1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * super.c - NILFS module and super block management.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 */
9 /*
10 * linux/fs/ext2/super.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 * from
18 *
19 * linux/fs/minix/inode.c
20 *
21 * Copyright (C) 1991, 1992 Linus Torvalds
22 *
23 * Big-endian to little-endian byte-swapping/bitmaps by
24 * David S. Miller (davem@caip.rutgers.edu), 1995
25 */
26
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54 "(NILFS)");
55 MODULE_LICENSE("GPL");
56
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64
__nilfs_msg(struct super_block * sb,const char * fmt,...)65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
66 {
67 struct va_format vaf;
68 va_list args;
69 int level;
70
71 va_start(args, fmt);
72
73 level = printk_get_level(fmt);
74 vaf.fmt = printk_skip_level(fmt);
75 vaf.va = &args;
76
77 if (sb)
78 printk("%c%cNILFS (%s): %pV\n",
79 KERN_SOH_ASCII, level, sb->s_id, &vaf);
80 else
81 printk("%c%cNILFS: %pV\n",
82 KERN_SOH_ASCII, level, &vaf);
83
84 va_end(args);
85 }
86
nilfs_set_error(struct super_block * sb)87 static void nilfs_set_error(struct super_block *sb)
88 {
89 struct the_nilfs *nilfs = sb->s_fs_info;
90 struct nilfs_super_block **sbp;
91
92 down_write(&nilfs->ns_sem);
93 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94 nilfs->ns_mount_state |= NILFS_ERROR_FS;
95 sbp = nilfs_prepare_super(sb, 0);
96 if (likely(sbp)) {
97 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
98 if (sbp[1])
99 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101 }
102 }
103 up_write(&nilfs->ns_sem);
104 }
105
106 /**
107 * __nilfs_error() - report failure condition on a filesystem
108 *
109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110 * reporting an error message. This function should be called when
111 * NILFS detects incoherences or defects of meta data on disk.
112 *
113 * This implements the body of nilfs_error() macro. Normally,
114 * nilfs_error() should be used. As for sustainable errors such as a
115 * single-shot I/O error, nilfs_err() should be used instead.
116 *
117 * Callers should not add a trailing newline since this will do it.
118 */
__nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)119 void __nilfs_error(struct super_block *sb, const char *function,
120 const char *fmt, ...)
121 {
122 struct the_nilfs *nilfs = sb->s_fs_info;
123 struct va_format vaf;
124 va_list args;
125
126 va_start(args, fmt);
127
128 vaf.fmt = fmt;
129 vaf.va = &args;
130
131 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132 sb->s_id, function, &vaf);
133
134 va_end(args);
135
136 if (!sb_rdonly(sb)) {
137 nilfs_set_error(sb);
138
139 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140 printk(KERN_CRIT "Remounting filesystem read-only\n");
141 sb->s_flags |= SB_RDONLY;
142 }
143 }
144
145 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146 panic("NILFS (device %s): panic forced after error\n",
147 sb->s_id);
148 }
149
nilfs_alloc_inode(struct super_block * sb)150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152 struct nilfs_inode_info *ii;
153
154 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155 if (!ii)
156 return NULL;
157 ii->i_bh = NULL;
158 ii->i_state = 0;
159 ii->i_cno = 0;
160 ii->i_assoc_inode = NULL;
161 ii->i_bmap = &ii->i_bmap_data;
162 return &ii->vfs_inode;
163 }
164
nilfs_free_inode(struct inode * inode)165 static void nilfs_free_inode(struct inode *inode)
166 {
167 if (nilfs_is_metadata_file_inode(inode))
168 nilfs_mdt_destroy(inode);
169
170 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
171 }
172
nilfs_sync_super(struct super_block * sb,int flag)173 static int nilfs_sync_super(struct super_block *sb, int flag)
174 {
175 struct the_nilfs *nilfs = sb->s_fs_info;
176 int err;
177
178 retry:
179 set_buffer_dirty(nilfs->ns_sbh[0]);
180 if (nilfs_test_opt(nilfs, BARRIER)) {
181 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183 } else {
184 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185 }
186
187 if (unlikely(err)) {
188 nilfs_err(sb, "unable to write superblock: err=%d", err);
189 if (err == -EIO && nilfs->ns_sbh[1]) {
190 /*
191 * sbp[0] points to newer log than sbp[1],
192 * so copy sbp[0] to sbp[1] to take over sbp[0].
193 */
194 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
195 nilfs->ns_sbsize);
196 nilfs_fall_back_super_block(nilfs);
197 goto retry;
198 }
199 } else {
200 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
201
202 nilfs->ns_sbwcount++;
203
204 /*
205 * The latest segment becomes trailable from the position
206 * written in superblock.
207 */
208 clear_nilfs_discontinued(nilfs);
209
210 /* update GC protection for recent segments */
211 if (nilfs->ns_sbh[1]) {
212 if (flag == NILFS_SB_COMMIT_ALL) {
213 set_buffer_dirty(nilfs->ns_sbh[1]);
214 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
215 goto out;
216 }
217 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219 sbp = nilfs->ns_sbp[1];
220 }
221
222 spin_lock(&nilfs->ns_last_segment_lock);
223 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224 spin_unlock(&nilfs->ns_last_segment_lock);
225 }
226 out:
227 return err;
228 }
229
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231 struct the_nilfs *nilfs)
232 {
233 sector_t nfreeblocks;
234
235 /* nilfs->ns_sem must be locked by the caller. */
236 nilfs_count_free_blocks(nilfs, &nfreeblocks);
237 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
238
239 spin_lock(&nilfs->ns_last_segment_lock);
240 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243 spin_unlock(&nilfs->ns_last_segment_lock);
244 }
245
nilfs_prepare_super(struct super_block * sb,int flip)246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
247 int flip)
248 {
249 struct the_nilfs *nilfs = sb->s_fs_info;
250 struct nilfs_super_block **sbp = nilfs->ns_sbp;
251
252 /* nilfs->ns_sem must be locked by the caller. */
253 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
254 if (sbp[1] &&
255 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
257 } else {
258 nilfs_crit(sb, "superblock broke");
259 return NULL;
260 }
261 } else if (sbp[1] &&
262 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
264 }
265
266 if (flip && sbp[1])
267 nilfs_swap_super_block(nilfs);
268
269 return sbp;
270 }
271
nilfs_commit_super(struct super_block * sb,int flag)272 int nilfs_commit_super(struct super_block *sb, int flag)
273 {
274 struct the_nilfs *nilfs = sb->s_fs_info;
275 struct nilfs_super_block **sbp = nilfs->ns_sbp;
276 time64_t t;
277
278 /* nilfs->ns_sem must be locked by the caller. */
279 t = ktime_get_real_seconds();
280 nilfs->ns_sbwtime = t;
281 sbp[0]->s_wtime = cpu_to_le64(t);
282 sbp[0]->s_sum = 0;
283 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284 (unsigned char *)sbp[0],
285 nilfs->ns_sbsize));
286 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287 sbp[1]->s_wtime = sbp[0]->s_wtime;
288 sbp[1]->s_sum = 0;
289 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290 (unsigned char *)sbp[1],
291 nilfs->ns_sbsize));
292 }
293 clear_nilfs_sb_dirty(nilfs);
294 nilfs->ns_flushed_device = 1;
295 /* make sure store to ns_flushed_device cannot be reordered */
296 smp_wmb();
297 return nilfs_sync_super(sb, flag);
298 }
299
300 /**
301 * nilfs_cleanup_super() - write filesystem state for cleanup
302 * @sb: super block instance to be unmounted or degraded to read-only
303 *
304 * This function restores state flags in the on-disk super block.
305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306 * filesystem was not clean previously.
307 */
nilfs_cleanup_super(struct super_block * sb)308 int nilfs_cleanup_super(struct super_block *sb)
309 {
310 struct the_nilfs *nilfs = sb->s_fs_info;
311 struct nilfs_super_block **sbp;
312 int flag = NILFS_SB_COMMIT;
313 int ret = -EIO;
314
315 sbp = nilfs_prepare_super(sb, 0);
316 if (sbp) {
317 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318 nilfs_set_log_cursor(sbp[0], nilfs);
319 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
320 /*
321 * make the "clean" flag also to the opposite
322 * super block if both super blocks point to
323 * the same checkpoint.
324 */
325 sbp[1]->s_state = sbp[0]->s_state;
326 flag = NILFS_SB_COMMIT_ALL;
327 }
328 ret = nilfs_commit_super(sb, flag);
329 }
330 return ret;
331 }
332
333 /**
334 * nilfs_move_2nd_super - relocate secondary super block
335 * @sb: super block instance
336 * @sb2off: new offset of the secondary super block (in bytes)
337 */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
339 {
340 struct the_nilfs *nilfs = sb->s_fs_info;
341 struct buffer_head *nsbh;
342 struct nilfs_super_block *nsbp;
343 sector_t blocknr, newblocknr;
344 unsigned long offset;
345 int sb2i; /* array index of the secondary superblock */
346 int ret = 0;
347
348 /* nilfs->ns_sem must be locked by the caller. */
349 if (nilfs->ns_sbh[1] &&
350 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
351 sb2i = 1;
352 blocknr = nilfs->ns_sbh[1]->b_blocknr;
353 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
354 sb2i = 0;
355 blocknr = nilfs->ns_sbh[0]->b_blocknr;
356 } else {
357 sb2i = -1;
358 blocknr = 0;
359 }
360 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361 goto out; /* super block location is unchanged */
362
363 /* Get new super block buffer */
364 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365 offset = sb2off & (nilfs->ns_blocksize - 1);
366 nsbh = sb_getblk(sb, newblocknr);
367 if (!nsbh) {
368 nilfs_warn(sb,
369 "unable to move secondary superblock to block %llu",
370 (unsigned long long)newblocknr);
371 ret = -EIO;
372 goto out;
373 }
374 nsbp = (void *)nsbh->b_data + offset;
375
376 lock_buffer(nsbh);
377 if (sb2i >= 0) {
378 /*
379 * The position of the second superblock only changes by 4KiB,
380 * which is larger than the maximum superblock data size
381 * (= 1KiB), so there is no need to use memmove() to allow
382 * overlap between source and destination.
383 */
384 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
385
386 /*
387 * Zero fill after copy to avoid overwriting in case of move
388 * within the same block.
389 */
390 memset(nsbh->b_data, 0, offset);
391 memset((void *)nsbp + nilfs->ns_sbsize, 0,
392 nsbh->b_size - offset - nilfs->ns_sbsize);
393 } else {
394 memset(nsbh->b_data, 0, nsbh->b_size);
395 }
396 set_buffer_uptodate(nsbh);
397 unlock_buffer(nsbh);
398
399 if (sb2i >= 0) {
400 brelse(nilfs->ns_sbh[sb2i]);
401 nilfs->ns_sbh[sb2i] = nsbh;
402 nilfs->ns_sbp[sb2i] = nsbp;
403 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
404 /* secondary super block will be restored to index 1 */
405 nilfs->ns_sbh[1] = nsbh;
406 nilfs->ns_sbp[1] = nsbp;
407 } else {
408 brelse(nsbh);
409 }
410 out:
411 return ret;
412 }
413
414 /**
415 * nilfs_resize_fs - resize the filesystem
416 * @sb: super block instance
417 * @newsize: new size of the filesystem (in bytes)
418 */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)419 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
420 {
421 struct the_nilfs *nilfs = sb->s_fs_info;
422 struct nilfs_super_block **sbp;
423 __u64 devsize, newnsegs;
424 loff_t sb2off;
425 int ret;
426
427 ret = -ERANGE;
428 devsize = i_size_read(sb->s_bdev->bd_inode);
429 if (newsize > devsize)
430 goto out;
431
432 /*
433 * Prevent underflow in second superblock position calculation.
434 * The exact minimum size check is done in nilfs_sufile_resize().
435 */
436 if (newsize < 4096) {
437 ret = -ENOSPC;
438 goto out;
439 }
440
441 /*
442 * Write lock is required to protect some functions depending
443 * on the number of segments, the number of reserved segments,
444 * and so forth.
445 */
446 down_write(&nilfs->ns_segctor_sem);
447
448 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
449 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
450 do_div(newnsegs, nilfs->ns_blocks_per_segment);
451
452 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
453 up_write(&nilfs->ns_segctor_sem);
454 if (ret < 0)
455 goto out;
456
457 ret = nilfs_construct_segment(sb);
458 if (ret < 0)
459 goto out;
460
461 down_write(&nilfs->ns_sem);
462 nilfs_move_2nd_super(sb, sb2off);
463 ret = -EIO;
464 sbp = nilfs_prepare_super(sb, 0);
465 if (likely(sbp)) {
466 nilfs_set_log_cursor(sbp[0], nilfs);
467 /*
468 * Drop NILFS_RESIZE_FS flag for compatibility with
469 * mount-time resize which may be implemented in a
470 * future release.
471 */
472 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
473 ~NILFS_RESIZE_FS);
474 sbp[0]->s_dev_size = cpu_to_le64(newsize);
475 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
476 if (sbp[1])
477 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
478 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
479 }
480 up_write(&nilfs->ns_sem);
481
482 /*
483 * Reset the range of allocatable segments last. This order
484 * is important in the case of expansion because the secondary
485 * superblock must be protected from log write until migration
486 * completes.
487 */
488 if (!ret)
489 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
490 out:
491 return ret;
492 }
493
nilfs_put_super(struct super_block * sb)494 static void nilfs_put_super(struct super_block *sb)
495 {
496 struct the_nilfs *nilfs = sb->s_fs_info;
497
498 nilfs_detach_log_writer(sb);
499
500 if (!sb_rdonly(sb)) {
501 down_write(&nilfs->ns_sem);
502 nilfs_cleanup_super(sb);
503 up_write(&nilfs->ns_sem);
504 }
505
506 nilfs_sysfs_delete_device_group(nilfs);
507 iput(nilfs->ns_sufile);
508 iput(nilfs->ns_cpfile);
509 iput(nilfs->ns_dat);
510
511 destroy_nilfs(nilfs);
512 sb->s_fs_info = NULL;
513 }
514
nilfs_sync_fs(struct super_block * sb,int wait)515 static int nilfs_sync_fs(struct super_block *sb, int wait)
516 {
517 struct the_nilfs *nilfs = sb->s_fs_info;
518 struct nilfs_super_block **sbp;
519 int err = 0;
520
521 /* This function is called when super block should be written back */
522 if (wait)
523 err = nilfs_construct_segment(sb);
524
525 down_write(&nilfs->ns_sem);
526 if (nilfs_sb_dirty(nilfs)) {
527 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
528 if (likely(sbp)) {
529 nilfs_set_log_cursor(sbp[0], nilfs);
530 nilfs_commit_super(sb, NILFS_SB_COMMIT);
531 }
532 }
533 up_write(&nilfs->ns_sem);
534
535 if (!err)
536 err = nilfs_flush_device(nilfs);
537
538 return err;
539 }
540
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)541 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
542 struct nilfs_root **rootp)
543 {
544 struct the_nilfs *nilfs = sb->s_fs_info;
545 struct nilfs_root *root;
546 struct nilfs_checkpoint *raw_cp;
547 struct buffer_head *bh_cp;
548 int err = -ENOMEM;
549
550 root = nilfs_find_or_create_root(
551 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
552 if (!root)
553 return err;
554
555 if (root->ifile)
556 goto reuse; /* already attached checkpoint */
557
558 down_read(&nilfs->ns_segctor_sem);
559 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
560 &bh_cp);
561 up_read(&nilfs->ns_segctor_sem);
562 if (unlikely(err)) {
563 if (err == -ENOENT || err == -EINVAL) {
564 nilfs_err(sb,
565 "Invalid checkpoint (checkpoint number=%llu)",
566 (unsigned long long)cno);
567 err = -EINVAL;
568 }
569 goto failed;
570 }
571
572 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
573 &raw_cp->cp_ifile_inode, &root->ifile);
574 if (err)
575 goto failed_bh;
576
577 atomic64_set(&root->inodes_count,
578 le64_to_cpu(raw_cp->cp_inodes_count));
579 atomic64_set(&root->blocks_count,
580 le64_to_cpu(raw_cp->cp_blocks_count));
581
582 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
583
584 reuse:
585 *rootp = root;
586 return 0;
587
588 failed_bh:
589 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
590 failed:
591 nilfs_put_root(root);
592
593 return err;
594 }
595
nilfs_freeze(struct super_block * sb)596 static int nilfs_freeze(struct super_block *sb)
597 {
598 struct the_nilfs *nilfs = sb->s_fs_info;
599 int err;
600
601 if (sb_rdonly(sb))
602 return 0;
603
604 /* Mark super block clean */
605 down_write(&nilfs->ns_sem);
606 err = nilfs_cleanup_super(sb);
607 up_write(&nilfs->ns_sem);
608 return err;
609 }
610
nilfs_unfreeze(struct super_block * sb)611 static int nilfs_unfreeze(struct super_block *sb)
612 {
613 struct the_nilfs *nilfs = sb->s_fs_info;
614
615 if (sb_rdonly(sb))
616 return 0;
617
618 down_write(&nilfs->ns_sem);
619 nilfs_setup_super(sb, false);
620 up_write(&nilfs->ns_sem);
621 return 0;
622 }
623
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)624 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
625 {
626 struct super_block *sb = dentry->d_sb;
627 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
628 struct the_nilfs *nilfs = root->nilfs;
629 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
630 unsigned long long blocks;
631 unsigned long overhead;
632 unsigned long nrsvblocks;
633 sector_t nfreeblocks;
634 u64 nmaxinodes, nfreeinodes;
635 int err;
636
637 /*
638 * Compute all of the segment blocks
639 *
640 * The blocks before first segment and after last segment
641 * are excluded.
642 */
643 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
644 - nilfs->ns_first_data_block;
645 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
646
647 /*
648 * Compute the overhead
649 *
650 * When distributing meta data blocks outside segment structure,
651 * We must count them as the overhead.
652 */
653 overhead = 0;
654
655 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
656 if (unlikely(err))
657 return err;
658
659 err = nilfs_ifile_count_free_inodes(root->ifile,
660 &nmaxinodes, &nfreeinodes);
661 if (unlikely(err)) {
662 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
663 if (err == -ERANGE) {
664 /*
665 * If nilfs_palloc_count_max_entries() returns
666 * -ERANGE error code then we simply treat
667 * curent inodes count as maximum possible and
668 * zero as free inodes value.
669 */
670 nmaxinodes = atomic64_read(&root->inodes_count);
671 nfreeinodes = 0;
672 err = 0;
673 } else
674 return err;
675 }
676
677 buf->f_type = NILFS_SUPER_MAGIC;
678 buf->f_bsize = sb->s_blocksize;
679 buf->f_blocks = blocks - overhead;
680 buf->f_bfree = nfreeblocks;
681 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
682 (buf->f_bfree - nrsvblocks) : 0;
683 buf->f_files = nmaxinodes;
684 buf->f_ffree = nfreeinodes;
685 buf->f_namelen = NILFS_NAME_LEN;
686 buf->f_fsid = u64_to_fsid(id);
687
688 return 0;
689 }
690
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)691 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
692 {
693 struct super_block *sb = dentry->d_sb;
694 struct the_nilfs *nilfs = sb->s_fs_info;
695 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
696
697 if (!nilfs_test_opt(nilfs, BARRIER))
698 seq_puts(seq, ",nobarrier");
699 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
700 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
701 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
702 seq_puts(seq, ",errors=panic");
703 if (nilfs_test_opt(nilfs, ERRORS_CONT))
704 seq_puts(seq, ",errors=continue");
705 if (nilfs_test_opt(nilfs, STRICT_ORDER))
706 seq_puts(seq, ",order=strict");
707 if (nilfs_test_opt(nilfs, NORECOVERY))
708 seq_puts(seq, ",norecovery");
709 if (nilfs_test_opt(nilfs, DISCARD))
710 seq_puts(seq, ",discard");
711
712 return 0;
713 }
714
715 static const struct super_operations nilfs_sops = {
716 .alloc_inode = nilfs_alloc_inode,
717 .free_inode = nilfs_free_inode,
718 .dirty_inode = nilfs_dirty_inode,
719 .evict_inode = nilfs_evict_inode,
720 .put_super = nilfs_put_super,
721 .sync_fs = nilfs_sync_fs,
722 .freeze_fs = nilfs_freeze,
723 .unfreeze_fs = nilfs_unfreeze,
724 .statfs = nilfs_statfs,
725 .remount_fs = nilfs_remount,
726 .show_options = nilfs_show_options
727 };
728
729 enum {
730 Opt_err_cont, Opt_err_panic, Opt_err_ro,
731 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
732 Opt_discard, Opt_nodiscard, Opt_err,
733 };
734
735 static match_table_t tokens = {
736 {Opt_err_cont, "errors=continue"},
737 {Opt_err_panic, "errors=panic"},
738 {Opt_err_ro, "errors=remount-ro"},
739 {Opt_barrier, "barrier"},
740 {Opt_nobarrier, "nobarrier"},
741 {Opt_snapshot, "cp=%u"},
742 {Opt_order, "order=%s"},
743 {Opt_norecovery, "norecovery"},
744 {Opt_discard, "discard"},
745 {Opt_nodiscard, "nodiscard"},
746 {Opt_err, NULL}
747 };
748
parse_options(char * options,struct super_block * sb,int is_remount)749 static int parse_options(char *options, struct super_block *sb, int is_remount)
750 {
751 struct the_nilfs *nilfs = sb->s_fs_info;
752 char *p;
753 substring_t args[MAX_OPT_ARGS];
754
755 if (!options)
756 return 1;
757
758 while ((p = strsep(&options, ",")) != NULL) {
759 int token;
760
761 if (!*p)
762 continue;
763
764 token = match_token(p, tokens, args);
765 switch (token) {
766 case Opt_barrier:
767 nilfs_set_opt(nilfs, BARRIER);
768 break;
769 case Opt_nobarrier:
770 nilfs_clear_opt(nilfs, BARRIER);
771 break;
772 case Opt_order:
773 if (strcmp(args[0].from, "relaxed") == 0)
774 /* Ordered data semantics */
775 nilfs_clear_opt(nilfs, STRICT_ORDER);
776 else if (strcmp(args[0].from, "strict") == 0)
777 /* Strict in-order semantics */
778 nilfs_set_opt(nilfs, STRICT_ORDER);
779 else
780 return 0;
781 break;
782 case Opt_err_panic:
783 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
784 break;
785 case Opt_err_ro:
786 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
787 break;
788 case Opt_err_cont:
789 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
790 break;
791 case Opt_snapshot:
792 if (is_remount) {
793 nilfs_err(sb,
794 "\"%s\" option is invalid for remount",
795 p);
796 return 0;
797 }
798 break;
799 case Opt_norecovery:
800 nilfs_set_opt(nilfs, NORECOVERY);
801 break;
802 case Opt_discard:
803 nilfs_set_opt(nilfs, DISCARD);
804 break;
805 case Opt_nodiscard:
806 nilfs_clear_opt(nilfs, DISCARD);
807 break;
808 default:
809 nilfs_err(sb, "unrecognized mount option \"%s\"", p);
810 return 0;
811 }
812 }
813 return 1;
814 }
815
816 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)817 nilfs_set_default_options(struct super_block *sb,
818 struct nilfs_super_block *sbp)
819 {
820 struct the_nilfs *nilfs = sb->s_fs_info;
821
822 nilfs->ns_mount_opt =
823 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
824 }
825
nilfs_setup_super(struct super_block * sb,int is_mount)826 static int nilfs_setup_super(struct super_block *sb, int is_mount)
827 {
828 struct the_nilfs *nilfs = sb->s_fs_info;
829 struct nilfs_super_block **sbp;
830 int max_mnt_count;
831 int mnt_count;
832
833 /* nilfs->ns_sem must be locked by the caller. */
834 sbp = nilfs_prepare_super(sb, 0);
835 if (!sbp)
836 return -EIO;
837
838 if (!is_mount)
839 goto skip_mount_setup;
840
841 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
842 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
843
844 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
845 nilfs_warn(sb, "mounting fs with errors");
846 #if 0
847 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
848 nilfs_warn(sb, "maximal mount count reached");
849 #endif
850 }
851 if (!max_mnt_count)
852 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
853
854 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
855 sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
856
857 skip_mount_setup:
858 sbp[0]->s_state =
859 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
860 /* synchronize sbp[1] with sbp[0] */
861 if (sbp[1])
862 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
863 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
864 }
865
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)866 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
867 u64 pos, int blocksize,
868 struct buffer_head **pbh)
869 {
870 unsigned long long sb_index = pos;
871 unsigned long offset;
872
873 offset = do_div(sb_index, blocksize);
874 *pbh = sb_bread(sb, sb_index);
875 if (!*pbh)
876 return NULL;
877 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
878 }
879
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)880 int nilfs_store_magic_and_option(struct super_block *sb,
881 struct nilfs_super_block *sbp,
882 char *data)
883 {
884 struct the_nilfs *nilfs = sb->s_fs_info;
885
886 sb->s_magic = le16_to_cpu(sbp->s_magic);
887
888 /* FS independent flags */
889 #ifdef NILFS_ATIME_DISABLE
890 sb->s_flags |= SB_NOATIME;
891 #endif
892
893 nilfs_set_default_options(sb, sbp);
894
895 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
896 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
897 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
898 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
899
900 return !parse_options(data, sb, 0) ? -EINVAL : 0;
901 }
902
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)903 int nilfs_check_feature_compatibility(struct super_block *sb,
904 struct nilfs_super_block *sbp)
905 {
906 __u64 features;
907
908 features = le64_to_cpu(sbp->s_feature_incompat) &
909 ~NILFS_FEATURE_INCOMPAT_SUPP;
910 if (features) {
911 nilfs_err(sb,
912 "couldn't mount because of unsupported optional features (%llx)",
913 (unsigned long long)features);
914 return -EINVAL;
915 }
916 features = le64_to_cpu(sbp->s_feature_compat_ro) &
917 ~NILFS_FEATURE_COMPAT_RO_SUPP;
918 if (!sb_rdonly(sb) && features) {
919 nilfs_err(sb,
920 "couldn't mount RDWR because of unsupported optional features (%llx)",
921 (unsigned long long)features);
922 return -EINVAL;
923 }
924 return 0;
925 }
926
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)927 static int nilfs_get_root_dentry(struct super_block *sb,
928 struct nilfs_root *root,
929 struct dentry **root_dentry)
930 {
931 struct inode *inode;
932 struct dentry *dentry;
933 int ret = 0;
934
935 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
936 if (IS_ERR(inode)) {
937 ret = PTR_ERR(inode);
938 nilfs_err(sb, "error %d getting root inode", ret);
939 goto out;
940 }
941 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
942 iput(inode);
943 nilfs_err(sb, "corrupt root inode");
944 ret = -EINVAL;
945 goto out;
946 }
947
948 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
949 dentry = d_find_alias(inode);
950 if (!dentry) {
951 dentry = d_make_root(inode);
952 if (!dentry) {
953 ret = -ENOMEM;
954 goto failed_dentry;
955 }
956 } else {
957 iput(inode);
958 }
959 } else {
960 dentry = d_obtain_root(inode);
961 if (IS_ERR(dentry)) {
962 ret = PTR_ERR(dentry);
963 goto failed_dentry;
964 }
965 }
966 *root_dentry = dentry;
967 out:
968 return ret;
969
970 failed_dentry:
971 nilfs_err(sb, "error %d getting root dentry", ret);
972 goto out;
973 }
974
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)975 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
976 struct dentry **root_dentry)
977 {
978 struct the_nilfs *nilfs = s->s_fs_info;
979 struct nilfs_root *root;
980 int ret;
981
982 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
983
984 down_read(&nilfs->ns_segctor_sem);
985 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
986 up_read(&nilfs->ns_segctor_sem);
987 if (ret < 0) {
988 ret = (ret == -ENOENT) ? -EINVAL : ret;
989 goto out;
990 } else if (!ret) {
991 nilfs_err(s,
992 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
993 (unsigned long long)cno);
994 ret = -EINVAL;
995 goto out;
996 }
997
998 ret = nilfs_attach_checkpoint(s, cno, false, &root);
999 if (ret) {
1000 nilfs_err(s,
1001 "error %d while loading snapshot (checkpoint number=%llu)",
1002 ret, (unsigned long long)cno);
1003 goto out;
1004 }
1005 ret = nilfs_get_root_dentry(s, root, root_dentry);
1006 nilfs_put_root(root);
1007 out:
1008 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1009 return ret;
1010 }
1011
1012 /**
1013 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1014 * @root_dentry: root dentry of the tree to be shrunk
1015 *
1016 * This function returns true if the tree was in-use.
1017 */
nilfs_tree_is_busy(struct dentry * root_dentry)1018 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1019 {
1020 shrink_dcache_parent(root_dentry);
1021 return d_count(root_dentry) > 1;
1022 }
1023
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)1024 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1025 {
1026 struct the_nilfs *nilfs = sb->s_fs_info;
1027 struct nilfs_root *root;
1028 struct inode *inode;
1029 struct dentry *dentry;
1030 int ret;
1031
1032 if (cno > nilfs->ns_cno)
1033 return false;
1034
1035 if (cno >= nilfs_last_cno(nilfs))
1036 return true; /* protect recent checkpoints */
1037
1038 ret = false;
1039 root = nilfs_lookup_root(nilfs, cno);
1040 if (root) {
1041 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1042 if (inode) {
1043 dentry = d_find_alias(inode);
1044 if (dentry) {
1045 ret = nilfs_tree_is_busy(dentry);
1046 dput(dentry);
1047 }
1048 iput(inode);
1049 }
1050 nilfs_put_root(root);
1051 }
1052 return ret;
1053 }
1054
1055 /**
1056 * nilfs_fill_super() - initialize a super block instance
1057 * @sb: super_block
1058 * @data: mount options
1059 * @silent: silent mode flag
1060 *
1061 * This function is called exclusively by nilfs->ns_mount_mutex.
1062 * So, the recovery process is protected from other simultaneous mounts.
1063 */
1064 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1065 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1066 {
1067 struct the_nilfs *nilfs;
1068 struct nilfs_root *fsroot;
1069 __u64 cno;
1070 int err;
1071
1072 nilfs = alloc_nilfs(sb);
1073 if (!nilfs)
1074 return -ENOMEM;
1075
1076 sb->s_fs_info = nilfs;
1077
1078 err = init_nilfs(nilfs, sb, (char *)data);
1079 if (err)
1080 goto failed_nilfs;
1081
1082 sb->s_op = &nilfs_sops;
1083 sb->s_export_op = &nilfs_export_ops;
1084 sb->s_root = NULL;
1085 sb->s_time_gran = 1;
1086 sb->s_max_links = NILFS_LINK_MAX;
1087
1088 sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1089
1090 err = load_nilfs(nilfs, sb);
1091 if (err)
1092 goto failed_nilfs;
1093
1094 cno = nilfs_last_cno(nilfs);
1095 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1096 if (err) {
1097 nilfs_err(sb,
1098 "error %d while loading last checkpoint (checkpoint number=%llu)",
1099 err, (unsigned long long)cno);
1100 goto failed_unload;
1101 }
1102
1103 if (!sb_rdonly(sb)) {
1104 err = nilfs_attach_log_writer(sb, fsroot);
1105 if (err)
1106 goto failed_checkpoint;
1107 }
1108
1109 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1110 if (err)
1111 goto failed_segctor;
1112
1113 nilfs_put_root(fsroot);
1114
1115 if (!sb_rdonly(sb)) {
1116 down_write(&nilfs->ns_sem);
1117 nilfs_setup_super(sb, true);
1118 up_write(&nilfs->ns_sem);
1119 }
1120
1121 return 0;
1122
1123 failed_segctor:
1124 nilfs_detach_log_writer(sb);
1125
1126 failed_checkpoint:
1127 nilfs_put_root(fsroot);
1128
1129 failed_unload:
1130 nilfs_sysfs_delete_device_group(nilfs);
1131 iput(nilfs->ns_sufile);
1132 iput(nilfs->ns_cpfile);
1133 iput(nilfs->ns_dat);
1134
1135 failed_nilfs:
1136 destroy_nilfs(nilfs);
1137 return err;
1138 }
1139
nilfs_remount(struct super_block * sb,int * flags,char * data)1140 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1141 {
1142 struct the_nilfs *nilfs = sb->s_fs_info;
1143 unsigned long old_sb_flags;
1144 unsigned long old_mount_opt;
1145 int err;
1146
1147 sync_filesystem(sb);
1148 old_sb_flags = sb->s_flags;
1149 old_mount_opt = nilfs->ns_mount_opt;
1150
1151 if (!parse_options(data, sb, 1)) {
1152 err = -EINVAL;
1153 goto restore_opts;
1154 }
1155 sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1156
1157 err = -EINVAL;
1158
1159 if (!nilfs_valid_fs(nilfs)) {
1160 nilfs_warn(sb,
1161 "couldn't remount because the filesystem is in an incomplete recovery state");
1162 goto restore_opts;
1163 }
1164
1165 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1166 goto out;
1167 if (*flags & SB_RDONLY) {
1168 sb->s_flags |= SB_RDONLY;
1169
1170 /*
1171 * Remounting a valid RW partition RDONLY, so set
1172 * the RDONLY flag and then mark the partition as valid again.
1173 */
1174 down_write(&nilfs->ns_sem);
1175 nilfs_cleanup_super(sb);
1176 up_write(&nilfs->ns_sem);
1177 } else {
1178 __u64 features;
1179 struct nilfs_root *root;
1180
1181 /*
1182 * Mounting a RDONLY partition read-write, so reread and
1183 * store the current valid flag. (It may have been changed
1184 * by fsck since we originally mounted the partition.)
1185 */
1186 down_read(&nilfs->ns_sem);
1187 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1188 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1189 up_read(&nilfs->ns_sem);
1190 if (features) {
1191 nilfs_warn(sb,
1192 "couldn't remount RDWR because of unsupported optional features (%llx)",
1193 (unsigned long long)features);
1194 err = -EROFS;
1195 goto restore_opts;
1196 }
1197
1198 sb->s_flags &= ~SB_RDONLY;
1199
1200 root = NILFS_I(d_inode(sb->s_root))->i_root;
1201 err = nilfs_attach_log_writer(sb, root);
1202 if (err)
1203 goto restore_opts;
1204
1205 down_write(&nilfs->ns_sem);
1206 nilfs_setup_super(sb, true);
1207 up_write(&nilfs->ns_sem);
1208 }
1209 out:
1210 return 0;
1211
1212 restore_opts:
1213 sb->s_flags = old_sb_flags;
1214 nilfs->ns_mount_opt = old_mount_opt;
1215 return err;
1216 }
1217
1218 struct nilfs_super_data {
1219 struct block_device *bdev;
1220 __u64 cno;
1221 int flags;
1222 };
1223
nilfs_parse_snapshot_option(const char * option,const substring_t * arg,struct nilfs_super_data * sd)1224 static int nilfs_parse_snapshot_option(const char *option,
1225 const substring_t *arg,
1226 struct nilfs_super_data *sd)
1227 {
1228 unsigned long long val;
1229 const char *msg = NULL;
1230 int err;
1231
1232 if (!(sd->flags & SB_RDONLY)) {
1233 msg = "read-only option is not specified";
1234 goto parse_error;
1235 }
1236
1237 err = kstrtoull(arg->from, 0, &val);
1238 if (err) {
1239 if (err == -ERANGE)
1240 msg = "too large checkpoint number";
1241 else
1242 msg = "malformed argument";
1243 goto parse_error;
1244 } else if (val == 0) {
1245 msg = "invalid checkpoint number 0";
1246 goto parse_error;
1247 }
1248 sd->cno = val;
1249 return 0;
1250
1251 parse_error:
1252 nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253 return 1;
1254 }
1255
1256 /**
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1260 */
nilfs_identify(char * data,struct nilfs_super_data * sd)1261 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262 {
1263 char *p, *options = data;
1264 substring_t args[MAX_OPT_ARGS];
1265 int token;
1266 int ret = 0;
1267
1268 do {
1269 p = strsep(&options, ",");
1270 if (p != NULL && *p) {
1271 token = match_token(p, tokens, args);
1272 if (token == Opt_snapshot)
1273 ret = nilfs_parse_snapshot_option(p, &args[0],
1274 sd);
1275 }
1276 if (!options)
1277 break;
1278 BUG_ON(options == data);
1279 *(options - 1) = ',';
1280 } while (!ret);
1281 return ret;
1282 }
1283
nilfs_set_bdev_super(struct super_block * s,void * data)1284 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285 {
1286 s->s_bdev = data;
1287 s->s_dev = s->s_bdev->bd_dev;
1288 return 0;
1289 }
1290
nilfs_test_bdev_super(struct super_block * s,void * data)1291 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1292 {
1293 return (void *)s->s_bdev == data;
1294 }
1295
1296 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1297 nilfs_mount(struct file_system_type *fs_type, int flags,
1298 const char *dev_name, void *data)
1299 {
1300 struct nilfs_super_data sd;
1301 struct super_block *s;
1302 fmode_t mode = FMODE_READ | FMODE_EXCL;
1303 struct dentry *root_dentry;
1304 int err, s_new = false;
1305
1306 if (!(flags & SB_RDONLY))
1307 mode |= FMODE_WRITE;
1308
1309 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1310 if (IS_ERR(sd.bdev))
1311 return ERR_CAST(sd.bdev);
1312
1313 sd.cno = 0;
1314 sd.flags = flags;
1315 if (nilfs_identify((char *)data, &sd)) {
1316 err = -EINVAL;
1317 goto failed;
1318 }
1319
1320 /*
1321 * once the super is inserted into the list by sget, s_umount
1322 * will protect the lockfs code from trying to start a snapshot
1323 * while we are mounting
1324 */
1325 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1326 if (sd.bdev->bd_fsfreeze_count > 0) {
1327 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1328 err = -EBUSY;
1329 goto failed;
1330 }
1331 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1332 sd.bdev);
1333 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1334 if (IS_ERR(s)) {
1335 err = PTR_ERR(s);
1336 goto failed;
1337 }
1338
1339 if (!s->s_root) {
1340 s_new = true;
1341
1342 /* New superblock instance created */
1343 s->s_mode = mode;
1344 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1345 sb_set_blocksize(s, block_size(sd.bdev));
1346
1347 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1348 if (err)
1349 goto failed_super;
1350
1351 s->s_flags |= SB_ACTIVE;
1352 } else if (!sd.cno) {
1353 if (nilfs_tree_is_busy(s->s_root)) {
1354 if ((flags ^ s->s_flags) & SB_RDONLY) {
1355 nilfs_err(s,
1356 "the device already has a %s mount.",
1357 sb_rdonly(s) ? "read-only" : "read/write");
1358 err = -EBUSY;
1359 goto failed_super;
1360 }
1361 } else {
1362 /*
1363 * Try remount to setup mount states if the current
1364 * tree is not mounted and only snapshots use this sb.
1365 */
1366 err = nilfs_remount(s, &flags, data);
1367 if (err)
1368 goto failed_super;
1369 }
1370 }
1371
1372 if (sd.cno) {
1373 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1374 if (err)
1375 goto failed_super;
1376 } else {
1377 root_dentry = dget(s->s_root);
1378 }
1379
1380 if (!s_new)
1381 blkdev_put(sd.bdev, mode);
1382
1383 return root_dentry;
1384
1385 failed_super:
1386 deactivate_locked_super(s);
1387
1388 failed:
1389 if (!s_new)
1390 blkdev_put(sd.bdev, mode);
1391 return ERR_PTR(err);
1392 }
1393
1394 struct file_system_type nilfs_fs_type = {
1395 .owner = THIS_MODULE,
1396 .name = "nilfs2",
1397 .mount = nilfs_mount,
1398 .kill_sb = kill_block_super,
1399 .fs_flags = FS_REQUIRES_DEV,
1400 };
1401 MODULE_ALIAS_FS("nilfs2");
1402
nilfs_inode_init_once(void * obj)1403 static void nilfs_inode_init_once(void *obj)
1404 {
1405 struct nilfs_inode_info *ii = obj;
1406
1407 INIT_LIST_HEAD(&ii->i_dirty);
1408 #ifdef CONFIG_NILFS_XATTR
1409 init_rwsem(&ii->xattr_sem);
1410 #endif
1411 inode_init_once(&ii->vfs_inode);
1412 }
1413
nilfs_segbuf_init_once(void * obj)1414 static void nilfs_segbuf_init_once(void *obj)
1415 {
1416 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1417 }
1418
nilfs_destroy_cachep(void)1419 static void nilfs_destroy_cachep(void)
1420 {
1421 /*
1422 * Make sure all delayed rcu free inodes are flushed before we
1423 * destroy cache.
1424 */
1425 rcu_barrier();
1426
1427 kmem_cache_destroy(nilfs_inode_cachep);
1428 kmem_cache_destroy(nilfs_transaction_cachep);
1429 kmem_cache_destroy(nilfs_segbuf_cachep);
1430 kmem_cache_destroy(nilfs_btree_path_cache);
1431 }
1432
nilfs_init_cachep(void)1433 static int __init nilfs_init_cachep(void)
1434 {
1435 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1436 sizeof(struct nilfs_inode_info), 0,
1437 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1438 nilfs_inode_init_once);
1439 if (!nilfs_inode_cachep)
1440 goto fail;
1441
1442 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1443 sizeof(struct nilfs_transaction_info), 0,
1444 SLAB_RECLAIM_ACCOUNT, NULL);
1445 if (!nilfs_transaction_cachep)
1446 goto fail;
1447
1448 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1449 sizeof(struct nilfs_segment_buffer), 0,
1450 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1451 if (!nilfs_segbuf_cachep)
1452 goto fail;
1453
1454 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1455 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1456 0, 0, NULL);
1457 if (!nilfs_btree_path_cache)
1458 goto fail;
1459
1460 return 0;
1461
1462 fail:
1463 nilfs_destroy_cachep();
1464 return -ENOMEM;
1465 }
1466
init_nilfs_fs(void)1467 static int __init init_nilfs_fs(void)
1468 {
1469 int err;
1470
1471 err = nilfs_init_cachep();
1472 if (err)
1473 goto fail;
1474
1475 err = nilfs_sysfs_init();
1476 if (err)
1477 goto free_cachep;
1478
1479 err = register_filesystem(&nilfs_fs_type);
1480 if (err)
1481 goto deinit_sysfs_entry;
1482
1483 printk(KERN_INFO "NILFS version 2 loaded\n");
1484 return 0;
1485
1486 deinit_sysfs_entry:
1487 nilfs_sysfs_exit();
1488 free_cachep:
1489 nilfs_destroy_cachep();
1490 fail:
1491 return err;
1492 }
1493
exit_nilfs_fs(void)1494 static void __exit exit_nilfs_fs(void)
1495 {
1496 nilfs_destroy_cachep();
1497 nilfs_sysfs_exit();
1498 unregister_filesystem(&nilfs_fs_type);
1499 }
1500
1501 module_init(init_nilfs_fs)
1502 module_exit(exit_nilfs_fs)
1503