed extent and
2260 * may submit fully mapped page for IO
2261 *
2262 * @mpd - description of extent to map, on return next extent to map
2263 * @m_lblk - logical block mapping.
2264 * @m_pblk - corresponding physical mapping.
2265 * @map_bh - determines on return whether this page requires any further
2266 * mapping or not.
2267 * Scan given page buffers corresponding to changed extent and update buffer
2268 * state according to new extent state.
2269 * We map delalloc buffers to their physical location, clear unwritten bits.
2270 * If the given page is not fully mapped, we update @map to the next extent in
2271 * the given page that needs mapping & return @map_bh as true.
2272 */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2273 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2274 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2275 bool *map_bh)
2276 {
2277 struct buffer_head *head, *bh;
2278 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2279 ext4_lblk_t lblk = *m_lblk;
2280 ext4_fsblk_t pblock = *m_pblk;
2281 int err = 0;
2282 int blkbits = mpd->inode->i_blkbits;
2283 ssize_t io_end_size = 0;
2284 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2285
2286 bh = head = page_buffers(page);
2287 do {
2288 if (lblk < mpd->map.m_lblk)
2289 continue;
2290 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2291 /*
2292 * Buffer after end of mapped extent.
2293 * Find next buffer in the page to map.
2294 */
2295 mpd->map.m_len = 0;
2296 mpd->map.m_flags = 0;
2297 io_end_vec->size += io_end_size;
2298 io_end_size = 0;
2299
2300 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2301 if (err > 0)
2302 err = 0;
2303 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2304 io_end_vec = ext4_alloc_io_end_vec(io_end);
2305 if (IS_ERR(io_end_vec)) {
2306 err = PTR_ERR(io_end_vec);
2307 goto out;
2308 }
2309 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2310 }
2311 *map_bh = true;
2312 goto out;
2313 }
2314 if (buffer_delay(bh)) {
2315 clear_buffer_delay(bh);
2316 bh->b_blocknr = pblock++;
2317 }
2318 clear_buffer_unwritten(bh);
2319 io_end_size += (1 << blkbits);
2320 } while (lblk++, (bh = bh->b_this_page) != head);
2321
2322 io_end_vec->size += io_end_size;
2323 io_end_size = 0;
2324 *map_bh = false;
2325 out:
2326 *m_lblk = lblk;
2327 *m_pblk = pblock;
2328 return err;
2329 }
2330
2331 /*
2332 * mpage_map_buffers - update buffers corresponding to changed extent and
2333 * submit fully mapped pages for IO
2334 *
2335 * @mpd - description of extent to map, on return next extent to map
2336 *
2337 * Scan buffers corresponding to changed extent (we expect corresponding pages
2338 * to be already locked) and update buffer state according to new extent state.
2339 * We map delalloc buffers to their physical location, clear unwritten bits,
2340 * and mark buffers as uninit when we perform writes to unwritten extents
2341 * and do extent conversion after IO is finished. If the last page is not fully
2342 * mapped, we update @map to the next extent in the last page that needs
2343 * mapping. Otherwise we submit the page for IO.
2344 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2345 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2346 {
2347 struct pagevec pvec;
2348 int nr_pages, i;
2349 struct inode *inode = mpd->inode;
2350 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2351 pgoff_t start, end;
2352 ext4_lblk_t lblk;
2353 ext4_fsblk_t pblock;
2354 int err;
2355 bool map_bh = false;
2356
2357 start = mpd->map.m_lblk >> bpp_bits;
2358 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2359 lblk = start << bpp_bits;
2360 pblock = mpd->map.m_pblk;
2361
2362 pagevec_init(&pvec);
2363 while (start <= end) {
2364 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2365 &start, end);
2366 if (nr_pages == 0)
2367 break;
2368 for (i = 0; i < nr_pages; i++) {
2369 struct page *page = pvec.pages[i];
2370
2371 err = mpage_process_page(mpd, page, &lblk, &pblock,
2372 &map_bh);
2373 /*
2374 * If map_bh is true, means page may require further bh
2375 * mapping, or maybe the page was submitted for IO.
2376 * So we return to call further extent mapping.
2377 */
2378 if (err < 0 || map_bh)
2379 goto out;
2380 /* Page fully mapped - let IO run! */
2381 err = mpage_submit_page(mpd, page);
2382 if (err < 0)
2383 goto out;
2384 }
2385 pagevec_release(&pvec);
2386 }
2387 /* Extent fully mapped and matches with page boundary. We are done. */
2388 mpd->map.m_len = 0;
2389 mpd->map.m_flags = 0;
2390 return 0;
2391 out:
2392 pagevec_release(&pvec);
2393 return err;
2394 }
2395
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2396 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2397 {
2398 struct inode *inode = mpd->inode;
2399 struct ext4_map_blocks *map = &mpd->map;
2400 int get_blocks_flags;
2401 int err, dioread_nolock;
2402
2403 trace_ext4_da_write_pages_extent(inode, map);
2404 /*
2405 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2406 * to convert an unwritten extent to be initialized (in the case
2407 * where we have written into one or more preallocated blocks). It is
2408 * possible that we're going to need more metadata blocks than
2409 * previously reserved. However we must not fail because we're in
2410 * writeback and there is nothing we can do about it so it might result
2411 * in data loss. So use reserved blocks to allocate metadata if
2412 * possible.
2413 *
2414 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2415 * the blocks in question are delalloc blocks. This indicates
2416 * that the blocks and quotas has already been checked when
2417 * the data was copied into the page cache.
2418 */
2419 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2420 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2421 EXT4_GET_BLOCKS_IO_SUBMIT;
2422 dioread_nolock = ext4_should_dioread_nolock(inode);
2423 if (dioread_nolock)
2424 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2425 if (map->m_flags & BIT(BH_Delay))
2426 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2427
2428 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2429 if (err < 0)
2430 return err;
2431 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2432 if (!mpd->io_submit.io_end->handle &&
2433 ext4_handle_valid(handle)) {
2434 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2435 handle->h_rsv_handle = NULL;
2436 }
2437 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2438 }
2439
2440 BUG_ON(map->m_len == 0);
2441 return 0;
2442 }
2443
2444 /*
2445 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2446 * mpd->len and submit pages underlying it for IO
2447 *
2448 * @handle - handle for journal operations
2449 * @mpd - extent to map
2450 * @give_up_on_write - we set this to true iff there is a fatal error and there
2451 * is no hope of writing the data. The caller should discard
2452 * dirty pages to avoid infinite loops.
2453 *
2454 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2455 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2456 * them to initialized or split the described range from larger unwritten
2457 * extent. Note that we need not map all the described range since allocation
2458 * can return less blocks or the range is covered by more unwritten extents. We
2459 * cannot map more because we are limited by reserved transaction credits. On
2460 * the other hand we always make sure that the last touched page is fully
2461 * mapped so that it can be written out (and thus forward progress is
2462 * guaranteed). After mapping we submit all mapped pages for IO.
2463 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2464 static int mpage_map_and_submit_extent(handle_t *handle,
2465 struct mpage_da_data *mpd,
2466 bool *give_up_on_write)
2467 {
2468 struct inode *inode = mpd->inode;
2469 struct ext4_map_blocks *map = &mpd->map;
2470 int err;
2471 loff_t disksize;
2472 int progress = 0;
2473 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2474 struct ext4_io_end_vec *io_end_vec;
2475
2476 io_end_vec = ext4_alloc_io_end_vec(io_end);
2477 if (IS_ERR(io_end_vec))
2478 return PTR_ERR(io_end_vec);
2479 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2480 do {
2481 err = mpage_map_one_extent(handle, mpd);
2482 if (err < 0) {
2483 struct super_block *sb = inode->i_sb;
2484
2485 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2486 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2487 goto invalidate_dirty_pages;
2488 /*
2489 * Let the uper layers retry transient errors.
2490 * In the case of ENOSPC, if ext4_count_free_blocks()
2491 * is non-zero, a commit should free up blocks.
2492 */
2493 if ((err == -ENOMEM) ||
2494 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2495 if (progress)
2496 goto update_disksize;
2497 return err;
2498 }
2499 ext4_msg(sb, KERN_CRIT,
2500 "Delayed block allocation failed for "
2501 "inode %lu at logical offset %llu with"
2502 " max blocks %u with error %d",
2503 inode->i_ino,
2504 (unsigned long long)map->m_lblk,
2505 (unsigned)map->m_len, -err);
2506 ext4_msg(sb, KERN_CRIT,
2507 "This should not happen!! Data will "
2508 "be lost\n");
2509 if (err == -ENOSPC)
2510 ext4_print_free_blocks(inode);
2511 invalidate_dirty_pages:
2512 *give_up_on_write = true;
2513 return err;
2514 }
2515 progress = 1;
2516 /*
2517 * Update buffer state, submit mapped pages, and get us new
2518 * extent to map
2519 */
2520 err = mpage_map_and_submit_buffers(mpd);
2521 if (err < 0)
2522 goto update_disksize;
2523 } while (map->m_len);
2524
2525 update_disksize:
2526 /*
2527 * Update on-disk size after IO is submitted. Races with
2528 * truncate are avoided by checking i_size under i_data_sem.
2529 */
2530 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2531 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2532 int err2;
2533 loff_t i_size;
2534
2535 down_write(&EXT4_I(inode)->i_data_sem);
2536 i_size = i_size_read(inode);
2537 if (disksize > i_size)
2538 disksize = i_size;
2539 if (disksize > EXT4_I(inode)->i_disksize)
2540 EXT4_I(inode)->i_disksize = disksize;
2541 up_write(&EXT4_I(inode)->i_data_sem);
2542 err2 = ext4_mark_inode_dirty(handle, inode);
2543 if (err2) {
2544 ext4_error_err(inode->i_sb, -err2,
2545 "Failed to mark inode %lu dirty",
2546 inode->i_ino);
2547 }
2548 if (!err)
2549 err = err2;
2550 }
2551 return err;
2552 }
2553
2554 /*
2555 * Calculate the total number of credits to reserve for one writepages
2556 * iteration. This is called from ext4_writepages(). We map an extent of
2557 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2558 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2559 * bpp - 1 blocks in bpp different extents.
2560 */
ext4_da_writepages_trans_blocks(struct inode * inode)2561 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2562 {
2563 int bpp = ext4_journal_blocks_per_page(inode);
2564
2565 return ext4_meta_trans_blocks(inode,
2566 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2567 }
2568
2569 /*
2570 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2571 * and underlying extent to map
2572 *
2573 * @mpd - where to look for pages
2574 *
2575 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2576 * IO immediately. When we find a page which isn't mapped we start accumulating
2577 * extent of buffers underlying these pages that needs mapping (formed by
2578 * either delayed or unwritten buffers). We also lock the pages containing
2579 * these buffers. The extent found is returned in @mpd structure (starting at
2580 * mpd->lblk with length mpd->len blocks).
2581 *
2582 * Note that this function can attach bios to one io_end structure which are
2583 * neither logically nor physically contiguous. Although it may seem as an
2584 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2585 * case as we need to track IO to all buffers underlying a page in one io_end.
2586 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2587 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2588 {
2589 struct address_space *mapping = mpd->inode->i_mapping;
2590 struct pagevec pvec;
2591 unsigned int nr_pages;
2592 long left = mpd->wbc->nr_to_write;
2593 pgoff_t index = mpd->first_page;
2594 pgoff_t end = mpd->last_page;
2595 xa_mark_t tag;
2596 int i, err = 0;
2597 int blkbits = mpd->inode->i_blkbits;
2598 ext4_lblk_t lblk;
2599 struct buffer_head *head;
2600
2601 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2602 tag = PAGECACHE_TAG_TOWRITE;
2603 else
2604 tag = PAGECACHE_TAG_DIRTY;
2605
2606 pagevec_init(&pvec);
2607 mpd->map.m_len = 0;
2608 mpd->next_page = index;
2609 while (index <= end) {
2610 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2611 tag);
2612 if (nr_pages == 0)
2613 break;
2614
2615 for (i = 0; i < nr_pages; i++) {
2616 struct page *page = pvec.pages[i];
2617
2618 /*
2619 * Accumulated enough dirty pages? This doesn't apply
2620 * to WB_SYNC_ALL mode. For integrity sync we have to
2621 * keep going because someone may be concurrently
2622 * dirtying pages, and we might have synced a lot of
2623 * newly appeared dirty pages, but have not synced all
2624 * of the old dirty pages.
2625 */
2626 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2627 goto out;
2628
2629 /* If we can't merge this page, we are done. */
2630 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2631 goto out;
2632
2633 lock_page(page);
2634 /*
2635 * If the page is no longer dirty, or its mapping no
2636 * longer corresponds to inode we are writing (which
2637 * means it has been truncated or invalidated), or the
2638 * page is already under writeback and we are not doing
2639 * a data integrity writeback, skip the page
2640 */
2641 if (!PageDirty(page) ||
2642 (PageWriteback(page) &&
2643 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2644 unlikely(page->mapping != mapping)) {
2645 unlock_page(page);
2646 continue;
2647 }
2648
2649 if (WARN_ON(!page_has_buffers(page))) {
2650 cancel_page_dirty_status(page);
2651 unlock_page(page);
2652 continue;
2653 }
2654
2655 wait_on_page_writeback(page);
2656 BUG_ON(PageWriteback(page));
2657
2658 /*
2659 * Should never happen but for buggy code in
2660 * other subsystems that call
2661 * set_page_dirty() without properly warning
2662 * the file system first. See [1] for more
2663 * information.
2664 *
2665 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2666 */
2667 if (!page_has_buffers(page)) {
2668 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2669 ClearPageDirty(page);
2670 unlock_page(page);
2671 continue;
2672 }
2673
2674 if (mpd->map.m_len == 0)
2675 mpd->first_page = page->index;
2676 mpd->next_page = page->index + 1;
2677 /* Add all dirty buffers to mpd */
2678 lblk = ((ext4_lblk_t)page->index) <<
2679 (PAGE_SHIFT - blkbits);
2680 head = page_buffers(page);
2681 err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 if (err <= 0)
2683 goto out;
2684 err = 0;
2685 left--;
2686 }
2687 pagevec_release(&pvec);
2688 cond_resched();
2689 }
2690 mpd->scanned_until_end = 1;
2691 return 0;
2692 out:
2693 pagevec_release(&pvec);
2694 return err;
2695 }
2696
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2697 static int ext4_writepages(struct address_space *mapping,
2698 struct writeback_control *wbc)
2699 {
2700 pgoff_t writeback_index = 0;
2701 long nr_to_write = wbc->nr_to_write;
2702 int range_whole = 0;
2703 int cycled = 1;
2704 handle_t *handle = NULL;
2705 struct mpage_da_data mpd;
2706 struct inode *inode = mapping->host;
2707 int needed_blocks, rsv_blocks = 0, ret = 0;
2708 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709 struct blk_plug plug;
2710 bool give_up_on_write = false;
2711
2712 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2713 return -EIO;
2714
2715 percpu_down_read(&sbi->s_writepages_rwsem);
2716 trace_ext4_writepages(inode, wbc);
2717
2718 /*
2719 * No pages to write? This is mainly a kludge to avoid starting
2720 * a transaction for special inodes like journal inode on last iput()
2721 * because that could violate lock ordering on umount
2722 */
2723 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2724 goto out_writepages;
2725
2726 if (ext4_should_journal_data(inode)) {
2727 ret = generic_writepages(mapping, wbc);
2728 goto out_writepages;
2729 }
2730
2731 /*
2732 * If the filesystem has aborted, it is read-only, so return
2733 * right away instead of dumping stack traces later on that
2734 * will obscure the real source of the problem. We test
2735 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2736 * the latter could be true if the filesystem is mounted
2737 * read-only, and in that case, ext4_writepages should
2738 * *never* be called, so if that ever happens, we would want
2739 * the stack trace.
2740 */
2741 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2742 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2743 ret = -EROFS;
2744 goto out_writepages;
2745 }
2746
2747 /*
2748 * If we have inline data and arrive here, it means that
2749 * we will soon create the block for the 1st page, so
2750 * we'd better clear the inline data here.
2751 */
2752 if (ext4_has_inline_data(inode)) {
2753 /* Just inode will be modified... */
2754 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2755 if (IS_ERR(handle)) {
2756 ret = PTR_ERR(handle);
2757 goto out_writepages;
2758 }
2759 BUG_ON(ext4_test_inode_state(inode,
2760 EXT4_STATE_MAY_INLINE_DATA));
2761 ext4_destroy_inline_data(handle, inode);
2762 ext4_journal_stop(handle);
2763 }
2764
2765 if (ext4_should_dioread_nolock(inode)) {
2766 /*
2767 * We may need to convert up to one extent per block in
2768 * the page and we may dirty the inode.
2769 */
2770 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2771 PAGE_SIZE >> inode->i_blkbits);
2772 }
2773
2774 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2775 range_whole = 1;
2776
2777 if (wbc->range_cyclic) {
2778 writeback_index = mapping->writeback_index;
2779 if (writeback_index)
2780 cycled = 0;
2781 mpd.first_page = writeback_index;
2782 mpd.last_page = -1;
2783 } else {
2784 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2785 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2786 }
2787
2788 mpd.inode = inode;
2789 mpd.wbc = wbc;
2790 ext4_io_submit_init(&mpd.io_submit, wbc);
2791 retry:
2792 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2793 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2794 blk_start_plug(&plug);
2795
2796 /*
2797 * First writeback pages that don't need mapping - we can avoid
2798 * starting a transaction unnecessarily and also avoid being blocked
2799 * in the block layer on device congestion while having transaction
2800 * started.
2801 */
2802 mpd.do_map = 0;
2803 mpd.scanned_until_end = 0;
2804 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2805 if (!mpd.io_submit.io_end) {
2806 ret = -ENOMEM;
2807 goto unplug;
2808 }
2809 ret = mpage_prepare_extent_to_map(&mpd);
2810 /* Unlock pages we didn't use */
2811 mpage_release_unused_pages(&mpd, false);
2812 /* Submit prepared bio */
2813 ext4_io_submit(&mpd.io_submit);
2814 ext4_put_io_end_defer(mpd.io_submit.io_end);
2815 mpd.io_submit.io_end = NULL;
2816 if (ret < 0)
2817 goto unplug;
2818
2819 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2820 /* For each extent of pages we use new io_end */
2821 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2822 if (!mpd.io_submit.io_end) {
2823 ret = -ENOMEM;
2824 break;
2825 }
2826
2827 /*
2828 * We have two constraints: We find one extent to map and we
2829 * must always write out whole page (makes a difference when
2830 * blocksize < pagesize) so that we don't block on IO when we
2831 * try to write out the rest of the page. Journalled mode is
2832 * not supported by delalloc.
2833 */
2834 BUG_ON(ext4_should_journal_data(inode));
2835 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2836
2837 /* start a new transaction */
2838 handle = ext4_journal_start_with_reserve(inode,
2839 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2840 if (IS_ERR(handle)) {
2841 ret = PTR_ERR(handle);
2842 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2843 "%ld pages, ino %lu; err %d", __func__,
2844 wbc->nr_to_write, inode->i_ino, ret);
2845 /* Release allocated io_end */
2846 ext4_put_io_end(mpd.io_submit.io_end);
2847 mpd.io_submit.io_end = NULL;
2848 break;
2849 }
2850 mpd.do_map = 1;
2851
2852 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2853 ret = mpage_prepare_extent_to_map(&mpd);
2854 if (!ret && mpd.map.m_len)
2855 ret = mpage_map_and_submit_extent(handle, &mpd,
2856 &give_up_on_write);
2857 /*
2858 * Caution: If the handle is synchronous,
2859 * ext4_journal_stop() can wait for transaction commit
2860 * to finish which may depend on writeback of pages to
2861 * complete or on page lock to be released. In that
2862 * case, we have to wait until after we have
2863 * submitted all the IO, released page locks we hold,
2864 * and dropped io_end reference (for extent conversion
2865 * to be able to complete) before stopping the handle.
2866 */
2867 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2868 ext4_journal_stop(handle);
2869 handle = NULL;
2870 mpd.do_map = 0;
2871 }
2872 /* Unlock pages we didn't use */
2873 mpage_release_unused_pages(&mpd, give_up_on_write);
2874 /* Submit prepared bio */
2875 ext4_io_submit(&mpd.io_submit);
2876
2877 /*
2878 * Drop our io_end reference we got from init. We have
2879 * to be careful and use deferred io_end finishing if
2880 * we are still holding the transaction as we can
2881 * release the last reference to io_end which may end
2882 * up doing unwritten extent conversion.
2883 */
2884 if (handle) {
2885 ext4_put_io_end_defer(mpd.io_submit.io_end);
2886 ext4_journal_stop(handle);
2887 } else
2888 ext4_put_io_end(mpd.io_submit.io_end);
2889 mpd.io_submit.io_end = NULL;
2890
2891 if (ret == -ENOSPC && sbi->s_journal) {
2892 /*
2893 * Commit the transaction which would
2894 * free blocks released in the transaction
2895 * and try again
2896 */
2897 jbd2_journal_force_commit_nested(sbi->s_journal);
2898 ret = 0;
2899 continue;
2900 }
2901 /* Fatal error - ENOMEM, EIO... */
2902 if (ret)
2903 break;
2904 }
2905 unplug:
2906 blk_finish_plug(&plug);
2907 if (!ret && !cycled && wbc->nr_to_write > 0) {
2908 cycled = 1;
2909 mpd.last_page = writeback_index - 1;
2910 mpd.first_page = 0;
2911 goto retry;
2912 }
2913
2914 /* Update index */
2915 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2916 /*
2917 * Set the writeback_index so that range_cyclic
2918 * mode will write it back later
2919 */
2920 mapping->writeback_index = mpd.first_page;
2921
2922 out_writepages:
2923 trace_ext4_writepages_result(inode, wbc, ret,
2924 nr_to_write - wbc->nr_to_write);
2925 percpu_up_read(&sbi->s_writepages_rwsem);
2926 return ret;
2927 }
2928
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2929 static int ext4_dax_writepages(struct address_space *mapping,
2930 struct writeback_control *wbc)
2931 {
2932 int ret;
2933 long nr_to_write = wbc->nr_to_write;
2934 struct inode *inode = mapping->host;
2935 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2936
2937 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2938 return -EIO;
2939
2940 percpu_down_read(&sbi->s_writepages_rwsem);
2941 trace_ext4_writepages(inode, wbc);
2942
2943 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2944 trace_ext4_writepages_result(inode, wbc, ret,
2945 nr_to_write - wbc->nr_to_write);
2946 percpu_up_read(&sbi->s_writepages_rwsem);
2947 return ret;
2948 }
2949
ext4_nonda_switch(struct super_block * sb)2950 static int ext4_nonda_switch(struct super_block *sb)
2951 {
2952 s64 free_clusters, dirty_clusters;
2953 struct ext4_sb_info *sbi = EXT4_SB(sb);
2954
2955 /*
2956 * switch to non delalloc mode if we are running low
2957 * on free block. The free block accounting via percpu
2958 * counters can get slightly wrong with percpu_counter_batch getting
2959 * accumulated on each CPU without updating global counters
2960 * Delalloc need an accurate free block accounting. So switch
2961 * to non delalloc when we are near to error range.
2962 */
2963 free_clusters =
2964 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2965 dirty_clusters =
2966 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2967 /*
2968 * Start pushing delalloc when 1/2 of free blocks are dirty.
2969 */
2970 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2971 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2972
2973 if (2 * free_clusters < 3 * dirty_clusters ||
2974 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2975 /*
2976 * free block count is less than 150% of dirty blocks
2977 * or free blocks is less than watermark
2978 */
2979 return 1;
2980 }
2981 return 0;
2982 }
2983
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2984 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2985 loff_t pos, unsigned len, unsigned flags,
2986 struct page **pagep, void **fsdata)
2987 {
2988 int ret, retries = 0;
2989 struct page *page;
2990 pgoff_t index;
2991 struct inode *inode = mapping->host;
2992
2993 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2994 return -EIO;
2995
2996 index = pos >> PAGE_SHIFT;
2997
2998 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2999 ext4_verity_in_progress(inode)) {
3000 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3001 return ext4_write_begin(file, mapping, pos,
3002 len, flags, pagep, fsdata);
3003 }
3004 *fsdata = (void *)0;
3005 trace_ext4_da_write_begin(inode, pos, len, flags);
3006
3007 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3008 ret = ext4_da_write_inline_data_begin(mapping, inode,
3009 pos, len, flags,
3010 pagep, fsdata);
3011 if (ret < 0)
3012 return ret;
3013 if (ret == 1)
3014 return 0;
3015 }
3016
3017 retry:
3018 page = grab_cache_page_write_begin(mapping, index, flags);
3019 if (!page)
3020 return -ENOMEM;
3021
3022 /* In case writeback began while the page was unlocked */
3023 wait_for_stable_page(page);
3024
3025 #ifdef CONFIG_FS_ENCRYPTION
3026 ret = ext4_block_write_begin(page, pos, len,
3027 ext4_da_get_block_prep);
3028 #else
3029 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3030 #endif
3031 if (ret < 0) {
3032 unlock_page(page);
3033 put_page(page);
3034 /*
3035 * block_write_begin may have instantiated a few blocks
3036 * outside i_size. Trim these off again. Don't need
3037 * i_size_read because we hold inode lock.
3038 */
3039 if (pos + len > inode->i_size)
3040 ext4_truncate_failed_write(inode);
3041
3042 if (ret == -ENOSPC &&
3043 ext4_should_retry_alloc(inode->i_sb, &retries))
3044 goto retry;
3045 return ret;
3046 }
3047
3048 *pagep = page;
3049 return ret;
3050 }
3051
3052 /*
3053 * Check if we should update i_disksize
3054 * when write to the end of file but not require block allocation
3055 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3056 static int ext4_da_should_update_i_disksize(struct page *page,
3057 unsigned long offset)
3058 {
3059 struct buffer_head *bh;
3060 struct inode *inode = page->mapping->host;
3061 unsigned int idx;
3062 int i;
3063
3064 bh = page_buffers(page);
3065 idx = offset >> inode->i_blkbits;
3066
3067 for (i = 0; i < idx; i++)
3068 bh = bh->b_this_page;
3069
3070 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3071 return 0;
3072 return 1;
3073 }
3074
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3075 static int ext4_da_write_end(struct file *file,
3076 struct address_space *mapping,
3077 loff_t pos, unsigned len, unsigned copied,
3078 struct page *page, void *fsdata)
3079 {
3080 struct inode *inode = mapping->host;
3081 loff_t new_i_size;
3082 unsigned long start, end;
3083 int write_mode = (int)(unsigned long)fsdata;
3084
3085 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3086 return ext4_write_end(file, mapping, pos,
3087 len, copied, page, fsdata);
3088
3089 trace_ext4_da_write_end(inode, pos, len, copied);
3090
3091 if (write_mode != CONVERT_INLINE_DATA &&
3092 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3093 ext4_has_inline_data(inode))
3094 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3095
3096 start = pos & (PAGE_SIZE - 1);
3097 end = start + copied - 1;
3098
3099 /*
3100 * Since we are holding inode lock, we are sure i_disksize <=
3101 * i_size. We also know that if i_disksize < i_size, there are
3102 * delalloc writes pending in the range upto i_size. If the end of
3103 * the current write is <= i_size, there's no need to touch
3104 * i_disksize since writeback will push i_disksize upto i_size
3105 * eventually. If the end of the current write is > i_size and
3106 * inside an allocated block (ext4_da_should_update_i_disksize()
3107 * check), we need to update i_disksize here as neither
3108 * ext4_writepage() nor certain ext4_writepages() paths not
3109 * allocating blocks update i_disksize.
3110 *
3111 * Note that we defer inode dirtying to generic_write_end() /
3112 * ext4_da_write_inline_data_end().
3113 */
3114 new_i_size = pos + copied;
3115 if (copied && new_i_size > inode->i_size &&
3116 ext4_da_should_update_i_disksize(page, end))
3117 ext4_update_i_disksize(inode, new_i_size);
3118
3119 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3120 }
3121
3122 /*
3123 * Force all delayed allocation blocks to be allocated for a given inode.
3124 */
ext4_alloc_da_blocks(struct inode * inode)3125 int ext4_alloc_da_blocks(struct inode *inode)
3126 {
3127 trace_ext4_alloc_da_blocks(inode);
3128
3129 if (!EXT4_I(inode)->i_reserved_data_blocks)
3130 return 0;
3131
3132 /*
3133 * We do something simple for now. The filemap_flush() will
3134 * also start triggering a write of the data blocks, which is
3135 * not strictly speaking necessary (and for users of
3136 * laptop_mode, not even desirable). However, to do otherwise
3137 * would require replicating code paths in:
3138 *
3139 * ext4_writepages() ->
3140 * write_cache_pages() ---> (via passed in callback function)
3141 * __mpage_da_writepage() -->
3142 * mpage_add_bh_to_extent()
3143 * mpage_da_map_blocks()
3144 *
3145 * The problem is that write_cache_pages(), located in
3146 * mm/page-writeback.c, marks pages clean in preparation for
3147 * doing I/O, which is not desirable if we're not planning on
3148 * doing I/O at all.
3149 *
3150 * We could call write_cache_pages(), and then redirty all of
3151 * the pages by calling redirty_page_for_writepage() but that
3152 * would be ugly in the extreme. So instead we would need to
3153 * replicate parts of the code in the above functions,
3154 * simplifying them because we wouldn't actually intend to
3155 * write out the pages, but rather only collect contiguous
3156 * logical block extents, call the multi-block allocator, and
3157 * then update the buffer heads with the block allocations.
3158 *
3159 * For now, though, we'll cheat by calling filemap_flush(),
3160 * which will map the blocks, and start the I/O, but not
3161 * actually wait for the I/O to complete.
3162 */
3163 return filemap_flush(inode->i_mapping);
3164 }
3165
3166 /*
3167 * bmap() is special. It gets used by applications such as lilo and by
3168 * the swapper to find the on-disk block of a specific piece of data.
3169 *
3170 * Naturally, this is dangerous if the block concerned is still in the
3171 * journal. If somebody makes a swapfile on an ext4 data-journaling
3172 * filesystem and enables swap, then they may get a nasty shock when the
3173 * data getting swapped to that swapfile suddenly gets overwritten by
3174 * the original zero's written out previously to the journal and
3175 * awaiting writeback in the kernel's buffer cache.
3176 *
3177 * So, if we see any bmap calls here on a modified, data-journaled file,
3178 * take extra steps to flush any blocks which might be in the cache.
3179 */
ext4_bmap(struct address_space * mapping,sector_t block)3180 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3181 {
3182 struct inode *inode = mapping->host;
3183 journal_t *journal;
3184 sector_t ret = 0;
3185 int err;
3186
3187 inode_lock_shared(inode);
3188 /*
3189 * We can get here for an inline file via the FIBMAP ioctl
3190 */
3191 if (ext4_has_inline_data(inode))
3192 goto out;
3193
3194 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3195 test_opt(inode->i_sb, DELALLOC)) {
3196 /*
3197 * With delalloc we want to sync the file
3198 * so that we can make sure we allocate
3199 * blocks for file
3200 */
3201 filemap_write_and_wait(mapping);
3202 }
3203
3204 if (EXT4_JOURNAL(inode) &&
3205 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3206 /*
3207 * This is a REALLY heavyweight approach, but the use of
3208 * bmap on dirty files is expected to be extremely rare:
3209 * only if we run lilo or swapon on a freshly made file
3210 * do we expect this to happen.
3211 *
3212 * (bmap requires CAP_SYS_RAWIO so this does not
3213 * represent an unprivileged user DOS attack --- we'd be
3214 * in trouble if mortal users could trigger this path at
3215 * will.)
3216 *
3217 * NB. EXT4_STATE_JDATA is not set on files other than
3218 * regular files. If somebody wants to bmap a directory
3219 * or symlink and gets confused because the buffer
3220 * hasn't yet been flushed to disk, they deserve
3221 * everything they get.
3222 */
3223
3224 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3225 journal = EXT4_JOURNAL(inode);
3226 jbd2_journal_lock_updates(journal);
3227 err = jbd2_journal_flush(journal);
3228 jbd2_journal_unlock_updates(journal);
3229
3230 if (err)
3231 goto out;
3232 }
3233
3234 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3235
3236 out:
3237 inode_unlock_shared(inode);
3238 return ret;
3239 }
3240
ext4_readpage(struct file * file,struct page * page)3241 static int ext4_readpage(struct file *file, struct page *page)
3242 {
3243 int ret = -EAGAIN;
3244 struct inode *inode = page->mapping->host;
3245
3246 trace_ext4_readpage(page);
3247
3248 if (ext4_has_inline_data(inode))
3249 ret = ext4_readpage_inline(inode, page);
3250
3251 if (ret == -EAGAIN)
3252 return ext4_mpage_readpages(inode, NULL, page);
3253
3254 return ret;
3255 }
3256
ext4_readahead(struct readahead_control * rac)3257 static void ext4_readahead(struct readahead_control *rac)
3258 {
3259 struct inode *inode = rac->mapping->host;
3260
3261 /* If the file has inline data, no need to do readahead. */
3262 if (ext4_has_inline_data(inode))
3263 return;
3264
3265 ext4_mpage_readpages(inode, rac, NULL);
3266 }
3267
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3268 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3269 unsigned int length)
3270 {
3271 trace_ext4_invalidatepage(page, offset, length);
3272
3273 /* No journalling happens on data buffers when this function is used */
3274 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3275
3276 block_invalidatepage(page, offset, length);
3277 }
3278
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3279 static int __ext4_journalled_invalidatepage(struct page *page,
3280 unsigned int offset,
3281 unsigned int length)
3282 {
3283 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3284
3285 trace_ext4_journalled_invalidatepage(page, offset, length);
3286
3287 /*
3288 * If it's a full truncate we just forget about the pending dirtying
3289 */
3290 if (offset == 0 && length == PAGE_SIZE)
3291 ClearPageChecked(page);
3292
3293 return jbd2_journal_invalidatepage(journal, page, offset, length);
3294 }
3295
3296 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3297 static void ext4_journalled_invalidatepage(struct page *page,
3298 unsigned int offset,
3299 unsigned int length)
3300 {
3301 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3302 }
3303
ext4_releasepage(struct page * page,gfp_t wait)3304 static int ext4_releasepage(struct page *page, gfp_t wait)
3305 {
3306 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3307
3308 trace_ext4_releasepage(page);
3309
3310 /* Page has dirty journalled data -> cannot release */
3311 if (PageChecked(page))
3312 return 0;
3313 if (journal)
3314 return jbd2_journal_try_to_free_buffers(journal, page);
3315 else
3316 return try_to_free_buffers(page);
3317 }
3318
ext4_inode_datasync_dirty(struct inode * inode)3319 static bool ext4_inode_datasync_dirty(struct inode *inode)
3320 {
3321 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3322
3323 if (journal) {
3324 if (jbd2_transaction_committed(journal,
3325 EXT4_I(inode)->i_datasync_tid))
3326 return false;
3327 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3328 return !list_empty(&EXT4_I(inode)->i_fc_list);
3329 return true;
3330 }
3331
3332 /* Any metadata buffers to write? */
3333 if (!list_empty(&inode->i_mapping->private_list))
3334 return true;
3335 return inode->i_state & I_DIRTY_DATASYNC;
3336 }
3337
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length)3338 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3339 struct ext4_map_blocks *map, loff_t offset,
3340 loff_t length)
3341 {
3342 u8 blkbits = inode->i_blkbits;
3343
3344 /*
3345 * Writes that span EOF might trigger an I/O size update on completion,
3346 * so consider them to be dirty for the purpose of O_DSYNC, even if
3347 * there is no other metadata changes being made or are pending.
3348 */
3349 iomap->flags = 0;
3350 if (ext4_inode_datasync_dirty(inode) ||
3351 offset + length > i_size_read(inode))
3352 iomap->flags |= IOMAP_F_DIRTY;
3353
3354 if (map->m_flags & EXT4_MAP_NEW)
3355 iomap->flags |= IOMAP_F_NEW;
3356
3357 iomap->bdev = inode->i_sb->s_bdev;
3358 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3359 iomap->offset = (u64) map->m_lblk << blkbits;
3360 iomap->length = (u64) map->m_len << blkbits;
3361
3362 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3363 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3364 iomap->flags |= IOMAP_F_MERGED;
3365
3366 /*
3367 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3368 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3369 * set. In order for any allocated unwritten extents to be converted
3370 * into written extents correctly within the ->end_io() handler, we
3371 * need to ensure that the iomap->type is set appropriately. Hence, the
3372 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3373 * been set first.
3374 */
3375 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3376 iomap->type = IOMAP_UNWRITTEN;
3377 iomap->addr = (u64) map->m_pblk << blkbits;
3378 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3379 iomap->type = IOMAP_MAPPED;
3380 iomap->addr = (u64) map->m_pblk << blkbits;
3381 } else {
3382 iomap->type = IOMAP_HOLE;
3383 iomap->addr = IOMAP_NULL_ADDR;
3384 }
3385 }
3386
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3387 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3388 unsigned int flags)
3389 {
3390 handle_t *handle;
3391 u8 blkbits = inode->i_blkbits;
3392 int ret, dio_credits, m_flags = 0, retries = 0;
3393
3394 /*
3395 * Trim the mapping request to the maximum value that we can map at
3396 * once for direct I/O.
3397 */
3398 if (map->m_len > DIO_MAX_BLOCKS)
3399 map->m_len = DIO_MAX_BLOCKS;
3400 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3401
3402 retry:
3403 /*
3404 * Either we allocate blocks and then don't get an unwritten extent, so
3405 * in that case we have reserved enough credits. Or, the blocks are
3406 * already allocated and unwritten. In that case, the extent conversion
3407 * fits into the credits as well.
3408 */
3409 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3410 if (IS_ERR(handle))
3411 return PTR_ERR(handle);
3412
3413 /*
3414 * DAX and direct I/O are the only two operations that are currently
3415 * supported with IOMAP_WRITE.
3416 */
3417 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3418 if (IS_DAX(inode))
3419 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3420 /*
3421 * We use i_size instead of i_disksize here because delalloc writeback
3422 * can complete at any point during the I/O and subsequently push the
3423 * i_disksize out to i_size. This could be beyond where direct I/O is
3424 * happening and thus expose allocated blocks to direct I/O reads.
3425 */
3426 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3427 m_flags = EXT4_GET_BLOCKS_CREATE;
3428 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3429 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3430
3431 ret = ext4_map_blocks(handle, inode, map, m_flags);
3432
3433 /*
3434 * We cannot fill holes in indirect tree based inodes as that could
3435 * expose stale data in the case of a crash. Use the magic error code
3436 * to fallback to buffered I/O.
3437 */
3438 if (!m_flags && !ret)
3439 ret = -ENOTBLK;
3440
3441 ext4_journal_stop(handle);
3442 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3443 goto retry;
3444
3445 return ret;
3446 }
3447
3448
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3449 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3450 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3451 {
3452 int ret;
3453 struct ext4_map_blocks map;
3454 u8 blkbits = inode->i_blkbits;
3455
3456 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3457 return -EINVAL;
3458
3459 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3460 return -ERANGE;
3461
3462 /*
3463 * Calculate the first and last logical blocks respectively.
3464 */
3465 map.m_lblk = offset >> blkbits;
3466 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3467 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3468
3469 if (flags & IOMAP_WRITE) {
3470 /*
3471 * We check here if the blocks are already allocated, then we
3472 * don't need to start a journal txn and we can directly return
3473 * the mapping information. This could boost performance
3474 * especially in multi-threaded overwrite requests.
3475 */
3476 if (offset + length <= i_size_read(inode)) {
3477 ret = ext4_map_blocks(NULL, inode, &map, 0);
3478 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3479 goto out;
3480 }
3481 ret = ext4_iomap_alloc(inode, &map, flags);
3482 } else {
3483 ret = ext4_map_blocks(NULL, inode, &map, 0);
3484 }
3485
3486 if (ret < 0)
3487 return ret;
3488 out:
3489 ext4_set_iomap(inode, iomap, &map, offset, length);
3490
3491 return 0;
3492 }
3493
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3494 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3495 loff_t length, unsigned flags, struct iomap *iomap,
3496 struct iomap *srcmap)
3497 {
3498 int ret;
3499
3500 /*
3501 * Even for writes we don't need to allocate blocks, so just pretend
3502 * we are reading to save overhead of starting a transaction.
3503 */
3504 flags &= ~IOMAP_WRITE;
3505 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3506 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3507 return ret;
3508 }
3509
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3510 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3511 ssize_t written, unsigned flags, struct iomap *iomap)
3512 {
3513 /*
3514 * Check to see whether an error occurred while writing out the data to
3515 * the allocated blocks. If so, return the magic error code so that we
3516 * fallback to buffered I/O and attempt to complete the remainder of
3517 * the I/O. Any blocks that may have been allocated in preparation for
3518 * the direct I/O will be reused during buffered I/O.
3519 */
3520 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3521 return -ENOTBLK;
3522
3523 return 0;
3524 }
3525
3526 const struct iomap_ops ext4_iomap_ops = {
3527 .iomap_begin = ext4_iomap_begin,
3528 .iomap_end = ext4_iomap_end,
3529 };
3530
3531 const struct iomap_ops ext4_iomap_overwrite_ops = {
3532 .iomap_begin = ext4_iomap_overwrite_begin,
3533 .iomap_end = ext4_iomap_end,
3534 };
3535
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3536 static bool ext4_iomap_is_delalloc(struct inode *inode,
3537 struct ext4_map_blocks *map)
3538 {
3539 struct extent_status es;
3540 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3541
3542 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3543 map->m_lblk, end, &es);
3544
3545 if (!es.es_len || es.es_lblk > end)
3546 return false;
3547
3548 if (es.es_lblk > map->m_lblk) {
3549 map->m_len = es.es_lblk - map->m_lblk;
3550 return false;
3551 }
3552
3553 offset = map->m_lblk - es.es_lblk;
3554 map->m_len = es.es_len - offset;
3555
3556 return true;
3557 }
3558
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3559 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3560 loff_t length, unsigned int flags,
3561 struct iomap *iomap, struct iomap *srcmap)
3562 {
3563 int ret;
3564 bool delalloc = false;
3565 struct ext4_map_blocks map;
3566 u8 blkbits = inode->i_blkbits;
3567
3568 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3569 return -EINVAL;
3570
3571 if (ext4_has_inline_data(inode)) {
3572 ret = ext4_inline_data_iomap(inode, iomap);
3573 if (ret != -EAGAIN) {
3574 if (ret == 0 && offset >= iomap->length)
3575 ret = -ENOENT;
3576 return ret;
3577 }
3578 }
3579
3580 /*
3581 * Calculate the first and last logical block respectively.
3582 */
3583 map.m_lblk = offset >> blkbits;
3584 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3585 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3586
3587 /*
3588 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3589 * So handle it here itself instead of querying ext4_map_blocks().
3590 * Since ext4_map_blocks() will warn about it and will return
3591 * -EIO error.
3592 */
3593 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3594 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3595
3596 if (offset >= sbi->s_bitmap_maxbytes) {
3597 map.m_flags = 0;
3598 goto set_iomap;
3599 }
3600 }
3601
3602 ret = ext4_map_blocks(NULL, inode, &map, 0);
3603 if (ret < 0)
3604 return ret;
3605 if (ret == 0)
3606 delalloc = ext4_iomap_is_delalloc(inode, &map);
3607
3608 set_iomap:
3609 ext4_set_iomap(inode, iomap, &map, offset, length);
3610 if (delalloc && iomap->type == IOMAP_HOLE)
3611 iomap->type = IOMAP_DELALLOC;
3612
3613 return 0;
3614 }
3615
3616 const struct iomap_ops ext4_iomap_report_ops = {
3617 .iomap_begin = ext4_iomap_begin_report,
3618 };
3619
3620 /*
3621 * Pages can be marked dirty completely asynchronously from ext4's journalling
3622 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3623 * much here because ->set_page_dirty is called under VFS locks. The page is
3624 * not necessarily locked.
3625 *
3626 * We cannot just dirty the page and leave attached buffers clean, because the
3627 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3628 * or jbddirty because all the journalling code will explode.
3629 *
3630 * So what we do is to mark the page "pending dirty" and next time writepage
3631 * is called, propagate that into the buffers appropriately.
3632 */
ext4_journalled_set_page_dirty(struct page * page)3633 static int ext4_journalled_set_page_dirty(struct page *page)
3634 {
3635 SetPageChecked(page);
3636 return __set_page_dirty_nobuffers(page);
3637 }
3638
ext4_set_page_dirty(struct page * page)3639 static int ext4_set_page_dirty(struct page *page)
3640 {
3641 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3642 WARN_ON_ONCE(!page_has_buffers(page));
3643 return __set_page_dirty_buffers(page);
3644 }
3645
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3646 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3647 struct file *file, sector_t *span)
3648 {
3649 return iomap_swapfile_activate(sis, file, span,
3650 &ext4_iomap_report_ops);
3651 }
3652
3653 static const struct address_space_operations ext4_aops = {
3654 .readpage = ext4_readpage,
3655 .readahead = ext4_readahead,
3656 .writepage = ext4_writepage,
3657 .writepages = ext4_writepages,
3658 .write_begin = ext4_write_begin,
3659 .write_end = ext4_write_end,
3660 .set_page_dirty = ext4_set_page_dirty,
3661 .bmap = ext4_bmap,
3662 .invalidatepage = ext4_invalidatepage,
3663 .releasepage = ext4_releasepage,
3664 .direct_IO = noop_direct_IO,
3665 .migratepage = buffer_migrate_page,
3666 .is_partially_uptodate = block_is_partially_uptodate,
3667 .error_remove_page = generic_error_remove_page,
3668 .swap_activate = ext4_iomap_swap_activate,
3669 };
3670
3671 static const struct address_space_operations ext4_journalled_aops = {
3672 .readpage = ext4_readpage,
3673 .readahead = ext4_readahead,
3674 .writepage = ext4_writepage,
3675 .writepages = ext4_writepages,
3676 .write_begin = ext4_write_begin,
3677 .write_end = ext4_journalled_write_end,
3678 .set_page_dirty = ext4_journalled_set_page_dirty,
3679 .bmap = ext4_bmap,
3680 .invalidatepage = ext4_journalled_invalidatepage,
3681 .releasepage = ext4_releasepage,
3682 .direct_IO = noop_direct_IO,
3683 .is_partially_uptodate = block_is_partially_uptodate,
3684 .error_remove_page = generic_error_remove_page,
3685 .swap_activate = ext4_iomap_swap_activate,
3686 };
3687
3688 static const struct address_space_operations ext4_da_aops = {
3689 .readpage = ext4_readpage,
3690 .readahead = ext4_readahead,
3691 .writepage = ext4_writepage,
3692 .writepages = ext4_writepages,
3693 .write_begin = ext4_da_write_begin,
3694 .write_end = ext4_da_write_end,
3695 .set_page_dirty = ext4_set_page_dirty,
3696 .bmap = ext4_bmap,
3697 .invalidatepage = ext4_invalidatepage,
3698 .releasepage = ext4_releasepage,
3699 .direct_IO = noop_direct_IO,
3700 .migratepage = buffer_migrate_page,
3701 .is_partially_uptodate = block_is_partially_uptodate,
3702 .error_remove_page = generic_error_remove_page,
3703 .swap_activate = ext4_iomap_swap_activate,
3704 };
3705
3706 static const struct address_space_operations ext4_dax_aops = {
3707 .writepages = ext4_dax_writepages,
3708 .direct_IO = noop_direct_IO,
3709 .set_page_dirty = noop_set_page_dirty,
3710 .bmap = ext4_bmap,
3711 .invalidatepage = noop_invalidatepage,
3712 .swap_activate = ext4_iomap_swap_activate,
3713 };
3714
ext4_set_aops(struct inode * inode)3715 void ext4_set_aops(struct inode *inode)
3716 {
3717 switch (ext4_inode_journal_mode(inode)) {
3718 case EXT4_INODE_ORDERED_DATA_MODE:
3719 case EXT4_INODE_WRITEBACK_DATA_MODE:
3720 break;
3721 case EXT4_INODE_JOURNAL_DATA_MODE:
3722 inode->i_mapping->a_ops = &ext4_journalled_aops;
3723 return;
3724 default:
3725 BUG();
3726 }
3727 if (IS_DAX(inode))
3728 inode->i_mapping->a_ops = &ext4_dax_aops;
3729 else if (test_opt(inode->i_sb, DELALLOC))
3730 inode->i_mapping->a_ops = &ext4_da_aops;
3731 else
3732 inode->i_mapping->a_ops = &ext4_aops;
3733 }
3734
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3735 static int __ext4_block_zero_page_range(handle_t *handle,
3736 struct address_space *mapping, loff_t from, loff_t length)
3737 {
3738 ext4_fsblk_t index = from >> PAGE_SHIFT;
3739 unsigned offset = from & (PAGE_SIZE-1);
3740 unsigned blocksize, pos;
3741 ext4_lblk_t iblock;
3742 struct inode *inode = mapping->host;
3743 struct buffer_head *bh;
3744 struct page *page;
3745 int err = 0;
3746
3747 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3748 mapping_gfp_constraint(mapping, ~__GFP_FS));
3749 if (!page)
3750 return -ENOMEM;
3751
3752 blocksize = inode->i_sb->s_blocksize;
3753
3754 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3755
3756 if (!page_has_buffers(page))
3757 create_empty_buffers(page, blocksize, 0);
3758
3759 /* Find the buffer that contains "offset" */
3760 bh = page_buffers(page);
3761 pos = blocksize;
3762 while (offset >= pos) {
3763 bh = bh->b_this_page;
3764 iblock++;
3765 pos += blocksize;
3766 }
3767 if (buffer_freed(bh)) {
3768 BUFFER_TRACE(bh, "freed: skip");
3769 goto unlock;
3770 }
3771 if (!buffer_mapped(bh)) {
3772 BUFFER_TRACE(bh, "unmapped");
3773 ext4_get_block(inode, iblock, bh, 0);
3774 /* unmapped? It's a hole - nothing to do */
3775 if (!buffer_mapped(bh)) {
3776 BUFFER_TRACE(bh, "still unmapped");
3777 goto unlock;
3778 }
3779 }
3780
3781 /* Ok, it's mapped. Make sure it's up-to-date */
3782 if (PageUptodate(page))
3783 set_buffer_uptodate(bh);
3784
3785 if (!buffer_uptodate(bh)) {
3786 err = ext4_read_bh_lock(bh, 0, true);
3787 if (err)
3788 goto unlock;
3789 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3790 /* We expect the key to be set. */
3791 BUG_ON(!fscrypt_has_encryption_key(inode));
3792 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3793 bh_offset(bh));
3794 if (err) {
3795 clear_buffer_uptodate(bh);
3796 goto unlock;
3797 }
3798 }
3799 }
3800 if (ext4_should_journal_data(inode)) {
3801 BUFFER_TRACE(bh, "get write access");
3802 err = ext4_journal_get_write_access(handle, bh);
3803 if (err)
3804 goto unlock;
3805 }
3806 zero_user(page, offset, length);
3807 BUFFER_TRACE(bh, "zeroed end of block");
3808
3809 if (ext4_should_journal_data(inode)) {
3810 err = ext4_handle_dirty_metadata(handle, inode, bh);
3811 } else {
3812 err = 0;
3813 mark_buffer_dirty(bh);
3814 if (ext4_should_order_data(inode))
3815 err = ext4_jbd2_inode_add_write(handle, inode, from,
3816 length);
3817 }
3818
3819 unlock:
3820 unlock_page(page);
3821 put_page(page);
3822 return err;
3823 }
3824
3825 /*
3826 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3827 * starting from file offset 'from'. The range to be zero'd must
3828 * be contained with in one block. If the specified range exceeds
3829 * the end of the block it will be shortened to end of the block
3830 * that corresponds to 'from'
3831 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3832 static int ext4_block_zero_page_range(handle_t *handle,
3833 struct address_space *mapping, loff_t from, loff_t length)
3834 {
3835 struct inode *inode = mapping->host;
3836 unsigned offset = from & (PAGE_SIZE-1);
3837 unsigned blocksize = inode->i_sb->s_blocksize;
3838 unsigned max = blocksize - (offset & (blocksize - 1));
3839
3840 /*
3841 * correct length if it does not fall between
3842 * 'from' and the end of the block
3843 */
3844 if (length > max || length < 0)
3845 length = max;
3846
3847 if (IS_DAX(inode)) {
3848 return iomap_zero_range(inode, from, length, NULL,
3849 &ext4_iomap_ops);
3850 }
3851 return __ext4_block_zero_page_range(handle, mapping, from, length);
3852 }
3853
3854 /*
3855 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3856 * up to the end of the block which corresponds to `from'.
3857 * This required during truncate. We need to physically zero the tail end
3858 * of that block so it doesn't yield old data if the file is later grown.
3859 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3860 static int ext4_block_truncate_page(handle_t *handle,
3861 struct address_space *mapping, loff_t from)
3862 {
3863 unsigned offset = from & (PAGE_SIZE-1);
3864 unsigned length;
3865 unsigned blocksize;
3866 struct inode *inode = mapping->host;
3867
3868 /* If we are processing an encrypted inode during orphan list handling */
3869 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3870 return 0;
3871
3872 blocksize = inode->i_sb->s_blocksize;
3873 length = blocksize - (offset & (blocksize - 1));
3874
3875 return ext4_block_zero_page_range(handle, mapping, from, length);
3876 }
3877
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3878 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3879 loff_t lstart, loff_t length)
3880 {
3881 struct super_block *sb = inode->i_sb;
3882 struct address_space *mapping = inode->i_mapping;
3883 unsigned partial_start, partial_end;
3884 ext4_fsblk_t start, end;
3885 loff_t byte_end = (lstart + length - 1);
3886 int err = 0;
3887
3888 partial_start = lstart & (sb->s_blocksize - 1);
3889 partial_end = byte_end & (sb->s_blocksize - 1);
3890
3891 start = lstart >> sb->s_blocksize_bits;
3892 end = byte_end >> sb->s_blocksize_bits;
3893
3894 /* Handle partial zero within the single block */
3895 if (start == end &&
3896 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3897 err = ext4_block_zero_page_range(handle, mapping,
3898 lstart, length);
3899 return err;
3900 }
3901 /* Handle partial zero out on the start of the range */
3902 if (partial_start) {
3903 err = ext4_block_zero_page_range(handle, mapping,
3904 lstart, sb->s_blocksize);
3905 if (err)
3906 return err;
3907 }
3908 /* Handle partial zero out on the end of the range */
3909 if (partial_end != sb->s_blocksize - 1)
3910 err = ext4_block_zero_page_range(handle, mapping,
3911 byte_end - partial_end,
3912 partial_end + 1);
3913 return err;
3914 }
3915
ext4_can_truncate(struct inode * inode)3916 int ext4_can_truncate(struct inode *inode)
3917 {
3918 if (S_ISREG(inode->i_mode))
3919 return 1;
3920 if (S_ISDIR(inode->i_mode))
3921 return 1;
3922 if (S_ISLNK(inode->i_mode))
3923 return !ext4_inode_is_fast_symlink(inode);
3924 return 0;
3925 }
3926
3927 /*
3928 * We have to make sure i_disksize gets properly updated before we truncate
3929 * page cache due to hole punching or zero range. Otherwise i_disksize update
3930 * can get lost as it may have been postponed to submission of writeback but
3931 * that will never happen after we truncate page cache.
3932 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3933 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3934 loff_t len)
3935 {
3936 handle_t *handle;
3937 int ret;
3938
3939 loff_t size = i_size_read(inode);
3940
3941 WARN_ON(!inode_is_locked(inode));
3942 if (offset > size || offset + len < size)
3943 return 0;
3944
3945 if (EXT4_I(inode)->i_disksize >= size)
3946 return 0;
3947
3948 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3949 if (IS_ERR(handle))
3950 return PTR_ERR(handle);
3951 ext4_update_i_disksize(inode, size);
3952 ret = ext4_mark_inode_dirty(handle, inode);
3953 ext4_journal_stop(handle);
3954
3955 return ret;
3956 }
3957
ext4_wait_dax_page(struct ext4_inode_info * ei)3958 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3959 {
3960 up_write(&ei->i_mmap_sem);
3961 schedule();
3962 down_write(&ei->i_mmap_sem);
3963 }
3964
ext4_break_layouts(struct inode * inode)3965 int ext4_break_layouts(struct inode *inode)
3966 {
3967 struct ext4_inode_info *ei = EXT4_I(inode);
3968 struct page *page;
3969 int error;
3970
3971 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3972 return -EINVAL;
3973
3974 do {
3975 page = dax_layout_busy_page(inode->i_mapping);
3976 if (!page)
3977 return 0;
3978
3979 error = ___wait_var_event(&page->_refcount,
3980 atomic_read(&page->_refcount) == 1,
3981 TASK_INTERRUPTIBLE, 0, 0,
3982 ext4_wait_dax_page(ei));
3983 } while (error == 0);
3984
3985 return error;
3986 }
3987
3988 /*
3989 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3990 * associated with the given offset and length
3991 *
3992 * @inode: File inode
3993 * @offset: The offset where the hole will begin
3994 * @len: The length of the hole
3995 *
3996 * Returns: 0 on success or negative on failure
3997 */
3998
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3999 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4000 {
4001 struct inode *inode = file_inode(file);
4002 struct super_block *sb = inode->i_sb;
4003 ext4_lblk_t first_block, stop_block;
4004 struct address_space *mapping = inode->i_mapping;
4005 loff_t first_block_offset, last_block_offset, max_length;
4006 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4007 handle_t *handle;
4008 unsigned int credits;
4009 int ret = 0, ret2 = 0;
4010
4011 trace_ext4_punch_hole(inode, offset, length, 0);
4012
4013 /*
4014 * Write out all dirty pages to avoid race conditions
4015 * Then release them.
4016 */
4017 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4018 ret = filemap_write_and_wait_range(mapping, offset,
4019 offset + length - 1);
4020 if (ret)
4021 return ret;
4022 }
4023
4024 inode_lock(inode);
4025
4026 /* No need to punch hole beyond i_size */
4027 if (offset >= inode->i_size)
4028 goto out_mutex;
4029
4030 /*
4031 * If the hole extends beyond i_size, set the hole
4032 * to end after the page that contains i_size
4033 */
4034 if (offset + length > inode->i_size) {
4035 length = inode->i_size +
4036 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4037 offset;
4038 }
4039
4040 /*
4041 * For punch hole the length + offset needs to be within one block
4042 * before last range. Adjust the length if it goes beyond that limit.
4043 */
4044 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4045 if (offset + length > max_length)
4046 length = max_length - offset;
4047
4048 if (offset & (sb->s_blocksize - 1) ||
4049 (offset + length) & (sb->s_blocksize - 1)) {
4050 /*
4051 * Attach jinode to inode for jbd2 if we do any zeroing of
4052 * partial block
4053 */
4054 ret = ext4_inode_attach_jinode(inode);
4055 if (ret < 0)
4056 goto out_mutex;
4057
4058 }
4059
4060 /* Wait all existing dio workers, newcomers will block on i_mutex */
4061 inode_dio_wait(inode);
4062
4063 ret = file_modified(file);
4064 if (ret)
4065 goto out_mutex;
4066
4067 /*
4068 * Prevent page faults from reinstantiating pages we have released from
4069 * page cache.
4070 */
4071 down_write(&EXT4_I(inode)->i_mmap_sem);
4072
4073 ret = ext4_break_layouts(inode);
4074 if (ret)
4075 goto out_dio;
4076
4077 first_block_offset = round_up(offset, sb->s_blocksize);
4078 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4079
4080 /* Now release the pages and zero block aligned part of pages*/
4081 if (last_block_offset > first_block_offset) {
4082 ret = ext4_update_disksize_before_punch(inode, offset, length);
4083 if (ret)
4084 goto out_dio;
4085 truncate_pagecache_range(inode, first_block_offset,
4086 last_block_offset);
4087 }
4088
4089 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4090 credits = ext4_writepage_trans_blocks(inode);
4091 else
4092 credits = ext4_blocks_for_truncate(inode);
4093 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4094 if (IS_ERR(handle)) {
4095 ret = PTR_ERR(handle);
4096 ext4_std_error(sb, ret);
4097 goto out_dio;
4098 }
4099
4100 ret = ext4_zero_partial_blocks(handle, inode, offset,
4101 length);
4102 if (ret)
4103 goto out_stop;
4104
4105 first_block = (offset + sb->s_blocksize - 1) >>
4106 EXT4_BLOCK_SIZE_BITS(sb);
4107 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4108
4109 /* If there are blocks to remove, do it */
4110 if (stop_block > first_block) {
4111
4112 down_write(&EXT4_I(inode)->i_data_sem);
4113 ext4_discard_preallocations(inode, 0);
4114
4115 ret = ext4_es_remove_extent(inode, first_block,
4116 stop_block - first_block);
4117 if (ret) {
4118 up_write(&EXT4_I(inode)->i_data_sem);
4119 goto out_stop;
4120 }
4121
4122 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4123 ret = ext4_ext_remove_space(inode, first_block,
4124 stop_block - 1);
4125 else
4126 ret = ext4_ind_remove_space(handle, inode, first_block,
4127 stop_block);
4128
4129 up_write(&EXT4_I(inode)->i_data_sem);
4130 }
4131 ext4_fc_track_range(handle, inode, first_block, stop_block);
4132 if (IS_SYNC(inode))
4133 ext4_handle_sync(handle);
4134
4135 inode->i_mtime = inode->i_ctime = current_time(inode);
4136 ret2 = ext4_mark_inode_dirty(handle, inode);
4137 if (unlikely(ret2))
4138 ret = ret2;
4139 if (ret >= 0)
4140 ext4_update_inode_fsync_trans(handle, inode, 1);
4141 out_stop:
4142 ext4_journal_stop(handle);
4143 out_dio:
4144 up_write(&EXT4_I(inode)->i_mmap_sem);
4145 out_mutex:
4146 inode_unlock(inode);
4147 return ret;
4148 }
4149
ext4_inode_attach_jinode(struct inode * inode)4150 int ext4_inode_attach_jinode(struct inode *inode)
4151 {
4152 struct ext4_inode_info *ei = EXT4_I(inode);
4153 struct jbd2_inode *jinode;
4154
4155 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4156 return 0;
4157
4158 jinode = jbd2_alloc_inode(GFP_KERNEL);
4159 spin_lock(&inode->i_lock);
4160 if (!ei->jinode) {
4161 if (!jinode) {
4162 spin_unlock(&inode->i_lock);
4163 return -ENOMEM;
4164 }
4165 ei->jinode = jinode;
4166 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4167 jinode = NULL;
4168 }
4169 spin_unlock(&inode->i_lock);
4170 if (unlikely(jinode != NULL))
4171 jbd2_free_inode(jinode);
4172 return 0;
4173 }
4174
4175 /*
4176 * ext4_truncate()
4177 *
4178 * We block out ext4_get_block() block instantiations across the entire
4179 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4180 * simultaneously on behalf of the same inode.
4181 *
4182 * As we work through the truncate and commit bits of it to the journal there
4183 * is one core, guiding principle: the file's tree must always be consistent on
4184 * disk. We must be able to restart the truncate after a crash.
4185 *
4186 * The file's tree may be transiently inconsistent in memory (although it
4187 * probably isn't), but whenever we close off and commit a journal transaction,
4188 * the contents of (the filesystem + the journal) must be consistent and
4189 * restartable. It's pretty simple, really: bottom up, right to left (although
4190 * left-to-right works OK too).
4191 *
4192 * Note that at recovery time, journal replay occurs *before* the restart of
4193 * truncate against the orphan inode list.
4194 *
4195 * The committed inode has the new, desired i_size (which is the same as
4196 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4197 * that this inode's truncate did not complete and it will again call
4198 * ext4_truncate() to have another go. So there will be instantiated blocks
4199 * to the right of the truncation point in a crashed ext4 filesystem. But
4200 * that's fine - as long as they are linked from the inode, the post-crash
4201 * ext4_truncate() run will find them and release them.
4202 */
ext4_truncate(struct inode * inode)4203 int ext4_truncate(struct inode *inode)
4204 {
4205 struct ext4_inode_info *ei = EXT4_I(inode);
4206 unsigned int credits;
4207 int err = 0, err2;
4208 handle_t *handle;
4209 struct address_space *mapping = inode->i_mapping;
4210
4211 /*
4212 * There is a possibility that we're either freeing the inode
4213 * or it's a completely new inode. In those cases we might not
4214 * have i_mutex locked because it's not necessary.
4215 */
4216 if (!(inode->i_state & (I_NEW|I_FREEING)))
4217 WARN_ON(!inode_is_locked(inode));
4218 trace_ext4_truncate_enter(inode);
4219
4220 if (!ext4_can_truncate(inode))
4221 goto out_trace;
4222
4223 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4224 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4225
4226 if (ext4_has_inline_data(inode)) {
4227 int has_inline = 1;
4228
4229 err = ext4_inline_data_truncate(inode, &has_inline);
4230 if (err || has_inline)
4231 goto out_trace;
4232 }
4233
4234 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4235 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4236 err = ext4_inode_attach_jinode(inode);
4237 if (err)
4238 goto out_trace;
4239 }
4240
4241 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4242 credits = ext4_writepage_trans_blocks(inode);
4243 else
4244 credits = ext4_blocks_for_truncate(inode);
4245
4246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4247 if (IS_ERR(handle)) {
4248 err = PTR_ERR(handle);
4249 goto out_trace;
4250 }
4251
4252 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4253 ext4_block_truncate_page(handle, mapping, inode->i_size);
4254
4255 /*
4256 * We add the inode to the orphan list, so that if this
4257 * truncate spans multiple transactions, and we crash, we will
4258 * resume the truncate when the filesystem recovers. It also
4259 * marks the inode dirty, to catch the new size.
4260 *
4261 * Implication: the file must always be in a sane, consistent
4262 * truncatable state while each transaction commits.
4263 */
4264 err = ext4_orphan_add(handle, inode);
4265 if (err)
4266 goto out_stop;
4267
4268 down_write(&EXT4_I(inode)->i_data_sem);
4269
4270 ext4_discard_preallocations(inode, 0);
4271
4272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273 err = ext4_ext_truncate(handle, inode);
4274 else
4275 ext4_ind_truncate(handle, inode);
4276
4277 up_write(&ei->i_data_sem);
4278 if (err)
4279 goto out_stop;
4280
4281 if (IS_SYNC(inode))
4282 ext4_handle_sync(handle);
4283
4284 out_stop:
4285 /*
4286 * If this was a simple ftruncate() and the file will remain alive,
4287 * then we need to clear up the orphan record which we created above.
4288 * However, if this was a real unlink then we were called by
4289 * ext4_evict_inode(), and we allow that function to clean up the
4290 * orphan info for us.
4291 */
4292 if (inode->i_nlink)
4293 ext4_orphan_del(handle, inode);
4294
4295 inode->i_mtime = inode->i_ctime = current_time(inode);
4296 err2 = ext4_mark_inode_dirty(handle, inode);
4297 if (unlikely(err2 && !err))
4298 err = err2;
4299 ext4_journal_stop(handle);
4300
4301 out_trace:
4302 trace_ext4_truncate_exit(inode);
4303 return err;
4304 }
4305
ext4_inode_peek_iversion(const struct inode * inode)4306 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4307 {
4308 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4309 return inode_peek_iversion_raw(inode);
4310 else
4311 return inode_peek_iversion(inode);
4312 }
4313
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4314 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4315 struct ext4_inode_info *ei)
4316 {
4317 struct inode *inode = &(ei->vfs_inode);
4318 u64 i_blocks = READ_ONCE(inode->i_blocks);
4319 struct super_block *sb = inode->i_sb;
4320
4321 if (i_blocks <= ~0U) {
4322 /*
4323 * i_blocks can be represented in a 32 bit variable
4324 * as multiple of 512 bytes
4325 */
4326 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4327 raw_inode->i_blocks_high = 0;
4328 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4329 return 0;
4330 }
4331
4332 /*
4333 * This should never happen since sb->s_maxbytes should not have
4334 * allowed this, sb->s_maxbytes was set according to the huge_file
4335 * feature in ext4_fill_super().
4336 */
4337 if (!ext4_has_feature_huge_file(sb))
4338 return -EFSCORRUPTED;
4339
4340 if (i_blocks <= 0xffffffffffffULL) {
4341 /*
4342 * i_blocks can be represented in a 48 bit variable
4343 * as multiple of 512 bytes
4344 */
4345 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4346 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4347 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4348 } else {
4349 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4350 /* i_block is stored in file system block size */
4351 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4352 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4353 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4354 }
4355 return 0;
4356 }
4357
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4358 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4359 {
4360 struct ext4_inode_info *ei = EXT4_I(inode);
4361 uid_t i_uid;
4362 gid_t i_gid;
4363 projid_t i_projid;
4364 int block;
4365 int err;
4366
4367 err = ext4_inode_blocks_set(raw_inode, ei);
4368
4369 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4370 i_uid = i_uid_read(inode);
4371 i_gid = i_gid_read(inode);
4372 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4373 if (!(test_opt(inode->i_sb, NO_UID32))) {
4374 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4375 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4376 /*
4377 * Fix up interoperability with old kernels. Otherwise,
4378 * old inodes get re-used with the upper 16 bits of the
4379 * uid/gid intact.
4380 */
4381 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4382 raw_inode->i_uid_high = 0;
4383 raw_inode->i_gid_high = 0;
4384 } else {
4385 raw_inode->i_uid_high =
4386 cpu_to_le16(high_16_bits(i_uid));
4387 raw_inode->i_gid_high =
4388 cpu_to_le16(high_16_bits(i_gid));
4389 }
4390 } else {
4391 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4392 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4393 raw_inode->i_uid_high = 0;
4394 raw_inode->i_gid_high = 0;
4395 }
4396 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4397
4398 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4399 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4400 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4401 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4402
4403 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4404 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4405 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4406 raw_inode->i_file_acl_high =
4407 cpu_to_le16(ei->i_file_acl >> 32);
4408 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4409 ext4_isize_set(raw_inode, ei->i_disksize);
4410
4411 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4412 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4413 if (old_valid_dev(inode->i_rdev)) {
4414 raw_inode->i_block[0] =
4415 cpu_to_le32(old_encode_dev(inode->i_rdev));
4416 raw_inode->i_block[1] = 0;
4417 } else {
4418 raw_inode->i_block[0] = 0;
4419 raw_inode->i_block[1] =
4420 cpu_to_le32(new_encode_dev(inode->i_rdev));
4421 raw_inode->i_block[2] = 0;
4422 }
4423 } else if (!ext4_has_inline_data(inode)) {
4424 for (block = 0; block < EXT4_N_BLOCKS; block++)
4425 raw_inode->i_block[block] = ei->i_data[block];
4426 }
4427
4428 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4429 u64 ivers = ext4_inode_peek_iversion(inode);
4430
4431 raw_inode->i_disk_version = cpu_to_le32(ivers);
4432 if (ei->i_extra_isize) {
4433 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4434 raw_inode->i_version_hi =
4435 cpu_to_le32(ivers >> 32);
4436 raw_inode->i_extra_isize =
4437 cpu_to_le16(ei->i_extra_isize);
4438 }
4439 }
4440
4441 if (i_projid != EXT4_DEF_PROJID &&
4442 !ext4_has_feature_project(inode->i_sb))
4443 err = err ?: -EFSCORRUPTED;
4444
4445 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4446 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4447 raw_inode->i_projid = cpu_to_le32(i_projid);
4448
4449 ext4_inode_csum_set(inode, raw_inode, ei);
4450 return err;
4451 }
4452
4453 /*
4454 * ext4_get_inode_loc returns with an extra refcount against the inode's
4455 * underlying buffer_head on success. If we pass 'inode' and it does not
4456 * have in-inode xattr, we have all inode data in memory that is needed
4457 * to recreate the on-disk version of this inode.
4458 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4459 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4460 struct inode *inode, struct ext4_iloc *iloc,
4461 ext4_fsblk_t *ret_block)
4462 {
4463 struct ext4_group_desc *gdp;
4464 struct buffer_head *bh;
4465 ext4_fsblk_t block;
4466 struct blk_plug plug;
4467 int inodes_per_block, inode_offset;
4468
4469 iloc->bh = NULL;
4470 if (ino < EXT4_ROOT_INO ||
4471 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4472 return -EFSCORRUPTED;
4473
4474 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4475 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4476 if (!gdp)
4477 return -EIO;
4478
4479 /*
4480 * Figure out the offset within the block group inode table
4481 */
4482 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4483 inode_offset = ((ino - 1) %
4484 EXT4_INODES_PER_GROUP(sb));
4485 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4486
4487 block = ext4_inode_table(sb, gdp);
4488 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4489 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4490 ext4_error(sb, "Invalid inode table block %llu in "
4491 "block_group %u", block, iloc->block_group);
4492 return -EFSCORRUPTED;
4493 }
4494 block += (inode_offset / inodes_per_block);
4495
4496 bh = sb_getblk(sb, block);
4497 if (unlikely(!bh))
4498 return -ENOMEM;
4499 if (!buffer_uptodate(bh)) {
4500 lock_buffer(bh);
4501
4502 if (ext4_buffer_uptodate(bh)) {
4503 /* someone brought it uptodate while we waited */
4504 unlock_buffer(bh);
4505 goto has_buffer;
4506 }
4507
4508 /*
4509 * If we have all information of the inode in memory and this
4510 * is the only valid inode in the block, we need not read the
4511 * block.
4512 */
4513 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4514 struct buffer_head *bitmap_bh;
4515 int i, start;
4516
4517 start = inode_offset & ~(inodes_per_block - 1);
4518
4519 /* Is the inode bitmap in cache? */
4520 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4521 if (unlikely(!bitmap_bh))
4522 goto make_io;
4523
4524 /*
4525 * If the inode bitmap isn't in cache then the
4526 * optimisation may end up performing two reads instead
4527 * of one, so skip it.
4528 */
4529 if (!buffer_uptodate(bitmap_bh)) {
4530 brelse(bitmap_bh);
4531 goto make_io;
4532 }
4533 for (i = start; i < start + inodes_per_block; i++) {
4534 if (i == inode_offset)
4535 continue;
4536 if (ext4_test_bit(i, bitmap_bh->b_data))
4537 break;
4538 }
4539 brelse(bitmap_bh);
4540 if (i == start + inodes_per_block) {
4541 struct ext4_inode *raw_inode =
4542 (struct ext4_inode *) (bh->b_data + iloc->offset);
4543
4544 /* all other inodes are free, so skip I/O */
4545 memset(bh->b_data, 0, bh->b_size);
4546 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4547 ext4_fill_raw_inode(inode, raw_inode);
4548 set_buffer_uptodate(bh);
4549 unlock_buffer(bh);
4550 goto has_buffer;
4551 }
4552 }
4553
4554 make_io:
4555 /*
4556 * If we need to do any I/O, try to pre-readahead extra
4557 * blocks from the inode table.
4558 */
4559 blk_start_plug(&plug);
4560 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4561 ext4_fsblk_t b, end, table;
4562 unsigned num;
4563 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4564
4565 table = ext4_inode_table(sb, gdp);
4566 /* s_inode_readahead_blks is always a power of 2 */
4567 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4568 if (table > b)
4569 b = table;
4570 end = b + ra_blks;
4571 num = EXT4_INODES_PER_GROUP(sb);
4572 if (ext4_has_group_desc_csum(sb))
4573 num -= ext4_itable_unused_count(sb, gdp);
4574 table += num / inodes_per_block;
4575 if (end > table)
4576 end = table;
4577 while (b <= end)
4578 ext4_sb_breadahead_unmovable(sb, b++);
4579 }
4580
4581 /*
4582 * There are other valid inodes in the buffer, this inode
4583 * has in-inode xattrs, or we don't have this inode in memory.
4584 * Read the block from disk.
4585 */
4586 trace_ext4_load_inode(sb, ino);
4587 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4588 blk_finish_plug(&plug);
4589 wait_on_buffer(bh);
4590 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4591 if (!buffer_uptodate(bh)) {
4592 if (ret_block)
4593 *ret_block = block;
4594 brelse(bh);
4595 return -EIO;
4596 }
4597 }
4598 has_buffer:
4599 iloc->bh = bh;
4600 return 0;
4601 }
4602
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4603 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4604 struct ext4_iloc *iloc)
4605 {
4606 ext4_fsblk_t err_blk = 0;
4607 int ret;
4608
4609 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4610 &err_blk);
4611
4612 if (ret == -EIO)
4613 ext4_error_inode_block(inode, err_blk, EIO,
4614 "unable to read itable block");
4615
4616 return ret;
4617 }
4618
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4619 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4620 {
4621 ext4_fsblk_t err_blk = 0;
4622 int ret;
4623
4624 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4625 &err_blk);
4626
4627 if (ret == -EIO)
4628 ext4_error_inode_block(inode, err_blk, EIO,
4629 "unable to read itable block");
4630
4631 return ret;
4632 }
4633
4634
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4635 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4636 struct ext4_iloc *iloc)
4637 {
4638 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4639 }
4640
ext4_should_enable_dax(struct inode * inode)4641 static bool ext4_should_enable_dax(struct inode *inode)
4642 {
4643 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4644
4645 if (test_opt2(inode->i_sb, DAX_NEVER))
4646 return false;
4647 if (!S_ISREG(inode->i_mode))
4648 return false;
4649 if (ext4_should_journal_data(inode))
4650 return false;
4651 if (ext4_has_inline_data(inode))
4652 return false;
4653 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4654 return false;
4655 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4656 return false;
4657 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4658 return false;
4659 if (test_opt(inode->i_sb, DAX_ALWAYS))
4660 return true;
4661
4662 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4663 }
4664
ext4_set_inode_flags(struct inode * inode,bool init)4665 void ext4_set_inode_flags(struct inode *inode, bool init)
4666 {
4667 unsigned int flags = EXT4_I(inode)->i_flags;
4668 unsigned int new_fl = 0;
4669
4670 WARN_ON_ONCE(IS_DAX(inode) && init);
4671
4672 if (flags & EXT4_SYNC_FL)
4673 new_fl |= S_SYNC;
4674 if (flags & EXT4_APPEND_FL)
4675 new_fl |= S_APPEND;
4676 if (flags & EXT4_IMMUTABLE_FL)
4677 new_fl |= S_IMMUTABLE;
4678 if (flags & EXT4_NOATIME_FL)
4679 new_fl |= S_NOATIME;
4680 if (flags & EXT4_DIRSYNC_FL)
4681 new_fl |= S_DIRSYNC;
4682
4683 /* Because of the way inode_set_flags() works we must preserve S_DAX
4684 * here if already set. */
4685 new_fl |= (inode->i_flags & S_DAX);
4686 if (init && ext4_should_enable_dax(inode))
4687 new_fl |= S_DAX;
4688
4689 if (flags & EXT4_ENCRYPT_FL)
4690 new_fl |= S_ENCRYPTED;
4691 if (flags & EXT4_CASEFOLD_FL)
4692 new_fl |= S_CASEFOLD;
4693 if (flags & EXT4_VERITY_FL)
4694 new_fl |= S_VERITY;
4695 inode_set_flags(inode, new_fl,
4696 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4697 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4698 }
4699
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4700 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4701 struct ext4_inode_info *ei)
4702 {
4703 blkcnt_t i_blocks ;
4704 struct inode *inode = &(ei->vfs_inode);
4705 struct super_block *sb = inode->i_sb;
4706
4707 if (ext4_has_feature_huge_file(sb)) {
4708 /* we are using combined 48 bit field */
4709 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4710 le32_to_cpu(raw_inode->i_blocks_lo);
4711 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4712 /* i_blocks represent file system block size */
4713 return i_blocks << (inode->i_blkbits - 9);
4714 } else {
4715 return i_blocks;
4716 }
4717 } else {
4718 return le32_to_cpu(raw_inode->i_blocks_lo);
4719 }
4720 }
4721
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4722 static inline int ext4_iget_extra_inode(struct inode *inode,
4723 struct ext4_inode *raw_inode,
4724 struct ext4_inode_info *ei)
4725 {
4726 __le32 *magic = (void *)raw_inode +
4727 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4728
4729 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4730 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4731 int err;
4732
4733 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4734 err = ext4_find_inline_data_nolock(inode);
4735 if (!err && ext4_has_inline_data(inode))
4736 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4737 return err;
4738 } else
4739 EXT4_I(inode)->i_inline_off = 0;
4740 return 0;
4741 }
4742
ext4_get_projid(struct inode * inode,kprojid_t * projid)4743 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4744 {
4745 if (!ext4_has_feature_project(inode->i_sb))
4746 return -EOPNOTSUPP;
4747 *projid = EXT4_I(inode)->i_projid;
4748 return 0;
4749 }
4750
4751 /*
4752 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4753 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4754 * set.
4755 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4756 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4757 {
4758 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4759 inode_set_iversion_raw(inode, val);
4760 else
4761 inode_set_iversion_queried(inode, val);
4762 }
4763
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4764 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4765
4766 {
4767 if (flags & EXT4_IGET_EA_INODE) {
4768 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4769 return "missing EA_INODE flag";
4770 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4771 EXT4_I(inode)->i_file_acl)
4772 return "ea_inode with extended attributes";
4773 } else {
4774 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4775 return "unexpected EA_INODE flag";
4776 }
4777 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4778 return "unexpected bad inode w/o EXT4_IGET_BAD";
4779 return NULL;
4780 }
4781
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4782 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4783 ext4_iget_flags flags, const char *function,
4784 unsigned int line)
4785 {
4786 struct ext4_iloc iloc;
4787 struct ext4_inode *raw_inode;
4788 struct ext4_inode_info *ei;
4789 struct inode *inode;
4790 const char *err_str;
4791 journal_t *journal = EXT4_SB(sb)->s_journal;
4792 long ret;
4793 loff_t size;
4794 int block;
4795 uid_t i_uid;
4796 gid_t i_gid;
4797 projid_t i_projid;
4798
4799 if ((!(flags & EXT4_IGET_SPECIAL) &&
4800 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4801 (ino < EXT4_ROOT_INO) ||
4802 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4803 if (flags & EXT4_IGET_HANDLE)
4804 return ERR_PTR(-ESTALE);
4805 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4806 "inode #%lu: comm %s: iget: illegal inode #",
4807 ino, current->comm);
4808 return ERR_PTR(-EFSCORRUPTED);
4809 }
4810
4811 inode = iget_locked(sb, ino);
4812 if (!inode)
4813 return ERR_PTR(-ENOMEM);
4814 if (!(inode->i_state & I_NEW)) {
4815 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4816 ext4_error_inode(inode, function, line, 0, err_str);
4817 iput(inode);
4818 return ERR_PTR(-EFSCORRUPTED);
4819 }
4820 return inode;
4821 }
4822
4823 ei = EXT4_I(inode);
4824 iloc.bh = NULL;
4825
4826 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4827 if (ret < 0)
4828 goto bad_inode;
4829 raw_inode = ext4_raw_inode(&iloc);
4830
4831 if ((flags & EXT4_IGET_HANDLE) &&
4832 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4833 ret = -ESTALE;
4834 goto bad_inode;
4835 }
4836
4837 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4838 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4839 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4840 EXT4_INODE_SIZE(inode->i_sb) ||
4841 (ei->i_extra_isize & 3)) {
4842 ext4_error_inode(inode, function, line, 0,
4843 "iget: bad extra_isize %u "
4844 "(inode size %u)",
4845 ei->i_extra_isize,
4846 EXT4_INODE_SIZE(inode->i_sb));
4847 ret = -EFSCORRUPTED;
4848 goto bad_inode;
4849 }
4850 } else
4851 ei->i_extra_isize = 0;
4852
4853 /* Precompute checksum seed for inode metadata */
4854 if (ext4_has_metadata_csum(sb)) {
4855 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4856 __u32 csum;
4857 __le32 inum = cpu_to_le32(inode->i_ino);
4858 __le32 gen = raw_inode->i_generation;
4859 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4860 sizeof(inum));
4861 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4862 sizeof(gen));
4863 }
4864
4865 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4866 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4867 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4868 ext4_error_inode_err(inode, function, line, 0,
4869 EFSBADCRC, "iget: checksum invalid");
4870 ret = -EFSBADCRC;
4871 goto bad_inode;
4872 }
4873
4874 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4875 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4876 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4877 if (ext4_has_feature_project(sb) &&
4878 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4879 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4880 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4881 else
4882 i_projid = EXT4_DEF_PROJID;
4883
4884 if (!(test_opt(inode->i_sb, NO_UID32))) {
4885 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4886 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4887 }
4888 i_uid_write(inode, i_uid);
4889 i_gid_write(inode, i_gid);
4890 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4891 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4892
4893 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4894 ei->i_inline_off = 0;
4895 ei->i_dir_start_lookup = 0;
4896 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4897 /* We now have enough fields to check if the inode was active or not.
4898 * This is needed because nfsd might try to access dead inodes
4899 * the test is that same one that e2fsck uses
4900 * NeilBrown 1999oct15
4901 */
4902 if (inode->i_nlink == 0) {
4903 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4904 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4905 ino != EXT4_BOOT_LOADER_INO) {
4906 /* this inode is deleted or unallocated */
4907 if (flags & EXT4_IGET_SPECIAL) {
4908 ext4_error_inode(inode, function, line, 0,
4909 "iget: special inode unallocated");
4910 ret = -EFSCORRUPTED;
4911 } else
4912 ret = -ESTALE;
4913 goto bad_inode;
4914 }
4915 /* The only unlinked inodes we let through here have
4916 * valid i_mode and are being read by the orphan
4917 * recovery code: that's fine, we're about to complete
4918 * the process of deleting those.
4919 * OR it is the EXT4_BOOT_LOADER_INO which is
4920 * not initialized on a new filesystem. */
4921 }
4922 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4923 ext4_set_inode_flags(inode, true);
4924 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4925 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4926 if (ext4_has_feature_64bit(sb))
4927 ei->i_file_acl |=
4928 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4929 inode->i_size = ext4_isize(sb, raw_inode);
4930 if ((size = i_size_read(inode)) < 0) {
4931 ext4_error_inode(inode, function, line, 0,
4932 "iget: bad i_size value: %lld", size);
4933 ret = -EFSCORRUPTED;
4934 goto bad_inode;
4935 }
4936 /*
4937 * If dir_index is not enabled but there's dir with INDEX flag set,
4938 * we'd normally treat htree data as empty space. But with metadata
4939 * checksumming that corrupts checksums so forbid that.
4940 */
4941 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4942 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4943 ext4_error_inode(inode, function, line, 0,
4944 "iget: Dir with htree data on filesystem without dir_index feature.");
4945 ret = -EFSCORRUPTED;
4946 goto bad_inode;
4947 }
4948 ei->i_disksize = inode->i_size;
4949 #ifdef CONFIG_QUOTA
4950 ei->i_reserved_quota = 0;
4951 #endif
4952 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4953 ei->i_block_group = iloc.block_group;
4954 ei->i_last_alloc_group = ~0;
4955 /*
4956 * NOTE! The in-memory inode i_data array is in little-endian order
4957 * even on big-endian machines: we do NOT byteswap the block numbers!
4958 */
4959 for (block = 0; block < EXT4_N_BLOCKS; block++)
4960 ei->i_data[block] = raw_inode->i_block[block];
4961 INIT_LIST_HEAD(&ei->i_orphan);
4962 ext4_fc_init_inode(&ei->vfs_inode);
4963
4964 /*
4965 * Set transaction id's of transactions that have to be committed
4966 * to finish f[data]sync. We set them to currently running transaction
4967 * as we cannot be sure that the inode or some of its metadata isn't
4968 * part of the transaction - the inode could have been reclaimed and
4969 * now it is reread from disk.
4970 */
4971 if (journal) {
4972 transaction_t *transaction;
4973 tid_t tid;
4974
4975 read_lock(&journal->j_state_lock);
4976 if (journal->j_running_transaction)
4977 transaction = journal->j_running_transaction;
4978 else
4979 transaction = journal->j_committing_transaction;
4980 if (transaction)
4981 tid = transaction->t_tid;
4982 else
4983 tid = journal->j_commit_sequence;
4984 read_unlock(&journal->j_state_lock);
4985 ei->i_sync_tid = tid;
4986 ei->i_datasync_tid = tid;
4987 }
4988
4989 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4990 if (ei->i_extra_isize == 0) {
4991 /* The extra space is currently unused. Use it. */
4992 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4993 ei->i_extra_isize = sizeof(struct ext4_inode) -
4994 EXT4_GOOD_OLD_INODE_SIZE;
4995 } else {
4996 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4997 if (ret)
4998 goto bad_inode;
4999 }
5000 }
5001
5002 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5003 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5004 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5005 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5006
5007 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5008 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5009
5010 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5011 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5012 ivers |=
5013 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5014 }
5015 ext4_inode_set_iversion_queried(inode, ivers);
5016 }
5017
5018 ret = 0;
5019 if (ei->i_file_acl &&
5020 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5021 ext4_error_inode(inode, function, line, 0,
5022 "iget: bad extended attribute block %llu",
5023 ei->i_file_acl);
5024 ret = -EFSCORRUPTED;
5025 goto bad_inode;
5026 } else if (!ext4_has_inline_data(inode)) {
5027 /* validate the block references in the inode */
5028 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5029 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5030 (S_ISLNK(inode->i_mode) &&
5031 !ext4_inode_is_fast_symlink(inode)))) {
5032 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5033 ret = ext4_ext_check_inode(inode);
5034 else
5035 ret = ext4_ind_check_inode(inode);
5036 }
5037 }
5038 if (ret)
5039 goto bad_inode;
5040
5041 if (S_ISREG(inode->i_mode)) {
5042 inode->i_op = &ext4_file_inode_operations;
5043 inode->i_fop = &ext4_file_operations;
5044 ext4_set_aops(inode);
5045 } else if (S_ISDIR(inode->i_mode)) {
5046 inode->i_op = &ext4_dir_inode_operations;
5047 inode->i_fop = &ext4_dir_operations;
5048 } else if (S_ISLNK(inode->i_mode)) {
5049 /* VFS does not allow setting these so must be corruption */
5050 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5051 ext4_error_inode(inode, function, line, 0,
5052 "iget: immutable or append flags "
5053 "not allowed on symlinks");
5054 ret = -EFSCORRUPTED;
5055 goto bad_inode;
5056 }
5057 if (IS_ENCRYPTED(inode)) {
5058 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5059 ext4_set_aops(inode);
5060 } else if (ext4_inode_is_fast_symlink(inode)) {
5061 inode->i_link = (char *)ei->i_data;
5062 inode->i_op = &ext4_fast_symlink_inode_operations;
5063 nd_terminate_link(ei->i_data, inode->i_size,
5064 sizeof(ei->i_data) - 1);
5065 } else {
5066 inode->i_op = &ext4_symlink_inode_operations;
5067 ext4_set_aops(inode);
5068 }
5069 inode_nohighmem(inode);
5070 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5071 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5072 inode->i_op = &ext4_special_inode_operations;
5073 if (raw_inode->i_block[0])
5074 init_special_inode(inode, inode->i_mode,
5075 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5076 else
5077 init_special_inode(inode, inode->i_mode,
5078 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5079 } else if (ino == EXT4_BOOT_LOADER_INO) {
5080 make_bad_inode(inode);
5081 } else {
5082 ret = -EFSCORRUPTED;
5083 ext4_error_inode(inode, function, line, 0,
5084 "iget: bogus i_mode (%o)", inode->i_mode);
5085 goto bad_inode;
5086 }
5087 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5088 ext4_error_inode(inode, function, line, 0,
5089 "casefold flag without casefold feature");
5090 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5091 ext4_error_inode(inode, function, line, 0, err_str);
5092 ret = -EFSCORRUPTED;
5093 goto bad_inode;
5094 }
5095
5096 brelse(iloc.bh);
5097 unlock_new_inode(inode);
5098 return inode;
5099
5100 bad_inode:
5101 brelse(iloc.bh);
5102 iget_failed(inode);
5103 return ERR_PTR(ret);
5104 }
5105
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5106 static void __ext4_update_other_inode_time(struct super_block *sb,
5107 unsigned long orig_ino,
5108 unsigned long ino,
5109 struct ext4_inode *raw_inode)
5110 {
5111 struct inode *inode;
5112
5113 inode = find_inode_by_ino_rcu(sb, ino);
5114 if (!inode)
5115 return;
5116
5117 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5118 I_DIRTY_INODE)) ||
5119 ((inode->i_state & I_DIRTY_TIME) == 0))
5120 return;
5121
5122 spin_lock(&inode->i_lock);
5123 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5124 I_DIRTY_INODE)) == 0) &&
5125 (inode->i_state & I_DIRTY_TIME)) {
5126 struct ext4_inode_info *ei = EXT4_I(inode);
5127
5128 inode->i_state &= ~I_DIRTY_TIME;
5129 spin_unlock(&inode->i_lock);
5130
5131 spin_lock(&ei->i_raw_lock);
5132 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5133 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5134 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5135 ext4_inode_csum_set(inode, raw_inode, ei);
5136 spin_unlock(&ei->i_raw_lock);
5137 trace_ext4_other_inode_update_time(inode, orig_ino);
5138 return;
5139 }
5140 spin_unlock(&inode->i_lock);
5141 }
5142
5143 /*
5144 * Opportunistically update the other time fields for other inodes in
5145 * the same inode table block.
5146 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5147 static void ext4_update_other_inodes_time(struct super_block *sb,
5148 unsigned long orig_ino, char *buf)
5149 {
5150 unsigned long ino;
5151 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5152 int inode_size = EXT4_INODE_SIZE(sb);
5153
5154 /*
5155 * Calculate the first inode in the inode table block. Inode
5156 * numbers are one-based. That is, the first inode in a block
5157 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5158 */
5159 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5160 rcu_read_lock();
5161 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5162 if (ino == orig_ino)
5163 continue;
5164 __ext4_update_other_inode_time(sb, orig_ino, ino,
5165 (struct ext4_inode *)buf);
5166 }
5167 rcu_read_unlock();
5168 }
5169
5170 /*
5171 * Post the struct inode info into an on-disk inode location in the
5172 * buffer-cache. This gobbles the caller's reference to the
5173 * buffer_head in the inode location struct.
5174 *
5175 * The caller must have write access to iloc->bh.
5176 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5177 static int ext4_do_update_inode(handle_t *handle,
5178 struct inode *inode,
5179 struct ext4_iloc *iloc)
5180 {
5181 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5182 struct ext4_inode_info *ei = EXT4_I(inode);
5183 struct buffer_head *bh = iloc->bh;
5184 struct super_block *sb = inode->i_sb;
5185 int err;
5186 int need_datasync = 0, set_large_file = 0;
5187
5188 spin_lock(&ei->i_raw_lock);
5189
5190 /*
5191 * For fields not tracked in the in-memory inode, initialise them
5192 * to zero for new inodes.
5193 */
5194 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5195 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5196
5197 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5198 need_datasync = 1;
5199 if (ei->i_disksize > 0x7fffffffULL) {
5200 if (!ext4_has_feature_large_file(sb) ||
5201 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5202 set_large_file = 1;
5203 }
5204
5205 err = ext4_fill_raw_inode(inode, raw_inode);
5206 spin_unlock(&ei->i_raw_lock);
5207 if (err) {
5208 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5209 goto out_brelse;
5210 }
5211
5212 if (inode->i_sb->s_flags & SB_LAZYTIME)
5213 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5214 bh->b_data);
5215
5216 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5217 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5218 if (err)
5219 goto out_error;
5220 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5221 if (set_large_file) {
5222 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5223 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5224 if (err)
5225 goto out_error;
5226 lock_buffer(EXT4_SB(sb)->s_sbh);
5227 ext4_set_feature_large_file(sb);
5228 ext4_superblock_csum_set(sb);
5229 unlock_buffer(EXT4_SB(sb)->s_sbh);
5230 ext4_handle_sync(handle);
5231 err = ext4_handle_dirty_metadata(handle, NULL,
5232 EXT4_SB(sb)->s_sbh);
5233 }
5234 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5235 out_error:
5236 ext4_std_error(inode->i_sb, err);
5237 out_brelse:
5238 brelse(bh);
5239 return err;
5240 }
5241
5242 /*
5243 * ext4_write_inode()
5244 *
5245 * We are called from a few places:
5246 *
5247 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5248 * Here, there will be no transaction running. We wait for any running
5249 * transaction to commit.
5250 *
5251 * - Within flush work (sys_sync(), kupdate and such).
5252 * We wait on commit, if told to.
5253 *
5254 * - Within iput_final() -> write_inode_now()
5255 * We wait on commit, if told to.
5256 *
5257 * In all cases it is actually safe for us to return without doing anything,
5258 * because the inode has been copied into a raw inode buffer in
5259 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5260 * writeback.
5261 *
5262 * Note that we are absolutely dependent upon all inode dirtiers doing the
5263 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5264 * which we are interested.
5265 *
5266 * It would be a bug for them to not do this. The code:
5267 *
5268 * mark_inode_dirty(inode)
5269 * stuff();
5270 * inode->i_size = expr;
5271 *
5272 * is in error because write_inode() could occur while `stuff()' is running,
5273 * and the new i_size will be lost. Plus the inode will no longer be on the
5274 * superblock's dirty inode list.
5275 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5276 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5277 {
5278 int err;
5279
5280 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5281 sb_rdonly(inode->i_sb))
5282 return 0;
5283
5284 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5285 return -EIO;
5286
5287 if (EXT4_SB(inode->i_sb)->s_journal) {
5288 if (ext4_journal_current_handle()) {
5289 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5290 dump_stack();
5291 return -EIO;
5292 }
5293
5294 /*
5295 * No need to force transaction in WB_SYNC_NONE mode. Also
5296 * ext4_sync_fs() will force the commit after everything is
5297 * written.
5298 */
5299 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5300 return 0;
5301
5302 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5303 EXT4_I(inode)->i_sync_tid);
5304 } else {
5305 struct ext4_iloc iloc;
5306
5307 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5308 if (err)
5309 return err;
5310 /*
5311 * sync(2) will flush the whole buffer cache. No need to do
5312 * it here separately for each inode.
5313 */
5314 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5315 sync_dirty_buffer(iloc.bh);
5316 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5317 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5318 "IO error syncing inode");
5319 err = -EIO;
5320 }
5321 brelse(iloc.bh);
5322 }
5323 return err;
5324 }
5325
5326 /*
5327 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5328 * buffers that are attached to a page stradding i_size and are undergoing
5329 * commit. In that case we have to wait for commit to finish and try again.
5330 */
ext4_wait_for_tail_page_commit(struct inode * inode)5331 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5332 {
5333 struct page *page;
5334 unsigned offset;
5335 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5336 tid_t commit_tid = 0;
5337 int ret;
5338
5339 offset = inode->i_size & (PAGE_SIZE - 1);
5340 /*
5341 * If the page is fully truncated, we don't need to wait for any commit
5342 * (and we even should not as __ext4_journalled_invalidatepage() may
5343 * strip all buffers from the page but keep the page dirty which can then
5344 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5345 * buffers). Also we don't need to wait for any commit if all buffers in
5346 * the page remain valid. This is most beneficial for the common case of
5347 * blocksize == PAGESIZE.
5348 */
5349 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5350 return;
5351 while (1) {
5352 page = find_lock_page(inode->i_mapping,
5353 inode->i_size >> PAGE_SHIFT);
5354 if (!page)
5355 return;
5356 ret = __ext4_journalled_invalidatepage(page, offset,
5357 PAGE_SIZE - offset);
5358 unlock_page(page);
5359 put_page(page);
5360 if (ret != -EBUSY)
5361 return;
5362 commit_tid = 0;
5363 read_lock(&journal->j_state_lock);
5364 if (journal->j_committing_transaction)
5365 commit_tid = journal->j_committing_transaction->t_tid;
5366 read_unlock(&journal->j_state_lock);
5367 if (commit_tid)
5368 jbd2_log_wait_commit(journal, commit_tid);
5369 }
5370 }
5371
5372 /*
5373 * ext4_setattr()
5374 *
5375 * Called from notify_change.
5376 *
5377 * We want to trap VFS attempts to truncate the file as soon as
5378 * possible. In particular, we want to make sure that when the VFS
5379 * shrinks i_size, we put the inode on the orphan list and modify
5380 * i_disksize immediately, so that during the subsequent flushing of
5381 * dirty pages and freeing of disk blocks, we can guarantee that any
5382 * commit will leave the blocks being flushed in an unused state on
5383 * disk. (On recovery, the inode will get truncated and the blocks will
5384 * be freed, so we have a strong guarantee that no future commit will
5385 * leave these blocks visible to the user.)
5386 *
5387 * Another thing we have to assure is that if we are in ordered mode
5388 * and inode is still attached to the committing transaction, we must
5389 * we start writeout of all the dirty pages which are being truncated.
5390 * This way we are sure that all the data written in the previous
5391 * transaction are already on disk (truncate waits for pages under
5392 * writeback).
5393 *
5394 * Called with inode->i_mutex down.
5395 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5396 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5397 {
5398 struct inode *inode = d_inode(dentry);
5399 int error, rc = 0;
5400 int orphan = 0;
5401 const unsigned int ia_valid = attr->ia_valid;
5402
5403 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5404 return -EIO;
5405
5406 if (unlikely(IS_IMMUTABLE(inode)))
5407 return -EPERM;
5408
5409 if (unlikely(IS_APPEND(inode) &&
5410 (ia_valid & (ATTR_MODE | ATTR_UID |
5411 ATTR_GID | ATTR_TIMES_SET))))
5412 return -EPERM;
5413
5414 error = setattr_prepare(dentry, attr);
5415 if (error)
5416 return error;
5417
5418 error = fscrypt_prepare_setattr(dentry, attr);
5419 if (error)
5420 return error;
5421
5422 error = fsverity_prepare_setattr(dentry, attr);
5423 if (error)
5424 return error;
5425
5426 if (is_quota_modification(inode, attr)) {
5427 error = dquot_initialize(inode);
5428 if (error)
5429 return error;
5430 }
5431
5432 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5433 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5434 handle_t *handle;
5435
5436 /* (user+group)*(old+new) structure, inode write (sb,
5437 * inode block, ? - but truncate inode update has it) */
5438 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5439 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5440 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5441 if (IS_ERR(handle)) {
5442 error = PTR_ERR(handle);
5443 goto err_out;
5444 }
5445
5446 /* dquot_transfer() calls back ext4_get_inode_usage() which
5447 * counts xattr inode references.
5448 */
5449 down_read(&EXT4_I(inode)->xattr_sem);
5450 error = dquot_transfer(inode, attr);
5451 up_read(&EXT4_I(inode)->xattr_sem);
5452
5453 if (error) {
5454 ext4_journal_stop(handle);
5455 return error;
5456 }
5457 /* Update corresponding info in inode so that everything is in
5458 * one transaction */
5459 if (attr->ia_valid & ATTR_UID)
5460 inode->i_uid = attr->ia_uid;
5461 if (attr->ia_valid & ATTR_GID)
5462 inode->i_gid = attr->ia_gid;
5463 error = ext4_mark_inode_dirty(handle, inode);
5464 ext4_journal_stop(handle);
5465 if (unlikely(error)) {
5466 return error;
5467 }
5468 }
5469
5470 if (attr->ia_valid & ATTR_SIZE) {
5471 handle_t *handle;
5472 loff_t oldsize = inode->i_size;
5473 loff_t old_disksize;
5474 int shrink = (attr->ia_size < inode->i_size);
5475
5476 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5477 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5478
5479 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5480 return -EFBIG;
5481 }
5482 }
5483 if (!S_ISREG(inode->i_mode)) {
5484 return -EINVAL;
5485 }
5486
5487 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5488 inode_inc_iversion(inode);
5489
5490 if (shrink) {
5491 if (ext4_should_order_data(inode)) {
5492 error = ext4_begin_ordered_truncate(inode,
5493 attr->ia_size);
5494 if (error)
5495 goto err_out;
5496 }
5497 /*
5498 * Blocks are going to be removed from the inode. Wait
5499 * for dio in flight.
5500 */
5501 inode_dio_wait(inode);
5502 }
5503
5504 down_write(&EXT4_I(inode)->i_mmap_sem);
5505
5506 rc = ext4_break_layouts(inode);
5507 if (rc) {
5508 up_write(&EXT4_I(inode)->i_mmap_sem);
5509 goto err_out;
5510 }
5511
5512 if (attr->ia_size != inode->i_size) {
5513 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5514 if (IS_ERR(handle)) {
5515 error = PTR_ERR(handle);
5516 goto out_mmap_sem;
5517 }
5518 if (ext4_handle_valid(handle) && shrink) {
5519 error = ext4_orphan_add(handle, inode);
5520 orphan = 1;
5521 }
5522 /*
5523 * Update c/mtime on truncate up, ext4_truncate() will
5524 * update c/mtime in shrink case below
5525 */
5526 if (!shrink) {
5527 inode->i_mtime = current_time(inode);
5528 inode->i_ctime = inode->i_mtime;
5529 }
5530
5531 if (shrink)
5532 ext4_fc_track_range(handle, inode,
5533 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5534 inode->i_sb->s_blocksize_bits,
5535 EXT_MAX_BLOCKS - 1);
5536 else
5537 ext4_fc_track_range(
5538 handle, inode,
5539 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5540 inode->i_sb->s_blocksize_bits,
5541 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5542 inode->i_sb->s_blocksize_bits);
5543
5544 down_write(&EXT4_I(inode)->i_data_sem);
5545 old_disksize = EXT4_I(inode)->i_disksize;
5546 EXT4_I(inode)->i_disksize = attr->ia_size;
5547 rc = ext4_mark_inode_dirty(handle, inode);
5548 if (!error)
5549 error = rc;
5550 /*
5551 * We have to update i_size under i_data_sem together
5552 * with i_disksize to avoid races with writeback code
5553 * running ext4_wb_update_i_disksize().
5554 */
5555 if (!error)
5556 i_size_write(inode, attr->ia_size);
5557 else
5558 EXT4_I(inode)->i_disksize = old_disksize;
5559 up_write(&EXT4_I(inode)->i_data_sem);
5560 ext4_journal_stop(handle);
5561 if (error)
5562 goto out_mmap_sem;
5563 if (!shrink) {
5564 pagecache_isize_extended(inode, oldsize,
5565 inode->i_size);
5566 } else if (ext4_should_journal_data(inode)) {
5567 ext4_wait_for_tail_page_commit(inode);
5568 }
5569 }
5570
5571 /*
5572 * Truncate pagecache after we've waited for commit
5573 * in data=journal mode to make pages freeable.
5574 */
5575 truncate_pagecache(inode, inode->i_size);
5576 /*
5577 * Call ext4_truncate() even if i_size didn't change to
5578 * truncate possible preallocated blocks.
5579 */
5580 if (attr->ia_size <= oldsize) {
5581 rc = ext4_truncate(inode);
5582 if (rc)
5583 error = rc;
5584 }
5585 out_mmap_sem:
5586 up_write(&EXT4_I(inode)->i_mmap_sem);
5587 }
5588
5589 if (!error) {
5590 setattr_copy(inode, attr);
5591 mark_inode_dirty(inode);
5592 }
5593
5594 /*
5595 * If the call to ext4_truncate failed to get a transaction handle at
5596 * all, we need to clean up the in-core orphan list manually.
5597 */
5598 if (orphan && inode->i_nlink)
5599 ext4_orphan_del(NULL, inode);
5600
5601 if (!error && (ia_valid & ATTR_MODE))
5602 rc = posix_acl_chmod(inode, inode->i_mode);
5603
5604 err_out:
5605 if (error)
5606 ext4_std_error(inode->i_sb, error);
5607 if (!error)
5608 error = rc;
5609 return error;
5610 }
5611
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5612 int ext4_getattr(const struct path *path, struct kstat *stat,
5613 u32 request_mask, unsigned int query_flags)
5614 {
5615 struct inode *inode = d_inode(path->dentry);
5616 struct ext4_inode *raw_inode;
5617 struct ext4_inode_info *ei = EXT4_I(inode);
5618 unsigned int flags;
5619
5620 if ((request_mask & STATX_BTIME) &&
5621 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5622 stat->result_mask |= STATX_BTIME;
5623 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5624 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5625 }
5626
5627 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5628 if (flags & EXT4_APPEND_FL)
5629 stat->attributes |= STATX_ATTR_APPEND;
5630 if (flags & EXT4_COMPR_FL)
5631 stat->attributes |= STATX_ATTR_COMPRESSED;
5632 if (flags & EXT4_ENCRYPT_FL)
5633 stat->attributes |= STATX_ATTR_ENCRYPTED;
5634 if (flags & EXT4_IMMUTABLE_FL)
5635 stat->attributes |= STATX_ATTR_IMMUTABLE;
5636 if (flags & EXT4_NODUMP_FL)
5637 stat->attributes |= STATX_ATTR_NODUMP;
5638 if (flags & EXT4_VERITY_FL)
5639 stat->attributes |= STATX_ATTR_VERITY;
5640
5641 stat->attributes_mask |= (STATX_ATTR_APPEND |
5642 STATX_ATTR_COMPRESSED |
5643 STATX_ATTR_ENCRYPTED |
5644 STATX_ATTR_IMMUTABLE |
5645 STATX_ATTR_NODUMP |
5646 STATX_ATTR_VERITY);
5647
5648 generic_fillattr(inode, stat);
5649 return 0;
5650 }
5651
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5652 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5653 u32 request_mask, unsigned int query_flags)
5654 {
5655 struct inode *inode = d_inode(path->dentry);
5656 u64 delalloc_blocks;
5657
5658 ext4_getattr(path, stat, request_mask, query_flags);
5659
5660 /*
5661 * If there is inline data in the inode, the inode will normally not
5662 * have data blocks allocated (it may have an external xattr block).
5663 * Report at least one sector for such files, so tools like tar, rsync,
5664 * others don't incorrectly think the file is completely sparse.
5665 */
5666 if (unlikely(ext4_has_inline_data(inode)))
5667 stat->blocks += (stat->size + 511) >> 9;
5668
5669 /*
5670 * We can't update i_blocks if the block allocation is delayed
5671 * otherwise in the case of system crash before the real block
5672 * allocation is done, we will have i_blocks inconsistent with
5673 * on-disk file blocks.
5674 * We always keep i_blocks updated together with real
5675 * allocation. But to not confuse with user, stat
5676 * will return the blocks that include the delayed allocation
5677 * blocks for this file.
5678 */
5679 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5680 EXT4_I(inode)->i_reserved_data_blocks);
5681 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5682 return 0;
5683 }
5684
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5685 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5686 int pextents)
5687 {
5688 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5689 return ext4_ind_trans_blocks(inode, lblocks);
5690 return ext4_ext_index_trans_blocks(inode, pextents);
5691 }
5692
5693 /*
5694 * Account for index blocks, block groups bitmaps and block group
5695 * descriptor blocks if modify datablocks and index blocks
5696 * worse case, the indexs blocks spread over different block groups
5697 *
5698 * If datablocks are discontiguous, they are possible to spread over
5699 * different block groups too. If they are contiguous, with flexbg,
5700 * they could still across block group boundary.
5701 *
5702 * Also account for superblock, inode, quota and xattr blocks
5703 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5704 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5705 int pextents)
5706 {
5707 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5708 int gdpblocks;
5709 int idxblocks;
5710 int ret = 0;
5711
5712 /*
5713 * How many index blocks need to touch to map @lblocks logical blocks
5714 * to @pextents physical extents?
5715 */
5716 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5717
5718 ret = idxblocks;
5719
5720 /*
5721 * Now let's see how many group bitmaps and group descriptors need
5722 * to account
5723 */
5724 groups = idxblocks + pextents;
5725 gdpblocks = groups;
5726 if (groups > ngroups)
5727 groups = ngroups;
5728 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5729 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5730
5731 /* bitmaps and block group descriptor blocks */
5732 ret += groups + gdpblocks;
5733
5734 /* Blocks for super block, inode, quota and xattr blocks */
5735 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5736
5737 return ret;
5738 }
5739
5740 /*
5741 * Calculate the total number of credits to reserve to fit
5742 * the modification of a single pages into a single transaction,
5743 * which may include multiple chunks of block allocations.
5744 *
5745 * This could be called via ext4_write_begin()
5746 *
5747 * We need to consider the worse case, when
5748 * one new block per extent.
5749 */
ext4_writepage_trans_blocks(struct inode * inode)5750 int ext4_writepage_trans_blocks(struct inode *inode)
5751 {
5752 int bpp = ext4_journal_blocks_per_page(inode);
5753 int ret;
5754
5755 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5756
5757 /* Account for data blocks for journalled mode */
5758 if (ext4_should_journal_data(inode))
5759 ret += bpp;
5760 return ret;
5761 }
5762
5763 /*
5764 * Calculate the journal credits for a chunk of data modification.
5765 *
5766 * This is called from DIO, fallocate or whoever calling
5767 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5768 *
5769 * journal buffers for data blocks are not included here, as DIO
5770 * and fallocate do no need to journal data buffers.
5771 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5772 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5773 {
5774 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5775 }
5776
5777 /*
5778 * The caller must have previously called ext4_reserve_inode_write().
5779 * Give this, we know that the caller already has write access to iloc->bh.
5780 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5781 int ext4_mark_iloc_dirty(handle_t *handle,
5782 struct inode *inode, struct ext4_iloc *iloc)
5783 {
5784 int err = 0;
5785
5786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5787 put_bh(iloc->bh);
5788 return -EIO;
5789 }
5790 ext4_fc_track_inode(handle, inode);
5791
5792 /*
5793 * ea_inodes are using i_version for storing reference count, don't
5794 * mess with it
5795 */
5796 if (IS_I_VERSION(inode) &&
5797 !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5798 inode_inc_iversion(inode);
5799
5800 /* the do_update_inode consumes one bh->b_count */
5801 get_bh(iloc->bh);
5802
5803 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5804 err = ext4_do_update_inode(handle, inode, iloc);
5805 put_bh(iloc->bh);
5806 return err;
5807 }
5808
5809 /*
5810 * On success, We end up with an outstanding reference count against
5811 * iloc->bh. This _must_ be cleaned up later.
5812 */
5813
5814 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5815 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5816 struct ext4_iloc *iloc)
5817 {
5818 int err;
5819
5820 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5821 return -EIO;
5822
5823 err = ext4_get_inode_loc(inode, iloc);
5824 if (!err) {
5825 BUFFER_TRACE(iloc->bh, "get_write_access");
5826 err = ext4_journal_get_write_access(handle, iloc->bh);
5827 if (err) {
5828 brelse(iloc->bh);
5829 iloc->bh = NULL;
5830 }
5831 }
5832 ext4_std_error(inode->i_sb, err);
5833 return err;
5834 }
5835
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5836 static int __ext4_expand_extra_isize(struct inode *inode,
5837 unsigned int new_extra_isize,
5838 struct ext4_iloc *iloc,
5839 handle_t *handle, int *no_expand)
5840 {
5841 struct ext4_inode *raw_inode;
5842 struct ext4_xattr_ibody_header *header;
5843 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5844 struct ext4_inode_info *ei = EXT4_I(inode);
5845 int error;
5846
5847 /* this was checked at iget time, but double check for good measure */
5848 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5849 (ei->i_extra_isize & 3)) {
5850 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5851 ei->i_extra_isize,
5852 EXT4_INODE_SIZE(inode->i_sb));
5853 return -EFSCORRUPTED;
5854 }
5855 if ((new_extra_isize < ei->i_extra_isize) ||
5856 (new_extra_isize < 4) ||
5857 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5858 return -EINVAL; /* Should never happen */
5859
5860 raw_inode = ext4_raw_inode(iloc);
5861
5862 header = IHDR(inode, raw_inode);
5863
5864 /* No extended attributes present */
5865 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5866 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5867 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5868 EXT4_I(inode)->i_extra_isize, 0,
5869 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5870 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5871 return 0;
5872 }
5873
5874 /*
5875 * We may need to allocate external xattr block so we need quotas
5876 * initialized. Here we can be called with various locks held so we
5877 * cannot affort to initialize quotas ourselves. So just bail.
5878 */
5879 if (dquot_initialize_needed(inode))
5880 return -EAGAIN;
5881
5882 /* try to expand with EAs present */
5883 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5884 raw_inode, handle);
5885 if (error) {
5886 /*
5887 * Inode size expansion failed; don't try again
5888 */
5889 *no_expand = 1;
5890 }
5891
5892 return error;
5893 }
5894
5895 /*
5896 * Expand an inode by new_extra_isize bytes.
5897 * Returns 0 on success or negative error number on failure.
5898 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5899 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5900 unsigned int new_extra_isize,
5901 struct ext4_iloc iloc,
5902 handle_t *handle)
5903 {
5904 int no_expand;
5905 int error;
5906
5907 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5908 return -EOVERFLOW;
5909
5910 /*
5911 * In nojournal mode, we can immediately attempt to expand
5912 * the inode. When journaled, we first need to obtain extra
5913 * buffer credits since we may write into the EA block
5914 * with this same handle. If journal_extend fails, then it will
5915 * only result in a minor loss of functionality for that inode.
5916 * If this is felt to be critical, then e2fsck should be run to
5917 * force a large enough s_min_extra_isize.
5918 */
5919 if (ext4_journal_extend(handle,
5920 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5921 return -ENOSPC;
5922
5923 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5924 return -EBUSY;
5925
5926 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5927 handle, &no_expand);
5928 ext4_write_unlock_xattr(inode, &no_expand);
5929
5930 return error;
5931 }
5932
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5933 int ext4_expand_extra_isize(struct inode *inode,
5934 unsigned int new_extra_isize,
5935 struct ext4_iloc *iloc)
5936 {
5937 handle_t *handle;
5938 int no_expand;
5939 int error, rc;
5940
5941 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5942 brelse(iloc->bh);
5943 return -EOVERFLOW;
5944 }
5945
5946 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5947 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5948 if (IS_ERR(handle)) {
5949 error = PTR_ERR(handle);
5950 brelse(iloc->bh);
5951 return error;
5952 }
5953
5954 ext4_write_lock_xattr(inode, &no_expand);
5955
5956 BUFFER_TRACE(iloc->bh, "get_write_access");
5957 error = ext4_journal_get_write_access(handle, iloc->bh);
5958 if (error) {
5959 brelse(iloc->bh);
5960 goto out_unlock;
5961 }
5962
5963 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5964 handle, &no_expand);
5965
5966 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5967 if (!error)
5968 error = rc;
5969
5970 out_unlock:
5971 ext4_write_unlock_xattr(inode, &no_expand);
5972 ext4_journal_stop(handle);
5973 return error;
5974 }
5975
5976 /*
5977 * What we do here is to mark the in-core inode as clean with respect to inode
5978 * dirtiness (it may still be data-dirty).
5979 * This means that the in-core inode may be reaped by prune_icache
5980 * without having to perform any I/O. This is a very good thing,
5981 * because *any* task may call prune_icache - even ones which
5982 * have a transaction open against a different journal.
5983 *
5984 * Is this cheating? Not really. Sure, we haven't written the
5985 * inode out, but prune_icache isn't a user-visible syncing function.
5986 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5987 * we start and wait on commits.
5988 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)5989 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5990 const char *func, unsigned int line)
5991 {
5992 struct ext4_iloc iloc;
5993 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5994 int err;
5995
5996 might_sleep();
5997 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5998 err = ext4_reserve_inode_write(handle, inode, &iloc);
5999 if (err)
6000 goto out;
6001
6002 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6003 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6004 iloc, handle);
6005
6006 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6007 out:
6008 if (unlikely(err))
6009 ext4_error_inode_err(inode, func, line, 0, err,
6010 "mark_inode_dirty error");
6011 return err;
6012 }
6013
6014 /*
6015 * ext4_dirty_inode() is called from __mark_inode_dirty()
6016 *
6017 * We're really interested in the case where a file is being extended.
6018 * i_size has been changed by generic_commit_write() and we thus need
6019 * to include the updated inode in the current transaction.
6020 *
6021 * Also, dquot_alloc_block() will always dirty the inode when blocks
6022 * are allocated to the file.
6023 *
6024 * If the inode is marked synchronous, we don't honour that here - doing
6025 * so would cause a commit on atime updates, which we don't bother doing.
6026 * We handle synchronous inodes at the highest possible level.
6027 *
6028 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6029 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6030 * to copy into the on-disk inode structure are the timestamp files.
6031 */
ext4_dirty_inode(struct inode * inode,int flags)6032 void ext4_dirty_inode(struct inode *inode, int flags)
6033 {
6034 handle_t *handle;
6035
6036 if (flags == I_DIRTY_TIME)
6037 return;
6038 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039 if (IS_ERR(handle))
6040 goto out;
6041
6042 ext4_mark_inode_dirty(handle, inode);
6043
6044 ext4_journal_stop(handle);
6045 out:
6046 return;
6047 }
6048
ext4_change_inode_journal_flag(struct inode * inode,int val)6049 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6050 {
6051 journal_t *journal;
6052 handle_t *handle;
6053 int err;
6054 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6055
6056 /*
6057 * We have to be very careful here: changing a data block's
6058 * journaling status dynamically is dangerous. If we write a
6059 * data block to the journal, change the status and then delete
6060 * that block, we risk forgetting to revoke the old log record
6061 * from the journal and so a subsequent replay can corrupt data.
6062 * So, first we make sure that the journal is empty and that
6063 * nobody is changing anything.
6064 */
6065
6066 journal = EXT4_JOURNAL(inode);
6067 if (!journal)
6068 return 0;
6069 if (is_journal_aborted(journal))
6070 return -EROFS;
6071
6072 /* Wait for all existing dio workers */
6073 inode_dio_wait(inode);
6074
6075 /*
6076 * Before flushing the journal and switching inode's aops, we have
6077 * to flush all dirty data the inode has. There can be outstanding
6078 * delayed allocations, there can be unwritten extents created by
6079 * fallocate or buffered writes in dioread_nolock mode covered by
6080 * dirty data which can be converted only after flushing the dirty
6081 * data (and journalled aops don't know how to handle these cases).
6082 */
6083 if (val) {
6084 down_write(&EXT4_I(inode)->i_mmap_sem);
6085 err = filemap_write_and_wait(inode->i_mapping);
6086 if (err < 0) {
6087 up_write(&EXT4_I(inode)->i_mmap_sem);
6088 return err;
6089 }
6090 }
6091
6092 percpu_down_write(&sbi->s_writepages_rwsem);
6093 jbd2_journal_lock_updates(journal);
6094
6095 /*
6096 * OK, there are no updates running now, and all cached data is
6097 * synced to disk. We are now in a completely consistent state
6098 * which doesn't have anything in the journal, and we know that
6099 * no filesystem updates are running, so it is safe to modify
6100 * the inode's in-core data-journaling state flag now.
6101 */
6102
6103 if (val)
6104 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6105 else {
6106 err = jbd2_journal_flush(journal);
6107 if (err < 0) {
6108 jbd2_journal_unlock_updates(journal);
6109 percpu_up_write(&sbi->s_writepages_rwsem);
6110 return err;
6111 }
6112 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6113 }
6114 ext4_set_aops(inode);
6115
6116 jbd2_journal_unlock_updates(journal);
6117 percpu_up_write(&sbi->s_writepages_rwsem);
6118
6119 if (val)
6120 up_write(&EXT4_I(inode)->i_mmap_sem);
6121
6122 /* Finally we can mark the inode as dirty. */
6123
6124 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6125 if (IS_ERR(handle))
6126 return PTR_ERR(handle);
6127
6128 ext4_fc_mark_ineligible(inode->i_sb,
6129 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE);
6130 err = ext4_mark_inode_dirty(handle, inode);
6131 ext4_handle_sync(handle);
6132 ext4_journal_stop(handle);
6133 ext4_std_error(inode->i_sb, err);
6134
6135 return err;
6136 }
6137
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6138 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6139 {
6140 return !buffer_mapped(bh);
6141 }
6142
ext4_page_mkwrite(struct vm_fault * vmf)6143 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6144 {
6145 struct vm_area_struct *vma = vmf->vma;
6146 struct page *page = vmf->page;
6147 loff_t size;
6148 unsigned long len;
6149 int err;
6150 vm_fault_t ret;
6151 struct file *file = vma->vm_file;
6152 struct inode *inode = file_inode(file);
6153 struct address_space *mapping = inode->i_mapping;
6154 handle_t *handle;
6155 get_block_t *get_block;
6156 int retries = 0;
6157
6158 if (unlikely(IS_IMMUTABLE(inode)))
6159 return VM_FAULT_SIGBUS;
6160
6161 sb_start_pagefault(inode->i_sb);
6162 file_update_time(vma->vm_file);
6163
6164 down_read(&EXT4_I(inode)->i_mmap_sem);
6165
6166 err = ext4_convert_inline_data(inode);
6167 if (err)
6168 goto out_ret;
6169
6170 /*
6171 * On data journalling we skip straight to the transaction handle:
6172 * there's no delalloc; page truncated will be checked later; the
6173 * early return w/ all buffers mapped (calculates size/len) can't
6174 * be used; and there's no dioread_nolock, so only ext4_get_block.
6175 */
6176 if (ext4_should_journal_data(inode))
6177 goto retry_alloc;
6178
6179 /* Delalloc case is easy... */
6180 if (test_opt(inode->i_sb, DELALLOC) &&
6181 !ext4_nonda_switch(inode->i_sb)) {
6182 do {
6183 err = block_page_mkwrite(vma, vmf,
6184 ext4_da_get_block_prep);
6185 } while (err == -ENOSPC &&
6186 ext4_should_retry_alloc(inode->i_sb, &retries));
6187 goto out_ret;
6188 }
6189
6190 lock_page(page);
6191 size = i_size_read(inode);
6192 /* Page got truncated from under us? */
6193 if (page->mapping != mapping || page_offset(page) > size) {
6194 unlock_page(page);
6195 ret = VM_FAULT_NOPAGE;
6196 goto out;
6197 }
6198
6199 if (page->index == size >> PAGE_SHIFT)
6200 len = size & ~PAGE_MASK;
6201 else
6202 len = PAGE_SIZE;
6203 /*
6204 * Return if we have all the buffers mapped. This avoids the need to do
6205 * journal_start/journal_stop which can block and take a long time
6206 *
6207 * This cannot be done for data journalling, as we have to add the
6208 * inode to the transaction's list to writeprotect pages on commit.
6209 */
6210 if (page_has_buffers(page)) {
6211 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6212 0, len, NULL,
6213 ext4_bh_unmapped)) {
6214 /* Wait so that we don't change page under IO */
6215 wait_for_stable_page(page);
6216 ret = VM_FAULT_LOCKED;
6217 goto out;
6218 }
6219 }
6220 unlock_page(page);
6221 /* OK, we need to fill the hole... */
6222 if (ext4_should_dioread_nolock(inode))
6223 get_block = ext4_get_block_unwritten;
6224 else
6225 get_block = ext4_get_block;
6226 retry_alloc:
6227 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6228 ext4_writepage_trans_blocks(inode));
6229 if (IS_ERR(handle)) {
6230 ret = VM_FAULT_SIGBUS;
6231 goto out;
6232 }
6233 /*
6234 * Data journalling can't use block_page_mkwrite() because it
6235 * will set_buffer_dirty() before do_journal_get_write_access()
6236 * thus might hit warning messages for dirty metadata buffers.
6237 */
6238 if (!ext4_should_journal_data(inode)) {
6239 err = block_page_mkwrite(vma, vmf, get_block);
6240 } else {
6241 lock_page(page);
6242 size = i_size_read(inode);
6243 /* Page got truncated from under us? */
6244 if (page->mapping != mapping || page_offset(page) > size) {
6245 ret = VM_FAULT_NOPAGE;
6246 goto out_error;
6247 }
6248
6249 if (page->index == size >> PAGE_SHIFT)
6250 len = size & ~PAGE_MASK;
6251 else
6252 len = PAGE_SIZE;
6253
6254 err = __block_write_begin(page, 0, len, ext4_get_block);
6255 if (!err) {
6256 ret = VM_FAULT_SIGBUS;
6257 if (ext4_walk_page_buffers(handle, page_buffers(page),
6258 0, len, NULL, do_journal_get_write_access))
6259 goto out_error;
6260 if (ext4_walk_page_buffers(handle, page_buffers(page),
6261 0, len, NULL, write_end_fn))
6262 goto out_error;
6263 if (ext4_jbd2_inode_add_write(handle, inode,
6264 page_offset(page), len))
6265 goto out_error;
6266 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6267 } else {
6268 unlock_page(page);
6269 }
6270 }
6271 ext4_journal_stop(handle);
6272 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6273 goto retry_alloc;
6274 out_ret:
6275 ret = block_page_mkwrite_return(err);
6276 out:
6277 up_read(&EXT4_I(inode)->i_mmap_sem);
6278 sb_end_pagefault(inode->i_sb);
6279 return ret;
6280 out_error:
6281 unlock_page(page);
6282 ext4_journal_stop(handle);
6283 goto out;
6284 }
6285
ext4_filemap_fault(struct vm_fault * vmf)6286 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287 {
6288 struct inode *inode = file_inode(vmf->vma->vm_file);
6289 vm_fault_t ret;
6290
6291 down_read(&EXT4_I(inode)->i_mmap_sem);
6292 ret = filemap_fault(vmf);
6293 up_read(&EXT4_I(inode)->i_mmap_sem);
6294
6295 return ret;
6296 }
6297