1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98 }
99
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108 }
109
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142 }
143
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157 }
158
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt[TOTAL_NAT]++;
181 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 return ne;
183 }
184
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 struct nat_entry *ne;
188
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197 }
198
199 return ne;
200 }
201
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt[TOTAL_NAT]--;
212 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 __free_nat_entry(e);
214 }
215
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
218 {
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
221
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 }
232 return head;
233 }
234
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
237 {
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
243
244 /*
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
248 */
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
252
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
257
258 nm_i->nat_cnt[DIRTY_NAT]++;
259 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 spin_lock(&nm_i->nat_list_lock);
263 if (new_ne)
264 list_del_init(&ne->list);
265 else
266 list_move_tail(&ne->list, &head->entry_list);
267 spin_unlock(&nm_i->nat_list_lock);
268 }
269
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 spin_lock(&nm_i->nat_list_lock);
274 list_move_tail(&ne->list, &nm_i->nat_entries);
275 spin_unlock(&nm_i->nat_list_lock);
276
277 set_nat_flag(ne, IS_DIRTY, false);
278 set->entry_cnt--;
279 nm_i->nat_cnt[DIRTY_NAT]--;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 start, nr);
288 }
289
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 return NODE_MAPPING(sbi) == page->mapping &&
293 IS_DNODE(page) && is_cold_node(page);
294 }
295
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 spin_lock_init(&sbi->fsync_node_lock);
299 INIT_LIST_HEAD(&sbi->fsync_node_list);
300 sbi->fsync_seg_id = 0;
301 sbi->fsync_node_num = 0;
302 }
303
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 struct page *page)
306 {
307 struct fsync_node_entry *fn;
308 unsigned long flags;
309 unsigned int seq_id;
310
311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313 get_page(page);
314 fn->page = page;
315 INIT_LIST_HEAD(&fn->list);
316
317 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 list_add_tail(&fn->list, &sbi->fsync_node_list);
319 fn->seq_id = sbi->fsync_seg_id++;
320 seq_id = fn->seq_id;
321 sbi->fsync_node_num++;
322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324 return seq_id;
325 }
326
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331
332 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 if (fn->page == page) {
335 list_del(&fn->list);
336 sbi->fsync_node_num--;
337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 kmem_cache_free(fsync_node_entry_slab, fn);
339 put_page(page);
340 return;
341 }
342 }
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 f2fs_bug_on(sbi, 1);
345 }
346
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 unsigned long flags;
350
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 sbi->fsync_seg_id = 0;
353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 struct f2fs_nm_info *nm_i = NM_I(sbi);
359 struct nat_entry *e;
360 bool need = false;
361
362 down_read(&nm_i->nat_tree_lock);
363 e = __lookup_nat_cache(nm_i, nid);
364 if (e) {
365 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 !get_nat_flag(e, HAS_FSYNCED_INODE))
367 need = true;
368 }
369 up_read(&nm_i->nat_tree_lock);
370 return need;
371 }
372
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 struct nat_entry *e;
377 bool is_cp = true;
378
379 down_read(&nm_i->nat_tree_lock);
380 e = __lookup_nat_cache(nm_i, nid);
381 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 is_cp = false;
383 up_read(&nm_i->nat_tree_lock);
384 return is_cp;
385 }
386
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 struct f2fs_nm_info *nm_i = NM_I(sbi);
390 struct nat_entry *e;
391 bool need_update = true;
392
393 down_read(&nm_i->nat_tree_lock);
394 e = __lookup_nat_cache(nm_i, ino);
395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 (get_nat_flag(e, IS_CHECKPOINTED) ||
397 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 need_update = false;
399 up_read(&nm_i->nat_tree_lock);
400 return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 struct f2fs_nat_entry *ne)
406 {
407 struct f2fs_nm_info *nm_i = NM_I(sbi);
408 struct nat_entry *new, *e;
409
410 new = __alloc_nat_entry(nid, false);
411 if (!new)
412 return;
413
414 down_write(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, nid);
416 if (!e)
417 e = __init_nat_entry(nm_i, new, ne, false);
418 else
419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 nat_get_blkaddr(e) !=
421 le32_to_cpu(ne->block_addr) ||
422 nat_get_version(e) != ne->version);
423 up_write(&nm_i->nat_tree_lock);
424 if (e != new)
425 __free_nat_entry(new);
426 }
427
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 block_t new_blkaddr, bool fsync_done)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *e;
433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, ni->nid);
437 if (!e) {
438 e = __init_nat_entry(nm_i, new, NULL, true);
439 copy_node_info(&e->ni, ni);
440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 } else if (new_blkaddr == NEW_ADDR) {
442 /*
443 * when nid is reallocated,
444 * previous nat entry can be remained in nat cache.
445 * So, reinitialize it with new information.
446 */
447 copy_node_info(&e->ni, ni);
448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 }
450 /* let's free early to reduce memory consumption */
451 if (e != new)
452 __free_nat_entry(new);
453
454 /* sanity check */
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 new_blkaddr == NULL_ADDR);
458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 new_blkaddr == NEW_ADDR);
460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 new_blkaddr == NEW_ADDR);
462
463 /* increment version no as node is removed */
464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 unsigned char version = nat_get_version(e);
466 nat_set_version(e, inc_node_version(version));
467 }
468
469 /* change address */
470 nat_set_blkaddr(e, new_blkaddr);
471 if (!__is_valid_data_blkaddr(new_blkaddr))
472 set_nat_flag(e, IS_CHECKPOINTED, false);
473 __set_nat_cache_dirty(nm_i, e);
474
475 /* update fsync_mark if its inode nat entry is still alive */
476 if (ni->nid != ni->ino)
477 e = __lookup_nat_cache(nm_i, ni->ino);
478 if (e) {
479 if (fsync_done && ni->nid == ni->ino)
480 set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 }
483 up_write(&nm_i->nat_tree_lock);
484 }
485
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 struct f2fs_nm_info *nm_i = NM_I(sbi);
489 int nr = nr_shrink;
490
491 if (!down_write_trylock(&nm_i->nat_tree_lock))
492 return 0;
493
494 spin_lock(&nm_i->nat_list_lock);
495 while (nr_shrink) {
496 struct nat_entry *ne;
497
498 if (list_empty(&nm_i->nat_entries))
499 break;
500
501 ne = list_first_entry(&nm_i->nat_entries,
502 struct nat_entry, list);
503 list_del(&ne->list);
504 spin_unlock(&nm_i->nat_list_lock);
505
506 __del_from_nat_cache(nm_i, ne);
507 nr_shrink--;
508
509 spin_lock(&nm_i->nat_list_lock);
510 }
511 spin_unlock(&nm_i->nat_list_lock);
512
513 up_write(&nm_i->nat_tree_lock);
514 return nr - nr_shrink;
515 }
516
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
519 {
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 block_t blkaddr;
530 int i;
531
532 ni->nid = nid;
533
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
543 }
544
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
553 }
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
558 }
559
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
563
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
567
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 blkaddr = le32_to_cpu(ne.block_addr);
574 if (__is_valid_data_blkaddr(blkaddr) &&
575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 return -EFAULT;
577
578 /* cache nat entry */
579 cache_nat_entry(sbi, nid, &ne);
580 return 0;
581 }
582
583 /*
584 * readahead MAX_RA_NODE number of node pages.
585 */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 struct blk_plug plug;
590 int i, end;
591 nid_t nid;
592
593 blk_start_plug(&plug);
594
595 /* Then, try readahead for siblings of the desired node */
596 end = start + n;
597 end = min(end, NIDS_PER_BLOCK);
598 for (i = start; i < end; i++) {
599 nid = get_nid(parent, i, false);
600 f2fs_ra_node_page(sbi, nid);
601 }
602
603 blk_finish_plug(&plug);
604 }
605
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 const long direct_index = ADDRS_PER_INODE(dn->inode);
609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 int cur_level = dn->cur_level;
613 int max_level = dn->max_level;
614 pgoff_t base = 0;
615
616 if (!dn->max_level)
617 return pgofs + 1;
618
619 while (max_level-- > cur_level)
620 skipped_unit *= NIDS_PER_BLOCK;
621
622 switch (dn->max_level) {
623 case 3:
624 base += 2 * indirect_blks;
625 fallthrough;
626 case 2:
627 base += 2 * direct_blks;
628 fallthrough;
629 case 1:
630 base += direct_index;
631 break;
632 default:
633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 }
635
636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
642 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 int offset[4], unsigned int noffset[4])
645 {
646 const long direct_index = ADDRS_PER_INODE(inode);
647 const long direct_blks = ADDRS_PER_BLOCK(inode);
648 const long dptrs_per_blk = NIDS_PER_BLOCK;
649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 int n = 0;
652 int level = 0;
653
654 noffset[0] = 0;
655
656 if (block < direct_index) {
657 offset[n] = block;
658 goto got;
659 }
660 block -= direct_index;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR1_BLOCK;
663 noffset[n] = 1;
664 offset[n] = block;
665 level = 1;
666 goto got;
667 }
668 block -= direct_blks;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR2_BLOCK;
671 noffset[n] = 2;
672 offset[n] = block;
673 level = 1;
674 goto got;
675 }
676 block -= direct_blks;
677 if (block < indirect_blks) {
678 offset[n++] = NODE_IND1_BLOCK;
679 noffset[n] = 3;
680 offset[n++] = block / direct_blks;
681 noffset[n] = 4 + offset[n - 1];
682 offset[n] = block % direct_blks;
683 level = 2;
684 goto got;
685 }
686 block -= indirect_blks;
687 if (block < indirect_blks) {
688 offset[n++] = NODE_IND2_BLOCK;
689 noffset[n] = 4 + dptrs_per_blk;
690 offset[n++] = block / direct_blks;
691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 offset[n] = block % direct_blks;
693 level = 2;
694 goto got;
695 }
696 block -= indirect_blks;
697 if (block < dindirect_blks) {
698 offset[n++] = NODE_DIND_BLOCK;
699 noffset[n] = 5 + (dptrs_per_blk * 2);
700 offset[n++] = block / indirect_blks;
701 noffset[n] = 6 + (dptrs_per_blk * 2) +
702 offset[n - 1] * (dptrs_per_blk + 1);
703 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 noffset[n] = 7 + (dptrs_per_blk * 2) +
705 offset[n - 2] * (dptrs_per_blk + 1) +
706 offset[n - 1];
707 offset[n] = block % direct_blks;
708 level = 3;
709 goto got;
710 } else {
711 return -E2BIG;
712 }
713 got:
714 return level;
715 }
716
717 /*
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 return 0;
814
815 release_pages:
816 f2fs_put_page(parent, 1);
817 if (i > 1)
818 f2fs_put_page(npage[0], 0);
819 release_out:
820 dn->inode_page = NULL;
821 dn->node_page = NULL;
822 if (err == -ENOENT) {
823 dn->cur_level = i;
824 dn->max_level = level;
825 dn->ofs_in_node = offset[level];
826 }
827 return err;
828 }
829
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 struct node_info ni;
834 int err;
835 pgoff_t index;
836
837 err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 if (err)
839 return err;
840
841 /* Deallocate node address */
842 f2fs_invalidate_blocks(sbi, ni.blk_addr);
843 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844 set_node_addr(sbi, &ni, NULL_ADDR, false);
845
846 if (dn->nid == dn->inode->i_ino) {
847 f2fs_remove_orphan_inode(sbi, dn->nid);
848 dec_valid_inode_count(sbi);
849 f2fs_inode_synced(dn->inode);
850 }
851
852 clear_node_page_dirty(dn->node_page);
853 set_sbi_flag(sbi, SBI_IS_DIRTY);
854
855 index = dn->node_page->index;
856 f2fs_put_page(dn->node_page, 1);
857
858 invalidate_mapping_pages(NODE_MAPPING(sbi),
859 index, index);
860
861 dn->node_page = NULL;
862 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863
864 return 0;
865 }
866
truncate_dnode(struct dnode_of_data * dn)867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869 struct page *page;
870 int err;
871
872 if (dn->nid == 0)
873 return 1;
874
875 /* get direct node */
876 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877 if (PTR_ERR(page) == -ENOENT)
878 return 1;
879 else if (IS_ERR(page))
880 return PTR_ERR(page);
881
882 /* Make dnode_of_data for parameter */
883 dn->node_page = page;
884 dn->ofs_in_node = 0;
885 f2fs_truncate_data_blocks(dn);
886 err = truncate_node(dn);
887 if (err) {
888 f2fs_put_page(page, 1);
889 return err;
890 }
891
892 return 1;
893 }
894
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896 int ofs, int depth)
897 {
898 struct dnode_of_data rdn = *dn;
899 struct page *page;
900 struct f2fs_node *rn;
901 nid_t child_nid;
902 unsigned int child_nofs;
903 int freed = 0;
904 int i, ret;
905
906 if (dn->nid == 0)
907 return NIDS_PER_BLOCK + 1;
908
909 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910
911 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912 if (IS_ERR(page)) {
913 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914 return PTR_ERR(page);
915 }
916
917 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918
919 rn = F2FS_NODE(page);
920 if (depth < 3) {
921 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922 child_nid = le32_to_cpu(rn->in.nid[i]);
923 if (child_nid == 0)
924 continue;
925 rdn.nid = child_nid;
926 ret = truncate_dnode(&rdn);
927 if (ret < 0)
928 goto out_err;
929 if (set_nid(page, i, 0, false))
930 dn->node_changed = true;
931 }
932 } else {
933 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935 child_nid = le32_to_cpu(rn->in.nid[i]);
936 if (child_nid == 0) {
937 child_nofs += NIDS_PER_BLOCK + 1;
938 continue;
939 }
940 rdn.nid = child_nid;
941 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942 if (ret == (NIDS_PER_BLOCK + 1)) {
943 if (set_nid(page, i, 0, false))
944 dn->node_changed = true;
945 child_nofs += ret;
946 } else if (ret < 0 && ret != -ENOENT) {
947 goto out_err;
948 }
949 }
950 freed = child_nofs;
951 }
952
953 if (!ofs) {
954 /* remove current indirect node */
955 dn->node_page = page;
956 ret = truncate_node(dn);
957 if (ret)
958 goto out_err;
959 freed++;
960 } else {
961 f2fs_put_page(page, 1);
962 }
963 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964 return freed;
965
966 out_err:
967 f2fs_put_page(page, 1);
968 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969 return ret;
970 }
971
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)972 static int truncate_partial_nodes(struct dnode_of_data *dn,
973 struct f2fs_inode *ri, int *offset, int depth)
974 {
975 struct page *pages[2];
976 nid_t nid[3];
977 nid_t child_nid;
978 int err = 0;
979 int i;
980 int idx = depth - 2;
981
982 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983 if (!nid[0])
984 return 0;
985
986 /* get indirect nodes in the path */
987 for (i = 0; i < idx + 1; i++) {
988 /* reference count'll be increased */
989 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990 if (IS_ERR(pages[i])) {
991 err = PTR_ERR(pages[i]);
992 idx = i - 1;
993 goto fail;
994 }
995 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996 }
997
998 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999
1000 /* free direct nodes linked to a partial indirect node */
1001 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002 child_nid = get_nid(pages[idx], i, false);
1003 if (!child_nid)
1004 continue;
1005 dn->nid = child_nid;
1006 err = truncate_dnode(dn);
1007 if (err < 0)
1008 goto fail;
1009 if (set_nid(pages[idx], i, 0, false))
1010 dn->node_changed = true;
1011 }
1012
1013 if (offset[idx + 1] == 0) {
1014 dn->node_page = pages[idx];
1015 dn->nid = nid[idx];
1016 err = truncate_node(dn);
1017 if (err)
1018 goto fail;
1019 } else {
1020 f2fs_put_page(pages[idx], 1);
1021 }
1022 offset[idx]++;
1023 offset[idx + 1] = 0;
1024 idx--;
1025 fail:
1026 for (i = idx; i >= 0; i--)
1027 f2fs_put_page(pages[i], 1);
1028
1029 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030
1031 return err;
1032 }
1033
1034 /*
1035 * All the block addresses of data and nodes should be nullified.
1036 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 {
1039 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040 int err = 0, cont = 1;
1041 int level, offset[4], noffset[4];
1042 unsigned int nofs = 0;
1043 struct f2fs_inode *ri;
1044 struct dnode_of_data dn;
1045 struct page *page;
1046
1047 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048
1049 level = get_node_path(inode, from, offset, noffset);
1050 if (level < 0) {
1051 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1052 return level;
1053 }
1054
1055 page = f2fs_get_node_page(sbi, inode->i_ino);
1056 if (IS_ERR(page)) {
1057 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1058 return PTR_ERR(page);
1059 }
1060
1061 set_new_dnode(&dn, inode, page, NULL, 0);
1062 unlock_page(page);
1063
1064 ri = F2FS_INODE(page);
1065 switch (level) {
1066 case 0:
1067 case 1:
1068 nofs = noffset[1];
1069 break;
1070 case 2:
1071 nofs = noffset[1];
1072 if (!offset[level - 1])
1073 goto skip_partial;
1074 err = truncate_partial_nodes(&dn, ri, offset, level);
1075 if (err < 0 && err != -ENOENT)
1076 goto fail;
1077 nofs += 1 + NIDS_PER_BLOCK;
1078 break;
1079 case 3:
1080 nofs = 5 + 2 * NIDS_PER_BLOCK;
1081 if (!offset[level - 1])
1082 goto skip_partial;
1083 err = truncate_partial_nodes(&dn, ri, offset, level);
1084 if (err < 0 && err != -ENOENT)
1085 goto fail;
1086 break;
1087 default:
1088 BUG();
1089 }
1090
1091 skip_partial:
1092 while (cont) {
1093 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1094 switch (offset[0]) {
1095 case NODE_DIR1_BLOCK:
1096 case NODE_DIR2_BLOCK:
1097 err = truncate_dnode(&dn);
1098 break;
1099
1100 case NODE_IND1_BLOCK:
1101 case NODE_IND2_BLOCK:
1102 err = truncate_nodes(&dn, nofs, offset[1], 2);
1103 break;
1104
1105 case NODE_DIND_BLOCK:
1106 err = truncate_nodes(&dn, nofs, offset[1], 3);
1107 cont = 0;
1108 break;
1109
1110 default:
1111 BUG();
1112 }
1113 if (err < 0 && err != -ENOENT)
1114 goto fail;
1115 if (offset[1] == 0 &&
1116 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1117 lock_page(page);
1118 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1119 f2fs_wait_on_page_writeback(page, NODE, true, true);
1120 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1121 set_page_dirty(page);
1122 unlock_page(page);
1123 }
1124 offset[1] = 0;
1125 offset[0]++;
1126 nofs += err;
1127 }
1128 fail:
1129 f2fs_put_page(page, 0);
1130 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1131 return err > 0 ? 0 : err;
1132 }
1133
1134 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1135 int f2fs_truncate_xattr_node(struct inode *inode)
1136 {
1137 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1138 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1139 struct dnode_of_data dn;
1140 struct page *npage;
1141 int err;
1142
1143 if (!nid)
1144 return 0;
1145
1146 npage = f2fs_get_node_page(sbi, nid);
1147 if (IS_ERR(npage))
1148 return PTR_ERR(npage);
1149
1150 set_new_dnode(&dn, inode, NULL, npage, nid);
1151 err = truncate_node(&dn);
1152 if (err) {
1153 f2fs_put_page(npage, 1);
1154 return err;
1155 }
1156
1157 f2fs_i_xnid_write(inode, 0);
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1164 * f2fs_unlock_op().
1165 */
f2fs_remove_inode_page(struct inode * inode)1166 int f2fs_remove_inode_page(struct inode *inode)
1167 {
1168 struct dnode_of_data dn;
1169 int err;
1170
1171 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1172 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1173 if (err)
1174 return err;
1175
1176 err = f2fs_truncate_xattr_node(inode);
1177 if (err) {
1178 f2fs_put_dnode(&dn);
1179 return err;
1180 }
1181
1182 /* remove potential inline_data blocks */
1183 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1184 S_ISLNK(inode->i_mode))
1185 f2fs_truncate_data_blocks_range(&dn, 1);
1186
1187 /* 0 is possible, after f2fs_new_inode() has failed */
1188 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1189 f2fs_put_dnode(&dn);
1190 return -EIO;
1191 }
1192
1193 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1194 f2fs_warn(F2FS_I_SB(inode),
1195 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1196 inode->i_ino, (unsigned long long)inode->i_blocks);
1197 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1198 }
1199
1200 /* will put inode & node pages */
1201 err = truncate_node(&dn);
1202 if (err) {
1203 f2fs_put_dnode(&dn);
1204 return err;
1205 }
1206 return 0;
1207 }
1208
f2fs_new_inode_page(struct inode * inode)1209 struct page *f2fs_new_inode_page(struct inode *inode)
1210 {
1211 struct dnode_of_data dn;
1212
1213 /* allocate inode page for new inode */
1214 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1215
1216 /* caller should f2fs_put_page(page, 1); */
1217 return f2fs_new_node_page(&dn, 0);
1218 }
1219
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1220 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1221 {
1222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1223 struct node_info new_ni;
1224 struct page *page;
1225 int err;
1226
1227 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1228 return ERR_PTR(-EPERM);
1229
1230 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1231 if (!page)
1232 return ERR_PTR(-ENOMEM);
1233
1234 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1235 goto fail;
1236
1237 #ifdef CONFIG_F2FS_CHECK_FS
1238 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1239 if (err) {
1240 dec_valid_node_count(sbi, dn->inode, !ofs);
1241 goto fail;
1242 }
1243 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1244 err = -EFSCORRUPTED;
1245 set_sbi_flag(sbi, SBI_NEED_FSCK);
1246 goto fail;
1247 }
1248 #endif
1249 new_ni.nid = dn->nid;
1250 new_ni.ino = dn->inode->i_ino;
1251 new_ni.blk_addr = NULL_ADDR;
1252 new_ni.flag = 0;
1253 new_ni.version = 0;
1254 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1255
1256 f2fs_wait_on_page_writeback(page, NODE, true, true);
1257 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1258 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1259 if (!PageUptodate(page))
1260 SetPageUptodate(page);
1261 if (set_page_dirty(page))
1262 dn->node_changed = true;
1263
1264 if (f2fs_has_xattr_block(ofs))
1265 f2fs_i_xnid_write(dn->inode, dn->nid);
1266
1267 if (ofs == 0)
1268 inc_valid_inode_count(sbi);
1269 return page;
1270
1271 fail:
1272 clear_node_page_dirty(page);
1273 f2fs_put_page(page, 1);
1274 return ERR_PTR(err);
1275 }
1276
1277 /*
1278 * Caller should do after getting the following values.
1279 * 0: f2fs_put_page(page, 0)
1280 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1281 */
read_node_page(struct page * page,int op_flags)1282 static int read_node_page(struct page *page, int op_flags)
1283 {
1284 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1285 struct node_info ni;
1286 struct f2fs_io_info fio = {
1287 .sbi = sbi,
1288 .type = NODE,
1289 .op = REQ_OP_READ,
1290 .op_flags = op_flags,
1291 .page = page,
1292 .encrypted_page = NULL,
1293 };
1294 int err;
1295
1296 if (PageUptodate(page)) {
1297 if (!f2fs_inode_chksum_verify(sbi, page)) {
1298 ClearPageUptodate(page);
1299 return -EFSBADCRC;
1300 }
1301 return LOCKED_PAGE;
1302 }
1303
1304 err = f2fs_get_node_info(sbi, page->index, &ni);
1305 if (err)
1306 return err;
1307
1308 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1309 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1310 ClearPageUptodate(page);
1311 return -ENOENT;
1312 }
1313
1314 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1315
1316 err = f2fs_submit_page_bio(&fio);
1317
1318 if (!err)
1319 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1320
1321 return err;
1322 }
1323
1324 /*
1325 * Readahead a node page
1326 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1327 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1328 {
1329 struct page *apage;
1330 int err;
1331
1332 if (!nid)
1333 return;
1334 if (f2fs_check_nid_range(sbi, nid))
1335 return;
1336
1337 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1338 if (apage)
1339 return;
1340
1341 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1342 if (!apage)
1343 return;
1344
1345 err = read_node_page(apage, REQ_RAHEAD);
1346 f2fs_put_page(apage, err ? 1 : 0);
1347 }
1348
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1349 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1350 struct page *parent, int start)
1351 {
1352 struct page *page;
1353 int err;
1354
1355 if (!nid)
1356 return ERR_PTR(-ENOENT);
1357 if (f2fs_check_nid_range(sbi, nid))
1358 return ERR_PTR(-EINVAL);
1359 repeat:
1360 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1361 if (!page)
1362 return ERR_PTR(-ENOMEM);
1363
1364 err = read_node_page(page, 0);
1365 if (err < 0) {
1366 f2fs_put_page(page, 1);
1367 return ERR_PTR(err);
1368 } else if (err == LOCKED_PAGE) {
1369 err = 0;
1370 goto page_hit;
1371 }
1372
1373 if (parent)
1374 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1375
1376 lock_page(page);
1377
1378 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1379 f2fs_put_page(page, 1);
1380 goto repeat;
1381 }
1382
1383 if (unlikely(!PageUptodate(page))) {
1384 err = -EIO;
1385 goto out_err;
1386 }
1387
1388 if (!f2fs_inode_chksum_verify(sbi, page)) {
1389 err = -EFSBADCRC;
1390 goto out_err;
1391 }
1392 page_hit:
1393 if(unlikely(nid != nid_of_node(page))) {
1394 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1395 nid, nid_of_node(page), ino_of_node(page),
1396 ofs_of_node(page), cpver_of_node(page),
1397 next_blkaddr_of_node(page));
1398 set_sbi_flag(sbi, SBI_NEED_FSCK);
1399 err = -EINVAL;
1400 out_err:
1401 ClearPageUptodate(page);
1402 f2fs_put_page(page, 1);
1403 return ERR_PTR(err);
1404 }
1405 return page;
1406 }
1407
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1408 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1409 {
1410 return __get_node_page(sbi, nid, NULL, 0);
1411 }
1412
f2fs_get_node_page_ra(struct page * parent,int start)1413 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1414 {
1415 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1416 nid_t nid = get_nid(parent, start, false);
1417
1418 return __get_node_page(sbi, nid, parent, start);
1419 }
1420
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1421 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1422 {
1423 struct inode *inode;
1424 struct page *page;
1425 int ret;
1426
1427 /* should flush inline_data before evict_inode */
1428 inode = ilookup(sbi->sb, ino);
1429 if (!inode)
1430 return;
1431
1432 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1433 FGP_LOCK|FGP_NOWAIT, 0);
1434 if (!page)
1435 goto iput_out;
1436
1437 if (!PageUptodate(page))
1438 goto page_out;
1439
1440 if (!PageDirty(page))
1441 goto page_out;
1442
1443 if (!clear_page_dirty_for_io(page))
1444 goto page_out;
1445
1446 ret = f2fs_write_inline_data(inode, page);
1447 inode_dec_dirty_pages(inode);
1448 f2fs_remove_dirty_inode(inode);
1449 if (ret)
1450 set_page_dirty(page);
1451 page_out:
1452 f2fs_put_page(page, 1);
1453 iput_out:
1454 iput(inode);
1455 }
1456
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1457 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1458 {
1459 pgoff_t index;
1460 struct pagevec pvec;
1461 struct page *last_page = NULL;
1462 int nr_pages;
1463
1464 pagevec_init(&pvec);
1465 index = 0;
1466
1467 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1468 PAGECACHE_TAG_DIRTY))) {
1469 int i;
1470
1471 for (i = 0; i < nr_pages; i++) {
1472 struct page *page = pvec.pages[i];
1473
1474 if (unlikely(f2fs_cp_error(sbi))) {
1475 f2fs_put_page(last_page, 0);
1476 pagevec_release(&pvec);
1477 return ERR_PTR(-EIO);
1478 }
1479
1480 if (!IS_DNODE(page) || !is_cold_node(page))
1481 continue;
1482 if (ino_of_node(page) != ino)
1483 continue;
1484
1485 lock_page(page);
1486
1487 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1488 continue_unlock:
1489 unlock_page(page);
1490 continue;
1491 }
1492 if (ino_of_node(page) != ino)
1493 goto continue_unlock;
1494
1495 if (!PageDirty(page)) {
1496 /* someone wrote it for us */
1497 goto continue_unlock;
1498 }
1499
1500 if (last_page)
1501 f2fs_put_page(last_page, 0);
1502
1503 get_page(page);
1504 last_page = page;
1505 unlock_page(page);
1506 }
1507 pagevec_release(&pvec);
1508 cond_resched();
1509 }
1510 return last_page;
1511 }
1512
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1513 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1514 struct writeback_control *wbc, bool do_balance,
1515 enum iostat_type io_type, unsigned int *seq_id)
1516 {
1517 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1518 nid_t nid;
1519 struct node_info ni;
1520 struct f2fs_io_info fio = {
1521 .sbi = sbi,
1522 .ino = ino_of_node(page),
1523 .type = NODE,
1524 .op = REQ_OP_WRITE,
1525 .op_flags = wbc_to_write_flags(wbc),
1526 .page = page,
1527 .encrypted_page = NULL,
1528 .submitted = false,
1529 .io_type = io_type,
1530 .io_wbc = wbc,
1531 };
1532 unsigned int seq;
1533
1534 trace_f2fs_writepage(page, NODE);
1535
1536 if (unlikely(f2fs_cp_error(sbi))) {
1537 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1538 ClearPageUptodate(page);
1539 dec_page_count(sbi, F2FS_DIRTY_NODES);
1540 unlock_page(page);
1541 return 0;
1542 }
1543 goto redirty_out;
1544 }
1545
1546 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1547 goto redirty_out;
1548
1549 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1550 wbc->sync_mode == WB_SYNC_NONE &&
1551 IS_DNODE(page) && is_cold_node(page))
1552 goto redirty_out;
1553
1554 /* get old block addr of this node page */
1555 nid = nid_of_node(page);
1556 f2fs_bug_on(sbi, page->index != nid);
1557
1558 if (f2fs_get_node_info(sbi, nid, &ni))
1559 goto redirty_out;
1560
1561 if (wbc->for_reclaim) {
1562 if (!down_read_trylock(&sbi->node_write))
1563 goto redirty_out;
1564 } else {
1565 down_read(&sbi->node_write);
1566 }
1567
1568 /* This page is already truncated */
1569 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1570 ClearPageUptodate(page);
1571 dec_page_count(sbi, F2FS_DIRTY_NODES);
1572 up_read(&sbi->node_write);
1573 unlock_page(page);
1574 return 0;
1575 }
1576
1577 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1578 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1579 DATA_GENERIC_ENHANCE)) {
1580 up_read(&sbi->node_write);
1581 goto redirty_out;
1582 }
1583
1584 if (atomic && !test_opt(sbi, NOBARRIER))
1585 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1586
1587 /* should add to global list before clearing PAGECACHE status */
1588 if (f2fs_in_warm_node_list(sbi, page)) {
1589 seq = f2fs_add_fsync_node_entry(sbi, page);
1590 if (seq_id)
1591 *seq_id = seq;
1592 }
1593
1594 set_page_writeback(page);
1595 ClearPageError(page);
1596
1597 fio.old_blkaddr = ni.blk_addr;
1598 f2fs_do_write_node_page(nid, &fio);
1599 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1600 dec_page_count(sbi, F2FS_DIRTY_NODES);
1601 up_read(&sbi->node_write);
1602
1603 if (wbc->for_reclaim) {
1604 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1605 submitted = NULL;
1606 }
1607
1608 unlock_page(page);
1609
1610 if (unlikely(f2fs_cp_error(sbi))) {
1611 f2fs_submit_merged_write(sbi, NODE);
1612 submitted = NULL;
1613 }
1614 if (submitted)
1615 *submitted = fio.submitted;
1616
1617 if (do_balance)
1618 f2fs_balance_fs(sbi, false);
1619 return 0;
1620
1621 redirty_out:
1622 redirty_page_for_writepage(wbc, page);
1623 return AOP_WRITEPAGE_ACTIVATE;
1624 }
1625
f2fs_move_node_page(struct page * node_page,int gc_type)1626 int f2fs_move_node_page(struct page *node_page, int gc_type)
1627 {
1628 int err = 0;
1629
1630 if (gc_type == FG_GC) {
1631 struct writeback_control wbc = {
1632 .sync_mode = WB_SYNC_ALL,
1633 .nr_to_write = 1,
1634 .for_reclaim = 0,
1635 };
1636
1637 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1638
1639 set_page_dirty(node_page);
1640
1641 if (!clear_page_dirty_for_io(node_page)) {
1642 err = -EAGAIN;
1643 goto out_page;
1644 }
1645
1646 if (__write_node_page(node_page, false, NULL,
1647 &wbc, false, FS_GC_NODE_IO, NULL)) {
1648 err = -EAGAIN;
1649 unlock_page(node_page);
1650 }
1651 goto release_page;
1652 } else {
1653 /* set page dirty and write it */
1654 if (!PageWriteback(node_page))
1655 set_page_dirty(node_page);
1656 }
1657 out_page:
1658 unlock_page(node_page);
1659 release_page:
1660 f2fs_put_page(node_page, 0);
1661 return err;
1662 }
1663
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1664 static int f2fs_write_node_page(struct page *page,
1665 struct writeback_control *wbc)
1666 {
1667 return __write_node_page(page, false, NULL, wbc, false,
1668 FS_NODE_IO, NULL);
1669 }
1670
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1671 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1672 struct writeback_control *wbc, bool atomic,
1673 unsigned int *seq_id)
1674 {
1675 pgoff_t index;
1676 struct pagevec pvec;
1677 int ret = 0;
1678 struct page *last_page = NULL;
1679 bool marked = false;
1680 nid_t ino = inode->i_ino;
1681 int nr_pages;
1682 int nwritten = 0;
1683
1684 if (atomic) {
1685 last_page = last_fsync_dnode(sbi, ino);
1686 if (IS_ERR_OR_NULL(last_page))
1687 return PTR_ERR_OR_ZERO(last_page);
1688 }
1689 retry:
1690 pagevec_init(&pvec);
1691 index = 0;
1692
1693 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694 PAGECACHE_TAG_DIRTY))) {
1695 int i;
1696
1697 for (i = 0; i < nr_pages; i++) {
1698 struct page *page = pvec.pages[i];
1699 bool submitted = false;
1700
1701 if (unlikely(f2fs_cp_error(sbi))) {
1702 f2fs_put_page(last_page, 0);
1703 pagevec_release(&pvec);
1704 ret = -EIO;
1705 goto out;
1706 }
1707
1708 if (!IS_DNODE(page) || !is_cold_node(page))
1709 continue;
1710 if (ino_of_node(page) != ino)
1711 continue;
1712
1713 lock_page(page);
1714
1715 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1716 continue_unlock:
1717 unlock_page(page);
1718 continue;
1719 }
1720 if (ino_of_node(page) != ino)
1721 goto continue_unlock;
1722
1723 if (!PageDirty(page) && page != last_page) {
1724 /* someone wrote it for us */
1725 goto continue_unlock;
1726 }
1727
1728 f2fs_wait_on_page_writeback(page, NODE, true, true);
1729
1730 set_fsync_mark(page, 0);
1731 set_dentry_mark(page, 0);
1732
1733 if (!atomic || page == last_page) {
1734 set_fsync_mark(page, 1);
1735 if (IS_INODE(page)) {
1736 if (is_inode_flag_set(inode,
1737 FI_DIRTY_INODE))
1738 f2fs_update_inode(inode, page);
1739 set_dentry_mark(page,
1740 f2fs_need_dentry_mark(sbi, ino));
1741 }
1742 /* may be written by other thread */
1743 if (!PageDirty(page))
1744 set_page_dirty(page);
1745 }
1746
1747 if (!clear_page_dirty_for_io(page))
1748 goto continue_unlock;
1749
1750 ret = __write_node_page(page, atomic &&
1751 page == last_page,
1752 &submitted, wbc, true,
1753 FS_NODE_IO, seq_id);
1754 if (ret) {
1755 unlock_page(page);
1756 f2fs_put_page(last_page, 0);
1757 break;
1758 } else if (submitted) {
1759 nwritten++;
1760 }
1761
1762 if (page == last_page) {
1763 f2fs_put_page(page, 0);
1764 marked = true;
1765 break;
1766 }
1767 }
1768 pagevec_release(&pvec);
1769 cond_resched();
1770
1771 if (ret || marked)
1772 break;
1773 }
1774 if (!ret && atomic && !marked) {
1775 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1776 ino, last_page->index);
1777 lock_page(last_page);
1778 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1779 set_page_dirty(last_page);
1780 unlock_page(last_page);
1781 goto retry;
1782 }
1783 out:
1784 if (nwritten)
1785 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1786 return ret ? -EIO: 0;
1787 }
1788
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1789 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1790 {
1791 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1792 bool clean;
1793
1794 if (inode->i_ino != ino)
1795 return 0;
1796
1797 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1798 return 0;
1799
1800 spin_lock(&sbi->inode_lock[DIRTY_META]);
1801 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1802 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1803
1804 if (clean)
1805 return 0;
1806
1807 inode = igrab(inode);
1808 if (!inode)
1809 return 0;
1810 return 1;
1811 }
1812
flush_dirty_inode(struct page * page)1813 static bool flush_dirty_inode(struct page *page)
1814 {
1815 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1816 struct inode *inode;
1817 nid_t ino = ino_of_node(page);
1818
1819 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1820 if (!inode)
1821 return false;
1822
1823 f2fs_update_inode(inode, page);
1824 unlock_page(page);
1825
1826 iput(inode);
1827 return true;
1828 }
1829
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1830 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1831 {
1832 pgoff_t index = 0;
1833 struct pagevec pvec;
1834 int nr_pages;
1835
1836 pagevec_init(&pvec);
1837
1838 while ((nr_pages = pagevec_lookup_tag(&pvec,
1839 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1840 int i;
1841
1842 for (i = 0; i < nr_pages; i++) {
1843 struct page *page = pvec.pages[i];
1844
1845 if (!IS_DNODE(page))
1846 continue;
1847
1848 lock_page(page);
1849
1850 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1851 continue_unlock:
1852 unlock_page(page);
1853 continue;
1854 }
1855
1856 if (!PageDirty(page)) {
1857 /* someone wrote it for us */
1858 goto continue_unlock;
1859 }
1860
1861 /* flush inline_data, if it's async context. */
1862 if (is_inline_node(page)) {
1863 clear_inline_node(page);
1864 unlock_page(page);
1865 flush_inline_data(sbi, ino_of_node(page));
1866 continue;
1867 }
1868 unlock_page(page);
1869 }
1870 pagevec_release(&pvec);
1871 cond_resched();
1872 }
1873 }
1874
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1875 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1876 struct writeback_control *wbc,
1877 bool do_balance, enum iostat_type io_type)
1878 {
1879 pgoff_t index;
1880 struct pagevec pvec;
1881 int step = 0;
1882 int nwritten = 0;
1883 int ret = 0;
1884 int nr_pages, done = 0;
1885
1886 pagevec_init(&pvec);
1887
1888 next_step:
1889 index = 0;
1890
1891 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1892 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1893 int i;
1894
1895 for (i = 0; i < nr_pages; i++) {
1896 struct page *page = pvec.pages[i];
1897 bool submitted = false;
1898 bool may_dirty = true;
1899
1900 /* give a priority to WB_SYNC threads */
1901 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1902 wbc->sync_mode == WB_SYNC_NONE) {
1903 done = 1;
1904 break;
1905 }
1906
1907 /*
1908 * flushing sequence with step:
1909 * 0. indirect nodes
1910 * 1. dentry dnodes
1911 * 2. file dnodes
1912 */
1913 if (step == 0 && IS_DNODE(page))
1914 continue;
1915 if (step == 1 && (!IS_DNODE(page) ||
1916 is_cold_node(page)))
1917 continue;
1918 if (step == 2 && (!IS_DNODE(page) ||
1919 !is_cold_node(page)))
1920 continue;
1921 lock_node:
1922 if (wbc->sync_mode == WB_SYNC_ALL)
1923 lock_page(page);
1924 else if (!trylock_page(page))
1925 continue;
1926
1927 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1928 continue_unlock:
1929 unlock_page(page);
1930 continue;
1931 }
1932
1933 if (!PageDirty(page)) {
1934 /* someone wrote it for us */
1935 goto continue_unlock;
1936 }
1937
1938 /* flush inline_data/inode, if it's async context. */
1939 if (!do_balance)
1940 goto write_node;
1941
1942 /* flush inline_data */
1943 if (is_inline_node(page)) {
1944 clear_inline_node(page);
1945 unlock_page(page);
1946 flush_inline_data(sbi, ino_of_node(page));
1947 goto lock_node;
1948 }
1949
1950 /* flush dirty inode */
1951 if (IS_INODE(page) && may_dirty) {
1952 may_dirty = false;
1953 if (flush_dirty_inode(page))
1954 goto lock_node;
1955 }
1956 write_node:
1957 f2fs_wait_on_page_writeback(page, NODE, true, true);
1958
1959 if (!clear_page_dirty_for_io(page))
1960 goto continue_unlock;
1961
1962 set_fsync_mark(page, 0);
1963 set_dentry_mark(page, 0);
1964
1965 ret = __write_node_page(page, false, &submitted,
1966 wbc, do_balance, io_type, NULL);
1967 if (ret)
1968 unlock_page(page);
1969 else if (submitted)
1970 nwritten++;
1971
1972 if (--wbc->nr_to_write == 0)
1973 break;
1974 }
1975 pagevec_release(&pvec);
1976 cond_resched();
1977
1978 if (wbc->nr_to_write == 0) {
1979 step = 2;
1980 break;
1981 }
1982 }
1983
1984 if (step < 2) {
1985 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1986 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1987 goto out;
1988 step++;
1989 goto next_step;
1990 }
1991 out:
1992 if (nwritten)
1993 f2fs_submit_merged_write(sbi, NODE);
1994
1995 if (unlikely(f2fs_cp_error(sbi)))
1996 return -EIO;
1997 return ret;
1998 }
1999
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2000 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2001 unsigned int seq_id)
2002 {
2003 struct fsync_node_entry *fn;
2004 struct page *page;
2005 struct list_head *head = &sbi->fsync_node_list;
2006 unsigned long flags;
2007 unsigned int cur_seq_id = 0;
2008 int ret2, ret = 0;
2009
2010 while (seq_id && cur_seq_id < seq_id) {
2011 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2012 if (list_empty(head)) {
2013 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014 break;
2015 }
2016 fn = list_first_entry(head, struct fsync_node_entry, list);
2017 if (fn->seq_id > seq_id) {
2018 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2019 break;
2020 }
2021 cur_seq_id = fn->seq_id;
2022 page = fn->page;
2023 get_page(page);
2024 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2025
2026 f2fs_wait_on_page_writeback(page, NODE, true, false);
2027 if (TestClearPageError(page))
2028 ret = -EIO;
2029
2030 put_page(page);
2031
2032 if (ret)
2033 break;
2034 }
2035
2036 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2037 if (!ret)
2038 ret = ret2;
2039
2040 return ret;
2041 }
2042
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2043 static int f2fs_write_node_pages(struct address_space *mapping,
2044 struct writeback_control *wbc)
2045 {
2046 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2047 struct blk_plug plug;
2048 long diff;
2049
2050 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2051 goto skip_write;
2052
2053 /* balancing f2fs's metadata in background */
2054 f2fs_balance_fs_bg(sbi, true);
2055
2056 /* collect a number of dirty node pages and write together */
2057 if (wbc->sync_mode != WB_SYNC_ALL &&
2058 get_pages(sbi, F2FS_DIRTY_NODES) <
2059 nr_pages_to_skip(sbi, NODE))
2060 goto skip_write;
2061
2062 if (wbc->sync_mode == WB_SYNC_ALL)
2063 atomic_inc(&sbi->wb_sync_req[NODE]);
2064 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2065 /* to avoid potential deadlock */
2066 if (current->plug)
2067 blk_finish_plug(current->plug);
2068 goto skip_write;
2069 }
2070
2071 trace_f2fs_writepages(mapping->host, wbc, NODE);
2072
2073 diff = nr_pages_to_write(sbi, NODE, wbc);
2074 blk_start_plug(&plug);
2075 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2076 blk_finish_plug(&plug);
2077 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2078
2079 if (wbc->sync_mode == WB_SYNC_ALL)
2080 atomic_dec(&sbi->wb_sync_req[NODE]);
2081 return 0;
2082
2083 skip_write:
2084 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2085 trace_f2fs_writepages(mapping->host, wbc, NODE);
2086 return 0;
2087 }
2088
f2fs_set_node_page_dirty(struct page * page)2089 static int f2fs_set_node_page_dirty(struct page *page)
2090 {
2091 trace_f2fs_set_page_dirty(page, NODE);
2092
2093 if (!PageUptodate(page))
2094 SetPageUptodate(page);
2095 #ifdef CONFIG_F2FS_CHECK_FS
2096 if (IS_INODE(page))
2097 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2098 #endif
2099 if (!PageDirty(page)) {
2100 __set_page_dirty_nobuffers(page);
2101 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2102 f2fs_set_page_private(page, 0);
2103 f2fs_trace_pid(page);
2104 return 1;
2105 }
2106 return 0;
2107 }
2108
2109 /*
2110 * Structure of the f2fs node operations
2111 */
2112 const struct address_space_operations f2fs_node_aops = {
2113 .writepage = f2fs_write_node_page,
2114 .writepages = f2fs_write_node_pages,
2115 .set_page_dirty = f2fs_set_node_page_dirty,
2116 .invalidatepage = f2fs_invalidate_page,
2117 .releasepage = f2fs_release_page,
2118 #ifdef CONFIG_MIGRATION
2119 .migratepage = f2fs_migrate_page,
2120 #endif
2121 };
2122
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2123 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2124 nid_t n)
2125 {
2126 return radix_tree_lookup(&nm_i->free_nid_root, n);
2127 }
2128
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2129 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2130 struct free_nid *i)
2131 {
2132 struct f2fs_nm_info *nm_i = NM_I(sbi);
2133
2134 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2135 if (err)
2136 return err;
2137
2138 nm_i->nid_cnt[FREE_NID]++;
2139 list_add_tail(&i->list, &nm_i->free_nid_list);
2140 return 0;
2141 }
2142
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2143 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2144 struct free_nid *i, enum nid_state state)
2145 {
2146 struct f2fs_nm_info *nm_i = NM_I(sbi);
2147
2148 f2fs_bug_on(sbi, state != i->state);
2149 nm_i->nid_cnt[state]--;
2150 if (state == FREE_NID)
2151 list_del(&i->list);
2152 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2153 }
2154
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2155 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2156 enum nid_state org_state, enum nid_state dst_state)
2157 {
2158 struct f2fs_nm_info *nm_i = NM_I(sbi);
2159
2160 f2fs_bug_on(sbi, org_state != i->state);
2161 i->state = dst_state;
2162 nm_i->nid_cnt[org_state]--;
2163 nm_i->nid_cnt[dst_state]++;
2164
2165 switch (dst_state) {
2166 case PREALLOC_NID:
2167 list_del(&i->list);
2168 break;
2169 case FREE_NID:
2170 list_add_tail(&i->list, &nm_i->free_nid_list);
2171 break;
2172 default:
2173 BUG_ON(1);
2174 }
2175 }
2176
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2177 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2178 bool set, bool build)
2179 {
2180 struct f2fs_nm_info *nm_i = NM_I(sbi);
2181 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2182 unsigned int nid_ofs = nid - START_NID(nid);
2183
2184 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2185 return;
2186
2187 if (set) {
2188 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2189 return;
2190 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2191 nm_i->free_nid_count[nat_ofs]++;
2192 } else {
2193 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2194 return;
2195 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2196 if (!build)
2197 nm_i->free_nid_count[nat_ofs]--;
2198 }
2199 }
2200
2201 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2202 static bool add_free_nid(struct f2fs_sb_info *sbi,
2203 nid_t nid, bool build, bool update)
2204 {
2205 struct f2fs_nm_info *nm_i = NM_I(sbi);
2206 struct free_nid *i, *e;
2207 struct nat_entry *ne;
2208 int err = -EINVAL;
2209 bool ret = false;
2210
2211 /* 0 nid should not be used */
2212 if (unlikely(nid == 0))
2213 return false;
2214
2215 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2216 return false;
2217
2218 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2219 i->nid = nid;
2220 i->state = FREE_NID;
2221
2222 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2223
2224 spin_lock(&nm_i->nid_list_lock);
2225
2226 if (build) {
2227 /*
2228 * Thread A Thread B
2229 * - f2fs_create
2230 * - f2fs_new_inode
2231 * - f2fs_alloc_nid
2232 * - __insert_nid_to_list(PREALLOC_NID)
2233 * - f2fs_balance_fs_bg
2234 * - f2fs_build_free_nids
2235 * - __f2fs_build_free_nids
2236 * - scan_nat_page
2237 * - add_free_nid
2238 * - __lookup_nat_cache
2239 * - f2fs_add_link
2240 * - f2fs_init_inode_metadata
2241 * - f2fs_new_inode_page
2242 * - f2fs_new_node_page
2243 * - set_node_addr
2244 * - f2fs_alloc_nid_done
2245 * - __remove_nid_from_list(PREALLOC_NID)
2246 * - __insert_nid_to_list(FREE_NID)
2247 */
2248 ne = __lookup_nat_cache(nm_i, nid);
2249 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2250 nat_get_blkaddr(ne) != NULL_ADDR))
2251 goto err_out;
2252
2253 e = __lookup_free_nid_list(nm_i, nid);
2254 if (e) {
2255 if (e->state == FREE_NID)
2256 ret = true;
2257 goto err_out;
2258 }
2259 }
2260 ret = true;
2261 err = __insert_free_nid(sbi, i);
2262 err_out:
2263 if (update) {
2264 update_free_nid_bitmap(sbi, nid, ret, build);
2265 if (!build)
2266 nm_i->available_nids++;
2267 }
2268 spin_unlock(&nm_i->nid_list_lock);
2269 radix_tree_preload_end();
2270
2271 if (err)
2272 kmem_cache_free(free_nid_slab, i);
2273 return ret;
2274 }
2275
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2276 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2277 {
2278 struct f2fs_nm_info *nm_i = NM_I(sbi);
2279 struct free_nid *i;
2280 bool need_free = false;
2281
2282 spin_lock(&nm_i->nid_list_lock);
2283 i = __lookup_free_nid_list(nm_i, nid);
2284 if (i && i->state == FREE_NID) {
2285 __remove_free_nid(sbi, i, FREE_NID);
2286 need_free = true;
2287 }
2288 spin_unlock(&nm_i->nid_list_lock);
2289
2290 if (need_free)
2291 kmem_cache_free(free_nid_slab, i);
2292 }
2293
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2294 static int scan_nat_page(struct f2fs_sb_info *sbi,
2295 struct page *nat_page, nid_t start_nid)
2296 {
2297 struct f2fs_nm_info *nm_i = NM_I(sbi);
2298 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2299 block_t blk_addr;
2300 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2301 int i;
2302
2303 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2304
2305 i = start_nid % NAT_ENTRY_PER_BLOCK;
2306
2307 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2308 if (unlikely(start_nid >= nm_i->max_nid))
2309 break;
2310
2311 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2312
2313 if (blk_addr == NEW_ADDR)
2314 return -EINVAL;
2315
2316 if (blk_addr == NULL_ADDR) {
2317 add_free_nid(sbi, start_nid, true, true);
2318 } else {
2319 spin_lock(&NM_I(sbi)->nid_list_lock);
2320 update_free_nid_bitmap(sbi, start_nid, false, true);
2321 spin_unlock(&NM_I(sbi)->nid_list_lock);
2322 }
2323 }
2324
2325 return 0;
2326 }
2327
scan_curseg_cache(struct f2fs_sb_info * sbi)2328 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2329 {
2330 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2331 struct f2fs_journal *journal = curseg->journal;
2332 int i;
2333
2334 down_read(&curseg->journal_rwsem);
2335 for (i = 0; i < nats_in_cursum(journal); i++) {
2336 block_t addr;
2337 nid_t nid;
2338
2339 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2340 nid = le32_to_cpu(nid_in_journal(journal, i));
2341 if (addr == NULL_ADDR)
2342 add_free_nid(sbi, nid, true, false);
2343 else
2344 remove_free_nid(sbi, nid);
2345 }
2346 up_read(&curseg->journal_rwsem);
2347 }
2348
scan_free_nid_bits(struct f2fs_sb_info * sbi)2349 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2350 {
2351 struct f2fs_nm_info *nm_i = NM_I(sbi);
2352 unsigned int i, idx;
2353 nid_t nid;
2354
2355 down_read(&nm_i->nat_tree_lock);
2356
2357 for (i = 0; i < nm_i->nat_blocks; i++) {
2358 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2359 continue;
2360 if (!nm_i->free_nid_count[i])
2361 continue;
2362 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2363 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2364 NAT_ENTRY_PER_BLOCK, idx);
2365 if (idx >= NAT_ENTRY_PER_BLOCK)
2366 break;
2367
2368 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2369 add_free_nid(sbi, nid, true, false);
2370
2371 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2372 goto out;
2373 }
2374 }
2375 out:
2376 scan_curseg_cache(sbi);
2377
2378 up_read(&nm_i->nat_tree_lock);
2379 }
2380
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2381 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2382 bool sync, bool mount)
2383 {
2384 struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 int i = 0, ret;
2386 nid_t nid = nm_i->next_scan_nid;
2387
2388 if (unlikely(nid >= nm_i->max_nid))
2389 nid = 0;
2390
2391 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2392 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2393
2394 /* Enough entries */
2395 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2396 return 0;
2397
2398 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2399 return 0;
2400
2401 if (!mount) {
2402 /* try to find free nids in free_nid_bitmap */
2403 scan_free_nid_bits(sbi);
2404
2405 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2406 return 0;
2407 }
2408
2409 /* readahead nat pages to be scanned */
2410 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2411 META_NAT, true);
2412
2413 down_read(&nm_i->nat_tree_lock);
2414
2415 while (1) {
2416 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2417 nm_i->nat_block_bitmap)) {
2418 struct page *page = get_current_nat_page(sbi, nid);
2419
2420 if (IS_ERR(page)) {
2421 ret = PTR_ERR(page);
2422 } else {
2423 ret = scan_nat_page(sbi, page, nid);
2424 f2fs_put_page(page, 1);
2425 }
2426
2427 if (ret) {
2428 up_read(&nm_i->nat_tree_lock);
2429 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2430 return ret;
2431 }
2432 }
2433
2434 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2435 if (unlikely(nid >= nm_i->max_nid))
2436 nid = 0;
2437
2438 if (++i >= FREE_NID_PAGES)
2439 break;
2440 }
2441
2442 /* go to the next free nat pages to find free nids abundantly */
2443 nm_i->next_scan_nid = nid;
2444
2445 /* find free nids from current sum_pages */
2446 scan_curseg_cache(sbi);
2447
2448 up_read(&nm_i->nat_tree_lock);
2449
2450 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2451 nm_i->ra_nid_pages, META_NAT, false);
2452
2453 return 0;
2454 }
2455
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2456 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2457 {
2458 int ret;
2459
2460 mutex_lock(&NM_I(sbi)->build_lock);
2461 ret = __f2fs_build_free_nids(sbi, sync, mount);
2462 mutex_unlock(&NM_I(sbi)->build_lock);
2463
2464 return ret;
2465 }
2466
2467 /*
2468 * If this function returns success, caller can obtain a new nid
2469 * from second parameter of this function.
2470 * The returned nid could be used ino as well as nid when inode is created.
2471 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2472 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2473 {
2474 struct f2fs_nm_info *nm_i = NM_I(sbi);
2475 struct free_nid *i = NULL;
2476 retry:
2477 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2478 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2479 return false;
2480 }
2481
2482 spin_lock(&nm_i->nid_list_lock);
2483
2484 if (unlikely(nm_i->available_nids == 0)) {
2485 spin_unlock(&nm_i->nid_list_lock);
2486 return false;
2487 }
2488
2489 /* We should not use stale free nids created by f2fs_build_free_nids */
2490 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2491 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2492 i = list_first_entry(&nm_i->free_nid_list,
2493 struct free_nid, list);
2494 *nid = i->nid;
2495
2496 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2497 nm_i->available_nids--;
2498
2499 update_free_nid_bitmap(sbi, *nid, false, false);
2500
2501 spin_unlock(&nm_i->nid_list_lock);
2502 return true;
2503 }
2504 spin_unlock(&nm_i->nid_list_lock);
2505
2506 /* Let's scan nat pages and its caches to get free nids */
2507 if (!f2fs_build_free_nids(sbi, true, false))
2508 goto retry;
2509 return false;
2510 }
2511
2512 /*
2513 * f2fs_alloc_nid() should be called prior to this function.
2514 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2515 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2516 {
2517 struct f2fs_nm_info *nm_i = NM_I(sbi);
2518 struct free_nid *i;
2519
2520 spin_lock(&nm_i->nid_list_lock);
2521 i = __lookup_free_nid_list(nm_i, nid);
2522 f2fs_bug_on(sbi, !i);
2523 __remove_free_nid(sbi, i, PREALLOC_NID);
2524 spin_unlock(&nm_i->nid_list_lock);
2525
2526 kmem_cache_free(free_nid_slab, i);
2527 }
2528
2529 /*
2530 * f2fs_alloc_nid() should be called prior to this function.
2531 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2532 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2533 {
2534 struct f2fs_nm_info *nm_i = NM_I(sbi);
2535 struct free_nid *i;
2536 bool need_free = false;
2537
2538 if (!nid)
2539 return;
2540
2541 spin_lock(&nm_i->nid_list_lock);
2542 i = __lookup_free_nid_list(nm_i, nid);
2543 f2fs_bug_on(sbi, !i);
2544
2545 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2546 __remove_free_nid(sbi, i, PREALLOC_NID);
2547 need_free = true;
2548 } else {
2549 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2550 }
2551
2552 nm_i->available_nids++;
2553
2554 update_free_nid_bitmap(sbi, nid, true, false);
2555
2556 spin_unlock(&nm_i->nid_list_lock);
2557
2558 if (need_free)
2559 kmem_cache_free(free_nid_slab, i);
2560 }
2561
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2562 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2563 {
2564 struct f2fs_nm_info *nm_i = NM_I(sbi);
2565 int nr = nr_shrink;
2566
2567 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2568 return 0;
2569
2570 if (!mutex_trylock(&nm_i->build_lock))
2571 return 0;
2572
2573 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2574 struct free_nid *i, *next;
2575 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2576
2577 spin_lock(&nm_i->nid_list_lock);
2578 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2579 if (!nr_shrink || !batch ||
2580 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2581 break;
2582 __remove_free_nid(sbi, i, FREE_NID);
2583 kmem_cache_free(free_nid_slab, i);
2584 nr_shrink--;
2585 batch--;
2586 }
2587 spin_unlock(&nm_i->nid_list_lock);
2588 }
2589
2590 mutex_unlock(&nm_i->build_lock);
2591
2592 return nr - nr_shrink;
2593 }
2594
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2595 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2596 {
2597 void *src_addr, *dst_addr;
2598 size_t inline_size;
2599 struct page *ipage;
2600 struct f2fs_inode *ri;
2601
2602 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2603 if (IS_ERR(ipage))
2604 return PTR_ERR(ipage);
2605
2606 ri = F2FS_INODE(page);
2607 if (ri->i_inline & F2FS_INLINE_XATTR) {
2608 set_inode_flag(inode, FI_INLINE_XATTR);
2609 } else {
2610 clear_inode_flag(inode, FI_INLINE_XATTR);
2611 goto update_inode;
2612 }
2613
2614 dst_addr = inline_xattr_addr(inode, ipage);
2615 src_addr = inline_xattr_addr(inode, page);
2616 inline_size = inline_xattr_size(inode);
2617
2618 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2619 memcpy(dst_addr, src_addr, inline_size);
2620 update_inode:
2621 f2fs_update_inode(inode, ipage);
2622 f2fs_put_page(ipage, 1);
2623 return 0;
2624 }
2625
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2626 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2627 {
2628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2629 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2630 nid_t new_xnid;
2631 struct dnode_of_data dn;
2632 struct node_info ni;
2633 struct page *xpage;
2634 int err;
2635
2636 if (!prev_xnid)
2637 goto recover_xnid;
2638
2639 /* 1: invalidate the previous xattr nid */
2640 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2641 if (err)
2642 return err;
2643
2644 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2645 dec_valid_node_count(sbi, inode, false);
2646 set_node_addr(sbi, &ni, NULL_ADDR, false);
2647
2648 recover_xnid:
2649 /* 2: update xattr nid in inode */
2650 if (!f2fs_alloc_nid(sbi, &new_xnid))
2651 return -ENOSPC;
2652
2653 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2654 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2655 if (IS_ERR(xpage)) {
2656 f2fs_alloc_nid_failed(sbi, new_xnid);
2657 return PTR_ERR(xpage);
2658 }
2659
2660 f2fs_alloc_nid_done(sbi, new_xnid);
2661 f2fs_update_inode_page(inode);
2662
2663 /* 3: update and set xattr node page dirty */
2664 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2665
2666 set_page_dirty(xpage);
2667 f2fs_put_page(xpage, 1);
2668
2669 return 0;
2670 }
2671
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2672 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2673 {
2674 struct f2fs_inode *src, *dst;
2675 nid_t ino = ino_of_node(page);
2676 struct node_info old_ni, new_ni;
2677 struct page *ipage;
2678 int err;
2679
2680 err = f2fs_get_node_info(sbi, ino, &old_ni);
2681 if (err)
2682 return err;
2683
2684 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2685 return -EINVAL;
2686 retry:
2687 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2688 if (!ipage) {
2689 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2690 goto retry;
2691 }
2692
2693 /* Should not use this inode from free nid list */
2694 remove_free_nid(sbi, ino);
2695
2696 if (!PageUptodate(ipage))
2697 SetPageUptodate(ipage);
2698 fill_node_footer(ipage, ino, ino, 0, true);
2699 set_cold_node(ipage, false);
2700
2701 src = F2FS_INODE(page);
2702 dst = F2FS_INODE(ipage);
2703
2704 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2705 dst->i_size = 0;
2706 dst->i_blocks = cpu_to_le64(1);
2707 dst->i_links = cpu_to_le32(1);
2708 dst->i_xattr_nid = 0;
2709 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2710 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2711 dst->i_extra_isize = src->i_extra_isize;
2712
2713 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2714 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715 i_inline_xattr_size))
2716 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2717
2718 if (f2fs_sb_has_project_quota(sbi) &&
2719 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2720 i_projid))
2721 dst->i_projid = src->i_projid;
2722
2723 if (f2fs_sb_has_inode_crtime(sbi) &&
2724 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2725 i_crtime_nsec)) {
2726 dst->i_crtime = src->i_crtime;
2727 dst->i_crtime_nsec = src->i_crtime_nsec;
2728 }
2729 }
2730
2731 new_ni = old_ni;
2732 new_ni.ino = ino;
2733
2734 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2735 WARN_ON(1);
2736 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2737 inc_valid_inode_count(sbi);
2738 set_page_dirty(ipage);
2739 f2fs_put_page(ipage, 1);
2740 return 0;
2741 }
2742
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2743 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2744 unsigned int segno, struct f2fs_summary_block *sum)
2745 {
2746 struct f2fs_node *rn;
2747 struct f2fs_summary *sum_entry;
2748 block_t addr;
2749 int i, idx, last_offset, nrpages;
2750
2751 /* scan the node segment */
2752 last_offset = sbi->blocks_per_seg;
2753 addr = START_BLOCK(sbi, segno);
2754 sum_entry = &sum->entries[0];
2755
2756 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2757 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2758
2759 /* readahead node pages */
2760 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2761
2762 for (idx = addr; idx < addr + nrpages; idx++) {
2763 struct page *page = f2fs_get_tmp_page(sbi, idx);
2764
2765 if (IS_ERR(page))
2766 return PTR_ERR(page);
2767
2768 rn = F2FS_NODE(page);
2769 sum_entry->nid = rn->footer.nid;
2770 sum_entry->version = 0;
2771 sum_entry->ofs_in_node = 0;
2772 sum_entry++;
2773 f2fs_put_page(page, 1);
2774 }
2775
2776 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2777 addr + nrpages);
2778 }
2779 return 0;
2780 }
2781
remove_nats_in_journal(struct f2fs_sb_info * sbi)2782 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2783 {
2784 struct f2fs_nm_info *nm_i = NM_I(sbi);
2785 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2786 struct f2fs_journal *journal = curseg->journal;
2787 int i;
2788
2789 down_write(&curseg->journal_rwsem);
2790 for (i = 0; i < nats_in_cursum(journal); i++) {
2791 struct nat_entry *ne;
2792 struct f2fs_nat_entry raw_ne;
2793 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2794
2795 if (f2fs_check_nid_range(sbi, nid))
2796 continue;
2797
2798 raw_ne = nat_in_journal(journal, i);
2799
2800 ne = __lookup_nat_cache(nm_i, nid);
2801 if (!ne) {
2802 ne = __alloc_nat_entry(nid, true);
2803 __init_nat_entry(nm_i, ne, &raw_ne, true);
2804 }
2805
2806 /*
2807 * if a free nat in journal has not been used after last
2808 * checkpoint, we should remove it from available nids,
2809 * since later we will add it again.
2810 */
2811 if (!get_nat_flag(ne, IS_DIRTY) &&
2812 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2813 spin_lock(&nm_i->nid_list_lock);
2814 nm_i->available_nids--;
2815 spin_unlock(&nm_i->nid_list_lock);
2816 }
2817
2818 __set_nat_cache_dirty(nm_i, ne);
2819 }
2820 update_nats_in_cursum(journal, -i);
2821 up_write(&curseg->journal_rwsem);
2822 }
2823
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2824 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2825 struct list_head *head, int max)
2826 {
2827 struct nat_entry_set *cur;
2828
2829 if (nes->entry_cnt >= max)
2830 goto add_out;
2831
2832 list_for_each_entry(cur, head, set_list) {
2833 if (cur->entry_cnt >= nes->entry_cnt) {
2834 list_add(&nes->set_list, cur->set_list.prev);
2835 return;
2836 }
2837 }
2838 add_out:
2839 list_add_tail(&nes->set_list, head);
2840 }
2841
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2842 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2843 struct page *page)
2844 {
2845 struct f2fs_nm_info *nm_i = NM_I(sbi);
2846 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2847 struct f2fs_nat_block *nat_blk = page_address(page);
2848 int valid = 0;
2849 int i = 0;
2850
2851 if (!enabled_nat_bits(sbi, NULL))
2852 return;
2853
2854 if (nat_index == 0) {
2855 valid = 1;
2856 i = 1;
2857 }
2858 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2859 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2860 valid++;
2861 }
2862 if (valid == 0) {
2863 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2864 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2865 return;
2866 }
2867
2868 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2869 if (valid == NAT_ENTRY_PER_BLOCK)
2870 __set_bit_le(nat_index, nm_i->full_nat_bits);
2871 else
2872 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2873 }
2874
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2875 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2876 struct nat_entry_set *set, struct cp_control *cpc)
2877 {
2878 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2879 struct f2fs_journal *journal = curseg->journal;
2880 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2881 bool to_journal = true;
2882 struct f2fs_nat_block *nat_blk;
2883 struct nat_entry *ne, *cur;
2884 struct page *page = NULL;
2885
2886 /*
2887 * there are two steps to flush nat entries:
2888 * #1, flush nat entries to journal in current hot data summary block.
2889 * #2, flush nat entries to nat page.
2890 */
2891 if (enabled_nat_bits(sbi, cpc) ||
2892 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2893 to_journal = false;
2894
2895 if (to_journal) {
2896 down_write(&curseg->journal_rwsem);
2897 } else {
2898 page = get_next_nat_page(sbi, start_nid);
2899 if (IS_ERR(page))
2900 return PTR_ERR(page);
2901
2902 nat_blk = page_address(page);
2903 f2fs_bug_on(sbi, !nat_blk);
2904 }
2905
2906 /* flush dirty nats in nat entry set */
2907 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2908 struct f2fs_nat_entry *raw_ne;
2909 nid_t nid = nat_get_nid(ne);
2910 int offset;
2911
2912 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2913
2914 if (to_journal) {
2915 offset = f2fs_lookup_journal_in_cursum(journal,
2916 NAT_JOURNAL, nid, 1);
2917 f2fs_bug_on(sbi, offset < 0);
2918 raw_ne = &nat_in_journal(journal, offset);
2919 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2920 } else {
2921 raw_ne = &nat_blk->entries[nid - start_nid];
2922 }
2923 raw_nat_from_node_info(raw_ne, &ne->ni);
2924 nat_reset_flag(ne);
2925 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2926 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2927 add_free_nid(sbi, nid, false, true);
2928 } else {
2929 spin_lock(&NM_I(sbi)->nid_list_lock);
2930 update_free_nid_bitmap(sbi, nid, false, false);
2931 spin_unlock(&NM_I(sbi)->nid_list_lock);
2932 }
2933 }
2934
2935 if (to_journal) {
2936 up_write(&curseg->journal_rwsem);
2937 } else {
2938 __update_nat_bits(sbi, start_nid, page);
2939 f2fs_put_page(page, 1);
2940 }
2941
2942 /* Allow dirty nats by node block allocation in write_begin */
2943 if (!set->entry_cnt) {
2944 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2945 kmem_cache_free(nat_entry_set_slab, set);
2946 }
2947 return 0;
2948 }
2949
2950 /*
2951 * This function is called during the checkpointing process.
2952 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2953 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2954 {
2955 struct f2fs_nm_info *nm_i = NM_I(sbi);
2956 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2957 struct f2fs_journal *journal = curseg->journal;
2958 struct nat_entry_set *setvec[SETVEC_SIZE];
2959 struct nat_entry_set *set, *tmp;
2960 unsigned int found;
2961 nid_t set_idx = 0;
2962 LIST_HEAD(sets);
2963 int err = 0;
2964
2965 /*
2966 * during unmount, let's flush nat_bits before checking
2967 * nat_cnt[DIRTY_NAT].
2968 */
2969 if (enabled_nat_bits(sbi, cpc)) {
2970 down_write(&nm_i->nat_tree_lock);
2971 remove_nats_in_journal(sbi);
2972 up_write(&nm_i->nat_tree_lock);
2973 }
2974
2975 if (!nm_i->nat_cnt[DIRTY_NAT])
2976 return 0;
2977
2978 down_write(&nm_i->nat_tree_lock);
2979
2980 /*
2981 * if there are no enough space in journal to store dirty nat
2982 * entries, remove all entries from journal and merge them
2983 * into nat entry set.
2984 */
2985 if (enabled_nat_bits(sbi, cpc) ||
2986 !__has_cursum_space(journal,
2987 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2988 remove_nats_in_journal(sbi);
2989
2990 while ((found = __gang_lookup_nat_set(nm_i,
2991 set_idx, SETVEC_SIZE, setvec))) {
2992 unsigned idx;
2993 set_idx = setvec[found - 1]->set + 1;
2994 for (idx = 0; idx < found; idx++)
2995 __adjust_nat_entry_set(setvec[idx], &sets,
2996 MAX_NAT_JENTRIES(journal));
2997 }
2998
2999 /* flush dirty nats in nat entry set */
3000 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3001 err = __flush_nat_entry_set(sbi, set, cpc);
3002 if (err)
3003 break;
3004 }
3005
3006 up_write(&nm_i->nat_tree_lock);
3007 /* Allow dirty nats by node block allocation in write_begin */
3008
3009 return err;
3010 }
3011
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3012 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3013 {
3014 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3015 struct f2fs_nm_info *nm_i = NM_I(sbi);
3016 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3017 unsigned int i;
3018 __u64 cp_ver = cur_cp_version(ckpt);
3019 block_t nat_bits_addr;
3020
3021 if (!enabled_nat_bits(sbi, NULL))
3022 return 0;
3023
3024 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3025 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3026 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3027 if (!nm_i->nat_bits)
3028 return -ENOMEM;
3029
3030 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3031 nm_i->nat_bits_blocks;
3032 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3033 struct page *page;
3034
3035 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3036 if (IS_ERR(page))
3037 return PTR_ERR(page);
3038
3039 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3040 page_address(page), F2FS_BLKSIZE);
3041 f2fs_put_page(page, 1);
3042 }
3043
3044 cp_ver |= (cur_cp_crc(ckpt) << 32);
3045 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3046 disable_nat_bits(sbi, true);
3047 return 0;
3048 }
3049
3050 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3051 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3052
3053 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3054 return 0;
3055 }
3056
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3057 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3058 {
3059 struct f2fs_nm_info *nm_i = NM_I(sbi);
3060 unsigned int i = 0;
3061 nid_t nid, last_nid;
3062
3063 if (!enabled_nat_bits(sbi, NULL))
3064 return;
3065
3066 for (i = 0; i < nm_i->nat_blocks; i++) {
3067 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3068 if (i >= nm_i->nat_blocks)
3069 break;
3070
3071 __set_bit_le(i, nm_i->nat_block_bitmap);
3072
3073 nid = i * NAT_ENTRY_PER_BLOCK;
3074 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3075
3076 spin_lock(&NM_I(sbi)->nid_list_lock);
3077 for (; nid < last_nid; nid++)
3078 update_free_nid_bitmap(sbi, nid, true, true);
3079 spin_unlock(&NM_I(sbi)->nid_list_lock);
3080 }
3081
3082 for (i = 0; i < nm_i->nat_blocks; i++) {
3083 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3084 if (i >= nm_i->nat_blocks)
3085 break;
3086
3087 __set_bit_le(i, nm_i->nat_block_bitmap);
3088 }
3089 }
3090
init_node_manager(struct f2fs_sb_info * sbi)3091 static int init_node_manager(struct f2fs_sb_info *sbi)
3092 {
3093 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3094 struct f2fs_nm_info *nm_i = NM_I(sbi);
3095 unsigned char *version_bitmap;
3096 unsigned int nat_segs;
3097 int err;
3098
3099 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3100
3101 /* segment_count_nat includes pair segment so divide to 2. */
3102 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3103 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3104 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3105
3106 /* not used nids: 0, node, meta, (and root counted as valid node) */
3107 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3108 F2FS_RESERVED_NODE_NUM;
3109 nm_i->nid_cnt[FREE_NID] = 0;
3110 nm_i->nid_cnt[PREALLOC_NID] = 0;
3111 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3112 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3113 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3114
3115 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3116 INIT_LIST_HEAD(&nm_i->free_nid_list);
3117 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3118 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3119 INIT_LIST_HEAD(&nm_i->nat_entries);
3120 spin_lock_init(&nm_i->nat_list_lock);
3121
3122 mutex_init(&nm_i->build_lock);
3123 spin_lock_init(&nm_i->nid_list_lock);
3124 init_rwsem(&nm_i->nat_tree_lock);
3125
3126 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3127 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3128 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3129 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3130 GFP_KERNEL);
3131 if (!nm_i->nat_bitmap)
3132 return -ENOMEM;
3133
3134 err = __get_nat_bitmaps(sbi);
3135 if (err)
3136 return err;
3137
3138 #ifdef CONFIG_F2FS_CHECK_FS
3139 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3140 GFP_KERNEL);
3141 if (!nm_i->nat_bitmap_mir)
3142 return -ENOMEM;
3143 #endif
3144
3145 return 0;
3146 }
3147
init_free_nid_cache(struct f2fs_sb_info * sbi)3148 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3149 {
3150 struct f2fs_nm_info *nm_i = NM_I(sbi);
3151 int i;
3152
3153 nm_i->free_nid_bitmap =
3154 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3155 nm_i->nat_blocks),
3156 GFP_KERNEL);
3157 if (!nm_i->free_nid_bitmap)
3158 return -ENOMEM;
3159
3160 for (i = 0; i < nm_i->nat_blocks; i++) {
3161 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3162 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3163 if (!nm_i->free_nid_bitmap[i])
3164 return -ENOMEM;
3165 }
3166
3167 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3168 GFP_KERNEL);
3169 if (!nm_i->nat_block_bitmap)
3170 return -ENOMEM;
3171
3172 nm_i->free_nid_count =
3173 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3174 nm_i->nat_blocks),
3175 GFP_KERNEL);
3176 if (!nm_i->free_nid_count)
3177 return -ENOMEM;
3178 return 0;
3179 }
3180
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3181 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3182 {
3183 int err;
3184
3185 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3186 GFP_KERNEL);
3187 if (!sbi->nm_info)
3188 return -ENOMEM;
3189
3190 err = init_node_manager(sbi);
3191 if (err)
3192 return err;
3193
3194 err = init_free_nid_cache(sbi);
3195 if (err)
3196 return err;
3197
3198 /* load free nid status from nat_bits table */
3199 load_free_nid_bitmap(sbi);
3200
3201 return f2fs_build_free_nids(sbi, true, true);
3202 }
3203
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3204 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3205 {
3206 struct f2fs_nm_info *nm_i = NM_I(sbi);
3207 struct free_nid *i, *next_i;
3208 struct nat_entry *natvec[NATVEC_SIZE];
3209 struct nat_entry_set *setvec[SETVEC_SIZE];
3210 nid_t nid = 0;
3211 unsigned int found;
3212
3213 if (!nm_i)
3214 return;
3215
3216 /* destroy free nid list */
3217 spin_lock(&nm_i->nid_list_lock);
3218 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3219 __remove_free_nid(sbi, i, FREE_NID);
3220 spin_unlock(&nm_i->nid_list_lock);
3221 kmem_cache_free(free_nid_slab, i);
3222 spin_lock(&nm_i->nid_list_lock);
3223 }
3224 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3225 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3226 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3227 spin_unlock(&nm_i->nid_list_lock);
3228
3229 /* destroy nat cache */
3230 down_write(&nm_i->nat_tree_lock);
3231 while ((found = __gang_lookup_nat_cache(nm_i,
3232 nid, NATVEC_SIZE, natvec))) {
3233 unsigned idx;
3234
3235 nid = nat_get_nid(natvec[found - 1]) + 1;
3236 for (idx = 0; idx < found; idx++) {
3237 spin_lock(&nm_i->nat_list_lock);
3238 list_del(&natvec[idx]->list);
3239 spin_unlock(&nm_i->nat_list_lock);
3240
3241 __del_from_nat_cache(nm_i, natvec[idx]);
3242 }
3243 }
3244 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3245
3246 /* destroy nat set cache */
3247 nid = 0;
3248 while ((found = __gang_lookup_nat_set(nm_i,
3249 nid, SETVEC_SIZE, setvec))) {
3250 unsigned idx;
3251
3252 nid = setvec[found - 1]->set + 1;
3253 for (idx = 0; idx < found; idx++) {
3254 /* entry_cnt is not zero, when cp_error was occurred */
3255 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3256 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3257 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3258 }
3259 }
3260 up_write(&nm_i->nat_tree_lock);
3261
3262 kvfree(nm_i->nat_block_bitmap);
3263 if (nm_i->free_nid_bitmap) {
3264 int i;
3265
3266 for (i = 0; i < nm_i->nat_blocks; i++)
3267 kvfree(nm_i->free_nid_bitmap[i]);
3268 kvfree(nm_i->free_nid_bitmap);
3269 }
3270 kvfree(nm_i->free_nid_count);
3271
3272 kvfree(nm_i->nat_bitmap);
3273 kvfree(nm_i->nat_bits);
3274 #ifdef CONFIG_F2FS_CHECK_FS
3275 kvfree(nm_i->nat_bitmap_mir);
3276 #endif
3277 sbi->nm_info = NULL;
3278 kfree(nm_i);
3279 }
3280
f2fs_create_node_manager_caches(void)3281 int __init f2fs_create_node_manager_caches(void)
3282 {
3283 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3284 sizeof(struct nat_entry));
3285 if (!nat_entry_slab)
3286 goto fail;
3287
3288 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3289 sizeof(struct free_nid));
3290 if (!free_nid_slab)
3291 goto destroy_nat_entry;
3292
3293 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3294 sizeof(struct nat_entry_set));
3295 if (!nat_entry_set_slab)
3296 goto destroy_free_nid;
3297
3298 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3299 sizeof(struct fsync_node_entry));
3300 if (!fsync_node_entry_slab)
3301 goto destroy_nat_entry_set;
3302 return 0;
3303
3304 destroy_nat_entry_set:
3305 kmem_cache_destroy(nat_entry_set_slab);
3306 destroy_free_nid:
3307 kmem_cache_destroy(free_nid_slab);
3308 destroy_nat_entry:
3309 kmem_cache_destroy(nat_entry_slab);
3310 fail:
3311 return -ENOMEM;
3312 }
3313
f2fs_destroy_node_manager_caches(void)3314 void f2fs_destroy_node_manager_caches(void)
3315 {
3316 kmem_cache_destroy(fsync_node_entry_slab);
3317 kmem_cache_destroy(nat_entry_set_slab);
3318 kmem_cache_destroy(free_nid_slab);
3319 kmem_cache_destroy(nat_entry_slab);
3320 }
3321