• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt[TOTAL_NAT]++;
181 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 	return ne;
183 }
184 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 	struct nat_entry *ne;
188 
189 	ne = radix_tree_lookup(&nm_i->nat_root, n);
190 
191 	/* for recent accessed nat entry, move it to tail of lru list */
192 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 		spin_lock(&nm_i->nat_list_lock);
194 		if (!list_empty(&ne->list))
195 			list_move_tail(&ne->list, &nm_i->nat_entries);
196 		spin_unlock(&nm_i->nat_list_lock);
197 	}
198 
199 	return ne;
200 }
201 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 		nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 	nm_i->nat_cnt[TOTAL_NAT]--;
212 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 	__free_nat_entry(e);
214 }
215 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 							struct nat_entry *ne)
218 {
219 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 	struct nat_entry_set *head;
221 
222 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 	if (!head) {
224 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225 
226 		INIT_LIST_HEAD(&head->entry_list);
227 		INIT_LIST_HEAD(&head->set_list);
228 		head->set = set;
229 		head->entry_cnt = 0;
230 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 	}
232 	return head;
233 }
234 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 						struct nat_entry *ne)
237 {
238 	struct nat_entry_set *head;
239 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 
241 	if (!new_ne)
242 		head = __grab_nat_entry_set(nm_i, ne);
243 
244 	/*
245 	 * update entry_cnt in below condition:
246 	 * 1. update NEW_ADDR to valid block address;
247 	 * 2. update old block address to new one;
248 	 */
249 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 				!get_nat_flag(ne, IS_DIRTY)))
251 		head->entry_cnt++;
252 
253 	set_nat_flag(ne, IS_PREALLOC, new_ne);
254 
255 	if (get_nat_flag(ne, IS_DIRTY))
256 		goto refresh_list;
257 
258 	nm_i->nat_cnt[DIRTY_NAT]++;
259 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 	set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 	spin_lock(&nm_i->nat_list_lock);
263 	if (new_ne)
264 		list_del_init(&ne->list);
265 	else
266 		list_move_tail(&ne->list, &head->entry_list);
267 	spin_unlock(&nm_i->nat_list_lock);
268 }
269 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 		struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 	spin_lock(&nm_i->nat_list_lock);
274 	list_move_tail(&ne->list, &nm_i->nat_entries);
275 	spin_unlock(&nm_i->nat_list_lock);
276 
277 	set_nat_flag(ne, IS_DIRTY, false);
278 	set->entry_cnt--;
279 	nm_i->nat_cnt[DIRTY_NAT]--;
280 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 							start, nr);
288 }
289 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 	return NODE_MAPPING(sbi) == page->mapping &&
293 			IS_DNODE(page) && is_cold_node(page);
294 }
295 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 	spin_lock_init(&sbi->fsync_node_lock);
299 	INIT_LIST_HEAD(&sbi->fsync_node_list);
300 	sbi->fsync_seg_id = 0;
301 	sbi->fsync_node_num = 0;
302 }
303 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 							struct page *page)
306 {
307 	struct fsync_node_entry *fn;
308 	unsigned long flags;
309 	unsigned int seq_id;
310 
311 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312 
313 	get_page(page);
314 	fn->page = page;
315 	INIT_LIST_HEAD(&fn->list);
316 
317 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 	list_add_tail(&fn->list, &sbi->fsync_node_list);
319 	fn->seq_id = sbi->fsync_seg_id++;
320 	seq_id = fn->seq_id;
321 	sbi->fsync_node_num++;
322 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323 
324 	return seq_id;
325 }
326 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 	struct fsync_node_entry *fn;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 		if (fn->page == page) {
335 			list_del(&fn->list);
336 			sbi->fsync_node_num--;
337 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 			kmem_cache_free(fsync_node_entry_slab, fn);
339 			put_page(page);
340 			return;
341 		}
342 	}
343 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 	f2fs_bug_on(sbi, 1);
345 }
346 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 	sbi->fsync_seg_id = 0;
353 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 	struct f2fs_nm_info *nm_i = NM_I(sbi);
359 	struct nat_entry *e;
360 	bool need = false;
361 
362 	down_read(&nm_i->nat_tree_lock);
363 	e = __lookup_nat_cache(nm_i, nid);
364 	if (e) {
365 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 				!get_nat_flag(e, HAS_FSYNCED_INODE))
367 			need = true;
368 	}
369 	up_read(&nm_i->nat_tree_lock);
370 	return need;
371 }
372 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 	struct f2fs_nm_info *nm_i = NM_I(sbi);
376 	struct nat_entry *e;
377 	bool is_cp = true;
378 
379 	down_read(&nm_i->nat_tree_lock);
380 	e = __lookup_nat_cache(nm_i, nid);
381 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 		is_cp = false;
383 	up_read(&nm_i->nat_tree_lock);
384 	return is_cp;
385 }
386 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
390 	struct nat_entry *e;
391 	bool need_update = true;
392 
393 	down_read(&nm_i->nat_tree_lock);
394 	e = __lookup_nat_cache(nm_i, ino);
395 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 			(get_nat_flag(e, IS_CHECKPOINTED) ||
397 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 		need_update = false;
399 	up_read(&nm_i->nat_tree_lock);
400 	return need_update;
401 }
402 
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 						struct f2fs_nat_entry *ne)
406 {
407 	struct f2fs_nm_info *nm_i = NM_I(sbi);
408 	struct nat_entry *new, *e;
409 
410 	new = __alloc_nat_entry(nid, false);
411 	if (!new)
412 		return;
413 
414 	down_write(&nm_i->nat_tree_lock);
415 	e = __lookup_nat_cache(nm_i, nid);
416 	if (!e)
417 		e = __init_nat_entry(nm_i, new, ne, false);
418 	else
419 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 				nat_get_blkaddr(e) !=
421 					le32_to_cpu(ne->block_addr) ||
422 				nat_get_version(e) != ne->version);
423 	up_write(&nm_i->nat_tree_lock);
424 	if (e != new)
425 		__free_nat_entry(new);
426 }
427 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 			block_t new_blkaddr, bool fsync_done)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *e;
433 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434 
435 	down_write(&nm_i->nat_tree_lock);
436 	e = __lookup_nat_cache(nm_i, ni->nid);
437 	if (!e) {
438 		e = __init_nat_entry(nm_i, new, NULL, true);
439 		copy_node_info(&e->ni, ni);
440 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 	} else if (new_blkaddr == NEW_ADDR) {
442 		/*
443 		 * when nid is reallocated,
444 		 * previous nat entry can be remained in nat cache.
445 		 * So, reinitialize it with new information.
446 		 */
447 		copy_node_info(&e->ni, ni);
448 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 	}
450 	/* let's free early to reduce memory consumption */
451 	if (e != new)
452 		__free_nat_entry(new);
453 
454 	/* sanity check */
455 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 			new_blkaddr == NULL_ADDR);
458 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 			new_blkaddr == NEW_ADDR);
460 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 			new_blkaddr == NEW_ADDR);
462 
463 	/* increment version no as node is removed */
464 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 		unsigned char version = nat_get_version(e);
466 		nat_set_version(e, inc_node_version(version));
467 	}
468 
469 	/* change address */
470 	nat_set_blkaddr(e, new_blkaddr);
471 	if (!__is_valid_data_blkaddr(new_blkaddr))
472 		set_nat_flag(e, IS_CHECKPOINTED, false);
473 	__set_nat_cache_dirty(nm_i, e);
474 
475 	/* update fsync_mark if its inode nat entry is still alive */
476 	if (ni->nid != ni->ino)
477 		e = __lookup_nat_cache(nm_i, ni->ino);
478 	if (e) {
479 		if (fsync_done && ni->nid == ni->ino)
480 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 	}
483 	up_write(&nm_i->nat_tree_lock);
484 }
485 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 	struct f2fs_nm_info *nm_i = NM_I(sbi);
489 	int nr = nr_shrink;
490 
491 	if (!down_write_trylock(&nm_i->nat_tree_lock))
492 		return 0;
493 
494 	spin_lock(&nm_i->nat_list_lock);
495 	while (nr_shrink) {
496 		struct nat_entry *ne;
497 
498 		if (list_empty(&nm_i->nat_entries))
499 			break;
500 
501 		ne = list_first_entry(&nm_i->nat_entries,
502 					struct nat_entry, list);
503 		list_del(&ne->list);
504 		spin_unlock(&nm_i->nat_list_lock);
505 
506 		__del_from_nat_cache(nm_i, ne);
507 		nr_shrink--;
508 
509 		spin_lock(&nm_i->nat_list_lock);
510 	}
511 	spin_unlock(&nm_i->nat_list_lock);
512 
513 	up_write(&nm_i->nat_tree_lock);
514 	return nr - nr_shrink;
515 }
516 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 						struct node_info *ni)
519 {
520 	struct f2fs_nm_info *nm_i = NM_I(sbi);
521 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 	struct f2fs_journal *journal = curseg->journal;
523 	nid_t start_nid = START_NID(nid);
524 	struct f2fs_nat_block *nat_blk;
525 	struct page *page = NULL;
526 	struct f2fs_nat_entry ne;
527 	struct nat_entry *e;
528 	pgoff_t index;
529 	block_t blkaddr;
530 	int i;
531 
532 	ni->nid = nid;
533 
534 	/* Check nat cache */
535 	down_read(&nm_i->nat_tree_lock);
536 	e = __lookup_nat_cache(nm_i, nid);
537 	if (e) {
538 		ni->ino = nat_get_ino(e);
539 		ni->blk_addr = nat_get_blkaddr(e);
540 		ni->version = nat_get_version(e);
541 		up_read(&nm_i->nat_tree_lock);
542 		return 0;
543 	}
544 
545 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 
547 	/* Check current segment summary */
548 	down_read(&curseg->journal_rwsem);
549 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 	if (i >= 0) {
551 		ne = nat_in_journal(journal, i);
552 		node_info_from_raw_nat(ni, &ne);
553 	}
554 	up_read(&curseg->journal_rwsem);
555 	if (i >= 0) {
556 		up_read(&nm_i->nat_tree_lock);
557 		goto cache;
558 	}
559 
560 	/* Fill node_info from nat page */
561 	index = current_nat_addr(sbi, nid);
562 	up_read(&nm_i->nat_tree_lock);
563 
564 	page = f2fs_get_meta_page(sbi, index);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page);
567 
568 	nat_blk = (struct f2fs_nat_block *)page_address(page);
569 	ne = nat_blk->entries[nid - start_nid];
570 	node_info_from_raw_nat(ni, &ne);
571 	f2fs_put_page(page, 1);
572 cache:
573 	blkaddr = le32_to_cpu(ne.block_addr);
574 	if (__is_valid_data_blkaddr(blkaddr) &&
575 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 		return -EFAULT;
577 
578 	/* cache nat entry */
579 	cache_nat_entry(sbi, nid, &ne);
580 	return 0;
581 }
582 
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 	struct blk_plug plug;
590 	int i, end;
591 	nid_t nid;
592 
593 	blk_start_plug(&plug);
594 
595 	/* Then, try readahead for siblings of the desired node */
596 	end = start + n;
597 	end = min(end, NIDS_PER_BLOCK);
598 	for (i = start; i < end; i++) {
599 		nid = get_nid(parent, i, false);
600 		f2fs_ra_node_page(sbi, nid);
601 	}
602 
603 	blk_finish_plug(&plug);
604 }
605 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 	const long direct_index = ADDRS_PER_INODE(dn->inode);
609 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 	int cur_level = dn->cur_level;
613 	int max_level = dn->max_level;
614 	pgoff_t base = 0;
615 
616 	if (!dn->max_level)
617 		return pgofs + 1;
618 
619 	while (max_level-- > cur_level)
620 		skipped_unit *= NIDS_PER_BLOCK;
621 
622 	switch (dn->max_level) {
623 	case 3:
624 		base += 2 * indirect_blks;
625 		fallthrough;
626 	case 2:
627 		base += 2 * direct_blks;
628 		fallthrough;
629 	case 1:
630 		base += direct_index;
631 		break;
632 	default:
633 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 	}
635 
636 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638 
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 				int offset[4], unsigned int noffset[4])
645 {
646 	const long direct_index = ADDRS_PER_INODE(inode);
647 	const long direct_blks = ADDRS_PER_BLOCK(inode);
648 	const long dptrs_per_blk = NIDS_PER_BLOCK;
649 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 	int n = 0;
652 	int level = 0;
653 
654 	noffset[0] = 0;
655 
656 	if (block < direct_index) {
657 		offset[n] = block;
658 		goto got;
659 	}
660 	block -= direct_index;
661 	if (block < direct_blks) {
662 		offset[n++] = NODE_DIR1_BLOCK;
663 		noffset[n] = 1;
664 		offset[n] = block;
665 		level = 1;
666 		goto got;
667 	}
668 	block -= direct_blks;
669 	if (block < direct_blks) {
670 		offset[n++] = NODE_DIR2_BLOCK;
671 		noffset[n] = 2;
672 		offset[n] = block;
673 		level = 1;
674 		goto got;
675 	}
676 	block -= direct_blks;
677 	if (block < indirect_blks) {
678 		offset[n++] = NODE_IND1_BLOCK;
679 		noffset[n] = 3;
680 		offset[n++] = block / direct_blks;
681 		noffset[n] = 4 + offset[n - 1];
682 		offset[n] = block % direct_blks;
683 		level = 2;
684 		goto got;
685 	}
686 	block -= indirect_blks;
687 	if (block < indirect_blks) {
688 		offset[n++] = NODE_IND2_BLOCK;
689 		noffset[n] = 4 + dptrs_per_blk;
690 		offset[n++] = block / direct_blks;
691 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 		offset[n] = block % direct_blks;
693 		level = 2;
694 		goto got;
695 	}
696 	block -= indirect_blks;
697 	if (block < dindirect_blks) {
698 		offset[n++] = NODE_DIND_BLOCK;
699 		noffset[n] = 5 + (dptrs_per_blk * 2);
700 		offset[n++] = block / indirect_blks;
701 		noffset[n] = 6 + (dptrs_per_blk * 2) +
702 			      offset[n - 1] * (dptrs_per_blk + 1);
703 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 		noffset[n] = 7 + (dptrs_per_blk * 2) +
705 			      offset[n - 2] * (dptrs_per_blk + 1) +
706 			      offset[n - 1];
707 		offset[n] = block % direct_blks;
708 		level = 3;
709 		goto got;
710 	} else {
711 		return -E2BIG;
712 	}
713 got:
714 	return level;
715 }
716 
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 	struct page *npage[4];
726 	struct page *parent = NULL;
727 	int offset[4];
728 	unsigned int noffset[4];
729 	nid_t nids[4];
730 	int level, i = 0;
731 	int err = 0;
732 
733 	level = get_node_path(dn->inode, index, offset, noffset);
734 	if (level < 0)
735 		return level;
736 
737 	nids[0] = dn->inode->i_ino;
738 	npage[0] = dn->inode_page;
739 
740 	if (!npage[0]) {
741 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 		if (IS_ERR(npage[0]))
743 			return PTR_ERR(npage[0]);
744 	}
745 
746 	/* if inline_data is set, should not report any block indices */
747 	if (f2fs_has_inline_data(dn->inode) && index) {
748 		err = -ENOENT;
749 		f2fs_put_page(npage[0], 1);
750 		goto release_out;
751 	}
752 
753 	parent = npage[0];
754 	if (level != 0)
755 		nids[1] = get_nid(parent, offset[0], true);
756 	dn->inode_page = npage[0];
757 	dn->inode_page_locked = true;
758 
759 	/* get indirect or direct nodes */
760 	for (i = 1; i <= level; i++) {
761 		bool done = false;
762 
763 		if (!nids[i] && mode == ALLOC_NODE) {
764 			/* alloc new node */
765 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 				err = -ENOSPC;
767 				goto release_pages;
768 			}
769 
770 			dn->nid = nids[i];
771 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 			if (IS_ERR(npage[i])) {
773 				f2fs_alloc_nid_failed(sbi, nids[i]);
774 				err = PTR_ERR(npage[i]);
775 				goto release_pages;
776 			}
777 
778 			set_nid(parent, offset[i - 1], nids[i], i == 1);
779 			f2fs_alloc_nid_done(sbi, nids[i]);
780 			done = true;
781 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 			if (IS_ERR(npage[i])) {
784 				err = PTR_ERR(npage[i]);
785 				goto release_pages;
786 			}
787 			done = true;
788 		}
789 		if (i == 1) {
790 			dn->inode_page_locked = false;
791 			unlock_page(parent);
792 		} else {
793 			f2fs_put_page(parent, 1);
794 		}
795 
796 		if (!done) {
797 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 			if (IS_ERR(npage[i])) {
799 				err = PTR_ERR(npage[i]);
800 				f2fs_put_page(npage[0], 0);
801 				goto release_out;
802 			}
803 		}
804 		if (i < level) {
805 			parent = npage[i];
806 			nids[i + 1] = get_nid(parent, offset[i], false);
807 		}
808 	}
809 	dn->nid = nids[level];
810 	dn->ofs_in_node = offset[level];
811 	dn->node_page = npage[level];
812 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 	return 0;
814 
815 release_pages:
816 	f2fs_put_page(parent, 1);
817 	if (i > 1)
818 		f2fs_put_page(npage[0], 0);
819 release_out:
820 	dn->inode_page = NULL;
821 	dn->node_page = NULL;
822 	if (err == -ENOENT) {
823 		dn->cur_level = i;
824 		dn->max_level = level;
825 		dn->ofs_in_node = offset[level];
826 	}
827 	return err;
828 }
829 
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 	struct node_info ni;
834 	int err;
835 	pgoff_t index;
836 
837 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 	if (err)
839 		return err;
840 
841 	/* Deallocate node address */
842 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
843 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844 	set_node_addr(sbi, &ni, NULL_ADDR, false);
845 
846 	if (dn->nid == dn->inode->i_ino) {
847 		f2fs_remove_orphan_inode(sbi, dn->nid);
848 		dec_valid_inode_count(sbi);
849 		f2fs_inode_synced(dn->inode);
850 	}
851 
852 	clear_node_page_dirty(dn->node_page);
853 	set_sbi_flag(sbi, SBI_IS_DIRTY);
854 
855 	index = dn->node_page->index;
856 	f2fs_put_page(dn->node_page, 1);
857 
858 	invalidate_mapping_pages(NODE_MAPPING(sbi),
859 			index, index);
860 
861 	dn->node_page = NULL;
862 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863 
864 	return 0;
865 }
866 
truncate_dnode(struct dnode_of_data * dn)867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869 	struct page *page;
870 	int err;
871 
872 	if (dn->nid == 0)
873 		return 1;
874 
875 	/* get direct node */
876 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877 	if (PTR_ERR(page) == -ENOENT)
878 		return 1;
879 	else if (IS_ERR(page))
880 		return PTR_ERR(page);
881 
882 	/* Make dnode_of_data for parameter */
883 	dn->node_page = page;
884 	dn->ofs_in_node = 0;
885 	f2fs_truncate_data_blocks(dn);
886 	err = truncate_node(dn);
887 	if (err) {
888 		f2fs_put_page(page, 1);
889 		return err;
890 	}
891 
892 	return 1;
893 }
894 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896 						int ofs, int depth)
897 {
898 	struct dnode_of_data rdn = *dn;
899 	struct page *page;
900 	struct f2fs_node *rn;
901 	nid_t child_nid;
902 	unsigned int child_nofs;
903 	int freed = 0;
904 	int i, ret;
905 
906 	if (dn->nid == 0)
907 		return NIDS_PER_BLOCK + 1;
908 
909 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910 
911 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912 	if (IS_ERR(page)) {
913 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914 		return PTR_ERR(page);
915 	}
916 
917 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918 
919 	rn = F2FS_NODE(page);
920 	if (depth < 3) {
921 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922 			child_nid = le32_to_cpu(rn->in.nid[i]);
923 			if (child_nid == 0)
924 				continue;
925 			rdn.nid = child_nid;
926 			ret = truncate_dnode(&rdn);
927 			if (ret < 0)
928 				goto out_err;
929 			if (set_nid(page, i, 0, false))
930 				dn->node_changed = true;
931 		}
932 	} else {
933 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935 			child_nid = le32_to_cpu(rn->in.nid[i]);
936 			if (child_nid == 0) {
937 				child_nofs += NIDS_PER_BLOCK + 1;
938 				continue;
939 			}
940 			rdn.nid = child_nid;
941 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942 			if (ret == (NIDS_PER_BLOCK + 1)) {
943 				if (set_nid(page, i, 0, false))
944 					dn->node_changed = true;
945 				child_nofs += ret;
946 			} else if (ret < 0 && ret != -ENOENT) {
947 				goto out_err;
948 			}
949 		}
950 		freed = child_nofs;
951 	}
952 
953 	if (!ofs) {
954 		/* remove current indirect node */
955 		dn->node_page = page;
956 		ret = truncate_node(dn);
957 		if (ret)
958 			goto out_err;
959 		freed++;
960 	} else {
961 		f2fs_put_page(page, 1);
962 	}
963 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964 	return freed;
965 
966 out_err:
967 	f2fs_put_page(page, 1);
968 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969 	return ret;
970 }
971 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)972 static int truncate_partial_nodes(struct dnode_of_data *dn,
973 			struct f2fs_inode *ri, int *offset, int depth)
974 {
975 	struct page *pages[2];
976 	nid_t nid[3];
977 	nid_t child_nid;
978 	int err = 0;
979 	int i;
980 	int idx = depth - 2;
981 
982 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983 	if (!nid[0])
984 		return 0;
985 
986 	/* get indirect nodes in the path */
987 	for (i = 0; i < idx + 1; i++) {
988 		/* reference count'll be increased */
989 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990 		if (IS_ERR(pages[i])) {
991 			err = PTR_ERR(pages[i]);
992 			idx = i - 1;
993 			goto fail;
994 		}
995 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996 	}
997 
998 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999 
1000 	/* free direct nodes linked to a partial indirect node */
1001 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002 		child_nid = get_nid(pages[idx], i, false);
1003 		if (!child_nid)
1004 			continue;
1005 		dn->nid = child_nid;
1006 		err = truncate_dnode(dn);
1007 		if (err < 0)
1008 			goto fail;
1009 		if (set_nid(pages[idx], i, 0, false))
1010 			dn->node_changed = true;
1011 	}
1012 
1013 	if (offset[idx + 1] == 0) {
1014 		dn->node_page = pages[idx];
1015 		dn->nid = nid[idx];
1016 		err = truncate_node(dn);
1017 		if (err)
1018 			goto fail;
1019 	} else {
1020 		f2fs_put_page(pages[idx], 1);
1021 	}
1022 	offset[idx]++;
1023 	offset[idx + 1] = 0;
1024 	idx--;
1025 fail:
1026 	for (i = idx; i >= 0; i--)
1027 		f2fs_put_page(pages[i], 1);
1028 
1029 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030 
1031 	return err;
1032 }
1033 
1034 /*
1035  * All the block addresses of data and nodes should be nullified.
1036  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 {
1039 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040 	int err = 0, cont = 1;
1041 	int level, offset[4], noffset[4];
1042 	unsigned int nofs = 0;
1043 	struct f2fs_inode *ri;
1044 	struct dnode_of_data dn;
1045 	struct page *page;
1046 
1047 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048 
1049 	level = get_node_path(inode, from, offset, noffset);
1050 	if (level < 0) {
1051 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1052 		return level;
1053 	}
1054 
1055 	page = f2fs_get_node_page(sbi, inode->i_ino);
1056 	if (IS_ERR(page)) {
1057 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1058 		return PTR_ERR(page);
1059 	}
1060 
1061 	set_new_dnode(&dn, inode, page, NULL, 0);
1062 	unlock_page(page);
1063 
1064 	ri = F2FS_INODE(page);
1065 	switch (level) {
1066 	case 0:
1067 	case 1:
1068 		nofs = noffset[1];
1069 		break;
1070 	case 2:
1071 		nofs = noffset[1];
1072 		if (!offset[level - 1])
1073 			goto skip_partial;
1074 		err = truncate_partial_nodes(&dn, ri, offset, level);
1075 		if (err < 0 && err != -ENOENT)
1076 			goto fail;
1077 		nofs += 1 + NIDS_PER_BLOCK;
1078 		break;
1079 	case 3:
1080 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1081 		if (!offset[level - 1])
1082 			goto skip_partial;
1083 		err = truncate_partial_nodes(&dn, ri, offset, level);
1084 		if (err < 0 && err != -ENOENT)
1085 			goto fail;
1086 		break;
1087 	default:
1088 		BUG();
1089 	}
1090 
1091 skip_partial:
1092 	while (cont) {
1093 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1094 		switch (offset[0]) {
1095 		case NODE_DIR1_BLOCK:
1096 		case NODE_DIR2_BLOCK:
1097 			err = truncate_dnode(&dn);
1098 			break;
1099 
1100 		case NODE_IND1_BLOCK:
1101 		case NODE_IND2_BLOCK:
1102 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1103 			break;
1104 
1105 		case NODE_DIND_BLOCK:
1106 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1107 			cont = 0;
1108 			break;
1109 
1110 		default:
1111 			BUG();
1112 		}
1113 		if (err < 0 && err != -ENOENT)
1114 			goto fail;
1115 		if (offset[1] == 0 &&
1116 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1117 			lock_page(page);
1118 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1119 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1120 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1121 			set_page_dirty(page);
1122 			unlock_page(page);
1123 		}
1124 		offset[1] = 0;
1125 		offset[0]++;
1126 		nofs += err;
1127 	}
1128 fail:
1129 	f2fs_put_page(page, 0);
1130 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1131 	return err > 0 ? 0 : err;
1132 }
1133 
1134 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1135 int f2fs_truncate_xattr_node(struct inode *inode)
1136 {
1137 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1138 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1139 	struct dnode_of_data dn;
1140 	struct page *npage;
1141 	int err;
1142 
1143 	if (!nid)
1144 		return 0;
1145 
1146 	npage = f2fs_get_node_page(sbi, nid);
1147 	if (IS_ERR(npage))
1148 		return PTR_ERR(npage);
1149 
1150 	set_new_dnode(&dn, inode, NULL, npage, nid);
1151 	err = truncate_node(&dn);
1152 	if (err) {
1153 		f2fs_put_page(npage, 1);
1154 		return err;
1155 	}
1156 
1157 	f2fs_i_xnid_write(inode, 0);
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1164  * f2fs_unlock_op().
1165  */
f2fs_remove_inode_page(struct inode * inode)1166 int f2fs_remove_inode_page(struct inode *inode)
1167 {
1168 	struct dnode_of_data dn;
1169 	int err;
1170 
1171 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1172 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1173 	if (err)
1174 		return err;
1175 
1176 	err = f2fs_truncate_xattr_node(inode);
1177 	if (err) {
1178 		f2fs_put_dnode(&dn);
1179 		return err;
1180 	}
1181 
1182 	/* remove potential inline_data blocks */
1183 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1184 				S_ISLNK(inode->i_mode))
1185 		f2fs_truncate_data_blocks_range(&dn, 1);
1186 
1187 	/* 0 is possible, after f2fs_new_inode() has failed */
1188 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1189 		f2fs_put_dnode(&dn);
1190 		return -EIO;
1191 	}
1192 
1193 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1194 		f2fs_warn(F2FS_I_SB(inode),
1195 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1196 			inode->i_ino, (unsigned long long)inode->i_blocks);
1197 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1198 	}
1199 
1200 	/* will put inode & node pages */
1201 	err = truncate_node(&dn);
1202 	if (err) {
1203 		f2fs_put_dnode(&dn);
1204 		return err;
1205 	}
1206 	return 0;
1207 }
1208 
f2fs_new_inode_page(struct inode * inode)1209 struct page *f2fs_new_inode_page(struct inode *inode)
1210 {
1211 	struct dnode_of_data dn;
1212 
1213 	/* allocate inode page for new inode */
1214 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1215 
1216 	/* caller should f2fs_put_page(page, 1); */
1217 	return f2fs_new_node_page(&dn, 0);
1218 }
1219 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1220 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1221 {
1222 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1223 	struct node_info new_ni;
1224 	struct page *page;
1225 	int err;
1226 
1227 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1228 		return ERR_PTR(-EPERM);
1229 
1230 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1231 	if (!page)
1232 		return ERR_PTR(-ENOMEM);
1233 
1234 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1235 		goto fail;
1236 
1237 #ifdef CONFIG_F2FS_CHECK_FS
1238 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1239 	if (err) {
1240 		dec_valid_node_count(sbi, dn->inode, !ofs);
1241 		goto fail;
1242 	}
1243 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1244 		err = -EFSCORRUPTED;
1245 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1246 		goto fail;
1247 	}
1248 #endif
1249 	new_ni.nid = dn->nid;
1250 	new_ni.ino = dn->inode->i_ino;
1251 	new_ni.blk_addr = NULL_ADDR;
1252 	new_ni.flag = 0;
1253 	new_ni.version = 0;
1254 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1255 
1256 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1257 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1258 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1259 	if (!PageUptodate(page))
1260 		SetPageUptodate(page);
1261 	if (set_page_dirty(page))
1262 		dn->node_changed = true;
1263 
1264 	if (f2fs_has_xattr_block(ofs))
1265 		f2fs_i_xnid_write(dn->inode, dn->nid);
1266 
1267 	if (ofs == 0)
1268 		inc_valid_inode_count(sbi);
1269 	return page;
1270 
1271 fail:
1272 	clear_node_page_dirty(page);
1273 	f2fs_put_page(page, 1);
1274 	return ERR_PTR(err);
1275 }
1276 
1277 /*
1278  * Caller should do after getting the following values.
1279  * 0: f2fs_put_page(page, 0)
1280  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1281  */
read_node_page(struct page * page,int op_flags)1282 static int read_node_page(struct page *page, int op_flags)
1283 {
1284 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1285 	struct node_info ni;
1286 	struct f2fs_io_info fio = {
1287 		.sbi = sbi,
1288 		.type = NODE,
1289 		.op = REQ_OP_READ,
1290 		.op_flags = op_flags,
1291 		.page = page,
1292 		.encrypted_page = NULL,
1293 	};
1294 	int err;
1295 
1296 	if (PageUptodate(page)) {
1297 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1298 			ClearPageUptodate(page);
1299 			return -EFSBADCRC;
1300 		}
1301 		return LOCKED_PAGE;
1302 	}
1303 
1304 	err = f2fs_get_node_info(sbi, page->index, &ni);
1305 	if (err)
1306 		return err;
1307 
1308 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1309 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1310 		ClearPageUptodate(page);
1311 		return -ENOENT;
1312 	}
1313 
1314 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1315 
1316 	err = f2fs_submit_page_bio(&fio);
1317 
1318 	if (!err)
1319 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1320 
1321 	return err;
1322 }
1323 
1324 /*
1325  * Readahead a node page
1326  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1327 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1328 {
1329 	struct page *apage;
1330 	int err;
1331 
1332 	if (!nid)
1333 		return;
1334 	if (f2fs_check_nid_range(sbi, nid))
1335 		return;
1336 
1337 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1338 	if (apage)
1339 		return;
1340 
1341 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1342 	if (!apage)
1343 		return;
1344 
1345 	err = read_node_page(apage, REQ_RAHEAD);
1346 	f2fs_put_page(apage, err ? 1 : 0);
1347 }
1348 
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1349 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1350 					struct page *parent, int start)
1351 {
1352 	struct page *page;
1353 	int err;
1354 
1355 	if (!nid)
1356 		return ERR_PTR(-ENOENT);
1357 	if (f2fs_check_nid_range(sbi, nid))
1358 		return ERR_PTR(-EINVAL);
1359 repeat:
1360 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1361 	if (!page)
1362 		return ERR_PTR(-ENOMEM);
1363 
1364 	err = read_node_page(page, 0);
1365 	if (err < 0) {
1366 		f2fs_put_page(page, 1);
1367 		return ERR_PTR(err);
1368 	} else if (err == LOCKED_PAGE) {
1369 		err = 0;
1370 		goto page_hit;
1371 	}
1372 
1373 	if (parent)
1374 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1375 
1376 	lock_page(page);
1377 
1378 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1379 		f2fs_put_page(page, 1);
1380 		goto repeat;
1381 	}
1382 
1383 	if (unlikely(!PageUptodate(page))) {
1384 		err = -EIO;
1385 		goto out_err;
1386 	}
1387 
1388 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1389 		err = -EFSBADCRC;
1390 		goto out_err;
1391 	}
1392 page_hit:
1393 	if(unlikely(nid != nid_of_node(page))) {
1394 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1395 			  nid, nid_of_node(page), ino_of_node(page),
1396 			  ofs_of_node(page), cpver_of_node(page),
1397 			  next_blkaddr_of_node(page));
1398 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1399 		err = -EINVAL;
1400 out_err:
1401 		ClearPageUptodate(page);
1402 		f2fs_put_page(page, 1);
1403 		return ERR_PTR(err);
1404 	}
1405 	return page;
1406 }
1407 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1408 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1409 {
1410 	return __get_node_page(sbi, nid, NULL, 0);
1411 }
1412 
f2fs_get_node_page_ra(struct page * parent,int start)1413 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1414 {
1415 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1416 	nid_t nid = get_nid(parent, start, false);
1417 
1418 	return __get_node_page(sbi, nid, parent, start);
1419 }
1420 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1421 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1422 {
1423 	struct inode *inode;
1424 	struct page *page;
1425 	int ret;
1426 
1427 	/* should flush inline_data before evict_inode */
1428 	inode = ilookup(sbi->sb, ino);
1429 	if (!inode)
1430 		return;
1431 
1432 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1433 					FGP_LOCK|FGP_NOWAIT, 0);
1434 	if (!page)
1435 		goto iput_out;
1436 
1437 	if (!PageUptodate(page))
1438 		goto page_out;
1439 
1440 	if (!PageDirty(page))
1441 		goto page_out;
1442 
1443 	if (!clear_page_dirty_for_io(page))
1444 		goto page_out;
1445 
1446 	ret = f2fs_write_inline_data(inode, page);
1447 	inode_dec_dirty_pages(inode);
1448 	f2fs_remove_dirty_inode(inode);
1449 	if (ret)
1450 		set_page_dirty(page);
1451 page_out:
1452 	f2fs_put_page(page, 1);
1453 iput_out:
1454 	iput(inode);
1455 }
1456 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1457 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1458 {
1459 	pgoff_t index;
1460 	struct pagevec pvec;
1461 	struct page *last_page = NULL;
1462 	int nr_pages;
1463 
1464 	pagevec_init(&pvec);
1465 	index = 0;
1466 
1467 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1468 				PAGECACHE_TAG_DIRTY))) {
1469 		int i;
1470 
1471 		for (i = 0; i < nr_pages; i++) {
1472 			struct page *page = pvec.pages[i];
1473 
1474 			if (unlikely(f2fs_cp_error(sbi))) {
1475 				f2fs_put_page(last_page, 0);
1476 				pagevec_release(&pvec);
1477 				return ERR_PTR(-EIO);
1478 			}
1479 
1480 			if (!IS_DNODE(page) || !is_cold_node(page))
1481 				continue;
1482 			if (ino_of_node(page) != ino)
1483 				continue;
1484 
1485 			lock_page(page);
1486 
1487 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1488 continue_unlock:
1489 				unlock_page(page);
1490 				continue;
1491 			}
1492 			if (ino_of_node(page) != ino)
1493 				goto continue_unlock;
1494 
1495 			if (!PageDirty(page)) {
1496 				/* someone wrote it for us */
1497 				goto continue_unlock;
1498 			}
1499 
1500 			if (last_page)
1501 				f2fs_put_page(last_page, 0);
1502 
1503 			get_page(page);
1504 			last_page = page;
1505 			unlock_page(page);
1506 		}
1507 		pagevec_release(&pvec);
1508 		cond_resched();
1509 	}
1510 	return last_page;
1511 }
1512 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1513 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1514 				struct writeback_control *wbc, bool do_balance,
1515 				enum iostat_type io_type, unsigned int *seq_id)
1516 {
1517 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1518 	nid_t nid;
1519 	struct node_info ni;
1520 	struct f2fs_io_info fio = {
1521 		.sbi = sbi,
1522 		.ino = ino_of_node(page),
1523 		.type = NODE,
1524 		.op = REQ_OP_WRITE,
1525 		.op_flags = wbc_to_write_flags(wbc),
1526 		.page = page,
1527 		.encrypted_page = NULL,
1528 		.submitted = false,
1529 		.io_type = io_type,
1530 		.io_wbc = wbc,
1531 	};
1532 	unsigned int seq;
1533 
1534 	trace_f2fs_writepage(page, NODE);
1535 
1536 	if (unlikely(f2fs_cp_error(sbi))) {
1537 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1538 			ClearPageUptodate(page);
1539 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1540 			unlock_page(page);
1541 			return 0;
1542 		}
1543 		goto redirty_out;
1544 	}
1545 
1546 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1547 		goto redirty_out;
1548 
1549 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1550 			wbc->sync_mode == WB_SYNC_NONE &&
1551 			IS_DNODE(page) && is_cold_node(page))
1552 		goto redirty_out;
1553 
1554 	/* get old block addr of this node page */
1555 	nid = nid_of_node(page);
1556 	f2fs_bug_on(sbi, page->index != nid);
1557 
1558 	if (f2fs_get_node_info(sbi, nid, &ni))
1559 		goto redirty_out;
1560 
1561 	if (wbc->for_reclaim) {
1562 		if (!down_read_trylock(&sbi->node_write))
1563 			goto redirty_out;
1564 	} else {
1565 		down_read(&sbi->node_write);
1566 	}
1567 
1568 	/* This page is already truncated */
1569 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1570 		ClearPageUptodate(page);
1571 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1572 		up_read(&sbi->node_write);
1573 		unlock_page(page);
1574 		return 0;
1575 	}
1576 
1577 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1578 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1579 					DATA_GENERIC_ENHANCE)) {
1580 		up_read(&sbi->node_write);
1581 		goto redirty_out;
1582 	}
1583 
1584 	if (atomic && !test_opt(sbi, NOBARRIER))
1585 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1586 
1587 	/* should add to global list before clearing PAGECACHE status */
1588 	if (f2fs_in_warm_node_list(sbi, page)) {
1589 		seq = f2fs_add_fsync_node_entry(sbi, page);
1590 		if (seq_id)
1591 			*seq_id = seq;
1592 	}
1593 
1594 	set_page_writeback(page);
1595 	ClearPageError(page);
1596 
1597 	fio.old_blkaddr = ni.blk_addr;
1598 	f2fs_do_write_node_page(nid, &fio);
1599 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1600 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1601 	up_read(&sbi->node_write);
1602 
1603 	if (wbc->for_reclaim) {
1604 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1605 		submitted = NULL;
1606 	}
1607 
1608 	unlock_page(page);
1609 
1610 	if (unlikely(f2fs_cp_error(sbi))) {
1611 		f2fs_submit_merged_write(sbi, NODE);
1612 		submitted = NULL;
1613 	}
1614 	if (submitted)
1615 		*submitted = fio.submitted;
1616 
1617 	if (do_balance)
1618 		f2fs_balance_fs(sbi, false);
1619 	return 0;
1620 
1621 redirty_out:
1622 	redirty_page_for_writepage(wbc, page);
1623 	return AOP_WRITEPAGE_ACTIVATE;
1624 }
1625 
f2fs_move_node_page(struct page * node_page,int gc_type)1626 int f2fs_move_node_page(struct page *node_page, int gc_type)
1627 {
1628 	int err = 0;
1629 
1630 	if (gc_type == FG_GC) {
1631 		struct writeback_control wbc = {
1632 			.sync_mode = WB_SYNC_ALL,
1633 			.nr_to_write = 1,
1634 			.for_reclaim = 0,
1635 		};
1636 
1637 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1638 
1639 		set_page_dirty(node_page);
1640 
1641 		if (!clear_page_dirty_for_io(node_page)) {
1642 			err = -EAGAIN;
1643 			goto out_page;
1644 		}
1645 
1646 		if (__write_node_page(node_page, false, NULL,
1647 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1648 			err = -EAGAIN;
1649 			unlock_page(node_page);
1650 		}
1651 		goto release_page;
1652 	} else {
1653 		/* set page dirty and write it */
1654 		if (!PageWriteback(node_page))
1655 			set_page_dirty(node_page);
1656 	}
1657 out_page:
1658 	unlock_page(node_page);
1659 release_page:
1660 	f2fs_put_page(node_page, 0);
1661 	return err;
1662 }
1663 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1664 static int f2fs_write_node_page(struct page *page,
1665 				struct writeback_control *wbc)
1666 {
1667 	return __write_node_page(page, false, NULL, wbc, false,
1668 						FS_NODE_IO, NULL);
1669 }
1670 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1671 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1672 			struct writeback_control *wbc, bool atomic,
1673 			unsigned int *seq_id)
1674 {
1675 	pgoff_t index;
1676 	struct pagevec pvec;
1677 	int ret = 0;
1678 	struct page *last_page = NULL;
1679 	bool marked = false;
1680 	nid_t ino = inode->i_ino;
1681 	int nr_pages;
1682 	int nwritten = 0;
1683 
1684 	if (atomic) {
1685 		last_page = last_fsync_dnode(sbi, ino);
1686 		if (IS_ERR_OR_NULL(last_page))
1687 			return PTR_ERR_OR_ZERO(last_page);
1688 	}
1689 retry:
1690 	pagevec_init(&pvec);
1691 	index = 0;
1692 
1693 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694 				PAGECACHE_TAG_DIRTY))) {
1695 		int i;
1696 
1697 		for (i = 0; i < nr_pages; i++) {
1698 			struct page *page = pvec.pages[i];
1699 			bool submitted = false;
1700 
1701 			if (unlikely(f2fs_cp_error(sbi))) {
1702 				f2fs_put_page(last_page, 0);
1703 				pagevec_release(&pvec);
1704 				ret = -EIO;
1705 				goto out;
1706 			}
1707 
1708 			if (!IS_DNODE(page) || !is_cold_node(page))
1709 				continue;
1710 			if (ino_of_node(page) != ino)
1711 				continue;
1712 
1713 			lock_page(page);
1714 
1715 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1716 continue_unlock:
1717 				unlock_page(page);
1718 				continue;
1719 			}
1720 			if (ino_of_node(page) != ino)
1721 				goto continue_unlock;
1722 
1723 			if (!PageDirty(page) && page != last_page) {
1724 				/* someone wrote it for us */
1725 				goto continue_unlock;
1726 			}
1727 
1728 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1729 
1730 			set_fsync_mark(page, 0);
1731 			set_dentry_mark(page, 0);
1732 
1733 			if (!atomic || page == last_page) {
1734 				set_fsync_mark(page, 1);
1735 				if (IS_INODE(page)) {
1736 					if (is_inode_flag_set(inode,
1737 								FI_DIRTY_INODE))
1738 						f2fs_update_inode(inode, page);
1739 					set_dentry_mark(page,
1740 						f2fs_need_dentry_mark(sbi, ino));
1741 				}
1742 				/* may be written by other thread */
1743 				if (!PageDirty(page))
1744 					set_page_dirty(page);
1745 			}
1746 
1747 			if (!clear_page_dirty_for_io(page))
1748 				goto continue_unlock;
1749 
1750 			ret = __write_node_page(page, atomic &&
1751 						page == last_page,
1752 						&submitted, wbc, true,
1753 						FS_NODE_IO, seq_id);
1754 			if (ret) {
1755 				unlock_page(page);
1756 				f2fs_put_page(last_page, 0);
1757 				break;
1758 			} else if (submitted) {
1759 				nwritten++;
1760 			}
1761 
1762 			if (page == last_page) {
1763 				f2fs_put_page(page, 0);
1764 				marked = true;
1765 				break;
1766 			}
1767 		}
1768 		pagevec_release(&pvec);
1769 		cond_resched();
1770 
1771 		if (ret || marked)
1772 			break;
1773 	}
1774 	if (!ret && atomic && !marked) {
1775 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1776 			   ino, last_page->index);
1777 		lock_page(last_page);
1778 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1779 		set_page_dirty(last_page);
1780 		unlock_page(last_page);
1781 		goto retry;
1782 	}
1783 out:
1784 	if (nwritten)
1785 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1786 	return ret ? -EIO: 0;
1787 }
1788 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1789 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1790 {
1791 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1792 	bool clean;
1793 
1794 	if (inode->i_ino != ino)
1795 		return 0;
1796 
1797 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1798 		return 0;
1799 
1800 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1801 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1802 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1803 
1804 	if (clean)
1805 		return 0;
1806 
1807 	inode = igrab(inode);
1808 	if (!inode)
1809 		return 0;
1810 	return 1;
1811 }
1812 
flush_dirty_inode(struct page * page)1813 static bool flush_dirty_inode(struct page *page)
1814 {
1815 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1816 	struct inode *inode;
1817 	nid_t ino = ino_of_node(page);
1818 
1819 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1820 	if (!inode)
1821 		return false;
1822 
1823 	f2fs_update_inode(inode, page);
1824 	unlock_page(page);
1825 
1826 	iput(inode);
1827 	return true;
1828 }
1829 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1830 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1831 {
1832 	pgoff_t index = 0;
1833 	struct pagevec pvec;
1834 	int nr_pages;
1835 
1836 	pagevec_init(&pvec);
1837 
1838 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1839 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1840 		int i;
1841 
1842 		for (i = 0; i < nr_pages; i++) {
1843 			struct page *page = pvec.pages[i];
1844 
1845 			if (!IS_DNODE(page))
1846 				continue;
1847 
1848 			lock_page(page);
1849 
1850 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1851 continue_unlock:
1852 				unlock_page(page);
1853 				continue;
1854 			}
1855 
1856 			if (!PageDirty(page)) {
1857 				/* someone wrote it for us */
1858 				goto continue_unlock;
1859 			}
1860 
1861 			/* flush inline_data, if it's async context. */
1862 			if (is_inline_node(page)) {
1863 				clear_inline_node(page);
1864 				unlock_page(page);
1865 				flush_inline_data(sbi, ino_of_node(page));
1866 				continue;
1867 			}
1868 			unlock_page(page);
1869 		}
1870 		pagevec_release(&pvec);
1871 		cond_resched();
1872 	}
1873 }
1874 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1875 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1876 				struct writeback_control *wbc,
1877 				bool do_balance, enum iostat_type io_type)
1878 {
1879 	pgoff_t index;
1880 	struct pagevec pvec;
1881 	int step = 0;
1882 	int nwritten = 0;
1883 	int ret = 0;
1884 	int nr_pages, done = 0;
1885 
1886 	pagevec_init(&pvec);
1887 
1888 next_step:
1889 	index = 0;
1890 
1891 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1892 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1893 		int i;
1894 
1895 		for (i = 0; i < nr_pages; i++) {
1896 			struct page *page = pvec.pages[i];
1897 			bool submitted = false;
1898 			bool may_dirty = true;
1899 
1900 			/* give a priority to WB_SYNC threads */
1901 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1902 					wbc->sync_mode == WB_SYNC_NONE) {
1903 				done = 1;
1904 				break;
1905 			}
1906 
1907 			/*
1908 			 * flushing sequence with step:
1909 			 * 0. indirect nodes
1910 			 * 1. dentry dnodes
1911 			 * 2. file dnodes
1912 			 */
1913 			if (step == 0 && IS_DNODE(page))
1914 				continue;
1915 			if (step == 1 && (!IS_DNODE(page) ||
1916 						is_cold_node(page)))
1917 				continue;
1918 			if (step == 2 && (!IS_DNODE(page) ||
1919 						!is_cold_node(page)))
1920 				continue;
1921 lock_node:
1922 			if (wbc->sync_mode == WB_SYNC_ALL)
1923 				lock_page(page);
1924 			else if (!trylock_page(page))
1925 				continue;
1926 
1927 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1928 continue_unlock:
1929 				unlock_page(page);
1930 				continue;
1931 			}
1932 
1933 			if (!PageDirty(page)) {
1934 				/* someone wrote it for us */
1935 				goto continue_unlock;
1936 			}
1937 
1938 			/* flush inline_data/inode, if it's async context. */
1939 			if (!do_balance)
1940 				goto write_node;
1941 
1942 			/* flush inline_data */
1943 			if (is_inline_node(page)) {
1944 				clear_inline_node(page);
1945 				unlock_page(page);
1946 				flush_inline_data(sbi, ino_of_node(page));
1947 				goto lock_node;
1948 			}
1949 
1950 			/* flush dirty inode */
1951 			if (IS_INODE(page) && may_dirty) {
1952 				may_dirty = false;
1953 				if (flush_dirty_inode(page))
1954 					goto lock_node;
1955 			}
1956 write_node:
1957 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1958 
1959 			if (!clear_page_dirty_for_io(page))
1960 				goto continue_unlock;
1961 
1962 			set_fsync_mark(page, 0);
1963 			set_dentry_mark(page, 0);
1964 
1965 			ret = __write_node_page(page, false, &submitted,
1966 						wbc, do_balance, io_type, NULL);
1967 			if (ret)
1968 				unlock_page(page);
1969 			else if (submitted)
1970 				nwritten++;
1971 
1972 			if (--wbc->nr_to_write == 0)
1973 				break;
1974 		}
1975 		pagevec_release(&pvec);
1976 		cond_resched();
1977 
1978 		if (wbc->nr_to_write == 0) {
1979 			step = 2;
1980 			break;
1981 		}
1982 	}
1983 
1984 	if (step < 2) {
1985 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1986 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1987 			goto out;
1988 		step++;
1989 		goto next_step;
1990 	}
1991 out:
1992 	if (nwritten)
1993 		f2fs_submit_merged_write(sbi, NODE);
1994 
1995 	if (unlikely(f2fs_cp_error(sbi)))
1996 		return -EIO;
1997 	return ret;
1998 }
1999 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2000 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2001 						unsigned int seq_id)
2002 {
2003 	struct fsync_node_entry *fn;
2004 	struct page *page;
2005 	struct list_head *head = &sbi->fsync_node_list;
2006 	unsigned long flags;
2007 	unsigned int cur_seq_id = 0;
2008 	int ret2, ret = 0;
2009 
2010 	while (seq_id && cur_seq_id < seq_id) {
2011 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2012 		if (list_empty(head)) {
2013 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014 			break;
2015 		}
2016 		fn = list_first_entry(head, struct fsync_node_entry, list);
2017 		if (fn->seq_id > seq_id) {
2018 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2019 			break;
2020 		}
2021 		cur_seq_id = fn->seq_id;
2022 		page = fn->page;
2023 		get_page(page);
2024 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2025 
2026 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2027 		if (TestClearPageError(page))
2028 			ret = -EIO;
2029 
2030 		put_page(page);
2031 
2032 		if (ret)
2033 			break;
2034 	}
2035 
2036 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2037 	if (!ret)
2038 		ret = ret2;
2039 
2040 	return ret;
2041 }
2042 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2043 static int f2fs_write_node_pages(struct address_space *mapping,
2044 			    struct writeback_control *wbc)
2045 {
2046 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2047 	struct blk_plug plug;
2048 	long diff;
2049 
2050 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2051 		goto skip_write;
2052 
2053 	/* balancing f2fs's metadata in background */
2054 	f2fs_balance_fs_bg(sbi, true);
2055 
2056 	/* collect a number of dirty node pages and write together */
2057 	if (wbc->sync_mode != WB_SYNC_ALL &&
2058 			get_pages(sbi, F2FS_DIRTY_NODES) <
2059 					nr_pages_to_skip(sbi, NODE))
2060 		goto skip_write;
2061 
2062 	if (wbc->sync_mode == WB_SYNC_ALL)
2063 		atomic_inc(&sbi->wb_sync_req[NODE]);
2064 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2065 		/* to avoid potential deadlock */
2066 		if (current->plug)
2067 			blk_finish_plug(current->plug);
2068 		goto skip_write;
2069 	}
2070 
2071 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2072 
2073 	diff = nr_pages_to_write(sbi, NODE, wbc);
2074 	blk_start_plug(&plug);
2075 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2076 	blk_finish_plug(&plug);
2077 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2078 
2079 	if (wbc->sync_mode == WB_SYNC_ALL)
2080 		atomic_dec(&sbi->wb_sync_req[NODE]);
2081 	return 0;
2082 
2083 skip_write:
2084 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2085 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2086 	return 0;
2087 }
2088 
f2fs_set_node_page_dirty(struct page * page)2089 static int f2fs_set_node_page_dirty(struct page *page)
2090 {
2091 	trace_f2fs_set_page_dirty(page, NODE);
2092 
2093 	if (!PageUptodate(page))
2094 		SetPageUptodate(page);
2095 #ifdef CONFIG_F2FS_CHECK_FS
2096 	if (IS_INODE(page))
2097 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2098 #endif
2099 	if (!PageDirty(page)) {
2100 		__set_page_dirty_nobuffers(page);
2101 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2102 		f2fs_set_page_private(page, 0);
2103 		f2fs_trace_pid(page);
2104 		return 1;
2105 	}
2106 	return 0;
2107 }
2108 
2109 /*
2110  * Structure of the f2fs node operations
2111  */
2112 const struct address_space_operations f2fs_node_aops = {
2113 	.writepage	= f2fs_write_node_page,
2114 	.writepages	= f2fs_write_node_pages,
2115 	.set_page_dirty	= f2fs_set_node_page_dirty,
2116 	.invalidatepage	= f2fs_invalidate_page,
2117 	.releasepage	= f2fs_release_page,
2118 #ifdef CONFIG_MIGRATION
2119 	.migratepage	= f2fs_migrate_page,
2120 #endif
2121 };
2122 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2123 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2124 						nid_t n)
2125 {
2126 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2127 }
2128 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2129 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2130 				struct free_nid *i)
2131 {
2132 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2133 
2134 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2135 	if (err)
2136 		return err;
2137 
2138 	nm_i->nid_cnt[FREE_NID]++;
2139 	list_add_tail(&i->list, &nm_i->free_nid_list);
2140 	return 0;
2141 }
2142 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2143 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2144 			struct free_nid *i, enum nid_state state)
2145 {
2146 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2147 
2148 	f2fs_bug_on(sbi, state != i->state);
2149 	nm_i->nid_cnt[state]--;
2150 	if (state == FREE_NID)
2151 		list_del(&i->list);
2152 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2153 }
2154 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2155 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2156 			enum nid_state org_state, enum nid_state dst_state)
2157 {
2158 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2159 
2160 	f2fs_bug_on(sbi, org_state != i->state);
2161 	i->state = dst_state;
2162 	nm_i->nid_cnt[org_state]--;
2163 	nm_i->nid_cnt[dst_state]++;
2164 
2165 	switch (dst_state) {
2166 	case PREALLOC_NID:
2167 		list_del(&i->list);
2168 		break;
2169 	case FREE_NID:
2170 		list_add_tail(&i->list, &nm_i->free_nid_list);
2171 		break;
2172 	default:
2173 		BUG_ON(1);
2174 	}
2175 }
2176 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2177 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2178 							bool set, bool build)
2179 {
2180 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2181 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2182 	unsigned int nid_ofs = nid - START_NID(nid);
2183 
2184 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2185 		return;
2186 
2187 	if (set) {
2188 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2189 			return;
2190 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2191 		nm_i->free_nid_count[nat_ofs]++;
2192 	} else {
2193 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2194 			return;
2195 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2196 		if (!build)
2197 			nm_i->free_nid_count[nat_ofs]--;
2198 	}
2199 }
2200 
2201 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2202 static bool add_free_nid(struct f2fs_sb_info *sbi,
2203 				nid_t nid, bool build, bool update)
2204 {
2205 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2206 	struct free_nid *i, *e;
2207 	struct nat_entry *ne;
2208 	int err = -EINVAL;
2209 	bool ret = false;
2210 
2211 	/* 0 nid should not be used */
2212 	if (unlikely(nid == 0))
2213 		return false;
2214 
2215 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2216 		return false;
2217 
2218 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2219 	i->nid = nid;
2220 	i->state = FREE_NID;
2221 
2222 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2223 
2224 	spin_lock(&nm_i->nid_list_lock);
2225 
2226 	if (build) {
2227 		/*
2228 		 *   Thread A             Thread B
2229 		 *  - f2fs_create
2230 		 *   - f2fs_new_inode
2231 		 *    - f2fs_alloc_nid
2232 		 *     - __insert_nid_to_list(PREALLOC_NID)
2233 		 *                     - f2fs_balance_fs_bg
2234 		 *                      - f2fs_build_free_nids
2235 		 *                       - __f2fs_build_free_nids
2236 		 *                        - scan_nat_page
2237 		 *                         - add_free_nid
2238 		 *                          - __lookup_nat_cache
2239 		 *  - f2fs_add_link
2240 		 *   - f2fs_init_inode_metadata
2241 		 *    - f2fs_new_inode_page
2242 		 *     - f2fs_new_node_page
2243 		 *      - set_node_addr
2244 		 *  - f2fs_alloc_nid_done
2245 		 *   - __remove_nid_from_list(PREALLOC_NID)
2246 		 *                         - __insert_nid_to_list(FREE_NID)
2247 		 */
2248 		ne = __lookup_nat_cache(nm_i, nid);
2249 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2250 				nat_get_blkaddr(ne) != NULL_ADDR))
2251 			goto err_out;
2252 
2253 		e = __lookup_free_nid_list(nm_i, nid);
2254 		if (e) {
2255 			if (e->state == FREE_NID)
2256 				ret = true;
2257 			goto err_out;
2258 		}
2259 	}
2260 	ret = true;
2261 	err = __insert_free_nid(sbi, i);
2262 err_out:
2263 	if (update) {
2264 		update_free_nid_bitmap(sbi, nid, ret, build);
2265 		if (!build)
2266 			nm_i->available_nids++;
2267 	}
2268 	spin_unlock(&nm_i->nid_list_lock);
2269 	radix_tree_preload_end();
2270 
2271 	if (err)
2272 		kmem_cache_free(free_nid_slab, i);
2273 	return ret;
2274 }
2275 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2276 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2277 {
2278 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2279 	struct free_nid *i;
2280 	bool need_free = false;
2281 
2282 	spin_lock(&nm_i->nid_list_lock);
2283 	i = __lookup_free_nid_list(nm_i, nid);
2284 	if (i && i->state == FREE_NID) {
2285 		__remove_free_nid(sbi, i, FREE_NID);
2286 		need_free = true;
2287 	}
2288 	spin_unlock(&nm_i->nid_list_lock);
2289 
2290 	if (need_free)
2291 		kmem_cache_free(free_nid_slab, i);
2292 }
2293 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2294 static int scan_nat_page(struct f2fs_sb_info *sbi,
2295 			struct page *nat_page, nid_t start_nid)
2296 {
2297 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2298 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2299 	block_t blk_addr;
2300 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2301 	int i;
2302 
2303 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2304 
2305 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2306 
2307 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2308 		if (unlikely(start_nid >= nm_i->max_nid))
2309 			break;
2310 
2311 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2312 
2313 		if (blk_addr == NEW_ADDR)
2314 			return -EINVAL;
2315 
2316 		if (blk_addr == NULL_ADDR) {
2317 			add_free_nid(sbi, start_nid, true, true);
2318 		} else {
2319 			spin_lock(&NM_I(sbi)->nid_list_lock);
2320 			update_free_nid_bitmap(sbi, start_nid, false, true);
2321 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2322 		}
2323 	}
2324 
2325 	return 0;
2326 }
2327 
scan_curseg_cache(struct f2fs_sb_info * sbi)2328 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2329 {
2330 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2331 	struct f2fs_journal *journal = curseg->journal;
2332 	int i;
2333 
2334 	down_read(&curseg->journal_rwsem);
2335 	for (i = 0; i < nats_in_cursum(journal); i++) {
2336 		block_t addr;
2337 		nid_t nid;
2338 
2339 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2340 		nid = le32_to_cpu(nid_in_journal(journal, i));
2341 		if (addr == NULL_ADDR)
2342 			add_free_nid(sbi, nid, true, false);
2343 		else
2344 			remove_free_nid(sbi, nid);
2345 	}
2346 	up_read(&curseg->journal_rwsem);
2347 }
2348 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2349 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2350 {
2351 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2352 	unsigned int i, idx;
2353 	nid_t nid;
2354 
2355 	down_read(&nm_i->nat_tree_lock);
2356 
2357 	for (i = 0; i < nm_i->nat_blocks; i++) {
2358 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2359 			continue;
2360 		if (!nm_i->free_nid_count[i])
2361 			continue;
2362 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2363 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2364 						NAT_ENTRY_PER_BLOCK, idx);
2365 			if (idx >= NAT_ENTRY_PER_BLOCK)
2366 				break;
2367 
2368 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2369 			add_free_nid(sbi, nid, true, false);
2370 
2371 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2372 				goto out;
2373 		}
2374 	}
2375 out:
2376 	scan_curseg_cache(sbi);
2377 
2378 	up_read(&nm_i->nat_tree_lock);
2379 }
2380 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2381 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2382 						bool sync, bool mount)
2383 {
2384 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 	int i = 0, ret;
2386 	nid_t nid = nm_i->next_scan_nid;
2387 
2388 	if (unlikely(nid >= nm_i->max_nid))
2389 		nid = 0;
2390 
2391 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2392 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2393 
2394 	/* Enough entries */
2395 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2396 		return 0;
2397 
2398 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2399 		return 0;
2400 
2401 	if (!mount) {
2402 		/* try to find free nids in free_nid_bitmap */
2403 		scan_free_nid_bits(sbi);
2404 
2405 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2406 			return 0;
2407 	}
2408 
2409 	/* readahead nat pages to be scanned */
2410 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2411 							META_NAT, true);
2412 
2413 	down_read(&nm_i->nat_tree_lock);
2414 
2415 	while (1) {
2416 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2417 						nm_i->nat_block_bitmap)) {
2418 			struct page *page = get_current_nat_page(sbi, nid);
2419 
2420 			if (IS_ERR(page)) {
2421 				ret = PTR_ERR(page);
2422 			} else {
2423 				ret = scan_nat_page(sbi, page, nid);
2424 				f2fs_put_page(page, 1);
2425 			}
2426 
2427 			if (ret) {
2428 				up_read(&nm_i->nat_tree_lock);
2429 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2430 				return ret;
2431 			}
2432 		}
2433 
2434 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2435 		if (unlikely(nid >= nm_i->max_nid))
2436 			nid = 0;
2437 
2438 		if (++i >= FREE_NID_PAGES)
2439 			break;
2440 	}
2441 
2442 	/* go to the next free nat pages to find free nids abundantly */
2443 	nm_i->next_scan_nid = nid;
2444 
2445 	/* find free nids from current sum_pages */
2446 	scan_curseg_cache(sbi);
2447 
2448 	up_read(&nm_i->nat_tree_lock);
2449 
2450 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2451 					nm_i->ra_nid_pages, META_NAT, false);
2452 
2453 	return 0;
2454 }
2455 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2456 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2457 {
2458 	int ret;
2459 
2460 	mutex_lock(&NM_I(sbi)->build_lock);
2461 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2462 	mutex_unlock(&NM_I(sbi)->build_lock);
2463 
2464 	return ret;
2465 }
2466 
2467 /*
2468  * If this function returns success, caller can obtain a new nid
2469  * from second parameter of this function.
2470  * The returned nid could be used ino as well as nid when inode is created.
2471  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2472 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2473 {
2474 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2475 	struct free_nid *i = NULL;
2476 retry:
2477 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2478 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2479 		return false;
2480 	}
2481 
2482 	spin_lock(&nm_i->nid_list_lock);
2483 
2484 	if (unlikely(nm_i->available_nids == 0)) {
2485 		spin_unlock(&nm_i->nid_list_lock);
2486 		return false;
2487 	}
2488 
2489 	/* We should not use stale free nids created by f2fs_build_free_nids */
2490 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2491 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2492 		i = list_first_entry(&nm_i->free_nid_list,
2493 					struct free_nid, list);
2494 		*nid = i->nid;
2495 
2496 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2497 		nm_i->available_nids--;
2498 
2499 		update_free_nid_bitmap(sbi, *nid, false, false);
2500 
2501 		spin_unlock(&nm_i->nid_list_lock);
2502 		return true;
2503 	}
2504 	spin_unlock(&nm_i->nid_list_lock);
2505 
2506 	/* Let's scan nat pages and its caches to get free nids */
2507 	if (!f2fs_build_free_nids(sbi, true, false))
2508 		goto retry;
2509 	return false;
2510 }
2511 
2512 /*
2513  * f2fs_alloc_nid() should be called prior to this function.
2514  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2515 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2516 {
2517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2518 	struct free_nid *i;
2519 
2520 	spin_lock(&nm_i->nid_list_lock);
2521 	i = __lookup_free_nid_list(nm_i, nid);
2522 	f2fs_bug_on(sbi, !i);
2523 	__remove_free_nid(sbi, i, PREALLOC_NID);
2524 	spin_unlock(&nm_i->nid_list_lock);
2525 
2526 	kmem_cache_free(free_nid_slab, i);
2527 }
2528 
2529 /*
2530  * f2fs_alloc_nid() should be called prior to this function.
2531  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2532 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2533 {
2534 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2535 	struct free_nid *i;
2536 	bool need_free = false;
2537 
2538 	if (!nid)
2539 		return;
2540 
2541 	spin_lock(&nm_i->nid_list_lock);
2542 	i = __lookup_free_nid_list(nm_i, nid);
2543 	f2fs_bug_on(sbi, !i);
2544 
2545 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2546 		__remove_free_nid(sbi, i, PREALLOC_NID);
2547 		need_free = true;
2548 	} else {
2549 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2550 	}
2551 
2552 	nm_i->available_nids++;
2553 
2554 	update_free_nid_bitmap(sbi, nid, true, false);
2555 
2556 	spin_unlock(&nm_i->nid_list_lock);
2557 
2558 	if (need_free)
2559 		kmem_cache_free(free_nid_slab, i);
2560 }
2561 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2562 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2563 {
2564 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2565 	int nr = nr_shrink;
2566 
2567 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2568 		return 0;
2569 
2570 	if (!mutex_trylock(&nm_i->build_lock))
2571 		return 0;
2572 
2573 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2574 		struct free_nid *i, *next;
2575 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2576 
2577 		spin_lock(&nm_i->nid_list_lock);
2578 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2579 			if (!nr_shrink || !batch ||
2580 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2581 				break;
2582 			__remove_free_nid(sbi, i, FREE_NID);
2583 			kmem_cache_free(free_nid_slab, i);
2584 			nr_shrink--;
2585 			batch--;
2586 		}
2587 		spin_unlock(&nm_i->nid_list_lock);
2588 	}
2589 
2590 	mutex_unlock(&nm_i->build_lock);
2591 
2592 	return nr - nr_shrink;
2593 }
2594 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2595 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2596 {
2597 	void *src_addr, *dst_addr;
2598 	size_t inline_size;
2599 	struct page *ipage;
2600 	struct f2fs_inode *ri;
2601 
2602 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2603 	if (IS_ERR(ipage))
2604 		return PTR_ERR(ipage);
2605 
2606 	ri = F2FS_INODE(page);
2607 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2608 		set_inode_flag(inode, FI_INLINE_XATTR);
2609 	} else {
2610 		clear_inode_flag(inode, FI_INLINE_XATTR);
2611 		goto update_inode;
2612 	}
2613 
2614 	dst_addr = inline_xattr_addr(inode, ipage);
2615 	src_addr = inline_xattr_addr(inode, page);
2616 	inline_size = inline_xattr_size(inode);
2617 
2618 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2619 	memcpy(dst_addr, src_addr, inline_size);
2620 update_inode:
2621 	f2fs_update_inode(inode, ipage);
2622 	f2fs_put_page(ipage, 1);
2623 	return 0;
2624 }
2625 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2626 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2627 {
2628 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2629 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2630 	nid_t new_xnid;
2631 	struct dnode_of_data dn;
2632 	struct node_info ni;
2633 	struct page *xpage;
2634 	int err;
2635 
2636 	if (!prev_xnid)
2637 		goto recover_xnid;
2638 
2639 	/* 1: invalidate the previous xattr nid */
2640 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2641 	if (err)
2642 		return err;
2643 
2644 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2645 	dec_valid_node_count(sbi, inode, false);
2646 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2647 
2648 recover_xnid:
2649 	/* 2: update xattr nid in inode */
2650 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2651 		return -ENOSPC;
2652 
2653 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2654 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2655 	if (IS_ERR(xpage)) {
2656 		f2fs_alloc_nid_failed(sbi, new_xnid);
2657 		return PTR_ERR(xpage);
2658 	}
2659 
2660 	f2fs_alloc_nid_done(sbi, new_xnid);
2661 	f2fs_update_inode_page(inode);
2662 
2663 	/* 3: update and set xattr node page dirty */
2664 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2665 
2666 	set_page_dirty(xpage);
2667 	f2fs_put_page(xpage, 1);
2668 
2669 	return 0;
2670 }
2671 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2672 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2673 {
2674 	struct f2fs_inode *src, *dst;
2675 	nid_t ino = ino_of_node(page);
2676 	struct node_info old_ni, new_ni;
2677 	struct page *ipage;
2678 	int err;
2679 
2680 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2681 	if (err)
2682 		return err;
2683 
2684 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2685 		return -EINVAL;
2686 retry:
2687 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2688 	if (!ipage) {
2689 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2690 		goto retry;
2691 	}
2692 
2693 	/* Should not use this inode from free nid list */
2694 	remove_free_nid(sbi, ino);
2695 
2696 	if (!PageUptodate(ipage))
2697 		SetPageUptodate(ipage);
2698 	fill_node_footer(ipage, ino, ino, 0, true);
2699 	set_cold_node(ipage, false);
2700 
2701 	src = F2FS_INODE(page);
2702 	dst = F2FS_INODE(ipage);
2703 
2704 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2705 	dst->i_size = 0;
2706 	dst->i_blocks = cpu_to_le64(1);
2707 	dst->i_links = cpu_to_le32(1);
2708 	dst->i_xattr_nid = 0;
2709 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2710 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2711 		dst->i_extra_isize = src->i_extra_isize;
2712 
2713 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2714 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2715 							i_inline_xattr_size))
2716 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2717 
2718 		if (f2fs_sb_has_project_quota(sbi) &&
2719 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2720 								i_projid))
2721 			dst->i_projid = src->i_projid;
2722 
2723 		if (f2fs_sb_has_inode_crtime(sbi) &&
2724 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2725 							i_crtime_nsec)) {
2726 			dst->i_crtime = src->i_crtime;
2727 			dst->i_crtime_nsec = src->i_crtime_nsec;
2728 		}
2729 	}
2730 
2731 	new_ni = old_ni;
2732 	new_ni.ino = ino;
2733 
2734 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2735 		WARN_ON(1);
2736 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2737 	inc_valid_inode_count(sbi);
2738 	set_page_dirty(ipage);
2739 	f2fs_put_page(ipage, 1);
2740 	return 0;
2741 }
2742 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2743 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2744 			unsigned int segno, struct f2fs_summary_block *sum)
2745 {
2746 	struct f2fs_node *rn;
2747 	struct f2fs_summary *sum_entry;
2748 	block_t addr;
2749 	int i, idx, last_offset, nrpages;
2750 
2751 	/* scan the node segment */
2752 	last_offset = sbi->blocks_per_seg;
2753 	addr = START_BLOCK(sbi, segno);
2754 	sum_entry = &sum->entries[0];
2755 
2756 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2757 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2758 
2759 		/* readahead node pages */
2760 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2761 
2762 		for (idx = addr; idx < addr + nrpages; idx++) {
2763 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2764 
2765 			if (IS_ERR(page))
2766 				return PTR_ERR(page);
2767 
2768 			rn = F2FS_NODE(page);
2769 			sum_entry->nid = rn->footer.nid;
2770 			sum_entry->version = 0;
2771 			sum_entry->ofs_in_node = 0;
2772 			sum_entry++;
2773 			f2fs_put_page(page, 1);
2774 		}
2775 
2776 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2777 							addr + nrpages);
2778 	}
2779 	return 0;
2780 }
2781 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2782 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2783 {
2784 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2785 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2786 	struct f2fs_journal *journal = curseg->journal;
2787 	int i;
2788 
2789 	down_write(&curseg->journal_rwsem);
2790 	for (i = 0; i < nats_in_cursum(journal); i++) {
2791 		struct nat_entry *ne;
2792 		struct f2fs_nat_entry raw_ne;
2793 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2794 
2795 		if (f2fs_check_nid_range(sbi, nid))
2796 			continue;
2797 
2798 		raw_ne = nat_in_journal(journal, i);
2799 
2800 		ne = __lookup_nat_cache(nm_i, nid);
2801 		if (!ne) {
2802 			ne = __alloc_nat_entry(nid, true);
2803 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2804 		}
2805 
2806 		/*
2807 		 * if a free nat in journal has not been used after last
2808 		 * checkpoint, we should remove it from available nids,
2809 		 * since later we will add it again.
2810 		 */
2811 		if (!get_nat_flag(ne, IS_DIRTY) &&
2812 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2813 			spin_lock(&nm_i->nid_list_lock);
2814 			nm_i->available_nids--;
2815 			spin_unlock(&nm_i->nid_list_lock);
2816 		}
2817 
2818 		__set_nat_cache_dirty(nm_i, ne);
2819 	}
2820 	update_nats_in_cursum(journal, -i);
2821 	up_write(&curseg->journal_rwsem);
2822 }
2823 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2824 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2825 						struct list_head *head, int max)
2826 {
2827 	struct nat_entry_set *cur;
2828 
2829 	if (nes->entry_cnt >= max)
2830 		goto add_out;
2831 
2832 	list_for_each_entry(cur, head, set_list) {
2833 		if (cur->entry_cnt >= nes->entry_cnt) {
2834 			list_add(&nes->set_list, cur->set_list.prev);
2835 			return;
2836 		}
2837 	}
2838 add_out:
2839 	list_add_tail(&nes->set_list, head);
2840 }
2841 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2842 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2843 						struct page *page)
2844 {
2845 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2846 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2847 	struct f2fs_nat_block *nat_blk = page_address(page);
2848 	int valid = 0;
2849 	int i = 0;
2850 
2851 	if (!enabled_nat_bits(sbi, NULL))
2852 		return;
2853 
2854 	if (nat_index == 0) {
2855 		valid = 1;
2856 		i = 1;
2857 	}
2858 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2859 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2860 			valid++;
2861 	}
2862 	if (valid == 0) {
2863 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2864 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2865 		return;
2866 	}
2867 
2868 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2869 	if (valid == NAT_ENTRY_PER_BLOCK)
2870 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2871 	else
2872 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2873 }
2874 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2875 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2876 		struct nat_entry_set *set, struct cp_control *cpc)
2877 {
2878 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2879 	struct f2fs_journal *journal = curseg->journal;
2880 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2881 	bool to_journal = true;
2882 	struct f2fs_nat_block *nat_blk;
2883 	struct nat_entry *ne, *cur;
2884 	struct page *page = NULL;
2885 
2886 	/*
2887 	 * there are two steps to flush nat entries:
2888 	 * #1, flush nat entries to journal in current hot data summary block.
2889 	 * #2, flush nat entries to nat page.
2890 	 */
2891 	if (enabled_nat_bits(sbi, cpc) ||
2892 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2893 		to_journal = false;
2894 
2895 	if (to_journal) {
2896 		down_write(&curseg->journal_rwsem);
2897 	} else {
2898 		page = get_next_nat_page(sbi, start_nid);
2899 		if (IS_ERR(page))
2900 			return PTR_ERR(page);
2901 
2902 		nat_blk = page_address(page);
2903 		f2fs_bug_on(sbi, !nat_blk);
2904 	}
2905 
2906 	/* flush dirty nats in nat entry set */
2907 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2908 		struct f2fs_nat_entry *raw_ne;
2909 		nid_t nid = nat_get_nid(ne);
2910 		int offset;
2911 
2912 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2913 
2914 		if (to_journal) {
2915 			offset = f2fs_lookup_journal_in_cursum(journal,
2916 							NAT_JOURNAL, nid, 1);
2917 			f2fs_bug_on(sbi, offset < 0);
2918 			raw_ne = &nat_in_journal(journal, offset);
2919 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2920 		} else {
2921 			raw_ne = &nat_blk->entries[nid - start_nid];
2922 		}
2923 		raw_nat_from_node_info(raw_ne, &ne->ni);
2924 		nat_reset_flag(ne);
2925 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2926 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2927 			add_free_nid(sbi, nid, false, true);
2928 		} else {
2929 			spin_lock(&NM_I(sbi)->nid_list_lock);
2930 			update_free_nid_bitmap(sbi, nid, false, false);
2931 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2932 		}
2933 	}
2934 
2935 	if (to_journal) {
2936 		up_write(&curseg->journal_rwsem);
2937 	} else {
2938 		__update_nat_bits(sbi, start_nid, page);
2939 		f2fs_put_page(page, 1);
2940 	}
2941 
2942 	/* Allow dirty nats by node block allocation in write_begin */
2943 	if (!set->entry_cnt) {
2944 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2945 		kmem_cache_free(nat_entry_set_slab, set);
2946 	}
2947 	return 0;
2948 }
2949 
2950 /*
2951  * This function is called during the checkpointing process.
2952  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2953 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2954 {
2955 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2956 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2957 	struct f2fs_journal *journal = curseg->journal;
2958 	struct nat_entry_set *setvec[SETVEC_SIZE];
2959 	struct nat_entry_set *set, *tmp;
2960 	unsigned int found;
2961 	nid_t set_idx = 0;
2962 	LIST_HEAD(sets);
2963 	int err = 0;
2964 
2965 	/*
2966 	 * during unmount, let's flush nat_bits before checking
2967 	 * nat_cnt[DIRTY_NAT].
2968 	 */
2969 	if (enabled_nat_bits(sbi, cpc)) {
2970 		down_write(&nm_i->nat_tree_lock);
2971 		remove_nats_in_journal(sbi);
2972 		up_write(&nm_i->nat_tree_lock);
2973 	}
2974 
2975 	if (!nm_i->nat_cnt[DIRTY_NAT])
2976 		return 0;
2977 
2978 	down_write(&nm_i->nat_tree_lock);
2979 
2980 	/*
2981 	 * if there are no enough space in journal to store dirty nat
2982 	 * entries, remove all entries from journal and merge them
2983 	 * into nat entry set.
2984 	 */
2985 	if (enabled_nat_bits(sbi, cpc) ||
2986 		!__has_cursum_space(journal,
2987 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2988 		remove_nats_in_journal(sbi);
2989 
2990 	while ((found = __gang_lookup_nat_set(nm_i,
2991 					set_idx, SETVEC_SIZE, setvec))) {
2992 		unsigned idx;
2993 		set_idx = setvec[found - 1]->set + 1;
2994 		for (idx = 0; idx < found; idx++)
2995 			__adjust_nat_entry_set(setvec[idx], &sets,
2996 						MAX_NAT_JENTRIES(journal));
2997 	}
2998 
2999 	/* flush dirty nats in nat entry set */
3000 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3001 		err = __flush_nat_entry_set(sbi, set, cpc);
3002 		if (err)
3003 			break;
3004 	}
3005 
3006 	up_write(&nm_i->nat_tree_lock);
3007 	/* Allow dirty nats by node block allocation in write_begin */
3008 
3009 	return err;
3010 }
3011 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3012 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3013 {
3014 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3015 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3016 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3017 	unsigned int i;
3018 	__u64 cp_ver = cur_cp_version(ckpt);
3019 	block_t nat_bits_addr;
3020 
3021 	if (!enabled_nat_bits(sbi, NULL))
3022 		return 0;
3023 
3024 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3025 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3026 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3027 	if (!nm_i->nat_bits)
3028 		return -ENOMEM;
3029 
3030 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3031 						nm_i->nat_bits_blocks;
3032 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3033 		struct page *page;
3034 
3035 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3036 		if (IS_ERR(page))
3037 			return PTR_ERR(page);
3038 
3039 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3040 					page_address(page), F2FS_BLKSIZE);
3041 		f2fs_put_page(page, 1);
3042 	}
3043 
3044 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3045 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3046 		disable_nat_bits(sbi, true);
3047 		return 0;
3048 	}
3049 
3050 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3051 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3052 
3053 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3054 	return 0;
3055 }
3056 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3057 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3058 {
3059 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3060 	unsigned int i = 0;
3061 	nid_t nid, last_nid;
3062 
3063 	if (!enabled_nat_bits(sbi, NULL))
3064 		return;
3065 
3066 	for (i = 0; i < nm_i->nat_blocks; i++) {
3067 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3068 		if (i >= nm_i->nat_blocks)
3069 			break;
3070 
3071 		__set_bit_le(i, nm_i->nat_block_bitmap);
3072 
3073 		nid = i * NAT_ENTRY_PER_BLOCK;
3074 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3075 
3076 		spin_lock(&NM_I(sbi)->nid_list_lock);
3077 		for (; nid < last_nid; nid++)
3078 			update_free_nid_bitmap(sbi, nid, true, true);
3079 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3080 	}
3081 
3082 	for (i = 0; i < nm_i->nat_blocks; i++) {
3083 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3084 		if (i >= nm_i->nat_blocks)
3085 			break;
3086 
3087 		__set_bit_le(i, nm_i->nat_block_bitmap);
3088 	}
3089 }
3090 
init_node_manager(struct f2fs_sb_info * sbi)3091 static int init_node_manager(struct f2fs_sb_info *sbi)
3092 {
3093 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3094 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3095 	unsigned char *version_bitmap;
3096 	unsigned int nat_segs;
3097 	int err;
3098 
3099 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3100 
3101 	/* segment_count_nat includes pair segment so divide to 2. */
3102 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3103 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3104 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3105 
3106 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3107 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3108 						F2FS_RESERVED_NODE_NUM;
3109 	nm_i->nid_cnt[FREE_NID] = 0;
3110 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3111 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3112 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3113 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3114 
3115 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3116 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3117 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3118 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3119 	INIT_LIST_HEAD(&nm_i->nat_entries);
3120 	spin_lock_init(&nm_i->nat_list_lock);
3121 
3122 	mutex_init(&nm_i->build_lock);
3123 	spin_lock_init(&nm_i->nid_list_lock);
3124 	init_rwsem(&nm_i->nat_tree_lock);
3125 
3126 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3127 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3128 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3129 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3130 					GFP_KERNEL);
3131 	if (!nm_i->nat_bitmap)
3132 		return -ENOMEM;
3133 
3134 	err = __get_nat_bitmaps(sbi);
3135 	if (err)
3136 		return err;
3137 
3138 #ifdef CONFIG_F2FS_CHECK_FS
3139 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3140 					GFP_KERNEL);
3141 	if (!nm_i->nat_bitmap_mir)
3142 		return -ENOMEM;
3143 #endif
3144 
3145 	return 0;
3146 }
3147 
init_free_nid_cache(struct f2fs_sb_info * sbi)3148 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3149 {
3150 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3151 	int i;
3152 
3153 	nm_i->free_nid_bitmap =
3154 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3155 					      nm_i->nat_blocks),
3156 			      GFP_KERNEL);
3157 	if (!nm_i->free_nid_bitmap)
3158 		return -ENOMEM;
3159 
3160 	for (i = 0; i < nm_i->nat_blocks; i++) {
3161 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3162 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3163 		if (!nm_i->free_nid_bitmap[i])
3164 			return -ENOMEM;
3165 	}
3166 
3167 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3168 								GFP_KERNEL);
3169 	if (!nm_i->nat_block_bitmap)
3170 		return -ENOMEM;
3171 
3172 	nm_i->free_nid_count =
3173 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3174 					      nm_i->nat_blocks),
3175 			      GFP_KERNEL);
3176 	if (!nm_i->free_nid_count)
3177 		return -ENOMEM;
3178 	return 0;
3179 }
3180 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3181 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3182 {
3183 	int err;
3184 
3185 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3186 							GFP_KERNEL);
3187 	if (!sbi->nm_info)
3188 		return -ENOMEM;
3189 
3190 	err = init_node_manager(sbi);
3191 	if (err)
3192 		return err;
3193 
3194 	err = init_free_nid_cache(sbi);
3195 	if (err)
3196 		return err;
3197 
3198 	/* load free nid status from nat_bits table */
3199 	load_free_nid_bitmap(sbi);
3200 
3201 	return f2fs_build_free_nids(sbi, true, true);
3202 }
3203 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3204 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3205 {
3206 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3207 	struct free_nid *i, *next_i;
3208 	struct nat_entry *natvec[NATVEC_SIZE];
3209 	struct nat_entry_set *setvec[SETVEC_SIZE];
3210 	nid_t nid = 0;
3211 	unsigned int found;
3212 
3213 	if (!nm_i)
3214 		return;
3215 
3216 	/* destroy free nid list */
3217 	spin_lock(&nm_i->nid_list_lock);
3218 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3219 		__remove_free_nid(sbi, i, FREE_NID);
3220 		spin_unlock(&nm_i->nid_list_lock);
3221 		kmem_cache_free(free_nid_slab, i);
3222 		spin_lock(&nm_i->nid_list_lock);
3223 	}
3224 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3225 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3226 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3227 	spin_unlock(&nm_i->nid_list_lock);
3228 
3229 	/* destroy nat cache */
3230 	down_write(&nm_i->nat_tree_lock);
3231 	while ((found = __gang_lookup_nat_cache(nm_i,
3232 					nid, NATVEC_SIZE, natvec))) {
3233 		unsigned idx;
3234 
3235 		nid = nat_get_nid(natvec[found - 1]) + 1;
3236 		for (idx = 0; idx < found; idx++) {
3237 			spin_lock(&nm_i->nat_list_lock);
3238 			list_del(&natvec[idx]->list);
3239 			spin_unlock(&nm_i->nat_list_lock);
3240 
3241 			__del_from_nat_cache(nm_i, natvec[idx]);
3242 		}
3243 	}
3244 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3245 
3246 	/* destroy nat set cache */
3247 	nid = 0;
3248 	while ((found = __gang_lookup_nat_set(nm_i,
3249 					nid, SETVEC_SIZE, setvec))) {
3250 		unsigned idx;
3251 
3252 		nid = setvec[found - 1]->set + 1;
3253 		for (idx = 0; idx < found; idx++) {
3254 			/* entry_cnt is not zero, when cp_error was occurred */
3255 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3256 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3257 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3258 		}
3259 	}
3260 	up_write(&nm_i->nat_tree_lock);
3261 
3262 	kvfree(nm_i->nat_block_bitmap);
3263 	if (nm_i->free_nid_bitmap) {
3264 		int i;
3265 
3266 		for (i = 0; i < nm_i->nat_blocks; i++)
3267 			kvfree(nm_i->free_nid_bitmap[i]);
3268 		kvfree(nm_i->free_nid_bitmap);
3269 	}
3270 	kvfree(nm_i->free_nid_count);
3271 
3272 	kvfree(nm_i->nat_bitmap);
3273 	kvfree(nm_i->nat_bits);
3274 #ifdef CONFIG_F2FS_CHECK_FS
3275 	kvfree(nm_i->nat_bitmap_mir);
3276 #endif
3277 	sbi->nm_info = NULL;
3278 	kfree(nm_i);
3279 }
3280 
f2fs_create_node_manager_caches(void)3281 int __init f2fs_create_node_manager_caches(void)
3282 {
3283 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3284 			sizeof(struct nat_entry));
3285 	if (!nat_entry_slab)
3286 		goto fail;
3287 
3288 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3289 			sizeof(struct free_nid));
3290 	if (!free_nid_slab)
3291 		goto destroy_nat_entry;
3292 
3293 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3294 			sizeof(struct nat_entry_set));
3295 	if (!nat_entry_set_slab)
3296 		goto destroy_free_nid;
3297 
3298 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3299 			sizeof(struct fsync_node_entry));
3300 	if (!fsync_node_entry_slab)
3301 		goto destroy_nat_entry_set;
3302 	return 0;
3303 
3304 destroy_nat_entry_set:
3305 	kmem_cache_destroy(nat_entry_set_slab);
3306 destroy_free_nid:
3307 	kmem_cache_destroy(free_nid_slab);
3308 destroy_nat_entry:
3309 	kmem_cache_destroy(nat_entry_slab);
3310 fail:
3311 	return -ENOMEM;
3312 }
3313 
f2fs_destroy_node_manager_caches(void)3314 void f2fs_destroy_node_manager_caches(void)
3315 {
3316 	kmem_cache_destroy(fsync_node_entry_slab);
3317 	kmem_cache_destroy(nat_entry_set_slab);
3318 	kmem_cache_destroy(free_nid_slab);
3319 	kmem_cache_destroy(nat_entry_slab);
3320 }
3321