1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
migrate_prep(void)65 int migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
migrate_prep_local(void)79 int migrate_prep_local(void)
80 {
81 lru_add_drain();
82
83 return 0;
84 }
85
isolate_movable_page(struct page * page,isolate_mode_t mode)86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
putback_movable_page(struct page * page)148 void putback_movable_page(struct page *page)
149 {
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159 }
160
161 /*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_hugetlb().
168 */
putback_movable_pages(struct list_head * l)169 void putback_movable_pages(struct list_head *l)
170 {
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_lru(page), -thp_nr_pages(page));
197 putback_lru_page(page);
198 }
199 }
200 }
201
202 /*
203 * Restore a potential migration pte to a working pte entry
204 */
remove_migration_pte(struct page * page,struct vm_area_struct * vma,unsigned long addr,void * old)205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207 {
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233 #endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
248
249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
256 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268 #endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
286
287 return true;
288 }
289
290 /*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
remove_migration_ptes(struct page * old,struct page * new,bool locked)294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
305 }
306
307 /*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
311 */
__migration_entry_wait(struct mm_struct * mm,pte_t * ptep,spinlock_t * ptl)312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
314 {
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
318
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329 page = compound_head(page);
330
331 /*
332 * Once page cache replacement of page migration started, page_count
333 * is zero; but we must not call put_and_wait_on_page_locked() without
334 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
335 */
336 if (!get_page_unless_zero(page))
337 goto out;
338 pte_unmap_unlock(ptep, ptl);
339 put_and_wait_on_page_locked(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
343 }
344
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347 {
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351 }
352
migration_entry_wait_huge(struct vm_area_struct * vma,struct mm_struct * mm,pte_t * pte)353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355 {
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358 }
359
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 put_and_wait_on_page_locked(page);
374 return;
375 unlock:
376 spin_unlock(ptl);
377 }
378 #endif
379
expected_page_refs(struct address_space * mapping,struct page * page)380 static int expected_page_refs(struct address_space *mapping, struct page *page)
381 {
382 int expected_count = 1;
383
384 /*
385 * Device private pages have an extra refcount as they are
386 * ZONE_DEVICE pages.
387 */
388 expected_count += is_device_private_page(page);
389 if (mapping)
390 expected_count += thp_nr_pages(page) + page_has_private(page);
391
392 return expected_count;
393 }
394
395 /*
396 * Replace the page in the mapping.
397 *
398 * The number of remaining references must be:
399 * 1 for anonymous pages without a mapping
400 * 2 for pages with a mapping
401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
402 */
migrate_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page,int extra_count)403 int migrate_page_move_mapping(struct address_space *mapping,
404 struct page *newpage, struct page *page, int extra_count)
405 {
406 XA_STATE(xas, &mapping->i_pages, page_index(page));
407 struct zone *oldzone, *newzone;
408 int dirty;
409 int expected_count = expected_page_refs(mapping, page) + extra_count;
410 int nr = thp_nr_pages(page);
411
412 if (!mapping) {
413 /* Anonymous page without mapping */
414 if (page_count(page) != expected_count)
415 return -EAGAIN;
416
417 /* No turning back from here */
418 newpage->index = page->index;
419 newpage->mapping = page->mapping;
420 if (PageSwapBacked(page))
421 __SetPageSwapBacked(newpage);
422
423 return MIGRATEPAGE_SUCCESS;
424 }
425
426 oldzone = page_zone(page);
427 newzone = page_zone(newpage);
428
429 xas_lock_irq(&xas);
430 if (page_count(page) != expected_count || xas_load(&xas) != page) {
431 xas_unlock_irq(&xas);
432 return -EAGAIN;
433 }
434
435 if (!page_ref_freeze(page, expected_count)) {
436 xas_unlock_irq(&xas);
437 return -EAGAIN;
438 }
439
440 /*
441 * Now we know that no one else is looking at the page:
442 * no turning back from here.
443 */
444 newpage->index = page->index;
445 newpage->mapping = page->mapping;
446 page_ref_add(newpage, nr); /* add cache reference */
447 if (PageSwapBacked(page)) {
448 __SetPageSwapBacked(newpage);
449 if (PageSwapCache(page)) {
450 SetPageSwapCache(newpage);
451 set_page_private(newpage, page_private(page));
452 }
453 } else {
454 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 }
456
457 /* Move dirty while page refs frozen and newpage not yet exposed */
458 dirty = PageDirty(page);
459 if (dirty) {
460 ClearPageDirty(page);
461 SetPageDirty(newpage);
462 }
463
464 xas_store(&xas, newpage);
465 if (PageTransHuge(page)) {
466 int i;
467
468 for (i = 1; i < nr; i++) {
469 xas_next(&xas);
470 xas_store(&xas, newpage);
471 }
472 }
473
474 /*
475 * Drop cache reference from old page by unfreezing
476 * to one less reference.
477 * We know this isn't the last reference.
478 */
479 page_ref_unfreeze(page, expected_count - nr);
480
481 xas_unlock(&xas);
482 /* Leave irq disabled to prevent preemption while updating stats */
483
484 /*
485 * If moved to a different zone then also account
486 * the page for that zone. Other VM counters will be
487 * taken care of when we establish references to the
488 * new page and drop references to the old page.
489 *
490 * Note that anonymous pages are accounted for
491 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 * are mapped to swap space.
493 */
494 if (newzone != oldzone) {
495 struct lruvec *old_lruvec, *new_lruvec;
496 struct mem_cgroup *memcg;
497
498 memcg = page_memcg(page);
499 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
500 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
501
502 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
503 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
504 if (PageSwapBacked(page) && !PageSwapCache(page)) {
505 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
507 }
508 if (dirty && mapping_can_writeback(mapping)) {
509 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
510 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
511 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
512 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
513 }
514 }
515 local_irq_enable();
516
517 return MIGRATEPAGE_SUCCESS;
518 }
519 EXPORT_SYMBOL(migrate_page_move_mapping);
520
521 /*
522 * The expected number of remaining references is the same as that
523 * of migrate_page_move_mapping().
524 */
migrate_huge_page_move_mapping(struct address_space * mapping,struct page * newpage,struct page * page)525 int migrate_huge_page_move_mapping(struct address_space *mapping,
526 struct page *newpage, struct page *page)
527 {
528 XA_STATE(xas, &mapping->i_pages, page_index(page));
529 int expected_count;
530
531 xas_lock_irq(&xas);
532 expected_count = 2 + page_has_private(page);
533 if (page_count(page) != expected_count || xas_load(&xas) != page) {
534 xas_unlock_irq(&xas);
535 return -EAGAIN;
536 }
537
538 if (!page_ref_freeze(page, expected_count)) {
539 xas_unlock_irq(&xas);
540 return -EAGAIN;
541 }
542
543 newpage->index = page->index;
544 newpage->mapping = page->mapping;
545
546 get_page(newpage);
547
548 xas_store(&xas, newpage);
549
550 page_ref_unfreeze(page, expected_count - 1);
551
552 xas_unlock_irq(&xas);
553
554 return MIGRATEPAGE_SUCCESS;
555 }
556
557 /*
558 * Gigantic pages are so large that we do not guarantee that page++ pointer
559 * arithmetic will work across the entire page. We need something more
560 * specialized.
561 */
__copy_gigantic_page(struct page * dst,struct page * src,int nr_pages)562 static void __copy_gigantic_page(struct page *dst, struct page *src,
563 int nr_pages)
564 {
565 int i;
566 struct page *dst_base = dst;
567 struct page *src_base = src;
568
569 for (i = 0; i < nr_pages; ) {
570 cond_resched();
571 copy_highpage(dst, src);
572
573 i++;
574 dst = mem_map_next(dst, dst_base, i);
575 src = mem_map_next(src, src_base, i);
576 }
577 }
578
copy_huge_page(struct page * dst,struct page * src)579 static void copy_huge_page(struct page *dst, struct page *src)
580 {
581 int i;
582 int nr_pages;
583
584 if (PageHuge(src)) {
585 /* hugetlbfs page */
586 struct hstate *h = page_hstate(src);
587 nr_pages = pages_per_huge_page(h);
588
589 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
590 __copy_gigantic_page(dst, src, nr_pages);
591 return;
592 }
593 } else {
594 /* thp page */
595 BUG_ON(!PageTransHuge(src));
596 nr_pages = thp_nr_pages(src);
597 }
598
599 for (i = 0; i < nr_pages; i++) {
600 cond_resched();
601 copy_highpage(dst + i, src + i);
602 }
603 }
604
605 /*
606 * Copy the page to its new location
607 */
migrate_page_states(struct page * newpage,struct page * page)608 void migrate_page_states(struct page *newpage, struct page *page)
609 {
610 int cpupid;
611
612 if (PageError(page))
613 SetPageError(newpage);
614 if (PageReferenced(page))
615 SetPageReferenced(newpage);
616 if (PageUptodate(page))
617 SetPageUptodate(newpage);
618 if (TestClearPageActive(page)) {
619 VM_BUG_ON_PAGE(PageUnevictable(page), page);
620 SetPageActive(newpage);
621 } else if (TestClearPageUnevictable(page))
622 SetPageUnevictable(newpage);
623 if (PageWorkingset(page))
624 SetPageWorkingset(newpage);
625 if (PageChecked(page))
626 SetPageChecked(newpage);
627 if (PageMappedToDisk(page))
628 SetPageMappedToDisk(newpage);
629
630 /* Move dirty on pages not done by migrate_page_move_mapping() */
631 if (PageDirty(page))
632 SetPageDirty(newpage);
633
634 if (page_is_young(page))
635 set_page_young(newpage);
636 if (page_is_idle(page))
637 set_page_idle(newpage);
638
639 /* Migrate the page's xpm state */
640 if(PageXPMWritetainted(page))
641 SetPageXPMWritetainted(newpage);
642
643 if(PageXPMReadonly(page))
644 SetPageXPMReadonly(newpage);
645
646 /*
647 * Copy NUMA information to the new page, to prevent over-eager
648 * future migrations of this same page.
649 */
650 cpupid = page_cpupid_xchg_last(page, -1);
651 page_cpupid_xchg_last(newpage, cpupid);
652
653 ksm_migrate_page(newpage, page);
654 /*
655 * Please do not reorder this without considering how mm/ksm.c's
656 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
657 */
658 if (PageSwapCache(page))
659 ClearPageSwapCache(page);
660 ClearPagePrivate(page);
661 set_page_private(page, 0);
662
663 /*
664 * If any waiters have accumulated on the new page then
665 * wake them up.
666 */
667 if (PageWriteback(newpage))
668 end_page_writeback(newpage);
669
670 /*
671 * PG_readahead shares the same bit with PG_reclaim. The above
672 * end_page_writeback() may clear PG_readahead mistakenly, so set the
673 * bit after that.
674 */
675 if (PageReadahead(page))
676 SetPageReadahead(newpage);
677
678 copy_page_owner(page, newpage);
679
680 if (!PageHuge(page))
681 mem_cgroup_migrate(page, newpage);
682 }
683 EXPORT_SYMBOL(migrate_page_states);
684
migrate_page_copy(struct page * newpage,struct page * page)685 void migrate_page_copy(struct page *newpage, struct page *page)
686 {
687 if (PageHuge(page) || PageTransHuge(page))
688 copy_huge_page(newpage, page);
689 else
690 copy_highpage(newpage, page);
691
692 migrate_page_states(newpage, page);
693 }
694 EXPORT_SYMBOL(migrate_page_copy);
695
696 /************************************************************
697 * Migration functions
698 ***********************************************************/
699
migrate_page_extra(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,int extra_count)700 int migrate_page_extra(struct address_space *mapping,
701 struct page *newpage, struct page *page,
702 enum migrate_mode mode, int extra_count)
703 {
704 int rc;
705
706 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
707
708 rc = migrate_page_move_mapping(mapping, newpage, page, extra_count);
709
710 if (rc != MIGRATEPAGE_SUCCESS)
711 return rc;
712
713 if (mode != MIGRATE_SYNC_NO_COPY)
714 migrate_page_copy(newpage, page);
715 else
716 migrate_page_states(newpage, page);
717 return MIGRATEPAGE_SUCCESS;
718 }
719
720 /*
721 * Common logic to directly migrate a single LRU page suitable for
722 * pages that do not use PagePrivate/PagePrivate2.
723 *
724 * Pages are locked upon entry and exit.
725 */
migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)726 int migrate_page(struct address_space *mapping,
727 struct page *newpage, struct page *page,
728 enum migrate_mode mode)
729 {
730 return migrate_page_extra(mapping, newpage, page, mode, 0);
731 }
732 EXPORT_SYMBOL(migrate_page);
733
734 #ifdef CONFIG_BLOCK
735 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)736 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
737 enum migrate_mode mode)
738 {
739 struct buffer_head *bh = head;
740
741 /* Simple case, sync compaction */
742 if (mode != MIGRATE_ASYNC) {
743 do {
744 lock_buffer(bh);
745 bh = bh->b_this_page;
746
747 } while (bh != head);
748
749 return true;
750 }
751
752 /* async case, we cannot block on lock_buffer so use trylock_buffer */
753 do {
754 if (!trylock_buffer(bh)) {
755 /*
756 * We failed to lock the buffer and cannot stall in
757 * async migration. Release the taken locks
758 */
759 struct buffer_head *failed_bh = bh;
760 bh = head;
761 while (bh != failed_bh) {
762 unlock_buffer(bh);
763 bh = bh->b_this_page;
764 }
765 return false;
766 }
767
768 bh = bh->b_this_page;
769 } while (bh != head);
770 return true;
771 }
772
__buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode,bool check_refs)773 static int __buffer_migrate_page(struct address_space *mapping,
774 struct page *newpage, struct page *page, enum migrate_mode mode,
775 bool check_refs)
776 {
777 struct buffer_head *bh, *head;
778 int rc;
779 int expected_count;
780
781 if (!page_has_buffers(page))
782 return migrate_page(mapping, newpage, page, mode);
783
784 /* Check whether page does not have extra refs before we do more work */
785 expected_count = expected_page_refs(mapping, page);
786 if (page_count(page) != expected_count)
787 return -EAGAIN;
788
789 head = page_buffers(page);
790 if (!buffer_migrate_lock_buffers(head, mode))
791 return -EAGAIN;
792
793 if (check_refs) {
794 bool busy;
795 bool invalidated = false;
796
797 recheck_buffers:
798 busy = false;
799 spin_lock(&mapping->private_lock);
800 bh = head;
801 do {
802 if (atomic_read(&bh->b_count)) {
803 busy = true;
804 break;
805 }
806 bh = bh->b_this_page;
807 } while (bh != head);
808 if (busy) {
809 if (invalidated) {
810 rc = -EAGAIN;
811 goto unlock_buffers;
812 }
813 spin_unlock(&mapping->private_lock);
814 invalidate_bh_lrus();
815 invalidated = true;
816 goto recheck_buffers;
817 }
818 }
819
820 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
821 if (rc != MIGRATEPAGE_SUCCESS)
822 goto unlock_buffers;
823
824 attach_page_private(newpage, detach_page_private(page));
825
826 bh = head;
827 do {
828 set_bh_page(bh, newpage, bh_offset(bh));
829 bh = bh->b_this_page;
830
831 } while (bh != head);
832
833 if (mode != MIGRATE_SYNC_NO_COPY)
834 migrate_page_copy(newpage, page);
835 else
836 migrate_page_states(newpage, page);
837
838 rc = MIGRATEPAGE_SUCCESS;
839 unlock_buffers:
840 if (check_refs)
841 spin_unlock(&mapping->private_lock);
842 bh = head;
843 do {
844 unlock_buffer(bh);
845 bh = bh->b_this_page;
846
847 } while (bh != head);
848
849 return rc;
850 }
851
852 /*
853 * Migration function for pages with buffers. This function can only be used
854 * if the underlying filesystem guarantees that no other references to "page"
855 * exist. For example attached buffer heads are accessed only under page lock.
856 */
buffer_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)857 int buffer_migrate_page(struct address_space *mapping,
858 struct page *newpage, struct page *page, enum migrate_mode mode)
859 {
860 return __buffer_migrate_page(mapping, newpage, page, mode, false);
861 }
862 EXPORT_SYMBOL(buffer_migrate_page);
863
864 /*
865 * Same as above except that this variant is more careful and checks that there
866 * are also no buffer head references. This function is the right one for
867 * mappings where buffer heads are directly looked up and referenced (such as
868 * block device mappings).
869 */
buffer_migrate_page_norefs(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)870 int buffer_migrate_page_norefs(struct address_space *mapping,
871 struct page *newpage, struct page *page, enum migrate_mode mode)
872 {
873 return __buffer_migrate_page(mapping, newpage, page, mode, true);
874 }
875 #endif
876
877 /*
878 * Writeback a page to clean the dirty state
879 */
writeout(struct address_space * mapping,struct page * page)880 static int writeout(struct address_space *mapping, struct page *page)
881 {
882 struct writeback_control wbc = {
883 .sync_mode = WB_SYNC_NONE,
884 .nr_to_write = 1,
885 .range_start = 0,
886 .range_end = LLONG_MAX,
887 .for_reclaim = 1
888 };
889 int rc;
890
891 if (!mapping->a_ops->writepage)
892 /* No write method for the address space */
893 return -EINVAL;
894
895 if (!clear_page_dirty_for_io(page))
896 /* Someone else already triggered a write */
897 return -EAGAIN;
898
899 /*
900 * A dirty page may imply that the underlying filesystem has
901 * the page on some queue. So the page must be clean for
902 * migration. Writeout may mean we loose the lock and the
903 * page state is no longer what we checked for earlier.
904 * At this point we know that the migration attempt cannot
905 * be successful.
906 */
907 remove_migration_ptes(page, page, false);
908
909 rc = mapping->a_ops->writepage(page, &wbc);
910
911 if (rc != AOP_WRITEPAGE_ACTIVATE)
912 /* unlocked. Relock */
913 lock_page(page);
914
915 return (rc < 0) ? -EIO : -EAGAIN;
916 }
917
918 /*
919 * Default handling if a filesystem does not provide a migration function.
920 */
fallback_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)921 static int fallback_migrate_page(struct address_space *mapping,
922 struct page *newpage, struct page *page, enum migrate_mode mode)
923 {
924 if (PageDirty(page)) {
925 /* Only writeback pages in full synchronous migration */
926 switch (mode) {
927 case MIGRATE_SYNC:
928 case MIGRATE_SYNC_NO_COPY:
929 break;
930 default:
931 return -EBUSY;
932 }
933 return writeout(mapping, page);
934 }
935
936 /*
937 * Buffers may be managed in a filesystem specific way.
938 * We must have no buffers or drop them.
939 */
940 if (page_has_private(page) &&
941 !try_to_release_page(page, GFP_KERNEL))
942 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
943
944 return migrate_page(mapping, newpage, page, mode);
945 }
946
947 /*
948 * Move a page to a newly allocated page
949 * The page is locked and all ptes have been successfully removed.
950 *
951 * The new page will have replaced the old page if this function
952 * is successful.
953 *
954 * Return value:
955 * < 0 - error code
956 * MIGRATEPAGE_SUCCESS - success
957 */
move_to_new_page(struct page * newpage,struct page * page,enum migrate_mode mode)958 static int move_to_new_page(struct page *newpage, struct page *page,
959 enum migrate_mode mode)
960 {
961 struct address_space *mapping;
962 int rc = -EAGAIN;
963 bool is_lru = !__PageMovable(page);
964
965 VM_BUG_ON_PAGE(!PageLocked(page), page);
966 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
967
968 mapping = page_mapping(page);
969
970 if (likely(is_lru)) {
971 if (!mapping)
972 rc = migrate_page(mapping, newpage, page, mode);
973 else if (mapping->a_ops->migratepage)
974 /*
975 * Most pages have a mapping and most filesystems
976 * provide a migratepage callback. Anonymous pages
977 * are part of swap space which also has its own
978 * migratepage callback. This is the most common path
979 * for page migration.
980 */
981 rc = mapping->a_ops->migratepage(mapping, newpage,
982 page, mode);
983 else
984 rc = fallback_migrate_page(mapping, newpage,
985 page, mode);
986 } else {
987 /*
988 * In case of non-lru page, it could be released after
989 * isolation step. In that case, we shouldn't try migration.
990 */
991 VM_BUG_ON_PAGE(!PageIsolated(page), page);
992 if (!PageMovable(page)) {
993 rc = MIGRATEPAGE_SUCCESS;
994 __ClearPageIsolated(page);
995 goto out;
996 }
997
998 rc = mapping->a_ops->migratepage(mapping, newpage,
999 page, mode);
1000 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1001 !PageIsolated(page));
1002 }
1003
1004 /*
1005 * When successful, old pagecache page->mapping must be cleared before
1006 * page is freed; but stats require that PageAnon be left as PageAnon.
1007 */
1008 if (rc == MIGRATEPAGE_SUCCESS) {
1009 if (__PageMovable(page)) {
1010 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1011
1012 /*
1013 * We clear PG_movable under page_lock so any compactor
1014 * cannot try to migrate this page.
1015 */
1016 __ClearPageIsolated(page);
1017 }
1018
1019 /*
1020 * Anonymous and movable page->mapping will be cleared by
1021 * free_pages_prepare so don't reset it here for keeping
1022 * the type to work PageAnon, for example.
1023 */
1024 if (!PageMappingFlags(page))
1025 page->mapping = NULL;
1026
1027 if (likely(!is_zone_device_page(newpage))) {
1028 int i, nr = compound_nr(newpage);
1029
1030 for (i = 0; i < nr; i++)
1031 flush_dcache_page(newpage + i);
1032 }
1033 }
1034 out:
1035 return rc;
1036 }
1037
__unmap_and_move(struct page * page,struct page * newpage,int force,enum migrate_mode mode)1038 static int __unmap_and_move(struct page *page, struct page *newpage,
1039 int force, enum migrate_mode mode)
1040 {
1041 int rc = -EAGAIN;
1042 int page_was_mapped = 0;
1043 struct anon_vma *anon_vma = NULL;
1044 bool is_lru = !__PageMovable(page);
1045
1046 if (!trylock_page(page)) {
1047 if (!force || mode == MIGRATE_ASYNC)
1048 goto out;
1049
1050 /*
1051 * It's not safe for direct compaction to call lock_page.
1052 * For example, during page readahead pages are added locked
1053 * to the LRU. Later, when the IO completes the pages are
1054 * marked uptodate and unlocked. However, the queueing
1055 * could be merging multiple pages for one bio (e.g.
1056 * mpage_readahead). If an allocation happens for the
1057 * second or third page, the process can end up locking
1058 * the same page twice and deadlocking. Rather than
1059 * trying to be clever about what pages can be locked,
1060 * avoid the use of lock_page for direct compaction
1061 * altogether.
1062 */
1063 if (current->flags & PF_MEMALLOC)
1064 goto out;
1065
1066 lock_page(page);
1067 }
1068
1069 if (PageWriteback(page)) {
1070 /*
1071 * Only in the case of a full synchronous migration is it
1072 * necessary to wait for PageWriteback. In the async case,
1073 * the retry loop is too short and in the sync-light case,
1074 * the overhead of stalling is too much
1075 */
1076 switch (mode) {
1077 case MIGRATE_SYNC:
1078 case MIGRATE_SYNC_NO_COPY:
1079 break;
1080 default:
1081 rc = -EBUSY;
1082 goto out_unlock;
1083 }
1084 if (!force)
1085 goto out_unlock;
1086 wait_on_page_writeback(page);
1087 }
1088
1089 /*
1090 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1091 * we cannot notice that anon_vma is freed while we migrates a page.
1092 * This get_anon_vma() delays freeing anon_vma pointer until the end
1093 * of migration. File cache pages are no problem because of page_lock()
1094 * File Caches may use write_page() or lock_page() in migration, then,
1095 * just care Anon page here.
1096 *
1097 * Only page_get_anon_vma() understands the subtleties of
1098 * getting a hold on an anon_vma from outside one of its mms.
1099 * But if we cannot get anon_vma, then we won't need it anyway,
1100 * because that implies that the anon page is no longer mapped
1101 * (and cannot be remapped so long as we hold the page lock).
1102 */
1103 if (PageAnon(page) && !PageKsm(page))
1104 anon_vma = page_get_anon_vma(page);
1105
1106 /*
1107 * Block others from accessing the new page when we get around to
1108 * establishing additional references. We are usually the only one
1109 * holding a reference to newpage at this point. We used to have a BUG
1110 * here if trylock_page(newpage) fails, but would like to allow for
1111 * cases where there might be a race with the previous use of newpage.
1112 * This is much like races on refcount of oldpage: just don't BUG().
1113 */
1114 if (unlikely(!trylock_page(newpage)))
1115 goto out_unlock;
1116
1117 if (unlikely(!is_lru)) {
1118 rc = move_to_new_page(newpage, page, mode);
1119 goto out_unlock_both;
1120 }
1121
1122 /*
1123 * Corner case handling:
1124 * 1. When a new swap-cache page is read into, it is added to the LRU
1125 * and treated as swapcache but it has no rmap yet.
1126 * Calling try_to_unmap() against a page->mapping==NULL page will
1127 * trigger a BUG. So handle it here.
1128 * 2. An orphaned page (see truncate_complete_page) might have
1129 * fs-private metadata. The page can be picked up due to memory
1130 * offlining. Everywhere else except page reclaim, the page is
1131 * invisible to the vm, so the page can not be migrated. So try to
1132 * free the metadata, so the page can be freed.
1133 */
1134 if (!page->mapping) {
1135 VM_BUG_ON_PAGE(PageAnon(page), page);
1136 if (page_has_private(page)) {
1137 try_to_free_buffers(page);
1138 goto out_unlock_both;
1139 }
1140 } else if (page_mapped(page)) {
1141 /* Establish migration ptes */
1142 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1143 page);
1144 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1145 page_was_mapped = 1;
1146 }
1147
1148 if (!page_mapped(page))
1149 rc = move_to_new_page(newpage, page, mode);
1150
1151 if (page_was_mapped)
1152 remove_migration_ptes(page,
1153 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1154
1155 out_unlock_both:
1156 unlock_page(newpage);
1157 out_unlock:
1158 /* Drop an anon_vma reference if we took one */
1159 if (anon_vma)
1160 put_anon_vma(anon_vma);
1161 unlock_page(page);
1162 out:
1163 /*
1164 * If migration is successful, decrease refcount of the newpage
1165 * which will not free the page because new page owner increased
1166 * refcounter. As well, if it is LRU page, add the page to LRU
1167 * list in here. Use the old state of the isolated source page to
1168 * determine if we migrated a LRU page. newpage was already unlocked
1169 * and possibly modified by its owner - don't rely on the page
1170 * state.
1171 */
1172 if (rc == MIGRATEPAGE_SUCCESS) {
1173 if (unlikely(!is_lru))
1174 put_page(newpage);
1175 else
1176 putback_lru_page(newpage);
1177 }
1178
1179 return rc;
1180 }
1181
1182 /*
1183 * Obtain the lock on page, remove all ptes and migrate the page
1184 * to the newly allocated page in newpage.
1185 */
unmap_and_move(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * page,int force,enum migrate_mode mode,enum migrate_reason reason)1186 static int unmap_and_move(new_page_t get_new_page,
1187 free_page_t put_new_page,
1188 unsigned long private, struct page *page,
1189 int force, enum migrate_mode mode,
1190 enum migrate_reason reason)
1191 {
1192 int rc = MIGRATEPAGE_SUCCESS;
1193 struct page *newpage = NULL;
1194
1195 if (!thp_migration_supported() && PageTransHuge(page))
1196 return -ENOMEM;
1197
1198 if (page_count(page) == 1) {
1199 /* page was freed from under us. So we are done. */
1200 ClearPageActive(page);
1201 ClearPageUnevictable(page);
1202 if (unlikely(__PageMovable(page))) {
1203 lock_page(page);
1204 if (!PageMovable(page))
1205 __ClearPageIsolated(page);
1206 unlock_page(page);
1207 }
1208 goto out;
1209 }
1210
1211 newpage = get_new_page(page, private);
1212 if (!newpage)
1213 return -ENOMEM;
1214
1215 rc = __unmap_and_move(page, newpage, force, mode);
1216 if (rc == MIGRATEPAGE_SUCCESS)
1217 set_page_owner_migrate_reason(newpage, reason);
1218
1219 out:
1220 if (rc != -EAGAIN) {
1221 /*
1222 * A page that has been migrated has all references
1223 * removed and will be freed. A page that has not been
1224 * migrated will have kept its references and be restored.
1225 */
1226 list_del(&page->lru);
1227
1228 /*
1229 * Compaction can migrate also non-LRU pages which are
1230 * not accounted to NR_ISOLATED_*. They can be recognized
1231 * as __PageMovable
1232 */
1233 if (likely(!__PageMovable(page)))
1234 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1235 page_is_file_lru(page), -thp_nr_pages(page));
1236 }
1237
1238 /*
1239 * If migration is successful, releases reference grabbed during
1240 * isolation. Otherwise, restore the page to right list unless
1241 * we want to retry.
1242 */
1243 if (rc == MIGRATEPAGE_SUCCESS) {
1244 if (reason != MR_MEMORY_FAILURE)
1245 /*
1246 * We release the page in page_handle_poison.
1247 */
1248 put_page(page);
1249 } else {
1250 if (rc != -EAGAIN) {
1251 if (likely(!__PageMovable(page))) {
1252 putback_lru_page(page);
1253 goto put_new;
1254 }
1255
1256 lock_page(page);
1257 if (PageMovable(page))
1258 putback_movable_page(page);
1259 else
1260 __ClearPageIsolated(page);
1261 unlock_page(page);
1262 put_page(page);
1263 }
1264 put_new:
1265 if (put_new_page)
1266 put_new_page(newpage, private);
1267 else
1268 put_page(newpage);
1269 }
1270
1271 return rc;
1272 }
1273
1274 /*
1275 * Counterpart of unmap_and_move_page() for hugepage migration.
1276 *
1277 * This function doesn't wait the completion of hugepage I/O
1278 * because there is no race between I/O and migration for hugepage.
1279 * Note that currently hugepage I/O occurs only in direct I/O
1280 * where no lock is held and PG_writeback is irrelevant,
1281 * and writeback status of all subpages are counted in the reference
1282 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1283 * under direct I/O, the reference of the head page is 512 and a bit more.)
1284 * This means that when we try to migrate hugepage whose subpages are
1285 * doing direct I/O, some references remain after try_to_unmap() and
1286 * hugepage migration fails without data corruption.
1287 *
1288 * There is also no race when direct I/O is issued on the page under migration,
1289 * because then pte is replaced with migration swap entry and direct I/O code
1290 * will wait in the page fault for migration to complete.
1291 */
unmap_and_move_huge_page(new_page_t get_new_page,free_page_t put_new_page,unsigned long private,struct page * hpage,int force,enum migrate_mode mode,int reason)1292 static int unmap_and_move_huge_page(new_page_t get_new_page,
1293 free_page_t put_new_page, unsigned long private,
1294 struct page *hpage, int force,
1295 enum migrate_mode mode, int reason)
1296 {
1297 int rc = -EAGAIN;
1298 int page_was_mapped = 0;
1299 struct page *new_hpage;
1300 struct anon_vma *anon_vma = NULL;
1301 struct address_space *mapping = NULL;
1302
1303 /*
1304 * Migratability of hugepages depends on architectures and their size.
1305 * This check is necessary because some callers of hugepage migration
1306 * like soft offline and memory hotremove don't walk through page
1307 * tables or check whether the hugepage is pmd-based or not before
1308 * kicking migration.
1309 */
1310 if (!hugepage_migration_supported(page_hstate(hpage))) {
1311 putback_active_hugepage(hpage);
1312 return -ENOSYS;
1313 }
1314
1315 new_hpage = get_new_page(hpage, private);
1316 if (!new_hpage)
1317 return -ENOMEM;
1318
1319 if (!trylock_page(hpage)) {
1320 if (!force)
1321 goto out;
1322 switch (mode) {
1323 case MIGRATE_SYNC:
1324 case MIGRATE_SYNC_NO_COPY:
1325 break;
1326 default:
1327 goto out;
1328 }
1329 lock_page(hpage);
1330 }
1331
1332 /*
1333 * Check for pages which are in the process of being freed. Without
1334 * page_mapping() set, hugetlbfs specific move page routine will not
1335 * be called and we could leak usage counts for subpools.
1336 */
1337 if (page_private(hpage) && !page_mapping(hpage)) {
1338 rc = -EBUSY;
1339 goto out_unlock;
1340 }
1341
1342 if (PageAnon(hpage))
1343 anon_vma = page_get_anon_vma(hpage);
1344
1345 if (unlikely(!trylock_page(new_hpage)))
1346 goto put_anon;
1347
1348 if (page_mapped(hpage)) {
1349 bool mapping_locked = false;
1350 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1351
1352 if (!PageAnon(hpage)) {
1353 /*
1354 * In shared mappings, try_to_unmap could potentially
1355 * call huge_pmd_unshare. Because of this, take
1356 * semaphore in write mode here and set TTU_RMAP_LOCKED
1357 * to let lower levels know we have taken the lock.
1358 */
1359 mapping = hugetlb_page_mapping_lock_write(hpage);
1360 if (unlikely(!mapping))
1361 goto unlock_put_anon;
1362
1363 mapping_locked = true;
1364 ttu |= TTU_RMAP_LOCKED;
1365 }
1366
1367 try_to_unmap(hpage, ttu);
1368 page_was_mapped = 1;
1369
1370 if (mapping_locked)
1371 i_mmap_unlock_write(mapping);
1372 }
1373
1374 if (!page_mapped(hpage))
1375 rc = move_to_new_page(new_hpage, hpage, mode);
1376
1377 if (page_was_mapped)
1378 remove_migration_ptes(hpage,
1379 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1380
1381 unlock_put_anon:
1382 unlock_page(new_hpage);
1383
1384 put_anon:
1385 if (anon_vma)
1386 put_anon_vma(anon_vma);
1387
1388 if (rc == MIGRATEPAGE_SUCCESS) {
1389 move_hugetlb_state(hpage, new_hpage, reason);
1390 put_new_page = NULL;
1391 }
1392
1393 out_unlock:
1394 unlock_page(hpage);
1395 out:
1396 if (rc != -EAGAIN)
1397 putback_active_hugepage(hpage);
1398
1399 /*
1400 * If migration was not successful and there's a freeing callback, use
1401 * it. Otherwise, put_page() will drop the reference grabbed during
1402 * isolation.
1403 */
1404 if (put_new_page)
1405 put_new_page(new_hpage, private);
1406 else
1407 putback_active_hugepage(new_hpage);
1408
1409 return rc;
1410 }
1411
1412 /*
1413 * migrate_pages - migrate the pages specified in a list, to the free pages
1414 * supplied as the target for the page migration
1415 *
1416 * @from: The list of pages to be migrated.
1417 * @get_new_page: The function used to allocate free pages to be used
1418 * as the target of the page migration.
1419 * @put_new_page: The function used to free target pages if migration
1420 * fails, or NULL if no special handling is necessary.
1421 * @private: Private data to be passed on to get_new_page()
1422 * @mode: The migration mode that specifies the constraints for
1423 * page migration, if any.
1424 * @reason: The reason for page migration.
1425 *
1426 * The function returns after 10 attempts or if no pages are movable any more
1427 * because the list has become empty or no retryable pages exist any more.
1428 * The caller should call putback_movable_pages() to return pages to the LRU
1429 * or free list only if ret != 0.
1430 *
1431 * Returns the number of pages that were not migrated, or an error code.
1432 */
migrate_pages(struct list_head * from,new_page_t get_new_page,free_page_t put_new_page,unsigned long private,enum migrate_mode mode,int reason)1433 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1434 free_page_t put_new_page, unsigned long private,
1435 enum migrate_mode mode, int reason)
1436 {
1437 int retry = 1;
1438 int thp_retry = 1;
1439 int nr_failed = 0;
1440 int nr_succeeded = 0;
1441 int nr_thp_succeeded = 0;
1442 int nr_thp_failed = 0;
1443 int nr_thp_split = 0;
1444 int pass = 0;
1445 bool is_thp = false;
1446 struct page *page;
1447 struct page *page2;
1448 int swapwrite = current->flags & PF_SWAPWRITE;
1449 int rc, nr_subpages;
1450
1451 if (!swapwrite)
1452 current->flags |= PF_SWAPWRITE;
1453
1454 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1455 retry = 0;
1456 thp_retry = 0;
1457
1458 list_for_each_entry_safe(page, page2, from, lru) {
1459 retry:
1460 /*
1461 * THP statistics is based on the source huge page.
1462 * Capture required information that might get lost
1463 * during migration.
1464 */
1465 is_thp = PageTransHuge(page) && !PageHuge(page);
1466 nr_subpages = thp_nr_pages(page);
1467 cond_resched();
1468
1469 if (PageHuge(page))
1470 rc = unmap_and_move_huge_page(get_new_page,
1471 put_new_page, private, page,
1472 pass > 2, mode, reason);
1473 else
1474 rc = unmap_and_move(get_new_page, put_new_page,
1475 private, page, pass > 2, mode,
1476 reason);
1477
1478 switch(rc) {
1479 case -ENOMEM:
1480 /*
1481 * THP migration might be unsupported or the
1482 * allocation could've failed so we should
1483 * retry on the same page with the THP split
1484 * to base pages.
1485 *
1486 * Head page is retried immediately and tail
1487 * pages are added to the tail of the list so
1488 * we encounter them after the rest of the list
1489 * is processed.
1490 */
1491 if (is_thp) {
1492 lock_page(page);
1493 rc = split_huge_page_to_list(page, from);
1494 unlock_page(page);
1495 if (!rc) {
1496 list_safe_reset_next(page, page2, lru);
1497 nr_thp_split++;
1498 goto retry;
1499 }
1500
1501 nr_thp_failed++;
1502 nr_failed += nr_subpages;
1503 goto out;
1504 }
1505 nr_failed++;
1506 goto out;
1507 case -EAGAIN:
1508 if (is_thp) {
1509 thp_retry++;
1510 break;
1511 }
1512 retry++;
1513 break;
1514 case MIGRATEPAGE_SUCCESS:
1515 if (is_thp) {
1516 nr_thp_succeeded++;
1517 nr_succeeded += nr_subpages;
1518 break;
1519 }
1520 nr_succeeded++;
1521 break;
1522 default:
1523 /*
1524 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1525 * unlike -EAGAIN case, the failed page is
1526 * removed from migration page list and not
1527 * retried in the next outer loop.
1528 */
1529 if (is_thp) {
1530 nr_thp_failed++;
1531 nr_failed += nr_subpages;
1532 break;
1533 }
1534 nr_failed++;
1535 break;
1536 }
1537 }
1538 }
1539 nr_failed += retry + thp_retry;
1540 nr_thp_failed += thp_retry;
1541 rc = nr_failed;
1542 out:
1543 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1544 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1545 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1546 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1547 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1548 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1549 nr_thp_failed, nr_thp_split, mode, reason);
1550
1551 if (!swapwrite)
1552 current->flags &= ~PF_SWAPWRITE;
1553
1554 return rc;
1555 }
1556
alloc_migration_target(struct page * page,unsigned long private)1557 struct page *alloc_migration_target(struct page *page, unsigned long private)
1558 {
1559 struct migration_target_control *mtc;
1560 gfp_t gfp_mask;
1561 unsigned int order = 0;
1562 struct page *new_page = NULL;
1563 int nid;
1564 int zidx;
1565
1566 mtc = (struct migration_target_control *)private;
1567 gfp_mask = mtc->gfp_mask;
1568 nid = mtc->nid;
1569 if (nid == NUMA_NO_NODE)
1570 nid = page_to_nid(page);
1571
1572 if (PageHuge(page)) {
1573 struct hstate *h = page_hstate(compound_head(page));
1574
1575 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1576 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1577 }
1578
1579 if (PageTransHuge(page)) {
1580 /*
1581 * clear __GFP_RECLAIM to make the migration callback
1582 * consistent with regular THP allocations.
1583 */
1584 gfp_mask &= ~__GFP_RECLAIM;
1585 gfp_mask |= GFP_TRANSHUGE;
1586 order = HPAGE_PMD_ORDER;
1587 }
1588 zidx = zone_idx(page_zone(page));
1589 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1590 gfp_mask |= __GFP_HIGHMEM;
1591
1592 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1593
1594 if (new_page && PageTransHuge(new_page))
1595 prep_transhuge_page(new_page);
1596
1597 return new_page;
1598 }
1599
1600 #ifdef CONFIG_NUMA
1601
store_status(int __user * status,int start,int value,int nr)1602 static int store_status(int __user *status, int start, int value, int nr)
1603 {
1604 while (nr-- > 0) {
1605 if (put_user(value, status + start))
1606 return -EFAULT;
1607 start++;
1608 }
1609
1610 return 0;
1611 }
1612
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)1613 static int do_move_pages_to_node(struct mm_struct *mm,
1614 struct list_head *pagelist, int node)
1615 {
1616 int err;
1617 struct migration_target_control mtc = {
1618 .nid = node,
1619 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1620 };
1621
1622 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1623 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1624 if (err)
1625 putback_movable_pages(pagelist);
1626 return err;
1627 }
1628
1629 /*
1630 * Resolves the given address to a struct page, isolates it from the LRU and
1631 * puts it to the given pagelist.
1632 * Returns:
1633 * errno - if the page cannot be found/isolated
1634 * 0 - when it doesn't have to be migrated because it is already on the
1635 * target node
1636 * 1 - when it has been queued
1637 */
add_page_for_migration(struct mm_struct * mm,unsigned long addr,int node,struct list_head * pagelist,bool migrate_all)1638 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1639 int node, struct list_head *pagelist, bool migrate_all)
1640 {
1641 struct vm_area_struct *vma;
1642 struct page *page;
1643 unsigned int follflags;
1644 int err;
1645
1646 mmap_read_lock(mm);
1647 err = -EFAULT;
1648 vma = find_vma(mm, addr);
1649 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1650 goto out;
1651
1652 /* FOLL_DUMP to ignore special (like zero) pages */
1653 follflags = FOLL_GET | FOLL_DUMP;
1654 page = follow_page(vma, addr, follflags);
1655
1656 err = PTR_ERR(page);
1657 if (IS_ERR(page))
1658 goto out;
1659
1660 err = -ENOENT;
1661 if (!page)
1662 goto out;
1663
1664 err = 0;
1665 if (page_to_nid(page) == node)
1666 goto out_putpage;
1667
1668 err = -EACCES;
1669 if (page_mapcount(page) > 1 && !migrate_all)
1670 goto out_putpage;
1671
1672 if (PageHuge(page)) {
1673 if (PageHead(page)) {
1674 err = isolate_hugetlb(page, pagelist);
1675 if (!err)
1676 err = 1;
1677 }
1678 } else {
1679 struct page *head;
1680
1681 head = compound_head(page);
1682 err = isolate_lru_page(head);
1683 if (err)
1684 goto out_putpage;
1685
1686 err = 1;
1687 list_add_tail(&head->lru, pagelist);
1688 mod_node_page_state(page_pgdat(head),
1689 NR_ISOLATED_ANON + page_is_file_lru(head),
1690 thp_nr_pages(head));
1691 }
1692 out_putpage:
1693 /*
1694 * Either remove the duplicate refcount from
1695 * isolate_lru_page() or drop the page ref if it was
1696 * not isolated.
1697 */
1698 put_page(page);
1699 out:
1700 mmap_read_unlock(mm);
1701 return err;
1702 }
1703
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)1704 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1705 struct list_head *pagelist, int __user *status,
1706 int start, int i, unsigned long nr_pages)
1707 {
1708 int err;
1709
1710 if (list_empty(pagelist))
1711 return 0;
1712
1713 err = do_move_pages_to_node(mm, pagelist, node);
1714 if (err) {
1715 /*
1716 * Positive err means the number of failed
1717 * pages to migrate. Since we are going to
1718 * abort and return the number of non-migrated
1719 * pages, so need to incude the rest of the
1720 * nr_pages that have not been attempted as
1721 * well.
1722 */
1723 if (err > 0)
1724 err += nr_pages - i - 1;
1725 return err;
1726 }
1727 return store_status(status, start, node, i - start);
1728 }
1729
1730 /*
1731 * Migrate an array of page address onto an array of nodes and fill
1732 * the corresponding array of status.
1733 */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1734 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1735 unsigned long nr_pages,
1736 const void __user * __user *pages,
1737 const int __user *nodes,
1738 int __user *status, int flags)
1739 {
1740 int current_node = NUMA_NO_NODE;
1741 LIST_HEAD(pagelist);
1742 int start, i;
1743 int err = 0, err1;
1744
1745 migrate_prep();
1746
1747 for (i = start = 0; i < nr_pages; i++) {
1748 const void __user *p;
1749 unsigned long addr;
1750 int node;
1751
1752 err = -EFAULT;
1753 if (get_user(p, pages + i))
1754 goto out_flush;
1755 if (get_user(node, nodes + i))
1756 goto out_flush;
1757 addr = (unsigned long)untagged_addr(p);
1758
1759 err = -ENODEV;
1760 if (node < 0 || node >= MAX_NUMNODES)
1761 goto out_flush;
1762 if (!node_state(node, N_MEMORY))
1763 goto out_flush;
1764
1765 err = -EACCES;
1766 if (!node_isset(node, task_nodes))
1767 goto out_flush;
1768
1769 if (current_node == NUMA_NO_NODE) {
1770 current_node = node;
1771 start = i;
1772 } else if (node != current_node) {
1773 err = move_pages_and_store_status(mm, current_node,
1774 &pagelist, status, start, i, nr_pages);
1775 if (err)
1776 goto out;
1777 start = i;
1778 current_node = node;
1779 }
1780
1781 /*
1782 * Errors in the page lookup or isolation are not fatal and we simply
1783 * report them via status
1784 */
1785 err = add_page_for_migration(mm, addr, current_node,
1786 &pagelist, flags & MPOL_MF_MOVE_ALL);
1787
1788 if (err > 0) {
1789 /* The page is successfully queued for migration */
1790 continue;
1791 }
1792
1793 /*
1794 * If the page is already on the target node (!err), store the
1795 * node, otherwise, store the err.
1796 */
1797 err = store_status(status, i, err ? : current_node, 1);
1798 if (err)
1799 goto out_flush;
1800
1801 err = move_pages_and_store_status(mm, current_node, &pagelist,
1802 status, start, i, nr_pages);
1803 if (err)
1804 goto out;
1805 current_node = NUMA_NO_NODE;
1806 }
1807 out_flush:
1808 /* Make sure we do not overwrite the existing error */
1809 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1810 status, start, i, nr_pages);
1811 if (err >= 0)
1812 err = err1;
1813 out:
1814 return err;
1815 }
1816
1817 /*
1818 * Determine the nodes of an array of pages and store it in an array of status.
1819 */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)1820 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1821 const void __user **pages, int *status)
1822 {
1823 unsigned long i;
1824
1825 mmap_read_lock(mm);
1826
1827 for (i = 0; i < nr_pages; i++) {
1828 unsigned long addr = (unsigned long)(*pages);
1829 struct vm_area_struct *vma;
1830 struct page *page;
1831 int err = -EFAULT;
1832
1833 vma = find_vma(mm, addr);
1834 if (!vma || addr < vma->vm_start)
1835 goto set_status;
1836
1837 /* FOLL_DUMP to ignore special (like zero) pages */
1838 page = follow_page(vma, addr, FOLL_DUMP);
1839
1840 err = PTR_ERR(page);
1841 if (IS_ERR(page))
1842 goto set_status;
1843
1844 err = page ? page_to_nid(page) : -ENOENT;
1845 set_status:
1846 *status = err;
1847
1848 pages++;
1849 status++;
1850 }
1851
1852 mmap_read_unlock(mm);
1853 }
1854
1855 /*
1856 * Determine the nodes of a user array of pages and store it in
1857 * a user array of status.
1858 */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)1859 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1860 const void __user * __user *pages,
1861 int __user *status)
1862 {
1863 #define DO_PAGES_STAT_CHUNK_NR 16
1864 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1865 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1866
1867 while (nr_pages) {
1868 unsigned long chunk_nr;
1869
1870 chunk_nr = nr_pages;
1871 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1872 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1873
1874 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1875 break;
1876
1877 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1878
1879 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1880 break;
1881
1882 pages += chunk_nr;
1883 status += chunk_nr;
1884 nr_pages -= chunk_nr;
1885 }
1886 return nr_pages ? -EFAULT : 0;
1887 }
1888
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)1889 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1890 {
1891 struct task_struct *task;
1892 struct mm_struct *mm;
1893
1894 /*
1895 * There is no need to check if current process has the right to modify
1896 * the specified process when they are same.
1897 */
1898 if (!pid) {
1899 mmget(current->mm);
1900 *mem_nodes = cpuset_mems_allowed(current);
1901 return current->mm;
1902 }
1903
1904 /* Find the mm_struct */
1905 rcu_read_lock();
1906 task = find_task_by_vpid(pid);
1907 if (!task) {
1908 rcu_read_unlock();
1909 return ERR_PTR(-ESRCH);
1910 }
1911 get_task_struct(task);
1912
1913 /*
1914 * Check if this process has the right to modify the specified
1915 * process. Use the regular "ptrace_may_access()" checks.
1916 */
1917 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1918 rcu_read_unlock();
1919 mm = ERR_PTR(-EPERM);
1920 goto out;
1921 }
1922 rcu_read_unlock();
1923
1924 mm = ERR_PTR(security_task_movememory(task));
1925 if (IS_ERR(mm))
1926 goto out;
1927 *mem_nodes = cpuset_mems_allowed(task);
1928 mm = get_task_mm(task);
1929 out:
1930 put_task_struct(task);
1931 if (!mm)
1932 mm = ERR_PTR(-EINVAL);
1933 return mm;
1934 }
1935
1936 /*
1937 * Move a list of pages in the address space of the currently executing
1938 * process.
1939 */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)1940 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1941 const void __user * __user *pages,
1942 const int __user *nodes,
1943 int __user *status, int flags)
1944 {
1945 struct mm_struct *mm;
1946 int err;
1947 nodemask_t task_nodes;
1948
1949 /* Check flags */
1950 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1951 return -EINVAL;
1952
1953 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1954 return -EPERM;
1955
1956 mm = find_mm_struct(pid, &task_nodes);
1957 if (IS_ERR(mm))
1958 return PTR_ERR(mm);
1959
1960 if (nodes)
1961 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1962 nodes, status, flags);
1963 else
1964 err = do_pages_stat(mm, nr_pages, pages, status);
1965
1966 mmput(mm);
1967 return err;
1968 }
1969
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)1970 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1971 const void __user * __user *, pages,
1972 const int __user *, nodes,
1973 int __user *, status, int, flags)
1974 {
1975 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1976 }
1977
1978 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(move_pages,pid_t,pid,compat_ulong_t,nr_pages,compat_uptr_t __user *,pages32,const int __user *,nodes,int __user *,status,int,flags)1979 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1980 compat_uptr_t __user *, pages32,
1981 const int __user *, nodes,
1982 int __user *, status,
1983 int, flags)
1984 {
1985 const void __user * __user *pages;
1986 int i;
1987
1988 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1989 for (i = 0; i < nr_pages; i++) {
1990 compat_uptr_t p;
1991
1992 if (get_user(p, pages32 + i) ||
1993 put_user(compat_ptr(p), pages + i))
1994 return -EFAULT;
1995 }
1996 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1997 }
1998 #endif /* CONFIG_COMPAT */
1999
2000 #ifdef CONFIG_NUMA_BALANCING
2001 /*
2002 * Returns true if this is a safe migration target node for misplaced NUMA
2003 * pages. Currently it only checks the watermarks which crude
2004 */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2005 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2006 unsigned long nr_migrate_pages)
2007 {
2008 int z;
2009
2010 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2011 struct zone *zone = pgdat->node_zones + z;
2012
2013 if (!populated_zone(zone))
2014 continue;
2015
2016 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2017 if (!zone_watermark_ok(zone, 0,
2018 high_wmark_pages(zone) +
2019 nr_migrate_pages,
2020 ZONE_MOVABLE, 0))
2021 continue;
2022 return true;
2023 }
2024 return false;
2025 }
2026
alloc_misplaced_dst_page(struct page * page,unsigned long data)2027 static struct page *alloc_misplaced_dst_page(struct page *page,
2028 unsigned long data)
2029 {
2030 int nid = (int) data;
2031 struct page *newpage;
2032
2033 newpage = __alloc_pages_node(nid,
2034 (GFP_HIGHUSER_MOVABLE |
2035 __GFP_THISNODE | __GFP_NOMEMALLOC |
2036 __GFP_NORETRY | __GFP_NOWARN) &
2037 ~__GFP_RECLAIM, 0);
2038
2039 return newpage;
2040 }
2041
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2042 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2043 {
2044 int page_lru;
2045
2046 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2047
2048 /* Avoid migrating to a node that is nearly full */
2049 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2050 return 0;
2051
2052 if (isolate_lru_page(page))
2053 return 0;
2054
2055 /*
2056 * migrate_misplaced_transhuge_page() skips page migration's usual
2057 * check on page_count(), so we must do it here, now that the page
2058 * has been isolated: a GUP pin, or any other pin, prevents migration.
2059 * The expected page count is 3: 1 for page's mapcount and 1 for the
2060 * caller's pin and 1 for the reference taken by isolate_lru_page().
2061 */
2062 if (PageTransHuge(page) && page_count(page) != 3) {
2063 putback_lru_page(page);
2064 return 0;
2065 }
2066
2067 page_lru = page_is_file_lru(page);
2068 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2069 thp_nr_pages(page));
2070
2071 /*
2072 * Isolating the page has taken another reference, so the
2073 * caller's reference can be safely dropped without the page
2074 * disappearing underneath us during migration.
2075 */
2076 put_page(page);
2077 return 1;
2078 }
2079
pmd_trans_migrating(pmd_t pmd)2080 bool pmd_trans_migrating(pmd_t pmd)
2081 {
2082 struct page *page = pmd_page(pmd);
2083 return PageLocked(page);
2084 }
2085
2086 /*
2087 * Attempt to migrate a misplaced page to the specified destination
2088 * node. Caller is expected to have an elevated reference count on
2089 * the page that will be dropped by this function before returning.
2090 */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2091 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2092 int node)
2093 {
2094 pg_data_t *pgdat = NODE_DATA(node);
2095 int isolated;
2096 int nr_remaining;
2097 LIST_HEAD(migratepages);
2098
2099 /*
2100 * Don't migrate file pages that are mapped in multiple processes
2101 * with execute permissions as they are probably shared libraries.
2102 */
2103 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2104 (vma->vm_flags & VM_EXEC))
2105 goto out;
2106
2107 /*
2108 * Also do not migrate dirty pages as not all filesystems can move
2109 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2110 */
2111 if (page_is_file_lru(page) && PageDirty(page))
2112 goto out;
2113
2114 isolated = numamigrate_isolate_page(pgdat, page);
2115 if (!isolated)
2116 goto out;
2117
2118 list_add(&page->lru, &migratepages);
2119 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2120 NULL, node, MIGRATE_ASYNC,
2121 MR_NUMA_MISPLACED);
2122 if (nr_remaining) {
2123 if (!list_empty(&migratepages)) {
2124 list_del(&page->lru);
2125 dec_node_page_state(page, NR_ISOLATED_ANON +
2126 page_is_file_lru(page));
2127 putback_lru_page(page);
2128 }
2129 isolated = 0;
2130 } else
2131 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2132 BUG_ON(!list_empty(&migratepages));
2133 return isolated;
2134
2135 out:
2136 put_page(page);
2137 return 0;
2138 }
2139 #endif /* CONFIG_NUMA_BALANCING */
2140
2141 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2142 /*
2143 * Migrates a THP to a given target node. page must be locked and is unlocked
2144 * before returning.
2145 */
migrate_misplaced_transhuge_page(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,pmd_t entry,unsigned long address,struct page * page,int node)2146 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2147 struct vm_area_struct *vma,
2148 pmd_t *pmd, pmd_t entry,
2149 unsigned long address,
2150 struct page *page, int node)
2151 {
2152 spinlock_t *ptl;
2153 pg_data_t *pgdat = NODE_DATA(node);
2154 int isolated = 0;
2155 struct page *new_page = NULL;
2156 int page_lru = page_is_file_lru(page);
2157 unsigned long start = address & HPAGE_PMD_MASK;
2158
2159 new_page = alloc_pages_node(node,
2160 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2161 HPAGE_PMD_ORDER);
2162 if (!new_page)
2163 goto out_fail;
2164 prep_transhuge_page(new_page);
2165
2166 isolated = numamigrate_isolate_page(pgdat, page);
2167 if (!isolated) {
2168 put_page(new_page);
2169 goto out_fail;
2170 }
2171
2172 /* Prepare a page as a migration target */
2173 __SetPageLocked(new_page);
2174 if (PageSwapBacked(page))
2175 __SetPageSwapBacked(new_page);
2176
2177 /* anon mapping, we can simply copy page->mapping to the new page: */
2178 new_page->mapping = page->mapping;
2179 new_page->index = page->index;
2180 /* flush the cache before copying using the kernel virtual address */
2181 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2182 migrate_page_copy(new_page, page);
2183 WARN_ON(PageLRU(new_page));
2184
2185 /* Recheck the target PMD */
2186 ptl = pmd_lock(mm, pmd);
2187 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2188 spin_unlock(ptl);
2189
2190 /* Reverse changes made by migrate_page_copy() */
2191 if (TestClearPageActive(new_page))
2192 SetPageActive(page);
2193 if (TestClearPageUnevictable(new_page))
2194 SetPageUnevictable(page);
2195
2196 unlock_page(new_page);
2197 put_page(new_page); /* Free it */
2198
2199 /* Retake the callers reference and putback on LRU */
2200 get_page(page);
2201 putback_lru_page(page);
2202 mod_node_page_state(page_pgdat(page),
2203 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2204
2205 goto out_unlock;
2206 }
2207
2208 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2209 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2210
2211 /*
2212 * Overwrite the old entry under pagetable lock and establish
2213 * the new PTE. Any parallel GUP will either observe the old
2214 * page blocking on the page lock, block on the page table
2215 * lock or observe the new page. The SetPageUptodate on the
2216 * new page and page_add_new_anon_rmap guarantee the copy is
2217 * visible before the pagetable update.
2218 */
2219 page_add_anon_rmap(new_page, vma, start, true);
2220 /*
2221 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2222 * has already been flushed globally. So no TLB can be currently
2223 * caching this non present pmd mapping. There's no need to clear the
2224 * pmd before doing set_pmd_at(), nor to flush the TLB after
2225 * set_pmd_at(). Clearing the pmd here would introduce a race
2226 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2227 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2228 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2229 * pmd.
2230 */
2231 set_pmd_at(mm, start, pmd, entry);
2232 update_mmu_cache_pmd(vma, address, &entry);
2233
2234 page_ref_unfreeze(page, 2);
2235 mlock_migrate_page(new_page, page);
2236 page_remove_rmap(page, true);
2237 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2238
2239 spin_unlock(ptl);
2240
2241 /* Take an "isolate" reference and put new page on the LRU. */
2242 get_page(new_page);
2243 putback_lru_page(new_page);
2244
2245 unlock_page(new_page);
2246 unlock_page(page);
2247 put_page(page); /* Drop the rmap reference */
2248 put_page(page); /* Drop the LRU isolation reference */
2249
2250 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2251 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2252
2253 mod_node_page_state(page_pgdat(page),
2254 NR_ISOLATED_ANON + page_lru,
2255 -HPAGE_PMD_NR);
2256 return isolated;
2257
2258 out_fail:
2259 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2260 ptl = pmd_lock(mm, pmd);
2261 if (pmd_same(*pmd, entry)) {
2262 entry = pmd_modify(entry, vma->vm_page_prot);
2263 set_pmd_at(mm, start, pmd, entry);
2264 update_mmu_cache_pmd(vma, address, &entry);
2265 }
2266 spin_unlock(ptl);
2267
2268 out_unlock:
2269 unlock_page(page);
2270 put_page(page);
2271 return 0;
2272 }
2273 #endif /* CONFIG_NUMA_BALANCING */
2274
2275 #endif /* CONFIG_NUMA */
2276
2277 #ifdef CONFIG_DEVICE_PRIVATE
migrate_vma_collect_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)2278 static int migrate_vma_collect_hole(unsigned long start,
2279 unsigned long end,
2280 __always_unused int depth,
2281 struct mm_walk *walk)
2282 {
2283 struct migrate_vma *migrate = walk->private;
2284 unsigned long addr;
2285
2286 /* Only allow populating anonymous memory. */
2287 if (!vma_is_anonymous(walk->vma)) {
2288 for (addr = start; addr < end; addr += PAGE_SIZE) {
2289 migrate->src[migrate->npages] = 0;
2290 migrate->dst[migrate->npages] = 0;
2291 migrate->npages++;
2292 }
2293 return 0;
2294 }
2295
2296 for (addr = start; addr < end; addr += PAGE_SIZE) {
2297 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2298 migrate->dst[migrate->npages] = 0;
2299 migrate->npages++;
2300 migrate->cpages++;
2301 }
2302
2303 return 0;
2304 }
2305
migrate_vma_collect_skip(unsigned long start,unsigned long end,struct mm_walk * walk)2306 static int migrate_vma_collect_skip(unsigned long start,
2307 unsigned long end,
2308 struct mm_walk *walk)
2309 {
2310 struct migrate_vma *migrate = walk->private;
2311 unsigned long addr;
2312
2313 for (addr = start; addr < end; addr += PAGE_SIZE) {
2314 migrate->dst[migrate->npages] = 0;
2315 migrate->src[migrate->npages++] = 0;
2316 }
2317
2318 return 0;
2319 }
2320
migrate_vma_collect_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)2321 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2322 unsigned long start,
2323 unsigned long end,
2324 struct mm_walk *walk)
2325 {
2326 struct migrate_vma *migrate = walk->private;
2327 struct vm_area_struct *vma = walk->vma;
2328 struct mm_struct *mm = vma->vm_mm;
2329 unsigned long addr = start, unmapped = 0;
2330 spinlock_t *ptl;
2331 pte_t *ptep;
2332
2333 again:
2334 if (pmd_none(*pmdp))
2335 return migrate_vma_collect_hole(start, end, -1, walk);
2336
2337 if (pmd_trans_huge(*pmdp)) {
2338 struct page *page;
2339
2340 ptl = pmd_lock(mm, pmdp);
2341 if (unlikely(!pmd_trans_huge(*pmdp))) {
2342 spin_unlock(ptl);
2343 goto again;
2344 }
2345
2346 page = pmd_page(*pmdp);
2347 if (is_huge_zero_page(page)) {
2348 spin_unlock(ptl);
2349 split_huge_pmd(vma, pmdp, addr);
2350 if (pmd_trans_unstable(pmdp))
2351 return migrate_vma_collect_skip(start, end,
2352 walk);
2353 } else {
2354 int ret;
2355
2356 get_page(page);
2357 spin_unlock(ptl);
2358 if (unlikely(!trylock_page(page)))
2359 return migrate_vma_collect_skip(start, end,
2360 walk);
2361 ret = split_huge_page(page);
2362 unlock_page(page);
2363 put_page(page);
2364 if (ret)
2365 return migrate_vma_collect_skip(start, end,
2366 walk);
2367 if (pmd_none(*pmdp))
2368 return migrate_vma_collect_hole(start, end, -1,
2369 walk);
2370 }
2371 }
2372
2373 if (unlikely(pmd_bad(*pmdp)))
2374 return migrate_vma_collect_skip(start, end, walk);
2375
2376 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2377 arch_enter_lazy_mmu_mode();
2378
2379 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2380 unsigned long mpfn = 0, pfn;
2381 struct page *page;
2382 swp_entry_t entry;
2383 pte_t pte;
2384
2385 pte = *ptep;
2386
2387 if (pte_none(pte)) {
2388 if (vma_is_anonymous(vma)) {
2389 mpfn = MIGRATE_PFN_MIGRATE;
2390 migrate->cpages++;
2391 }
2392 goto next;
2393 }
2394
2395 if (!pte_present(pte)) {
2396 /*
2397 * Only care about unaddressable device page special
2398 * page table entry. Other special swap entries are not
2399 * migratable, and we ignore regular swapped page.
2400 */
2401 entry = pte_to_swp_entry(pte);
2402 if (!is_device_private_entry(entry))
2403 goto next;
2404
2405 page = device_private_entry_to_page(entry);
2406 if (!(migrate->flags &
2407 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2408 page->pgmap->owner != migrate->pgmap_owner)
2409 goto next;
2410
2411 mpfn = migrate_pfn(page_to_pfn(page)) |
2412 MIGRATE_PFN_MIGRATE;
2413 if (is_write_device_private_entry(entry))
2414 mpfn |= MIGRATE_PFN_WRITE;
2415 } else {
2416 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2417 goto next;
2418 pfn = pte_pfn(pte);
2419 if (is_zero_pfn(pfn)) {
2420 mpfn = MIGRATE_PFN_MIGRATE;
2421 migrate->cpages++;
2422 goto next;
2423 }
2424 page = vm_normal_page(migrate->vma, addr, pte);
2425 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2426 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2427 }
2428
2429 /* FIXME support THP */
2430 if (!page || !page->mapping || PageTransCompound(page)) {
2431 mpfn = 0;
2432 goto next;
2433 }
2434
2435 /*
2436 * By getting a reference on the page we pin it and that blocks
2437 * any kind of migration. Side effect is that it "freezes" the
2438 * pte.
2439 *
2440 * We drop this reference after isolating the page from the lru
2441 * for non device page (device page are not on the lru and thus
2442 * can't be dropped from it).
2443 */
2444 get_page(page);
2445 migrate->cpages++;
2446
2447 /*
2448 * Optimize for the common case where page is only mapped once
2449 * in one process. If we can lock the page, then we can safely
2450 * set up a special migration page table entry now.
2451 */
2452 if (trylock_page(page)) {
2453 pte_t swp_pte;
2454
2455 mpfn |= MIGRATE_PFN_LOCKED;
2456 ptep_get_and_clear(mm, addr, ptep);
2457
2458 /* Setup special migration page table entry */
2459 entry = make_migration_entry(page, mpfn &
2460 MIGRATE_PFN_WRITE);
2461 swp_pte = swp_entry_to_pte(entry);
2462 if (pte_present(pte)) {
2463 if (pte_soft_dirty(pte))
2464 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2465 if (pte_uffd_wp(pte))
2466 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2467 } else {
2468 if (pte_swp_soft_dirty(pte))
2469 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2470 if (pte_swp_uffd_wp(pte))
2471 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2472 }
2473 set_pte_at(mm, addr, ptep, swp_pte);
2474
2475 /*
2476 * This is like regular unmap: we remove the rmap and
2477 * drop page refcount. Page won't be freed, as we took
2478 * a reference just above.
2479 */
2480 page_remove_rmap(page, false);
2481 put_page(page);
2482
2483 if (pte_present(pte))
2484 unmapped++;
2485 }
2486
2487 next:
2488 migrate->dst[migrate->npages] = 0;
2489 migrate->src[migrate->npages++] = mpfn;
2490 }
2491
2492 /* Only flush the TLB if we actually modified any entries */
2493 if (unmapped)
2494 flush_tlb_range(walk->vma, start, end);
2495
2496 arch_leave_lazy_mmu_mode();
2497 pte_unmap_unlock(ptep - 1, ptl);
2498
2499 return 0;
2500 }
2501
2502 static const struct mm_walk_ops migrate_vma_walk_ops = {
2503 .pmd_entry = migrate_vma_collect_pmd,
2504 .pte_hole = migrate_vma_collect_hole,
2505 };
2506
2507 /*
2508 * migrate_vma_collect() - collect pages over a range of virtual addresses
2509 * @migrate: migrate struct containing all migration information
2510 *
2511 * This will walk the CPU page table. For each virtual address backed by a
2512 * valid page, it updates the src array and takes a reference on the page, in
2513 * order to pin the page until we lock it and unmap it.
2514 */
migrate_vma_collect(struct migrate_vma * migrate)2515 static void migrate_vma_collect(struct migrate_vma *migrate)
2516 {
2517 struct mmu_notifier_range range;
2518
2519 /*
2520 * Note that the pgmap_owner is passed to the mmu notifier callback so
2521 * that the registered device driver can skip invalidating device
2522 * private page mappings that won't be migrated.
2523 */
2524 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2525 migrate->vma->vm_mm, migrate->start, migrate->end,
2526 migrate->pgmap_owner);
2527 mmu_notifier_invalidate_range_start(&range);
2528
2529 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2530 &migrate_vma_walk_ops, migrate);
2531
2532 mmu_notifier_invalidate_range_end(&range);
2533 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2534 }
2535
2536 /*
2537 * migrate_vma_check_page() - check if page is pinned or not
2538 * @page: struct page to check
2539 *
2540 * Pinned pages cannot be migrated. This is the same test as in
2541 * migrate_page_move_mapping(), except that here we allow migration of a
2542 * ZONE_DEVICE page.
2543 */
migrate_vma_check_page(struct page * page,struct page * fault_page)2544 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
2545 {
2546 /*
2547 * One extra ref because caller holds an extra reference, either from
2548 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2549 * a device page.
2550 */
2551 int extra = 1 + (page == fault_page);
2552
2553 /*
2554 * FIXME support THP (transparent huge page), it is bit more complex to
2555 * check them than regular pages, because they can be mapped with a pmd
2556 * or with a pte (split pte mapping).
2557 */
2558 if (PageCompound(page))
2559 return false;
2560
2561 /* Page from ZONE_DEVICE have one extra reference */
2562 if (is_zone_device_page(page)) {
2563 /*
2564 * Private page can never be pin as they have no valid pte and
2565 * GUP will fail for those. Yet if there is a pending migration
2566 * a thread might try to wait on the pte migration entry and
2567 * will bump the page reference count. Sadly there is no way to
2568 * differentiate a regular pin from migration wait. Hence to
2569 * avoid 2 racing thread trying to migrate back to CPU to enter
2570 * infinite loop (one stoping migration because the other is
2571 * waiting on pte migration entry). We always return true here.
2572 *
2573 * FIXME proper solution is to rework migration_entry_wait() so
2574 * it does not need to take a reference on page.
2575 */
2576 return is_device_private_page(page);
2577 }
2578
2579 /* For file back page */
2580 if (page_mapping(page))
2581 extra += 1 + page_has_private(page);
2582
2583 if ((page_count(page) - extra) > page_mapcount(page))
2584 return false;
2585
2586 return true;
2587 }
2588
2589 /*
2590 * migrate_vma_prepare() - lock pages and isolate them from the lru
2591 * @migrate: migrate struct containing all migration information
2592 *
2593 * This locks pages that have been collected by migrate_vma_collect(). Once each
2594 * page is locked it is isolated from the lru (for non-device pages). Finally,
2595 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2596 * migrated by concurrent kernel threads.
2597 */
migrate_vma_prepare(struct migrate_vma * migrate)2598 static void migrate_vma_prepare(struct migrate_vma *migrate)
2599 {
2600 const unsigned long npages = migrate->npages;
2601 const unsigned long start = migrate->start;
2602 unsigned long addr, i, restore = 0;
2603 bool allow_drain = true;
2604
2605 lru_add_drain();
2606
2607 for (i = 0; (i < npages) && migrate->cpages; i++) {
2608 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2609 bool remap = true;
2610
2611 if (!page)
2612 continue;
2613
2614 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2615 /*
2616 * Because we are migrating several pages there can be
2617 * a deadlock between 2 concurrent migration where each
2618 * are waiting on each other page lock.
2619 *
2620 * Make migrate_vma() a best effort thing and backoff
2621 * for any page we can not lock right away.
2622 */
2623 if (!trylock_page(page)) {
2624 migrate->src[i] = 0;
2625 migrate->cpages--;
2626 put_page(page);
2627 continue;
2628 }
2629 remap = false;
2630 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2631 }
2632
2633 /* ZONE_DEVICE pages are not on LRU */
2634 if (!is_zone_device_page(page)) {
2635 if (!PageLRU(page) && allow_drain) {
2636 /* Drain CPU's pagevec */
2637 lru_add_drain_all();
2638 allow_drain = false;
2639 }
2640
2641 if (isolate_lru_page(page)) {
2642 if (remap) {
2643 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2644 migrate->cpages--;
2645 restore++;
2646 } else {
2647 migrate->src[i] = 0;
2648 unlock_page(page);
2649 migrate->cpages--;
2650 put_page(page);
2651 }
2652 continue;
2653 }
2654
2655 /* Drop the reference we took in collect */
2656 put_page(page);
2657 }
2658
2659 if (!migrate_vma_check_page(page, migrate->fault_page)) {
2660 if (remap) {
2661 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2662 migrate->cpages--;
2663 restore++;
2664
2665 if (!is_zone_device_page(page)) {
2666 get_page(page);
2667 putback_lru_page(page);
2668 }
2669 } else {
2670 migrate->src[i] = 0;
2671 unlock_page(page);
2672 migrate->cpages--;
2673
2674 if (!is_zone_device_page(page))
2675 putback_lru_page(page);
2676 else
2677 put_page(page);
2678 }
2679 }
2680 }
2681
2682 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2683 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2684
2685 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2686 continue;
2687
2688 remove_migration_pte(page, migrate->vma, addr, page);
2689
2690 migrate->src[i] = 0;
2691 unlock_page(page);
2692 put_page(page);
2693 restore--;
2694 }
2695 }
2696
2697 /*
2698 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2699 * @migrate: migrate struct containing all migration information
2700 *
2701 * Replace page mapping (CPU page table pte) with a special migration pte entry
2702 * and check again if it has been pinned. Pinned pages are restored because we
2703 * cannot migrate them.
2704 *
2705 * This is the last step before we call the device driver callback to allocate
2706 * destination memory and copy contents of original page over to new page.
2707 */
migrate_vma_unmap(struct migrate_vma * migrate)2708 static void migrate_vma_unmap(struct migrate_vma *migrate)
2709 {
2710 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2711 const unsigned long npages = migrate->npages;
2712 const unsigned long start = migrate->start;
2713 unsigned long addr, i, restore = 0;
2714
2715 for (i = 0; i < npages; i++) {
2716 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2717
2718 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2719 continue;
2720
2721 if (page_mapped(page)) {
2722 try_to_unmap(page, flags);
2723 if (page_mapped(page))
2724 goto restore;
2725 }
2726
2727 if (migrate_vma_check_page(page, migrate->fault_page))
2728 continue;
2729
2730 restore:
2731 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2732 migrate->cpages--;
2733 restore++;
2734 }
2735
2736 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2737 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2738
2739 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2740 continue;
2741
2742 remove_migration_ptes(page, page, false);
2743
2744 migrate->src[i] = 0;
2745 unlock_page(page);
2746 restore--;
2747
2748 if (is_zone_device_page(page))
2749 put_page(page);
2750 else
2751 putback_lru_page(page);
2752 }
2753 }
2754
2755 /**
2756 * migrate_vma_setup() - prepare to migrate a range of memory
2757 * @args: contains the vma, start, and pfns arrays for the migration
2758 *
2759 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2760 * without an error.
2761 *
2762 * Prepare to migrate a range of memory virtual address range by collecting all
2763 * the pages backing each virtual address in the range, saving them inside the
2764 * src array. Then lock those pages and unmap them. Once the pages are locked
2765 * and unmapped, check whether each page is pinned or not. Pages that aren't
2766 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2767 * corresponding src array entry. Then restores any pages that are pinned, by
2768 * remapping and unlocking those pages.
2769 *
2770 * The caller should then allocate destination memory and copy source memory to
2771 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2772 * flag set). Once these are allocated and copied, the caller must update each
2773 * corresponding entry in the dst array with the pfn value of the destination
2774 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2775 * (destination pages must have their struct pages locked, via lock_page()).
2776 *
2777 * Note that the caller does not have to migrate all the pages that are marked
2778 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2779 * device memory to system memory. If the caller cannot migrate a device page
2780 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2781 * consequences for the userspace process, so it must be avoided if at all
2782 * possible.
2783 *
2784 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2785 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2786 * allowing the caller to allocate device memory for those unback virtual
2787 * address. For this the caller simply has to allocate device memory and
2788 * properly set the destination entry like for regular migration. Note that
2789 * this can still fails and thus inside the device driver must check if the
2790 * migration was successful for those entries after calling migrate_vma_pages()
2791 * just like for regular migration.
2792 *
2793 * After that, the callers must call migrate_vma_pages() to go over each entry
2794 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2795 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2796 * then migrate_vma_pages() to migrate struct page information from the source
2797 * struct page to the destination struct page. If it fails to migrate the
2798 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2799 * src array.
2800 *
2801 * At this point all successfully migrated pages have an entry in the src
2802 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2803 * array entry with MIGRATE_PFN_VALID flag set.
2804 *
2805 * Once migrate_vma_pages() returns the caller may inspect which pages were
2806 * successfully migrated, and which were not. Successfully migrated pages will
2807 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2808 *
2809 * It is safe to update device page table after migrate_vma_pages() because
2810 * both destination and source page are still locked, and the mmap_lock is held
2811 * in read mode (hence no one can unmap the range being migrated).
2812 *
2813 * Once the caller is done cleaning up things and updating its page table (if it
2814 * chose to do so, this is not an obligation) it finally calls
2815 * migrate_vma_finalize() to update the CPU page table to point to new pages
2816 * for successfully migrated pages or otherwise restore the CPU page table to
2817 * point to the original source pages.
2818 */
migrate_vma_setup(struct migrate_vma * args)2819 int migrate_vma_setup(struct migrate_vma *args)
2820 {
2821 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2822
2823 args->start &= PAGE_MASK;
2824 args->end &= PAGE_MASK;
2825 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2826 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2827 return -EINVAL;
2828 if (nr_pages <= 0)
2829 return -EINVAL;
2830 if (args->start < args->vma->vm_start ||
2831 args->start >= args->vma->vm_end)
2832 return -EINVAL;
2833 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2834 return -EINVAL;
2835 if (!args->src || !args->dst)
2836 return -EINVAL;
2837 if (args->fault_page && !is_device_private_page(args->fault_page))
2838 return -EINVAL;
2839
2840 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2841 args->cpages = 0;
2842 args->npages = 0;
2843
2844 migrate_vma_collect(args);
2845
2846 if (args->cpages)
2847 migrate_vma_prepare(args);
2848 if (args->cpages)
2849 migrate_vma_unmap(args);
2850
2851 /*
2852 * At this point pages are locked and unmapped, and thus they have
2853 * stable content and can safely be copied to destination memory that
2854 * is allocated by the drivers.
2855 */
2856 return 0;
2857
2858 }
2859 EXPORT_SYMBOL(migrate_vma_setup);
2860
2861 /*
2862 * This code closely matches the code in:
2863 * __handle_mm_fault()
2864 * handle_pte_fault()
2865 * do_anonymous_page()
2866 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2867 * private page.
2868 */
migrate_vma_insert_page(struct migrate_vma * migrate,unsigned long addr,struct page * page,unsigned long * src,unsigned long * dst)2869 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2870 unsigned long addr,
2871 struct page *page,
2872 unsigned long *src,
2873 unsigned long *dst)
2874 {
2875 struct vm_area_struct *vma = migrate->vma;
2876 struct mm_struct *mm = vma->vm_mm;
2877 bool flush = false;
2878 spinlock_t *ptl;
2879 pte_t entry;
2880 pgd_t *pgdp;
2881 p4d_t *p4dp;
2882 pud_t *pudp;
2883 pmd_t *pmdp;
2884 pte_t *ptep;
2885
2886 /* Only allow populating anonymous memory */
2887 if (!vma_is_anonymous(vma))
2888 goto abort;
2889
2890 pgdp = pgd_offset(mm, addr);
2891 p4dp = p4d_alloc(mm, pgdp, addr);
2892 if (!p4dp)
2893 goto abort;
2894 pudp = pud_alloc(mm, p4dp, addr);
2895 if (!pudp)
2896 goto abort;
2897 pmdp = pmd_alloc(mm, pudp, addr);
2898 if (!pmdp)
2899 goto abort;
2900
2901 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2902 goto abort;
2903
2904 /*
2905 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2906 * pte_offset_map() on pmds where a huge pmd might be created
2907 * from a different thread.
2908 *
2909 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2910 * parallel threads are excluded by other means.
2911 *
2912 * Here we only have mmap_read_lock(mm).
2913 */
2914 if (pte_alloc(mm, pmdp))
2915 goto abort;
2916
2917 /* See the comment in pte_alloc_one_map() */
2918 if (unlikely(pmd_trans_unstable(pmdp)))
2919 goto abort;
2920
2921 if (unlikely(anon_vma_prepare(vma)))
2922 goto abort;
2923 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2924 goto abort;
2925
2926 /*
2927 * The memory barrier inside __SetPageUptodate makes sure that
2928 * preceding stores to the page contents become visible before
2929 * the set_pte_at() write.
2930 */
2931 __SetPageUptodate(page);
2932
2933 if (is_zone_device_page(page)) {
2934 if (is_device_private_page(page)) {
2935 swp_entry_t swp_entry;
2936
2937 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2938 entry = swp_entry_to_pte(swp_entry);
2939 } else {
2940 /*
2941 * For now we only support migrating to un-addressable
2942 * device memory.
2943 */
2944 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2945 goto abort;
2946 }
2947 } else {
2948 entry = mk_pte(page, vma->vm_page_prot);
2949 if (vma->vm_flags & VM_WRITE)
2950 entry = pte_mkwrite(pte_mkdirty(entry));
2951 }
2952
2953 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2954
2955 if (check_stable_address_space(mm))
2956 goto unlock_abort;
2957
2958 if (pte_present(*ptep)) {
2959 unsigned long pfn = pte_pfn(*ptep);
2960
2961 if (!is_zero_pfn(pfn))
2962 goto unlock_abort;
2963 flush = true;
2964 } else if (!pte_none(*ptep))
2965 goto unlock_abort;
2966
2967 /*
2968 * Check for userfaultfd but do not deliver the fault. Instead,
2969 * just back off.
2970 */
2971 if (userfaultfd_missing(vma))
2972 goto unlock_abort;
2973
2974 inc_mm_counter(mm, MM_ANONPAGES);
2975 page_add_new_anon_rmap(page, vma, addr, false);
2976 if (!is_zone_device_page(page))
2977 lru_cache_add_inactive_or_unevictable(page, vma);
2978 get_page(page);
2979
2980 if (flush) {
2981 flush_cache_page(vma, addr, pte_pfn(*ptep));
2982 ptep_clear_flush_notify(vma, addr, ptep);
2983 set_pte_at_notify(mm, addr, ptep, entry);
2984 update_mmu_cache(vma, addr, ptep);
2985 } else {
2986 /* No need to invalidate - it was non-present before */
2987 set_pte_at(mm, addr, ptep, entry);
2988 update_mmu_cache(vma, addr, ptep);
2989 }
2990
2991 pte_unmap_unlock(ptep, ptl);
2992 *src = MIGRATE_PFN_MIGRATE;
2993 return;
2994
2995 unlock_abort:
2996 pte_unmap_unlock(ptep, ptl);
2997 abort:
2998 *src &= ~MIGRATE_PFN_MIGRATE;
2999 }
3000
3001 /**
3002 * migrate_vma_pages() - migrate meta-data from src page to dst page
3003 * @migrate: migrate struct containing all migration information
3004 *
3005 * This migrates struct page meta-data from source struct page to destination
3006 * struct page. This effectively finishes the migration from source page to the
3007 * destination page.
3008 */
migrate_vma_pages(struct migrate_vma * migrate)3009 void migrate_vma_pages(struct migrate_vma *migrate)
3010 {
3011 const unsigned long npages = migrate->npages;
3012 const unsigned long start = migrate->start;
3013 struct mmu_notifier_range range;
3014 unsigned long addr, i;
3015 bool notified = false;
3016
3017 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3018 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3019 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3020 struct address_space *mapping;
3021 int r;
3022
3023 if (!newpage) {
3024 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3025 continue;
3026 }
3027
3028 if (!page) {
3029 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3030 continue;
3031 if (!notified) {
3032 notified = true;
3033
3034 mmu_notifier_range_init(&range,
3035 MMU_NOTIFY_CLEAR, 0,
3036 NULL,
3037 migrate->vma->vm_mm,
3038 addr, migrate->end);
3039 mmu_notifier_invalidate_range_start(&range);
3040 }
3041 migrate_vma_insert_page(migrate, addr, newpage,
3042 &migrate->src[i],
3043 &migrate->dst[i]);
3044 continue;
3045 }
3046
3047 mapping = page_mapping(page);
3048
3049 if (is_zone_device_page(newpage)) {
3050 if (is_device_private_page(newpage)) {
3051 /*
3052 * For now only support private anonymous when
3053 * migrating to un-addressable device memory.
3054 */
3055 if (mapping) {
3056 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3057 continue;
3058 }
3059 } else {
3060 /*
3061 * Other types of ZONE_DEVICE page are not
3062 * supported.
3063 */
3064 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3065 continue;
3066 }
3067 }
3068
3069 if (migrate->fault_page == page)
3070 r = migrate_page_extra(mapping, newpage, page,
3071 MIGRATE_SYNC_NO_COPY, 1);
3072 else
3073 r = migrate_page(mapping, newpage, page,
3074 MIGRATE_SYNC_NO_COPY);
3075 if (r != MIGRATEPAGE_SUCCESS)
3076 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3077 }
3078
3079 /*
3080 * No need to double call mmu_notifier->invalidate_range() callback as
3081 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3082 * did already call it.
3083 */
3084 if (notified)
3085 mmu_notifier_invalidate_range_only_end(&range);
3086 }
3087 EXPORT_SYMBOL(migrate_vma_pages);
3088
3089 /**
3090 * migrate_vma_finalize() - restore CPU page table entry
3091 * @migrate: migrate struct containing all migration information
3092 *
3093 * This replaces the special migration pte entry with either a mapping to the
3094 * new page if migration was successful for that page, or to the original page
3095 * otherwise.
3096 *
3097 * This also unlocks the pages and puts them back on the lru, or drops the extra
3098 * refcount, for device pages.
3099 */
migrate_vma_finalize(struct migrate_vma * migrate)3100 void migrate_vma_finalize(struct migrate_vma *migrate)
3101 {
3102 const unsigned long npages = migrate->npages;
3103 unsigned long i;
3104
3105 for (i = 0; i < npages; i++) {
3106 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3107 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3108
3109 if (!page) {
3110 if (newpage) {
3111 unlock_page(newpage);
3112 put_page(newpage);
3113 }
3114 continue;
3115 }
3116
3117 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3118 if (newpage) {
3119 unlock_page(newpage);
3120 put_page(newpage);
3121 }
3122 newpage = page;
3123 }
3124
3125 remove_migration_ptes(page, newpage, false);
3126 unlock_page(page);
3127
3128 if (is_zone_device_page(page))
3129 put_page(page);
3130 else
3131 putback_lru_page(page);
3132
3133 if (newpage != page) {
3134 unlock_page(newpage);
3135 if (is_zone_device_page(newpage))
3136 put_page(newpage);
3137 else
3138 putback_lru_page(newpage);
3139 }
3140 }
3141 }
3142 EXPORT_SYMBOL(migrate_vma_finalize);
3143 #endif /* CONFIG_DEVICE_PRIVATE */
3144