• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Vendors should document their modifier usage in as much detail as
62  * possible, to ensure maximum compatibility across devices, drivers and
63  * applications.
64  *
65  * The authoritative list of format modifier codes is found in
66  * `include/uapi/drm/drm_fourcc.h`
67  */
68 
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
71 
72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
73 
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID	0
76 
77 /* color index */
78 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79 
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82 
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85 
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89 
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93 
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97 
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103 
104 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108 
109 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113 
114 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118 
119 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121 
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125 
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131 
132 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136 
137 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141 
142 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146 
147 /*
148  * Floating point 64bpp RGB
149  * IEEE 754-2008 binary16 half-precision float
150  * [15:0] sign:exponent:mantissa 1:5:10
151  */
152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
154 
155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
157 
158 /* packed YCbCr */
159 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
161 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
162 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
163 
164 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
166 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
167 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
168 
169 /*
170  * packed Y2xx indicate for each component, xx valid data occupy msb
171  * 16-xx padding occupy lsb
172  */
173 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
175 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
176 
177 /*
178  * packed Y4xx indicate for each component, xx valid data occupy msb
179  * 16-xx padding occupy lsb except Y410
180  */
181 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
182 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
183 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
184 
185 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
186 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
187 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
188 
189 /*
190  * packed YCbCr420 2x2 tiled formats
191  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
192  */
193 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
194 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
195 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
197 
198 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
199 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
200 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
202 
203 /*
204  * 1-plane YUV 4:2:0
205  * In these formats, the component ordering is specified (Y, followed by U
206  * then V), but the exact Linear layout is undefined.
207  * These formats can only be used with a non-Linear modifier.
208  */
209 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
210 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
211 
212 /*
213  * 2 plane RGB + A
214  * index 0 = RGB plane, same format as the corresponding non _A8 format has
215  * index 1 = A plane, [7:0] A
216  */
217 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
218 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
219 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
220 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
221 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
222 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
223 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
224 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
225 
226 /*
227  * 2 plane YCbCr
228  * index 0 = Y plane, [7:0] Y
229  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
230  * or
231  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
232  */
233 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
234 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
235 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
239 /*
240  * 2 plane YCbCr
241  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
242  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
243  */
244 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
245 
246 /*
247  * 2 plane YCbCr MSB aligned
248  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
249  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
250  */
251 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
252 
253 /*
254  * 2 plane YCbCr MSB aligned
255  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
256  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
257  */
258 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
259 
260 /*
261  * 2 plane YCbCr MSB aligned
262  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
263  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
264  */
265 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
266 
267 /*
268  * 2 plane YCbCr MSB aligned
269  * index 0 = Y plane, [15:0] Y little endian
270  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
271  */
272 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
273 
274 /* 2 plane YCbCr420.
275  * 3 10 bit components and 2 padding bits packed into 4 bytes.
276  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
277  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
278  */
279 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
280 
281 /* 3 plane non-subsampled (444) YCbCr
282  * 16 bits per component, but only 10 bits are used and 6 bits are padded
283  * index 0: Y plane, [15:0] Y:x [10:6] little endian
284  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
285  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
286  */
287 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
288 
289 /* 3 plane non-subsampled (444) YCrCb
290  * 16 bits per component, but only 10 bits are used and 6 bits are padded
291  * index 0: Y plane, [15:0] Y:x [10:6] little endian
292  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
293  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
294  */
295 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
296 
297 /*
298  * 3 plane YCbCr
299  * index 0: Y plane, [7:0] Y
300  * index 1: Cb plane, [7:0] Cb
301  * index 2: Cr plane, [7:0] Cr
302  * or
303  * index 1: Cr plane, [7:0] Cr
304  * index 2: Cb plane, [7:0] Cb
305  */
306 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
307 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
308 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
309 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
310 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
311 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
312 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
313 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
314 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
315 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
316 
317 
318 /*
319  * Format Modifiers:
320  *
321  * Format modifiers describe, typically, a re-ordering or modification
322  * of the data in a plane of an FB.  This can be used to express tiled/
323  * swizzled formats, or compression, or a combination of the two.
324  *
325  * The upper 8 bits of the format modifier are a vendor-id as assigned
326  * below.  The lower 56 bits are assigned as vendor sees fit.
327  */
328 
329 /* Vendor Ids: */
330 #define DRM_FORMAT_MOD_NONE           0
331 #define DRM_FORMAT_MOD_VENDOR_NONE    0
332 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
333 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
334 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
335 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
336 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
337 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
338 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
339 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
340 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
341 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
342 
343 /* add more to the end as needed */
344 
345 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
346 
347 #define fourcc_mod_code(vendor, val) \
348 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
349 
350 /*
351  * Format Modifier tokens:
352  *
353  * When adding a new token please document the layout with a code comment,
354  * similar to the fourcc codes above. drm_fourcc.h is considered the
355  * authoritative source for all of these.
356  *
357  * Generic modifier names:
358  *
359  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
360  * for layouts which are common across multiple vendors. To preserve
361  * compatibility, in cases where a vendor-specific definition already exists and
362  * a generic name for it is desired, the common name is a purely symbolic alias
363  * and must use the same numerical value as the original definition.
364  *
365  * Note that generic names should only be used for modifiers which describe
366  * generic layouts (such as pixel re-ordering), which may have
367  * independently-developed support across multiple vendors.
368  *
369  * In future cases where a generic layout is identified before merging with a
370  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
371  * 'NONE' could be considered. This should only be for obvious, exceptional
372  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
373  * apply to a single vendor.
374  *
375  * Generic names should not be used for cases where multiple hardware vendors
376  * have implementations of the same standardised compression scheme (such as
377  * AFBC). In those cases, all implementations should use the same format
378  * modifier(s), reflecting the vendor of the standard.
379  */
380 
381 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
382 
383 /*
384  * Invalid Modifier
385  *
386  * This modifier can be used as a sentinel to terminate the format modifiers
387  * list, or to initialize a variable with an invalid modifier. It might also be
388  * used to report an error back to userspace for certain APIs.
389  */
390 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
391 
392 /*
393  * Linear Layout
394  *
395  * Just plain linear layout. Note that this is different from no specifying any
396  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
397  * which tells the driver to also take driver-internal information into account
398  * and so might actually result in a tiled framebuffer.
399  */
400 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
401 
402 /* Intel framebuffer modifiers */
403 
404 /*
405  * Intel X-tiling layout
406  *
407  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
408  * in row-major layout. Within the tile bytes are laid out row-major, with
409  * a platform-dependent stride. On top of that the memory can apply
410  * platform-depending swizzling of some higher address bits into bit6.
411  *
412  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
413  * On earlier platforms the is highly platforms specific and not useful for
414  * cross-driver sharing. It exists since on a given platform it does uniquely
415  * identify the layout in a simple way for i915-specific userspace, which
416  * facilitated conversion of userspace to modifiers. Additionally the exact
417  * format on some really old platforms is not known.
418  */
419 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
420 
421 /*
422  * Intel Y-tiling layout
423  *
424  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
425  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
426  * chunks column-major, with a platform-dependent height. On top of that the
427  * memory can apply platform-depending swizzling of some higher address bits
428  * into bit6.
429  *
430  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
431  * On earlier platforms the is highly platforms specific and not useful for
432  * cross-driver sharing. It exists since on a given platform it does uniquely
433  * identify the layout in a simple way for i915-specific userspace, which
434  * facilitated conversion of userspace to modifiers. Additionally the exact
435  * format on some really old platforms is not known.
436  */
437 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
438 
439 /*
440  * Intel Yf-tiling layout
441  *
442  * This is a tiled layout using 4Kb tiles in row-major layout.
443  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
444  * are arranged in four groups (two wide, two high) with column-major layout.
445  * Each group therefore consits out of four 256 byte units, which are also laid
446  * out as 2x2 column-major.
447  * 256 byte units are made out of four 64 byte blocks of pixels, producing
448  * either a square block or a 2:1 unit.
449  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
450  * in pixel depends on the pixel depth.
451  */
452 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
453 
454 /*
455  * Intel color control surface (CCS) for render compression
456  *
457  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
458  * The main surface will be plane index 0 and must be Y/Yf-tiled,
459  * the CCS will be plane index 1.
460  *
461  * Each CCS tile matches a 1024x512 pixel area of the main surface.
462  * To match certain aspects of the 3D hardware the CCS is
463  * considered to be made up of normal 128Bx32 Y tiles, Thus
464  * the CCS pitch must be specified in multiples of 128 bytes.
465  *
466  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
467  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
468  * But that fact is not relevant unless the memory is accessed
469  * directly.
470  */
471 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
472 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
473 
474 /*
475  * Intel color control surfaces (CCS) for Gen-12 render compression.
476  *
477  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
478  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
479  * main surface. In other words, 4 bits in CCS map to a main surface cache
480  * line pair. The main surface pitch is required to be a multiple of four
481  * Y-tile widths.
482  */
483 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
484 
485 /*
486  * Intel color control surfaces (CCS) for Gen-12 media compression
487  *
488  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
489  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
490  * main surface. In other words, 4 bits in CCS map to a main surface cache
491  * line pair. The main surface pitch is required to be a multiple of four
492  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
493  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
494  * planes 2 and 3 for the respective CCS.
495  */
496 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
497 
498 /*
499  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
500  *
501  * Macroblocks are laid in a Z-shape, and each pixel data is following the
502  * standard NV12 style.
503  * As for NV12, an image is the result of two frame buffers: one for Y,
504  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
505  * Alignment requirements are (for each buffer):
506  * - multiple of 128 pixels for the width
507  * - multiple of  32 pixels for the height
508  *
509  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
510  */
511 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
512 
513 /*
514  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
515  *
516  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
517  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
518  * they correspond to their 16x16 luma block.
519  */
520 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
521 
522 /*
523  * Qualcomm Compressed Format
524  *
525  * Refers to a compressed variant of the base format that is compressed.
526  * Implementation may be platform and base-format specific.
527  *
528  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
529  * Pixel data pitch/stride is aligned with macrotile width.
530  * Pixel data height is aligned with macrotile height.
531  * Entire pixel data buffer is aligned with 4k(bytes).
532  */
533 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
534 
535 /* Vivante framebuffer modifiers */
536 
537 /*
538  * Vivante 4x4 tiling layout
539  *
540  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
541  * layout.
542  */
543 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
544 
545 /*
546  * Vivante 64x64 super-tiling layout
547  *
548  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
549  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
550  * major layout.
551  *
552  * For more information: see
553  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
554  */
555 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
556 
557 /*
558  * Vivante 4x4 tiling layout for dual-pipe
559  *
560  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
561  * different base address. Offsets from the base addresses are therefore halved
562  * compared to the non-split tiled layout.
563  */
564 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
565 
566 /*
567  * Vivante 64x64 super-tiling layout for dual-pipe
568  *
569  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
570  * starts at a different base address. Offsets from the base addresses are
571  * therefore halved compared to the non-split super-tiled layout.
572  */
573 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
574 
575 /* NVIDIA frame buffer modifiers */
576 
577 /*
578  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
579  *
580  * Pixels are arranged in simple tiles of 16 x 16 bytes.
581  */
582 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
583 
584 /*
585  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
586  * and Tegra GPUs starting with Tegra K1.
587  *
588  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
589  * based on the architecture generation.  GOBs themselves are then arranged in
590  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
591  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
592  * a block depth or height of "4").
593  *
594  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
595  * in full detail.
596  *
597  *       Macro
598  * Bits  Param Description
599  * ----  ----- -----------------------------------------------------------------
600  *
601  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
602  *             compatibility with the existing
603  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
604  *
605  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
606  *             compatibility with the existing
607  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
608  *
609  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
610  *             size).  Must be zero.
611  *
612  *             Note there is no log2(width) parameter.  Some portions of the
613  *             hardware support a block width of two gobs, but it is impractical
614  *             to use due to lack of support elsewhere, and has no known
615  *             benefits.
616  *
617  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
618  *             in blocks, specified via log2(tile width in blocks)).  Must be
619  *             zero.
620  *
621  * 19:12 k     Page Kind.  This value directly maps to a field in the page
622  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
623  *             in memory and can be derived from the tuple
624  *
625  *               (format, GPU model, compression type, samples per pixel)
626  *
627  *             Where compression type is defined below.  If GPU model were
628  *             implied by the format modifier, format, or memory buffer, page
629  *             kind would not need to be included in the modifier itself, but
630  *             since the modifier should define the layout of the associated
631  *             memory buffer independent from any device or other context, it
632  *             must be included here.
633  *
634  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
635  *             starting with Fermi GPUs.  Additionally, the mapping between page
636  *             kind and bit layout has changed at various points.
637  *
638  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
639  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
640  *               2 = Gob Height 8, Turing+ Page Kind mapping
641  *               3 = Reserved for future use.
642  *
643  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
644  *             bit remapping step that occurs at an even lower level than the
645  *             page kind and block linear swizzles.  This causes the layout of
646  *             surfaces mapped in those SOC's GPUs to be incompatible with the
647  *             equivalent mapping on other GPUs in the same system.
648  *
649  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
650  *               1 = Desktop GPU and Tegra Xavier+ Layout
651  *
652  * 25:23 c     Lossless Framebuffer Compression type.
653  *
654  *               0 = none
655  *               1 = ROP/3D, layout 1, exact compression format implied by Page
656  *                   Kind field
657  *               2 = ROP/3D, layout 2, exact compression format implied by Page
658  *                   Kind field
659  *               3 = CDE horizontal
660  *               4 = CDE vertical
661  *               5 = Reserved for future use
662  *               6 = Reserved for future use
663  *               7 = Reserved for future use
664  *
665  * 55:25 -     Reserved for future use.  Must be zero.
666  */
667 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
668 	fourcc_mod_code(NVIDIA, (0x10 | \
669 				 ((h) & 0xf) | \
670 				 (((k) & 0xff) << 12) | \
671 				 (((g) & 0x3) << 20) | \
672 				 (((s) & 0x1) << 22) | \
673 				 (((c) & 0x7) << 23)))
674 
675 /* To grandfather in prior block linear format modifiers to the above layout,
676  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
677  * with block-linear layouts, is remapped within drivers to the value 0xfe,
678  * which corresponds to the "generic" kind used for simple single-sample
679  * uncompressed color formats on Fermi - Volta GPUs.
680  */
681 static inline __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)682 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
683 {
684 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
685 		return modifier;
686 	else
687 		return modifier | (0xfe << 12);
688 }
689 
690 /*
691  * 16Bx2 Block Linear layout, used by Tegra K1 and later
692  *
693  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
694  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
695  *
696  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
697  *
698  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
699  * Valid values are:
700  *
701  * 0 == ONE_GOB
702  * 1 == TWO_GOBS
703  * 2 == FOUR_GOBS
704  * 3 == EIGHT_GOBS
705  * 4 == SIXTEEN_GOBS
706  * 5 == THIRTYTWO_GOBS
707  *
708  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
709  * in full detail.
710  */
711 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
712 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
713 
714 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
715 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
716 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
717 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
718 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
719 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
720 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
721 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
722 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
723 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
724 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
725 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
726 
727 /*
728  * Some Broadcom modifiers take parameters, for example the number of
729  * vertical lines in the image. Reserve the lower 32 bits for modifier
730  * type, and the next 24 bits for parameters. Top 8 bits are the
731  * vendor code.
732  */
733 #define __fourcc_mod_broadcom_param_shift 8
734 #define __fourcc_mod_broadcom_param_bits 48
735 #define fourcc_mod_broadcom_code(val, params) \
736 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
737 #define fourcc_mod_broadcom_param(m) \
738 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
739 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
740 #define fourcc_mod_broadcom_mod(m) \
741 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
742 		 __fourcc_mod_broadcom_param_shift))
743 
744 /*
745  * Broadcom VC4 "T" format
746  *
747  * This is the primary layout that the V3D GPU can texture from (it
748  * can't do linear).  The T format has:
749  *
750  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
751  *   pixels at 32 bit depth.
752  *
753  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
754  *   16x16 pixels).
755  *
756  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
757  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
758  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
759  *
760  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
761  *   tiles) or right-to-left (odd rows of 4k tiles).
762  */
763 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
764 
765 /*
766  * Broadcom SAND format
767  *
768  * This is the native format that the H.264 codec block uses.  For VC4
769  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
770  *
771  * The image can be considered to be split into columns, and the
772  * columns are placed consecutively into memory.  The width of those
773  * columns can be either 32, 64, 128, or 256 pixels, but in practice
774  * only 128 pixel columns are used.
775  *
776  * The pitch between the start of each column is set to optimally
777  * switch between SDRAM banks. This is passed as the number of lines
778  * of column width in the modifier (we can't use the stride value due
779  * to various core checks that look at it , so you should set the
780  * stride to width*cpp).
781  *
782  * Note that the column height for this format modifier is the same
783  * for all of the planes, assuming that each column contains both Y
784  * and UV.  Some SAND-using hardware stores UV in a separate tiled
785  * image from Y to reduce the column height, which is not supported
786  * with these modifiers.
787  *
788  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
789  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
790  * wide, but as this is a 10 bpp format that translates to 96 pixels.
791  */
792 
793 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
794 	fourcc_mod_broadcom_code(2, v)
795 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
796 	fourcc_mod_broadcom_code(3, v)
797 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
798 	fourcc_mod_broadcom_code(4, v)
799 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
800 	fourcc_mod_broadcom_code(5, v)
801 
802 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
803 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
804 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
805 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
806 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
807 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
808 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
809 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
810 
811 /* Broadcom UIF format
812  *
813  * This is the common format for the current Broadcom multimedia
814  * blocks, including V3D 3.x and newer, newer video codecs, and
815  * displays.
816  *
817  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
818  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
819  * stored in columns, with padding between the columns to ensure that
820  * moving from one column to the next doesn't hit the same SDRAM page
821  * bank.
822  *
823  * To calculate the padding, it is assumed that each hardware block
824  * and the software driving it knows the platform's SDRAM page size,
825  * number of banks, and XOR address, and that it's identical between
826  * all blocks using the format.  This tiling modifier will use XOR as
827  * necessary to reduce the padding.  If a hardware block can't do XOR,
828  * the assumption is that a no-XOR tiling modifier will be created.
829  */
830 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
831 
832 /*
833  * Arm Framebuffer Compression (AFBC) modifiers
834  *
835  * AFBC is a proprietary lossless image compression protocol and format.
836  * It provides fine-grained random access and minimizes the amount of data
837  * transferred between IP blocks.
838  *
839  * AFBC has several features which may be supported and/or used, which are
840  * represented using bits in the modifier. Not all combinations are valid,
841  * and different devices or use-cases may support different combinations.
842  *
843  * Further information on the use of AFBC modifiers can be found in
844  * Documentation/gpu/afbc.rst
845  */
846 
847 /*
848  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
849  * modifiers) denote the category for modifiers. Currently we have only two
850  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
851  * different categories.
852  */
853 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
854 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
855 
856 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
857 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
858 
859 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
860 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
861 
862 /*
863  * AFBC superblock size
864  *
865  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
866  * size (in pixels) must be aligned to a multiple of the superblock size.
867  * Four lowest significant bits(LSBs) are reserved for block size.
868  *
869  * Where one superblock size is specified, it applies to all planes of the
870  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
871  * the first applies to the Luma plane and the second applies to the Chroma
872  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
873  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
874  */
875 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
876 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
877 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
878 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
879 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
880 
881 /*
882  * AFBC lossless colorspace transform
883  *
884  * Indicates that the buffer makes use of the AFBC lossless colorspace
885  * transform.
886  */
887 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
888 
889 /*
890  * AFBC block-split
891  *
892  * Indicates that the payload of each superblock is split. The second
893  * half of the payload is positioned at a predefined offset from the start
894  * of the superblock payload.
895  */
896 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
897 
898 /*
899  * AFBC sparse layout
900  *
901  * This flag indicates that the payload of each superblock must be stored at a
902  * predefined position relative to the other superblocks in the same AFBC
903  * buffer. This order is the same order used by the header buffer. In this mode
904  * each superblock is given the same amount of space as an uncompressed
905  * superblock of the particular format would require, rounding up to the next
906  * multiple of 128 bytes in size.
907  */
908 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
909 
910 /*
911  * AFBC copy-block restrict
912  *
913  * Buffers with this flag must obey the copy-block restriction. The restriction
914  * is such that there are no copy-blocks referring across the border of 8x8
915  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
916  */
917 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
918 
919 /*
920  * AFBC tiled layout
921  *
922  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
923  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
924  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
925  * larger bpp formats. The order between the tiles is scan line.
926  * When the tiled layout is used, the buffer size (in pixels) must be aligned
927  * to the tile size.
928  */
929 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
930 
931 /*
932  * AFBC solid color blocks
933  *
934  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
935  * can be reduced if a whole superblock is a single color.
936  */
937 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
938 
939 /*
940  * AFBC double-buffer
941  *
942  * Indicates that the buffer is allocated in a layout safe for front-buffer
943  * rendering.
944  */
945 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
946 
947 /*
948  * AFBC buffer content hints
949  *
950  * Indicates that the buffer includes per-superblock content hints.
951  */
952 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
953 
954 /* AFBC uncompressed storage mode
955  *
956  * Indicates that the buffer is using AFBC uncompressed storage mode.
957  * In this mode all superblock payloads in the buffer use the uncompressed
958  * storage mode, which is usually only used for data which cannot be compressed.
959  * The buffer layout is the same as for AFBC buffers without USM set, this only
960  * affects the storage mode of the individual superblocks. Note that even a
961  * buffer without USM set may use uncompressed storage mode for some or all
962  * superblocks, USM just guarantees it for all.
963  */
964 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
965 
966 /*
967  * Arm 16x16 Block U-Interleaved modifier
968  *
969  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
970  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
971  * in the block are reordered.
972  */
973 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
974 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
975 
976 /*
977  * Allwinner tiled modifier
978  *
979  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
980  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
981  * planes.
982  *
983  * With this tiling, the luminance samples are disposed in tiles representing
984  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
985  * The pixel order in each tile is linear and the tiles are disposed linearly,
986  * both in row-major order.
987  */
988 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
989 
990 /*
991  * Amlogic Video Framebuffer Compression modifiers
992  *
993  * Amlogic uses a proprietary lossless image compression protocol and format
994  * for their hardware video codec accelerators, either video decoders or
995  * video input encoders.
996  *
997  * It considerably reduces memory bandwidth while writing and reading
998  * frames in memory.
999  *
1000  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1001  * per component YCbCr 420, single plane :
1002  * - DRM_FORMAT_YUV420_8BIT
1003  * - DRM_FORMAT_YUV420_10BIT
1004  *
1005  * The first 8 bits of the mode defines the layout, then the following 8 bits
1006  * defines the options changing the layout.
1007  *
1008  * Not all combinations are valid, and different SoCs may support different
1009  * combinations of layout and options.
1010  */
1011 #define __fourcc_mod_amlogic_layout_mask 0xff
1012 #define __fourcc_mod_amlogic_options_shift 8
1013 #define __fourcc_mod_amlogic_options_mask 0xff
1014 
1015 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1016 	fourcc_mod_code(AMLOGIC, \
1017 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1018 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1019 			 << __fourcc_mod_amlogic_options_shift))
1020 
1021 /* Amlogic FBC Layouts */
1022 
1023 /*
1024  * Amlogic FBC Basic Layout
1025  *
1026  * The basic layout is composed of:
1027  * - a body content organized in 64x32 superblocks with 4096 bytes per
1028  *   superblock in default mode.
1029  * - a 32 bytes per 128x64 header block
1030  *
1031  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1032  */
1033 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1034 
1035 /*
1036  * Amlogic FBC Scatter Memory layout
1037  *
1038  * Indicates the header contains IOMMU references to the compressed
1039  * frames content to optimize memory access and layout.
1040  *
1041  * In this mode, only the header memory address is needed, thus the
1042  * content memory organization is tied to the current producer
1043  * execution and cannot be saved/dumped neither transferrable between
1044  * Amlogic SoCs supporting this modifier.
1045  *
1046  * Due to the nature of the layout, these buffers are not expected to
1047  * be accessible by the user-space clients, but only accessible by the
1048  * hardware producers and consumers.
1049  *
1050  * The user-space clients should expect a failure while trying to mmap
1051  * the DMA-BUF handle returned by the producer.
1052  */
1053 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1054 
1055 /* Amlogic FBC Layout Options Bit Mask */
1056 
1057 /*
1058  * Amlogic FBC Memory Saving mode
1059  *
1060  * Indicates the storage is packed when pixel size is multiple of word
1061  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1062  * memory.
1063  *
1064  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1065  * the basic layout and 3200 bytes per 64x32 superblock combined with
1066  * the scatter layout.
1067  */
1068 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1069 
1070 #if defined(__cplusplus)
1071 }
1072 #endif
1073 
1074 #endif /* DRM_FOURCC_H */
1075