1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
shmem_default_max_inodes(void)132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
SHMEM_SB(struct super_block * sb)159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
shmem_acct_size(unsigned long flags,loff_t size)170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
shmem_unacct_size(unsigned long flags,loff_t size)176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
shmem_acct_block(unsigned long flags,long pages)201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_unacct_blocks(unsigned long flags,long pages)210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
shmem_inode_acct_block(struct inode * inode,long pages)216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
shmem_inode_unacct_blocks(struct inode * inode,long pages)238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
vma_is_shmem(struct vm_area_struct * vma)257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
shmem_free_inode(struct super_block * sb)340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
shmem_recalc_inode(struct inode * inode)362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
shmem_charge(struct inode * inode,long pages)375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
shmem_uncharge(struct inode * inode,long pages)395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 goto next;
546 }
547
548 /* Check if there's anything to gain */
549 if (round_up(inode->i_size, PAGE_SIZE) ==
550 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
551 list_move(&info->shrinklist, &to_remove);
552 goto next;
553 }
554
555 list_move(&info->shrinklist, &list);
556 next:
557 sbinfo->shrinklist_len--;
558 if (!--batch)
559 break;
560 }
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 list_for_each_safe(pos, next, &to_remove) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 inode = &info->vfs_inode;
566 list_del_init(&info->shrinklist);
567 iput(inode);
568 }
569
570 list_for_each_safe(pos, next, &list) {
571 int ret;
572
573 info = list_entry(pos, struct shmem_inode_info, shrinklist);
574 inode = &info->vfs_inode;
575
576 if (nr_to_split && split >= nr_to_split)
577 goto move_back;
578
579 page = find_get_page(inode->i_mapping,
580 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
581 if (!page)
582 goto drop;
583
584 /* No huge page at the end of the file: nothing to split */
585 if (!PageTransHuge(page)) {
586 put_page(page);
587 goto drop;
588 }
589
590 /*
591 * Move the inode on the list back to shrinklist if we failed
592 * to lock the page at this time.
593 *
594 * Waiting for the lock may lead to deadlock in the
595 * reclaim path.
596 */
597 if (!trylock_page(page)) {
598 put_page(page);
599 goto move_back;
600 }
601
602 ret = split_huge_page(page);
603 unlock_page(page);
604 put_page(page);
605
606 /* If split failed move the inode on the list back to shrinklist */
607 if (ret)
608 goto move_back;
609
610 split++;
611 drop:
612 list_del_init(&info->shrinklist);
613 goto put;
614 move_back:
615 /*
616 * Make sure the inode is either on the global list or deleted
617 * from any local list before iput() since it could be deleted
618 * in another thread once we put the inode (then the local list
619 * is corrupted).
620 */
621 spin_lock(&sbinfo->shrinklist_lock);
622 list_move(&info->shrinklist, &sbinfo->shrinklist);
623 sbinfo->shrinklist_len++;
624 spin_unlock(&sbinfo->shrinklist_lock);
625 put:
626 iput(inode);
627 }
628
629 return split;
630 }
631
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)632 static long shmem_unused_huge_scan(struct super_block *sb,
633 struct shrink_control *sc)
634 {
635 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
636
637 if (!READ_ONCE(sbinfo->shrinklist_len))
638 return SHRINK_STOP;
639
640 return shmem_unused_huge_shrink(sbinfo, sc, 0);
641 }
642
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)643 static long shmem_unused_huge_count(struct super_block *sb,
644 struct shrink_control *sc)
645 {
646 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
647 return READ_ONCE(sbinfo->shrinklist_len);
648 }
649 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
650
651 #define shmem_huge SHMEM_HUGE_DENY
652
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)653 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
654 struct shrink_control *sc, unsigned long nr_to_split)
655 {
656 return 0;
657 }
658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
659
is_huge_enabled(struct shmem_sb_info * sbinfo)660 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
661 {
662 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
663 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
664 shmem_huge != SHMEM_HUGE_DENY)
665 return true;
666 return false;
667 }
668
669 /*
670 * Like add_to_page_cache_locked, but error if expected item has gone.
671 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)672 static int shmem_add_to_page_cache(struct page *page,
673 struct address_space *mapping,
674 pgoff_t index, void *expected, gfp_t gfp,
675 struct mm_struct *charge_mm)
676 {
677 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
678 unsigned long i = 0;
679 unsigned long nr = compound_nr(page);
680 int error;
681
682 VM_BUG_ON_PAGE(PageTail(page), page);
683 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
684 VM_BUG_ON_PAGE(!PageLocked(page), page);
685 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
686 VM_BUG_ON(expected && PageTransHuge(page));
687
688 page_ref_add(page, nr);
689 page->mapping = mapping;
690 page->index = index;
691
692 if (!PageSwapCache(page)) {
693 error = mem_cgroup_charge(page, charge_mm, gfp);
694 if (error) {
695 if (PageTransHuge(page)) {
696 count_vm_event(THP_FILE_FALLBACK);
697 count_vm_event(THP_FILE_FALLBACK_CHARGE);
698 }
699 goto error;
700 }
701 }
702 cgroup_throttle_swaprate(page, gfp);
703
704 do {
705 void *entry;
706 xas_lock_irq(&xas);
707 entry = xas_find_conflict(&xas);
708 if (entry != expected)
709 xas_set_err(&xas, -EEXIST);
710 xas_create_range(&xas);
711 if (xas_error(&xas))
712 goto unlock;
713 next:
714 xas_store(&xas, page);
715 if (++i < nr) {
716 xas_next(&xas);
717 goto next;
718 }
719 if (PageTransHuge(page)) {
720 count_vm_event(THP_FILE_ALLOC);
721 __inc_node_page_state(page, NR_SHMEM_THPS);
722 }
723 mapping->nrpages += nr;
724 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
725 __mod_lruvec_page_state(page, NR_SHMEM, nr);
726 unlock:
727 xas_unlock_irq(&xas);
728 } while (xas_nomem(&xas, gfp));
729
730 if (xas_error(&xas)) {
731 error = xas_error(&xas);
732 goto error;
733 }
734
735 return 0;
736 error:
737 page->mapping = NULL;
738 page_ref_sub(page, nr);
739 return error;
740 }
741
742 /*
743 * Like delete_from_page_cache, but substitutes swap for page.
744 */
shmem_delete_from_page_cache(struct page * page,void * radswap)745 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
746 {
747 struct address_space *mapping = page->mapping;
748 int error;
749
750 VM_BUG_ON_PAGE(PageCompound(page), page);
751
752 xa_lock_irq(&mapping->i_pages);
753 error = shmem_replace_entry(mapping, page->index, page, radswap);
754 page->mapping = NULL;
755 mapping->nrpages--;
756 __dec_lruvec_page_state(page, NR_FILE_PAGES);
757 __dec_lruvec_page_state(page, NR_SHMEM);
758 xa_unlock_irq(&mapping->i_pages);
759 put_page(page);
760 BUG_ON(error);
761 }
762
763 /*
764 * Remove swap entry from page cache, free the swap and its page cache.
765 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)766 static int shmem_free_swap(struct address_space *mapping,
767 pgoff_t index, void *radswap)
768 {
769 void *old;
770
771 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
772 if (old != radswap)
773 return -ENOENT;
774 free_swap_and_cache(radix_to_swp_entry(radswap));
775 return 0;
776 }
777
778 /*
779 * Determine (in bytes) how many of the shmem object's pages mapped by the
780 * given offsets are swapped out.
781 *
782 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
783 * as long as the inode doesn't go away and racy results are not a problem.
784 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)785 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
786 pgoff_t start, pgoff_t end)
787 {
788 XA_STATE(xas, &mapping->i_pages, start);
789 struct page *page;
790 unsigned long swapped = 0;
791
792 rcu_read_lock();
793 xas_for_each(&xas, page, end - 1) {
794 if (xas_retry(&xas, page))
795 continue;
796 if (xa_is_value(page))
797 swapped++;
798
799 if (need_resched()) {
800 xas_pause(&xas);
801 cond_resched_rcu();
802 }
803 }
804
805 rcu_read_unlock();
806
807 return swapped << PAGE_SHIFT;
808 }
809
810 /*
811 * Determine (in bytes) how many of the shmem object's pages mapped by the
812 * given vma is swapped out.
813 *
814 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
815 * as long as the inode doesn't go away and racy results are not a problem.
816 */
shmem_swap_usage(struct vm_area_struct * vma)817 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
818 {
819 struct inode *inode = file_inode(vma->vm_file);
820 struct shmem_inode_info *info = SHMEM_I(inode);
821 struct address_space *mapping = inode->i_mapping;
822 unsigned long swapped;
823
824 /* Be careful as we don't hold info->lock */
825 swapped = READ_ONCE(info->swapped);
826
827 /*
828 * The easier cases are when the shmem object has nothing in swap, or
829 * the vma maps it whole. Then we can simply use the stats that we
830 * already track.
831 */
832 if (!swapped)
833 return 0;
834
835 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
836 return swapped << PAGE_SHIFT;
837
838 /* Here comes the more involved part */
839 return shmem_partial_swap_usage(mapping,
840 linear_page_index(vma, vma->vm_start),
841 linear_page_index(vma, vma->vm_end));
842 }
843
844 /*
845 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
846 */
shmem_unlock_mapping(struct address_space * mapping)847 void shmem_unlock_mapping(struct address_space *mapping)
848 {
849 struct pagevec pvec;
850 pgoff_t indices[PAGEVEC_SIZE];
851 pgoff_t index = 0;
852
853 pagevec_init(&pvec);
854 /*
855 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
856 */
857 while (!mapping_unevictable(mapping)) {
858 /*
859 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
860 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
861 */
862 pvec.nr = find_get_entries(mapping, index,
863 PAGEVEC_SIZE, pvec.pages, indices);
864 if (!pvec.nr)
865 break;
866 index = indices[pvec.nr - 1] + 1;
867 pagevec_remove_exceptionals(&pvec);
868 check_move_unevictable_pages(&pvec);
869 pagevec_release(&pvec);
870 cond_resched();
871 }
872 }
873
874 /*
875 * Check whether a hole-punch or truncation needs to split a huge page,
876 * returning true if no split was required, or the split has been successful.
877 *
878 * Eviction (or truncation to 0 size) should never need to split a huge page;
879 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
880 * head, and then succeeded to trylock on tail.
881 *
882 * A split can only succeed when there are no additional references on the
883 * huge page: so the split below relies upon find_get_entries() having stopped
884 * when it found a subpage of the huge page, without getting further references.
885 */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)886 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
887 {
888 if (!PageTransCompound(page))
889 return true;
890
891 /* Just proceed to delete a huge page wholly within the range punched */
892 if (PageHead(page) &&
893 page->index >= start && page->index + HPAGE_PMD_NR <= end)
894 return true;
895
896 /* Try to split huge page, so we can truly punch the hole or truncate */
897 return split_huge_page(page) >= 0;
898 }
899
900 /*
901 * Remove range of pages and swap entries from page cache, and free them.
902 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
903 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)904 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
905 bool unfalloc)
906 {
907 struct address_space *mapping = inode->i_mapping;
908 struct shmem_inode_info *info = SHMEM_I(inode);
909 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
910 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
911 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
912 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
913 struct pagevec pvec;
914 pgoff_t indices[PAGEVEC_SIZE];
915 long nr_swaps_freed = 0;
916 pgoff_t index;
917 int i;
918
919 if (lend == -1)
920 end = -1; /* unsigned, so actually very big */
921
922 pagevec_init(&pvec);
923 index = start;
924 while (index < end) {
925 pvec.nr = find_get_entries(mapping, index,
926 min(end - index, (pgoff_t)PAGEVEC_SIZE),
927 pvec.pages, indices);
928 if (!pvec.nr)
929 break;
930 for (i = 0; i < pagevec_count(&pvec); i++) {
931 struct page *page = pvec.pages[i];
932
933 index = indices[i];
934 if (index >= end)
935 break;
936
937 if (xa_is_value(page)) {
938 if (unfalloc)
939 continue;
940 nr_swaps_freed += !shmem_free_swap(mapping,
941 index, page);
942 continue;
943 }
944
945 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
946
947 if (!trylock_page(page))
948 continue;
949
950 if ((!unfalloc || !PageUptodate(page)) &&
951 page_mapping(page) == mapping) {
952 VM_BUG_ON_PAGE(PageWriteback(page), page);
953 if (shmem_punch_compound(page, start, end))
954 truncate_inode_page(mapping, page);
955 }
956 unlock_page(page);
957 }
958 pagevec_remove_exceptionals(&pvec);
959 pagevec_release(&pvec);
960 cond_resched();
961 index++;
962 }
963
964 if (partial_start) {
965 struct page *page = NULL;
966 shmem_getpage(inode, start - 1, &page, SGP_READ);
967 if (page) {
968 unsigned int top = PAGE_SIZE;
969 if (start > end) {
970 top = partial_end;
971 partial_end = 0;
972 }
973 zero_user_segment(page, partial_start, top);
974 set_page_dirty(page);
975 unlock_page(page);
976 put_page(page);
977 }
978 }
979 if (partial_end) {
980 struct page *page = NULL;
981 shmem_getpage(inode, end, &page, SGP_READ);
982 if (page) {
983 zero_user_segment(page, 0, partial_end);
984 set_page_dirty(page);
985 unlock_page(page);
986 put_page(page);
987 }
988 }
989 if (start >= end)
990 return;
991
992 index = start;
993 while (index < end) {
994 cond_resched();
995
996 pvec.nr = find_get_entries(mapping, index,
997 min(end - index, (pgoff_t)PAGEVEC_SIZE),
998 pvec.pages, indices);
999 if (!pvec.nr) {
1000 /* If all gone or hole-punch or unfalloc, we're done */
1001 if (index == start || end != -1)
1002 break;
1003 /* But if truncating, restart to make sure all gone */
1004 index = start;
1005 continue;
1006 }
1007 for (i = 0; i < pagevec_count(&pvec); i++) {
1008 struct page *page = pvec.pages[i];
1009
1010 index = indices[i];
1011 if (index >= end)
1012 break;
1013
1014 if (xa_is_value(page)) {
1015 if (unfalloc)
1016 continue;
1017 if (shmem_free_swap(mapping, index, page)) {
1018 /* Swap was replaced by page: retry */
1019 index--;
1020 break;
1021 }
1022 nr_swaps_freed++;
1023 continue;
1024 }
1025
1026 lock_page(page);
1027
1028 if (!unfalloc || !PageUptodate(page)) {
1029 if (page_mapping(page) != mapping) {
1030 /* Page was replaced by swap: retry */
1031 unlock_page(page);
1032 index--;
1033 break;
1034 }
1035 VM_BUG_ON_PAGE(PageWriteback(page), page);
1036 if (shmem_punch_compound(page, start, end))
1037 truncate_inode_page(mapping, page);
1038 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1039 /* Wipe the page and don't get stuck */
1040 clear_highpage(page);
1041 flush_dcache_page(page);
1042 set_page_dirty(page);
1043 if (index <
1044 round_up(start, HPAGE_PMD_NR))
1045 start = index + 1;
1046 }
1047 }
1048 unlock_page(page);
1049 }
1050 pagevec_remove_exceptionals(&pvec);
1051 pagevec_release(&pvec);
1052 index++;
1053 }
1054
1055 spin_lock_irq(&info->lock);
1056 info->swapped -= nr_swaps_freed;
1057 shmem_recalc_inode(inode);
1058 spin_unlock_irq(&info->lock);
1059 }
1060
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1061 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1062 {
1063 shmem_undo_range(inode, lstart, lend, false);
1064 inode->i_ctime = inode->i_mtime = current_time(inode);
1065 }
1066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1067
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1068 static int shmem_getattr(const struct path *path, struct kstat *stat,
1069 u32 request_mask, unsigned int query_flags)
1070 {
1071 struct inode *inode = path->dentry->d_inode;
1072 struct shmem_inode_info *info = SHMEM_I(inode);
1073 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1074
1075 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1076 spin_lock_irq(&info->lock);
1077 shmem_recalc_inode(inode);
1078 spin_unlock_irq(&info->lock);
1079 }
1080 generic_fillattr(inode, stat);
1081
1082 if (is_huge_enabled(sb_info))
1083 stat->blksize = HPAGE_PMD_SIZE;
1084
1085 return 0;
1086 }
1087
shmem_setattr(struct dentry * dentry,struct iattr * attr)1088 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1089 {
1090 struct inode *inode = d_inode(dentry);
1091 struct shmem_inode_info *info = SHMEM_I(inode);
1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093 int error;
1094
1095 error = setattr_prepare(dentry, attr);
1096 if (error)
1097 return error;
1098
1099 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1100 loff_t oldsize = inode->i_size;
1101 loff_t newsize = attr->ia_size;
1102
1103 /* protected by i_mutex */
1104 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1105 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1106 return -EPERM;
1107
1108 if (newsize != oldsize) {
1109 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1110 oldsize, newsize);
1111 if (error)
1112 return error;
1113 i_size_write(inode, newsize);
1114 inode->i_ctime = inode->i_mtime = current_time(inode);
1115 }
1116 if (newsize <= oldsize) {
1117 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
1121 if (info->alloced)
1122 shmem_truncate_range(inode,
1123 newsize, (loff_t)-1);
1124 /* unmap again to remove racily COWed private pages */
1125 if (oldsize > holebegin)
1126 unmap_mapping_range(inode->i_mapping,
1127 holebegin, 0, 1);
1128
1129 /*
1130 * Part of the huge page can be beyond i_size: subject
1131 * to shrink under memory pressure.
1132 */
1133 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1134 spin_lock(&sbinfo->shrinklist_lock);
1135 /*
1136 * _careful to defend against unlocked access to
1137 * ->shrink_list in shmem_unused_huge_shrink()
1138 */
1139 if (list_empty_careful(&info->shrinklist)) {
1140 list_add_tail(&info->shrinklist,
1141 &sbinfo->shrinklist);
1142 sbinfo->shrinklist_len++;
1143 }
1144 spin_unlock(&sbinfo->shrinklist_lock);
1145 }
1146 }
1147 }
1148
1149 setattr_copy(inode, attr);
1150 if (attr->ia_valid & ATTR_MODE)
1151 error = posix_acl_chmod(inode, inode->i_mode);
1152 return error;
1153 }
1154
shmem_evict_inode(struct inode * inode)1155 static void shmem_evict_inode(struct inode *inode)
1156 {
1157 struct shmem_inode_info *info = SHMEM_I(inode);
1158 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1159
1160 if (inode->i_mapping->a_ops == &shmem_aops) {
1161 shmem_unacct_size(info->flags, inode->i_size);
1162 inode->i_size = 0;
1163 shmem_truncate_range(inode, 0, (loff_t)-1);
1164 if (!list_empty(&info->shrinklist)) {
1165 spin_lock(&sbinfo->shrinklist_lock);
1166 if (!list_empty(&info->shrinklist)) {
1167 list_del_init(&info->shrinklist);
1168 sbinfo->shrinklist_len--;
1169 }
1170 spin_unlock(&sbinfo->shrinklist_lock);
1171 }
1172 while (!list_empty(&info->swaplist)) {
1173 /* Wait while shmem_unuse() is scanning this inode... */
1174 wait_var_event(&info->stop_eviction,
1175 !atomic_read(&info->stop_eviction));
1176 mutex_lock(&shmem_swaplist_mutex);
1177 /* ...but beware of the race if we peeked too early */
1178 if (!atomic_read(&info->stop_eviction))
1179 list_del_init(&info->swaplist);
1180 mutex_unlock(&shmem_swaplist_mutex);
1181 }
1182 }
1183
1184 simple_xattrs_free(&info->xattrs);
1185 WARN_ON(inode->i_blocks);
1186 shmem_free_inode(inode->i_sb);
1187 clear_inode(inode);
1188 }
1189
1190 extern struct swap_info_struct *swap_info[];
1191
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1192 static int shmem_find_swap_entries(struct address_space *mapping,
1193 pgoff_t start, unsigned int nr_entries,
1194 struct page **entries, pgoff_t *indices,
1195 unsigned int type, bool frontswap)
1196 {
1197 XA_STATE(xas, &mapping->i_pages, start);
1198 struct page *page;
1199 swp_entry_t entry;
1200 unsigned int ret = 0;
1201
1202 if (!nr_entries)
1203 return 0;
1204
1205 rcu_read_lock();
1206 xas_for_each(&xas, page, ULONG_MAX) {
1207 if (xas_retry(&xas, page))
1208 continue;
1209
1210 if (!xa_is_value(page))
1211 continue;
1212
1213 entry = radix_to_swp_entry(page);
1214 if (swp_type(entry) != type)
1215 continue;
1216 if (frontswap &&
1217 !frontswap_test(swap_info[type], swp_offset(entry)))
1218 continue;
1219
1220 indices[ret] = xas.xa_index;
1221 entries[ret] = page;
1222
1223 if (need_resched()) {
1224 xas_pause(&xas);
1225 cond_resched_rcu();
1226 }
1227 if (++ret == nr_entries)
1228 break;
1229 }
1230 rcu_read_unlock();
1231
1232 return ret;
1233 }
1234
1235 /*
1236 * Move the swapped pages for an inode to page cache. Returns the count
1237 * of pages swapped in, or the error in case of failure.
1238 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1239 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1240 pgoff_t *indices)
1241 {
1242 int i = 0;
1243 int ret = 0;
1244 int error = 0;
1245 struct address_space *mapping = inode->i_mapping;
1246
1247 for (i = 0; i < pvec.nr; i++) {
1248 struct page *page = pvec.pages[i];
1249
1250 if (!xa_is_value(page))
1251 continue;
1252 error = shmem_swapin_page(inode, indices[i],
1253 &page, SGP_CACHE,
1254 mapping_gfp_mask(mapping),
1255 NULL, NULL);
1256 if (error == 0) {
1257 unlock_page(page);
1258 put_page(page);
1259 ret++;
1260 }
1261 if (error == -ENOMEM)
1262 break;
1263 error = 0;
1264 }
1265 return error ? error : ret;
1266 }
1267
1268 /*
1269 * If swap found in inode, free it and move page from swapcache to filecache.
1270 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1271 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1272 bool frontswap, unsigned long *fs_pages_to_unuse)
1273 {
1274 struct address_space *mapping = inode->i_mapping;
1275 pgoff_t start = 0;
1276 struct pagevec pvec;
1277 pgoff_t indices[PAGEVEC_SIZE];
1278 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1279 int ret = 0;
1280
1281 pagevec_init(&pvec);
1282 do {
1283 unsigned int nr_entries = PAGEVEC_SIZE;
1284
1285 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1286 nr_entries = *fs_pages_to_unuse;
1287
1288 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1289 pvec.pages, indices,
1290 type, frontswap);
1291 if (pvec.nr == 0) {
1292 ret = 0;
1293 break;
1294 }
1295
1296 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1297 if (ret < 0)
1298 break;
1299
1300 if (frontswap_partial) {
1301 *fs_pages_to_unuse -= ret;
1302 if (*fs_pages_to_unuse == 0) {
1303 ret = FRONTSWAP_PAGES_UNUSED;
1304 break;
1305 }
1306 }
1307
1308 start = indices[pvec.nr - 1];
1309 } while (true);
1310
1311 return ret;
1312 }
1313
1314 /*
1315 * Read all the shared memory data that resides in the swap
1316 * device 'type' back into memory, so the swap device can be
1317 * unused.
1318 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1319 int shmem_unuse(unsigned int type, bool frontswap,
1320 unsigned long *fs_pages_to_unuse)
1321 {
1322 struct shmem_inode_info *info, *next;
1323 int error = 0;
1324
1325 if (list_empty(&shmem_swaplist))
1326 return 0;
1327
1328 mutex_lock(&shmem_swaplist_mutex);
1329 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1330 if (!info->swapped) {
1331 list_del_init(&info->swaplist);
1332 continue;
1333 }
1334 /*
1335 * Drop the swaplist mutex while searching the inode for swap;
1336 * but before doing so, make sure shmem_evict_inode() will not
1337 * remove placeholder inode from swaplist, nor let it be freed
1338 * (igrab() would protect from unlink, but not from unmount).
1339 */
1340 atomic_inc(&info->stop_eviction);
1341 mutex_unlock(&shmem_swaplist_mutex);
1342
1343 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1344 fs_pages_to_unuse);
1345 cond_resched();
1346
1347 mutex_lock(&shmem_swaplist_mutex);
1348 next = list_next_entry(info, swaplist);
1349 if (!info->swapped)
1350 list_del_init(&info->swaplist);
1351 if (atomic_dec_and_test(&info->stop_eviction))
1352 wake_up_var(&info->stop_eviction);
1353 if (error)
1354 break;
1355 }
1356 mutex_unlock(&shmem_swaplist_mutex);
1357
1358 return error;
1359 }
1360
1361 /*
1362 * Move the page from the page cache to the swap cache.
1363 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1364 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1365 {
1366 struct shmem_inode_info *info;
1367 struct address_space *mapping;
1368 struct inode *inode;
1369 swp_entry_t swap;
1370 pgoff_t index;
1371
1372 VM_BUG_ON_PAGE(PageCompound(page), page);
1373 BUG_ON(!PageLocked(page));
1374 mapping = page->mapping;
1375 index = page->index;
1376 inode = mapping->host;
1377 info = SHMEM_I(inode);
1378 if (info->flags & VM_LOCKED)
1379 goto redirty;
1380 if (!total_swap_pages)
1381 goto redirty;
1382
1383 /*
1384 * Our capabilities prevent regular writeback or sync from ever calling
1385 * shmem_writepage; but a stacking filesystem might use ->writepage of
1386 * its underlying filesystem, in which case tmpfs should write out to
1387 * swap only in response to memory pressure, and not for the writeback
1388 * threads or sync.
1389 */
1390 if (!wbc->for_reclaim) {
1391 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1392 goto redirty;
1393 }
1394
1395 /*
1396 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1397 * value into swapfile.c, the only way we can correctly account for a
1398 * fallocated page arriving here is now to initialize it and write it.
1399 *
1400 * That's okay for a page already fallocated earlier, but if we have
1401 * not yet completed the fallocation, then (a) we want to keep track
1402 * of this page in case we have to undo it, and (b) it may not be a
1403 * good idea to continue anyway, once we're pushing into swap. So
1404 * reactivate the page, and let shmem_fallocate() quit when too many.
1405 */
1406 if (!PageUptodate(page)) {
1407 if (inode->i_private) {
1408 struct shmem_falloc *shmem_falloc;
1409 spin_lock(&inode->i_lock);
1410 shmem_falloc = inode->i_private;
1411 if (shmem_falloc &&
1412 !shmem_falloc->waitq &&
1413 index >= shmem_falloc->start &&
1414 index < shmem_falloc->next)
1415 shmem_falloc->nr_unswapped++;
1416 else
1417 shmem_falloc = NULL;
1418 spin_unlock(&inode->i_lock);
1419 if (shmem_falloc)
1420 goto redirty;
1421 }
1422 clear_highpage(page);
1423 flush_dcache_page(page);
1424 SetPageUptodate(page);
1425 }
1426
1427 swap = get_swap_page(page);
1428 if (!swap.val)
1429 goto redirty;
1430
1431 /*
1432 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1433 * if it's not already there. Do it now before the page is
1434 * moved to swap cache, when its pagelock no longer protects
1435 * the inode from eviction. But don't unlock the mutex until
1436 * we've incremented swapped, because shmem_unuse_inode() will
1437 * prune a !swapped inode from the swaplist under this mutex.
1438 */
1439 mutex_lock(&shmem_swaplist_mutex);
1440 if (list_empty(&info->swaplist))
1441 list_add(&info->swaplist, &shmem_swaplist);
1442
1443 if (add_to_swap_cache(page, swap,
1444 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1445 NULL) == 0) {
1446 spin_lock_irq(&info->lock);
1447 shmem_recalc_inode(inode);
1448 info->swapped++;
1449 spin_unlock_irq(&info->lock);
1450
1451 swap_shmem_alloc(swap);
1452 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1453
1454 mutex_unlock(&shmem_swaplist_mutex);
1455 BUG_ON(page_mapped(page));
1456 swap_writepage(page, wbc);
1457 return 0;
1458 }
1459
1460 mutex_unlock(&shmem_swaplist_mutex);
1461 put_swap_page(page, swap);
1462 redirty:
1463 set_page_dirty(page);
1464 if (wbc->for_reclaim)
1465 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1466 unlock_page(page);
1467 return 0;
1468 }
1469
1470 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1471 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472 {
1473 char buffer[64];
1474
1475 if (!mpol || mpol->mode == MPOL_DEFAULT)
1476 return; /* show nothing */
1477
1478 mpol_to_str(buffer, sizeof(buffer), mpol);
1479
1480 seq_printf(seq, ",mpol=%s", buffer);
1481 }
1482
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1483 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1484 {
1485 struct mempolicy *mpol = NULL;
1486 if (sbinfo->mpol) {
1487 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1488 mpol = sbinfo->mpol;
1489 mpol_get(mpol);
1490 spin_unlock(&sbinfo->stat_lock);
1491 }
1492 return mpol;
1493 }
1494 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1495 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1496 {
1497 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1498 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1499 {
1500 return NULL;
1501 }
1502 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1503 #ifndef CONFIG_NUMA
1504 #define vm_policy vm_private_data
1505 #endif
1506
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1507 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1508 struct shmem_inode_info *info, pgoff_t index)
1509 {
1510 /* Create a pseudo vma that just contains the policy */
1511 vma_init(vma, NULL);
1512 /* Bias interleave by inode number to distribute better across nodes */
1513 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1514 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1515 }
1516
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1517 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1518 {
1519 /* Drop reference taken by mpol_shared_policy_lookup() */
1520 mpol_cond_put(vma->vm_policy);
1521 }
1522
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1523 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1524 struct shmem_inode_info *info, pgoff_t index)
1525 {
1526 struct vm_area_struct pvma;
1527 struct page *page;
1528 struct vm_fault vmf;
1529
1530 shmem_pseudo_vma_init(&pvma, info, index);
1531 vmf.vma = &pvma;
1532 vmf.address = 0;
1533 page = swap_cluster_readahead(swap, gfp, &vmf);
1534 shmem_pseudo_vma_destroy(&pvma);
1535
1536 return page;
1537 }
1538
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1539 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1540 struct shmem_inode_info *info, pgoff_t index)
1541 {
1542 struct vm_area_struct pvma;
1543 struct address_space *mapping = info->vfs_inode.i_mapping;
1544 pgoff_t hindex;
1545 struct page *page;
1546
1547 hindex = round_down(index, HPAGE_PMD_NR);
1548 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1549 XA_PRESENT))
1550 return NULL;
1551
1552 shmem_pseudo_vma_init(&pvma, info, hindex);
1553 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1554 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1555 shmem_pseudo_vma_destroy(&pvma);
1556 if (page)
1557 prep_transhuge_page(page);
1558 else
1559 count_vm_event(THP_FILE_FALLBACK);
1560 return page;
1561 }
1562
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1563 static struct page *shmem_alloc_page(gfp_t gfp,
1564 struct shmem_inode_info *info, pgoff_t index)
1565 {
1566 struct vm_area_struct pvma;
1567 struct page *page;
1568
1569 shmem_pseudo_vma_init(&pvma, info, index);
1570 page = alloc_page_vma(gfp, &pvma, 0);
1571 shmem_pseudo_vma_destroy(&pvma);
1572
1573 return page;
1574 }
1575
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1576 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1577 struct inode *inode,
1578 pgoff_t index, bool huge)
1579 {
1580 struct shmem_inode_info *info = SHMEM_I(inode);
1581 struct page *page;
1582 int nr;
1583 int err = -ENOSPC;
1584
1585 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1586 huge = false;
1587 nr = huge ? HPAGE_PMD_NR : 1;
1588
1589 if (!shmem_inode_acct_block(inode, nr))
1590 goto failed;
1591
1592 if (huge)
1593 page = shmem_alloc_hugepage(gfp, info, index);
1594 else
1595 page = shmem_alloc_page(gfp, info, index);
1596 if (page) {
1597 __SetPageLocked(page);
1598 __SetPageSwapBacked(page);
1599 return page;
1600 }
1601
1602 err = -ENOMEM;
1603 shmem_inode_unacct_blocks(inode, nr);
1604 failed:
1605 return ERR_PTR(err);
1606 }
1607
1608 /*
1609 * When a page is moved from swapcache to shmem filecache (either by the
1610 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1611 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1612 * ignorance of the mapping it belongs to. If that mapping has special
1613 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1614 * we may need to copy to a suitable page before moving to filecache.
1615 *
1616 * In a future release, this may well be extended to respect cpuset and
1617 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1618 * but for now it is a simple matter of zone.
1619 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1620 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1621 {
1622 return page_zonenum(page) > gfp_zone(gfp);
1623 }
1624
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1625 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1626 struct shmem_inode_info *info, pgoff_t index)
1627 {
1628 struct page *oldpage, *newpage;
1629 struct address_space *swap_mapping;
1630 swp_entry_t entry;
1631 pgoff_t swap_index;
1632 int error;
1633
1634 oldpage = *pagep;
1635 entry.val = page_private(oldpage);
1636 swap_index = swp_offset(entry);
1637 swap_mapping = page_mapping(oldpage);
1638
1639 /*
1640 * We have arrived here because our zones are constrained, so don't
1641 * limit chance of success by further cpuset and node constraints.
1642 */
1643 gfp &= ~GFP_CONSTRAINT_MASK;
1644 newpage = shmem_alloc_page(gfp, info, index);
1645 if (!newpage)
1646 return -ENOMEM;
1647
1648 get_page(newpage);
1649 copy_highpage(newpage, oldpage);
1650 flush_dcache_page(newpage);
1651
1652 __SetPageLocked(newpage);
1653 __SetPageSwapBacked(newpage);
1654 SetPageUptodate(newpage);
1655 set_page_private(newpage, entry.val);
1656 SetPageSwapCache(newpage);
1657
1658 /*
1659 * Our caller will very soon move newpage out of swapcache, but it's
1660 * a nice clean interface for us to replace oldpage by newpage there.
1661 */
1662 xa_lock_irq(&swap_mapping->i_pages);
1663 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1664 if (!error) {
1665 mem_cgroup_migrate(oldpage, newpage);
1666 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1667 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1668 }
1669 xa_unlock_irq(&swap_mapping->i_pages);
1670
1671 if (unlikely(error)) {
1672 /*
1673 * Is this possible? I think not, now that our callers check
1674 * both PageSwapCache and page_private after getting page lock;
1675 * but be defensive. Reverse old to newpage for clear and free.
1676 */
1677 oldpage = newpage;
1678 } else {
1679 lru_cache_add(newpage);
1680 *pagep = newpage;
1681 }
1682
1683 ClearPageSwapCache(oldpage);
1684 set_page_private(oldpage, 0);
1685
1686 unlock_page(oldpage);
1687 put_page(oldpage);
1688 put_page(oldpage);
1689 return error;
1690 }
1691
1692 /*
1693 * Swap in the page pointed to by *pagep.
1694 * Caller has to make sure that *pagep contains a valid swapped page.
1695 * Returns 0 and the page in pagep if success. On failure, returns the
1696 * error code and NULL in *pagep.
1697 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1698 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1699 struct page **pagep, enum sgp_type sgp,
1700 gfp_t gfp, struct vm_area_struct *vma,
1701 vm_fault_t *fault_type)
1702 {
1703 struct address_space *mapping = inode->i_mapping;
1704 struct shmem_inode_info *info = SHMEM_I(inode);
1705 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1706 struct page *page;
1707 swp_entry_t swap;
1708 int error;
1709
1710 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1711 swap = radix_to_swp_entry(*pagep);
1712 *pagep = NULL;
1713
1714 /* Look it up and read it in.. */
1715 page = lookup_swap_cache(swap, NULL, 0);
1716 if (!page) {
1717 /* Or update major stats only when swapin succeeds?? */
1718 if (fault_type) {
1719 *fault_type |= VM_FAULT_MAJOR;
1720 count_vm_event(PGMAJFAULT);
1721 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 }
1723 /* Here we actually start the io */
1724 page = shmem_swapin(swap, gfp, info, index);
1725 if (!page) {
1726 error = -ENOMEM;
1727 goto failed;
1728 }
1729 }
1730
1731 /* We have to do this with page locked to prevent races */
1732 lock_page(page);
1733 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 !shmem_confirm_swap(mapping, index, swap)) {
1735 error = -EEXIST;
1736 goto unlock;
1737 }
1738 if (!PageUptodate(page)) {
1739 error = -EIO;
1740 goto failed;
1741 }
1742 wait_on_page_writeback(page);
1743
1744 /*
1745 * Some architectures may have to restore extra metadata to the
1746 * physical page after reading from swap.
1747 */
1748 arch_swap_restore(swap, page);
1749
1750 if (shmem_should_replace_page(page, gfp)) {
1751 error = shmem_replace_page(&page, gfp, info, index);
1752 if (error)
1753 goto failed;
1754 }
1755
1756 error = shmem_add_to_page_cache(page, mapping, index,
1757 swp_to_radix_entry(swap), gfp,
1758 charge_mm);
1759 if (error)
1760 goto failed;
1761
1762 spin_lock_irq(&info->lock);
1763 info->swapped--;
1764 shmem_recalc_inode(inode);
1765 spin_unlock_irq(&info->lock);
1766
1767 if (sgp == SGP_WRITE)
1768 mark_page_accessed(page);
1769
1770 delete_from_swap_cache(page);
1771 set_page_dirty(page);
1772 swap_free(swap);
1773
1774 *pagep = page;
1775 return 0;
1776 failed:
1777 if (!shmem_confirm_swap(mapping, index, swap))
1778 error = -EEXIST;
1779 unlock:
1780 if (page) {
1781 unlock_page(page);
1782 put_page(page);
1783 }
1784
1785 return error;
1786 }
1787
1788 /*
1789 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1790 *
1791 * If we allocate a new one we do not mark it dirty. That's up to the
1792 * vm. If we swap it in we mark it dirty since we also free the swap
1793 * entry since a page cannot live in both the swap and page cache.
1794 *
1795 * vmf and fault_type are only supplied by shmem_fault:
1796 * otherwise they are NULL.
1797 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1798 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1799 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1800 struct vm_area_struct *vma, struct vm_fault *vmf,
1801 vm_fault_t *fault_type)
1802 {
1803 struct address_space *mapping = inode->i_mapping;
1804 struct shmem_inode_info *info = SHMEM_I(inode);
1805 struct shmem_sb_info *sbinfo;
1806 struct mm_struct *charge_mm;
1807 struct page *page;
1808 enum sgp_type sgp_huge = sgp;
1809 pgoff_t hindex = index;
1810 int error;
1811 int once = 0;
1812 int alloced = 0;
1813
1814 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1815 return -EFBIG;
1816 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1817 sgp = SGP_CACHE;
1818 repeat:
1819 if (sgp <= SGP_CACHE &&
1820 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1821 return -EINVAL;
1822 }
1823
1824 sbinfo = SHMEM_SB(inode->i_sb);
1825 charge_mm = vma ? vma->vm_mm : current->mm;
1826
1827 page = find_lock_entry(mapping, index);
1828 if (xa_is_value(page)) {
1829 error = shmem_swapin_page(inode, index, &page,
1830 sgp, gfp, vma, fault_type);
1831 if (error == -EEXIST)
1832 goto repeat;
1833
1834 *pagep = page;
1835 return error;
1836 }
1837
1838 if (page)
1839 hindex = page->index;
1840 if (page && sgp == SGP_WRITE)
1841 mark_page_accessed(page);
1842
1843 /* fallocated page? */
1844 if (page && !PageUptodate(page)) {
1845 if (sgp != SGP_READ)
1846 goto clear;
1847 unlock_page(page);
1848 put_page(page);
1849 page = NULL;
1850 hindex = index;
1851 }
1852 if (page || sgp == SGP_READ)
1853 goto out;
1854
1855 /*
1856 * Fast cache lookup did not find it:
1857 * bring it back from swap or allocate.
1858 */
1859
1860 if (vma && userfaultfd_missing(vma)) {
1861 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1862 return 0;
1863 }
1864
1865 /* shmem_symlink() */
1866 if (mapping->a_ops != &shmem_aops)
1867 goto alloc_nohuge;
1868 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1869 goto alloc_nohuge;
1870 if (shmem_huge == SHMEM_HUGE_FORCE)
1871 goto alloc_huge;
1872 switch (sbinfo->huge) {
1873 case SHMEM_HUGE_NEVER:
1874 goto alloc_nohuge;
1875 case SHMEM_HUGE_WITHIN_SIZE: {
1876 loff_t i_size;
1877 pgoff_t off;
1878
1879 off = round_up(index, HPAGE_PMD_NR);
1880 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1881 if (i_size >= HPAGE_PMD_SIZE &&
1882 i_size >> PAGE_SHIFT >= off)
1883 goto alloc_huge;
1884
1885 fallthrough;
1886 }
1887 case SHMEM_HUGE_ADVISE:
1888 if (sgp_huge == SGP_HUGE)
1889 goto alloc_huge;
1890 /* TODO: implement fadvise() hints */
1891 goto alloc_nohuge;
1892 }
1893
1894 alloc_huge:
1895 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1896 if (IS_ERR(page)) {
1897 alloc_nohuge:
1898 page = shmem_alloc_and_acct_page(gfp, inode,
1899 index, false);
1900 }
1901 if (IS_ERR(page)) {
1902 int retry = 5;
1903
1904 error = PTR_ERR(page);
1905 page = NULL;
1906 if (error != -ENOSPC)
1907 goto unlock;
1908 /*
1909 * Try to reclaim some space by splitting a huge page
1910 * beyond i_size on the filesystem.
1911 */
1912 while (retry--) {
1913 int ret;
1914
1915 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1916 if (ret == SHRINK_STOP)
1917 break;
1918 if (ret)
1919 goto alloc_nohuge;
1920 }
1921 goto unlock;
1922 }
1923
1924 if (PageTransHuge(page))
1925 hindex = round_down(index, HPAGE_PMD_NR);
1926 else
1927 hindex = index;
1928
1929 if (sgp == SGP_WRITE)
1930 __SetPageReferenced(page);
1931
1932 error = shmem_add_to_page_cache(page, mapping, hindex,
1933 NULL, gfp & GFP_RECLAIM_MASK,
1934 charge_mm);
1935 if (error)
1936 goto unacct;
1937 lru_cache_add(page);
1938
1939 spin_lock_irq(&info->lock);
1940 info->alloced += compound_nr(page);
1941 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1942 shmem_recalc_inode(inode);
1943 spin_unlock_irq(&info->lock);
1944 alloced = true;
1945
1946 if (PageTransHuge(page) &&
1947 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1948 hindex + HPAGE_PMD_NR - 1) {
1949 /*
1950 * Part of the huge page is beyond i_size: subject
1951 * to shrink under memory pressure.
1952 */
1953 spin_lock(&sbinfo->shrinklist_lock);
1954 /*
1955 * _careful to defend against unlocked access to
1956 * ->shrink_list in shmem_unused_huge_shrink()
1957 */
1958 if (list_empty_careful(&info->shrinklist)) {
1959 list_add_tail(&info->shrinklist,
1960 &sbinfo->shrinklist);
1961 sbinfo->shrinklist_len++;
1962 }
1963 spin_unlock(&sbinfo->shrinklist_lock);
1964 }
1965
1966 /*
1967 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1968 */
1969 if (sgp == SGP_FALLOC)
1970 sgp = SGP_WRITE;
1971 clear:
1972 /*
1973 * Let SGP_WRITE caller clear ends if write does not fill page;
1974 * but SGP_FALLOC on a page fallocated earlier must initialize
1975 * it now, lest undo on failure cancel our earlier guarantee.
1976 */
1977 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1978 int i;
1979
1980 for (i = 0; i < compound_nr(page); i++) {
1981 clear_highpage(page + i);
1982 flush_dcache_page(page + i);
1983 }
1984 SetPageUptodate(page);
1985 }
1986
1987 /* Perhaps the file has been truncated since we checked */
1988 if (sgp <= SGP_CACHE &&
1989 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1990 if (alloced) {
1991 ClearPageDirty(page);
1992 delete_from_page_cache(page);
1993 spin_lock_irq(&info->lock);
1994 shmem_recalc_inode(inode);
1995 spin_unlock_irq(&info->lock);
1996 }
1997 error = -EINVAL;
1998 goto unlock;
1999 }
2000 out:
2001 *pagep = page + index - hindex;
2002 return 0;
2003
2004 /*
2005 * Error recovery.
2006 */
2007 unacct:
2008 shmem_inode_unacct_blocks(inode, compound_nr(page));
2009
2010 if (PageTransHuge(page)) {
2011 unlock_page(page);
2012 put_page(page);
2013 goto alloc_nohuge;
2014 }
2015 unlock:
2016 if (page) {
2017 unlock_page(page);
2018 put_page(page);
2019 }
2020 if (error == -ENOSPC && !once++) {
2021 spin_lock_irq(&info->lock);
2022 shmem_recalc_inode(inode);
2023 spin_unlock_irq(&info->lock);
2024 goto repeat;
2025 }
2026 if (error == -EEXIST)
2027 goto repeat;
2028 return error;
2029 }
2030
2031 /*
2032 * This is like autoremove_wake_function, but it removes the wait queue
2033 * entry unconditionally - even if something else had already woken the
2034 * target.
2035 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2036 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2037 {
2038 int ret = default_wake_function(wait, mode, sync, key);
2039 list_del_init(&wait->entry);
2040 return ret;
2041 }
2042
shmem_fault(struct vm_fault * vmf)2043 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2044 {
2045 struct vm_area_struct *vma = vmf->vma;
2046 struct inode *inode = file_inode(vma->vm_file);
2047 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2048 enum sgp_type sgp;
2049 int err;
2050 vm_fault_t ret = VM_FAULT_LOCKED;
2051
2052 /*
2053 * Trinity finds that probing a hole which tmpfs is punching can
2054 * prevent the hole-punch from ever completing: which in turn
2055 * locks writers out with its hold on i_mutex. So refrain from
2056 * faulting pages into the hole while it's being punched. Although
2057 * shmem_undo_range() does remove the additions, it may be unable to
2058 * keep up, as each new page needs its own unmap_mapping_range() call,
2059 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2060 *
2061 * It does not matter if we sometimes reach this check just before the
2062 * hole-punch begins, so that one fault then races with the punch:
2063 * we just need to make racing faults a rare case.
2064 *
2065 * The implementation below would be much simpler if we just used a
2066 * standard mutex or completion: but we cannot take i_mutex in fault,
2067 * and bloating every shmem inode for this unlikely case would be sad.
2068 */
2069 if (unlikely(inode->i_private)) {
2070 struct shmem_falloc *shmem_falloc;
2071
2072 spin_lock(&inode->i_lock);
2073 shmem_falloc = inode->i_private;
2074 if (shmem_falloc &&
2075 shmem_falloc->waitq &&
2076 vmf->pgoff >= shmem_falloc->start &&
2077 vmf->pgoff < shmem_falloc->next) {
2078 struct file *fpin;
2079 wait_queue_head_t *shmem_falloc_waitq;
2080 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2081
2082 ret = VM_FAULT_NOPAGE;
2083 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2084 if (fpin)
2085 ret = VM_FAULT_RETRY;
2086
2087 shmem_falloc_waitq = shmem_falloc->waitq;
2088 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2089 TASK_UNINTERRUPTIBLE);
2090 spin_unlock(&inode->i_lock);
2091 schedule();
2092
2093 /*
2094 * shmem_falloc_waitq points into the shmem_fallocate()
2095 * stack of the hole-punching task: shmem_falloc_waitq
2096 * is usually invalid by the time we reach here, but
2097 * finish_wait() does not dereference it in that case;
2098 * though i_lock needed lest racing with wake_up_all().
2099 */
2100 spin_lock(&inode->i_lock);
2101 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2102 spin_unlock(&inode->i_lock);
2103
2104 if (fpin)
2105 fput(fpin);
2106 return ret;
2107 }
2108 spin_unlock(&inode->i_lock);
2109 }
2110
2111 sgp = SGP_CACHE;
2112
2113 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2114 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2115 sgp = SGP_NOHUGE;
2116 else if (vma->vm_flags & VM_HUGEPAGE)
2117 sgp = SGP_HUGE;
2118
2119 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2120 gfp, vma, vmf, &ret);
2121 if (err)
2122 return vmf_error(err);
2123 return ret;
2124 }
2125
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2126 unsigned long shmem_get_unmapped_area(struct file *file,
2127 unsigned long uaddr, unsigned long len,
2128 unsigned long pgoff, unsigned long flags)
2129 {
2130 unsigned long (*get_area)(struct file *,
2131 unsigned long, unsigned long, unsigned long, unsigned long);
2132 unsigned long addr;
2133 unsigned long offset;
2134 unsigned long inflated_len;
2135 unsigned long inflated_addr;
2136 unsigned long inflated_offset;
2137
2138 if (len > TASK_SIZE)
2139 return -ENOMEM;
2140
2141 get_area = current->mm->get_unmapped_area;
2142 addr = get_area(file, uaddr, len, pgoff, flags);
2143
2144 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2145 return addr;
2146 if (IS_ERR_VALUE(addr))
2147 return addr;
2148 if (addr & ~PAGE_MASK)
2149 return addr;
2150 if (addr > TASK_SIZE - len)
2151 return addr;
2152
2153 if (shmem_huge == SHMEM_HUGE_DENY)
2154 return addr;
2155 if (len < HPAGE_PMD_SIZE)
2156 return addr;
2157 if (flags & MAP_FIXED)
2158 return addr;
2159 /*
2160 * Our priority is to support MAP_SHARED mapped hugely;
2161 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2162 * But if caller specified an address hint and we allocated area there
2163 * successfully, respect that as before.
2164 */
2165 if (uaddr == addr)
2166 return addr;
2167
2168 if (shmem_huge != SHMEM_HUGE_FORCE) {
2169 struct super_block *sb;
2170
2171 if (file) {
2172 VM_BUG_ON(file->f_op != &shmem_file_operations);
2173 sb = file_inode(file)->i_sb;
2174 } else {
2175 /*
2176 * Called directly from mm/mmap.c, or drivers/char/mem.c
2177 * for "/dev/zero", to create a shared anonymous object.
2178 */
2179 if (IS_ERR(shm_mnt))
2180 return addr;
2181 sb = shm_mnt->mnt_sb;
2182 }
2183 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2184 return addr;
2185 }
2186
2187 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2188 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2189 return addr;
2190 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2191 return addr;
2192
2193 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2194 if (inflated_len > TASK_SIZE)
2195 return addr;
2196 if (inflated_len < len)
2197 return addr;
2198
2199 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2200 if (IS_ERR_VALUE(inflated_addr))
2201 return addr;
2202 if (inflated_addr & ~PAGE_MASK)
2203 return addr;
2204
2205 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2206 inflated_addr += offset - inflated_offset;
2207 if (inflated_offset > offset)
2208 inflated_addr += HPAGE_PMD_SIZE;
2209
2210 if (inflated_addr > TASK_SIZE - len)
2211 return addr;
2212 return inflated_addr;
2213 }
2214
2215 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2216 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2217 {
2218 struct inode *inode = file_inode(vma->vm_file);
2219 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2220 }
2221
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2222 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2223 unsigned long addr)
2224 {
2225 struct inode *inode = file_inode(vma->vm_file);
2226 pgoff_t index;
2227
2228 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2229 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2230 }
2231 #endif
2232
shmem_lock(struct file * file,int lock,struct user_struct * user)2233 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2234 {
2235 struct inode *inode = file_inode(file);
2236 struct shmem_inode_info *info = SHMEM_I(inode);
2237 int retval = -ENOMEM;
2238
2239 /*
2240 * What serializes the accesses to info->flags?
2241 * ipc_lock_object() when called from shmctl_do_lock(),
2242 * no serialization needed when called from shm_destroy().
2243 */
2244 if (lock && !(info->flags & VM_LOCKED)) {
2245 if (!user_shm_lock(inode->i_size, user))
2246 goto out_nomem;
2247 info->flags |= VM_LOCKED;
2248 mapping_set_unevictable(file->f_mapping);
2249 }
2250 if (!lock && (info->flags & VM_LOCKED) && user) {
2251 user_shm_unlock(inode->i_size, user);
2252 info->flags &= ~VM_LOCKED;
2253 mapping_clear_unevictable(file->f_mapping);
2254 }
2255 retval = 0;
2256
2257 out_nomem:
2258 return retval;
2259 }
2260
shmem_mmap(struct file * file,struct vm_area_struct * vma)2261 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2262 {
2263 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2264 int ret;
2265
2266 ret = seal_check_future_write(info->seals, vma);
2267 if (ret)
2268 return ret;
2269
2270 /* arm64 - allow memory tagging on RAM-based files */
2271 vma->vm_flags |= VM_MTE_ALLOWED;
2272
2273 file_accessed(file);
2274 vma->vm_ops = &shmem_vm_ops;
2275 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2276 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2277 (vma->vm_end & HPAGE_PMD_MASK)) {
2278 khugepaged_enter(vma, vma->vm_flags);
2279 }
2280 return 0;
2281 }
2282
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2283 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2284 umode_t mode, dev_t dev, unsigned long flags)
2285 {
2286 struct inode *inode;
2287 struct shmem_inode_info *info;
2288 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2289 ino_t ino;
2290
2291 if (shmem_reserve_inode(sb, &ino))
2292 return NULL;
2293
2294 inode = new_inode(sb);
2295 if (inode) {
2296 inode->i_ino = ino;
2297 inode_init_owner(inode, dir, mode);
2298 inode->i_blocks = 0;
2299 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2300 inode->i_generation = prandom_u32();
2301 info = SHMEM_I(inode);
2302 memset(info, 0, (char *)inode - (char *)info);
2303 spin_lock_init(&info->lock);
2304 atomic_set(&info->stop_eviction, 0);
2305 info->seals = F_SEAL_SEAL;
2306 info->flags = flags & VM_NORESERVE;
2307 INIT_LIST_HEAD(&info->shrinklist);
2308 INIT_LIST_HEAD(&info->swaplist);
2309 simple_xattrs_init(&info->xattrs);
2310 cache_no_acl(inode);
2311
2312 switch (mode & S_IFMT) {
2313 default:
2314 inode->i_op = &shmem_special_inode_operations;
2315 init_special_inode(inode, mode, dev);
2316 break;
2317 case S_IFREG:
2318 inode->i_mapping->a_ops = &shmem_aops;
2319 inode->i_op = &shmem_inode_operations;
2320 inode->i_fop = &shmem_file_operations;
2321 mpol_shared_policy_init(&info->policy,
2322 shmem_get_sbmpol(sbinfo));
2323 break;
2324 case S_IFDIR:
2325 inc_nlink(inode);
2326 /* Some things misbehave if size == 0 on a directory */
2327 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2328 inode->i_op = &shmem_dir_inode_operations;
2329 inode->i_fop = &simple_dir_operations;
2330 break;
2331 case S_IFLNK:
2332 /*
2333 * Must not load anything in the rbtree,
2334 * mpol_free_shared_policy will not be called.
2335 */
2336 mpol_shared_policy_init(&info->policy, NULL);
2337 break;
2338 }
2339
2340 lockdep_annotate_inode_mutex_key(inode);
2341 } else
2342 shmem_free_inode(sb);
2343 return inode;
2344 }
2345
shmem_mapping(struct address_space * mapping)2346 bool shmem_mapping(struct address_space *mapping)
2347 {
2348 return mapping->a_ops == &shmem_aops;
2349 }
2350
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2351 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2352 pmd_t *dst_pmd,
2353 struct vm_area_struct *dst_vma,
2354 unsigned long dst_addr,
2355 unsigned long src_addr,
2356 bool zeropage,
2357 struct page **pagep)
2358 {
2359 struct inode *inode = file_inode(dst_vma->vm_file);
2360 struct shmem_inode_info *info = SHMEM_I(inode);
2361 struct address_space *mapping = inode->i_mapping;
2362 gfp_t gfp = mapping_gfp_mask(mapping);
2363 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2364 spinlock_t *ptl;
2365 void *page_kaddr;
2366 struct page *page;
2367 pte_t _dst_pte, *dst_pte;
2368 int ret;
2369 pgoff_t offset, max_off;
2370
2371 ret = -ENOMEM;
2372 if (!shmem_inode_acct_block(inode, 1)) {
2373 /*
2374 * We may have got a page, returned -ENOENT triggering a retry,
2375 * and now we find ourselves with -ENOMEM. Release the page, to
2376 * avoid a BUG_ON in our caller.
2377 */
2378 if (unlikely(*pagep)) {
2379 put_page(*pagep);
2380 *pagep = NULL;
2381 }
2382 goto out;
2383 }
2384
2385 if (!*pagep) {
2386 page = shmem_alloc_page(gfp, info, pgoff);
2387 if (!page)
2388 goto out_unacct_blocks;
2389
2390 if (!zeropage) { /* mcopy_atomic */
2391 page_kaddr = kmap_atomic(page);
2392 ret = copy_from_user(page_kaddr,
2393 (const void __user *)src_addr,
2394 PAGE_SIZE);
2395 kunmap_atomic(page_kaddr);
2396
2397 /* fallback to copy_from_user outside mmap_lock */
2398 if (unlikely(ret)) {
2399 *pagep = page;
2400 shmem_inode_unacct_blocks(inode, 1);
2401 /* don't free the page */
2402 return -ENOENT;
2403 }
2404 } else { /* mfill_zeropage_atomic */
2405 clear_highpage(page);
2406 }
2407 } else {
2408 page = *pagep;
2409 *pagep = NULL;
2410 }
2411
2412 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2413 __SetPageLocked(page);
2414 __SetPageSwapBacked(page);
2415 __SetPageUptodate(page);
2416
2417 ret = -EFAULT;
2418 offset = linear_page_index(dst_vma, dst_addr);
2419 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2420 if (unlikely(offset >= max_off))
2421 goto out_release;
2422
2423 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2424 gfp & GFP_RECLAIM_MASK, dst_mm);
2425 if (ret)
2426 goto out_release;
2427
2428 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2429 if (dst_vma->vm_flags & VM_WRITE)
2430 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2431 else {
2432 /*
2433 * We don't set the pte dirty if the vma has no
2434 * VM_WRITE permission, so mark the page dirty or it
2435 * could be freed from under us. We could do it
2436 * unconditionally before unlock_page(), but doing it
2437 * only if VM_WRITE is not set is faster.
2438 */
2439 set_page_dirty(page);
2440 }
2441
2442 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2443
2444 ret = -EFAULT;
2445 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2446 if (unlikely(offset >= max_off))
2447 goto out_release_unlock;
2448
2449 ret = -EEXIST;
2450 if (!pte_none(*dst_pte))
2451 goto out_release_unlock;
2452
2453 lru_cache_add(page);
2454
2455 spin_lock_irq(&info->lock);
2456 info->alloced++;
2457 inode->i_blocks += BLOCKS_PER_PAGE;
2458 shmem_recalc_inode(inode);
2459 spin_unlock_irq(&info->lock);
2460
2461 inc_mm_counter(dst_mm, mm_counter_file(page));
2462 page_add_file_rmap(page, false);
2463 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2464
2465 /* No need to invalidate - it was non-present before */
2466 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2467 pte_unmap_unlock(dst_pte, ptl);
2468 unlock_page(page);
2469 ret = 0;
2470 out:
2471 return ret;
2472 out_release_unlock:
2473 pte_unmap_unlock(dst_pte, ptl);
2474 ClearPageDirty(page);
2475 delete_from_page_cache(page);
2476 out_release:
2477 unlock_page(page);
2478 put_page(page);
2479 out_unacct_blocks:
2480 shmem_inode_unacct_blocks(inode, 1);
2481 goto out;
2482 }
2483
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2484 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2485 pmd_t *dst_pmd,
2486 struct vm_area_struct *dst_vma,
2487 unsigned long dst_addr,
2488 unsigned long src_addr,
2489 struct page **pagep)
2490 {
2491 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2492 dst_addr, src_addr, false, pagep);
2493 }
2494
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2495 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2496 pmd_t *dst_pmd,
2497 struct vm_area_struct *dst_vma,
2498 unsigned long dst_addr)
2499 {
2500 struct page *page = NULL;
2501
2502 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2503 dst_addr, 0, true, &page);
2504 }
2505
2506 #ifdef CONFIG_TMPFS
2507 static const struct inode_operations shmem_symlink_inode_operations;
2508 static const struct inode_operations shmem_short_symlink_operations;
2509
2510 #ifdef CONFIG_TMPFS_XATTR
2511 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2512 #else
2513 #define shmem_initxattrs NULL
2514 #endif
2515
2516 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2517 shmem_write_begin(struct file *file, struct address_space *mapping,
2518 loff_t pos, unsigned len, unsigned flags,
2519 struct page **pagep, void **fsdata)
2520 {
2521 struct inode *inode = mapping->host;
2522 struct shmem_inode_info *info = SHMEM_I(inode);
2523 pgoff_t index = pos >> PAGE_SHIFT;
2524
2525 /* i_mutex is held by caller */
2526 if (unlikely(info->seals & (F_SEAL_GROW |
2527 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2528 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2529 return -EPERM;
2530 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2531 return -EPERM;
2532 }
2533
2534 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2535 }
2536
2537 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2538 shmem_write_end(struct file *file, struct address_space *mapping,
2539 loff_t pos, unsigned len, unsigned copied,
2540 struct page *page, void *fsdata)
2541 {
2542 struct inode *inode = mapping->host;
2543
2544 if (pos + copied > inode->i_size)
2545 i_size_write(inode, pos + copied);
2546
2547 if (!PageUptodate(page)) {
2548 struct page *head = compound_head(page);
2549 if (PageTransCompound(page)) {
2550 int i;
2551
2552 for (i = 0; i < HPAGE_PMD_NR; i++) {
2553 if (head + i == page)
2554 continue;
2555 clear_highpage(head + i);
2556 flush_dcache_page(head + i);
2557 }
2558 }
2559 if (copied < PAGE_SIZE) {
2560 unsigned from = pos & (PAGE_SIZE - 1);
2561 zero_user_segments(page, 0, from,
2562 from + copied, PAGE_SIZE);
2563 }
2564 SetPageUptodate(head);
2565 }
2566 set_page_dirty(page);
2567 unlock_page(page);
2568 put_page(page);
2569
2570 return copied;
2571 }
2572
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2573 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2574 {
2575 struct file *file = iocb->ki_filp;
2576 struct inode *inode = file_inode(file);
2577 struct address_space *mapping = inode->i_mapping;
2578 pgoff_t index;
2579 unsigned long offset;
2580 enum sgp_type sgp = SGP_READ;
2581 int error = 0;
2582 ssize_t retval = 0;
2583 loff_t *ppos = &iocb->ki_pos;
2584
2585 /*
2586 * Might this read be for a stacking filesystem? Then when reading
2587 * holes of a sparse file, we actually need to allocate those pages,
2588 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2589 */
2590 if (!iter_is_iovec(to))
2591 sgp = SGP_CACHE;
2592
2593 index = *ppos >> PAGE_SHIFT;
2594 offset = *ppos & ~PAGE_MASK;
2595
2596 for (;;) {
2597 struct page *page = NULL;
2598 pgoff_t end_index;
2599 unsigned long nr, ret;
2600 loff_t i_size = i_size_read(inode);
2601
2602 end_index = i_size >> PAGE_SHIFT;
2603 if (index > end_index)
2604 break;
2605 if (index == end_index) {
2606 nr = i_size & ~PAGE_MASK;
2607 if (nr <= offset)
2608 break;
2609 }
2610
2611 error = shmem_getpage(inode, index, &page, sgp);
2612 if (error) {
2613 if (error == -EINVAL)
2614 error = 0;
2615 break;
2616 }
2617 if (page) {
2618 if (sgp == SGP_CACHE)
2619 set_page_dirty(page);
2620 unlock_page(page);
2621 }
2622
2623 /*
2624 * We must evaluate after, since reads (unlike writes)
2625 * are called without i_mutex protection against truncate
2626 */
2627 nr = PAGE_SIZE;
2628 i_size = i_size_read(inode);
2629 end_index = i_size >> PAGE_SHIFT;
2630 if (index == end_index) {
2631 nr = i_size & ~PAGE_MASK;
2632 if (nr <= offset) {
2633 if (page)
2634 put_page(page);
2635 break;
2636 }
2637 }
2638 nr -= offset;
2639
2640 if (page) {
2641 /*
2642 * If users can be writing to this page using arbitrary
2643 * virtual addresses, take care about potential aliasing
2644 * before reading the page on the kernel side.
2645 */
2646 if (mapping_writably_mapped(mapping))
2647 flush_dcache_page(page);
2648 /*
2649 * Mark the page accessed if we read the beginning.
2650 */
2651 if (!offset)
2652 mark_page_accessed(page);
2653 } else {
2654 page = ZERO_PAGE(0);
2655 get_page(page);
2656 }
2657
2658 /*
2659 * Ok, we have the page, and it's up-to-date, so
2660 * now we can copy it to user space...
2661 */
2662 ret = copy_page_to_iter(page, offset, nr, to);
2663 retval += ret;
2664 offset += ret;
2665 index += offset >> PAGE_SHIFT;
2666 offset &= ~PAGE_MASK;
2667
2668 put_page(page);
2669 if (!iov_iter_count(to))
2670 break;
2671 if (ret < nr) {
2672 error = -EFAULT;
2673 break;
2674 }
2675 cond_resched();
2676 }
2677
2678 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2679 file_accessed(file);
2680 return retval ? retval : error;
2681 }
2682
2683 /*
2684 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2685 */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2686 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2687 pgoff_t index, pgoff_t end, int whence)
2688 {
2689 struct page *page;
2690 struct pagevec pvec;
2691 pgoff_t indices[PAGEVEC_SIZE];
2692 bool done = false;
2693 int i;
2694
2695 pagevec_init(&pvec);
2696 pvec.nr = 1; /* start small: we may be there already */
2697 while (!done) {
2698 pvec.nr = find_get_entries(mapping, index,
2699 pvec.nr, pvec.pages, indices);
2700 if (!pvec.nr) {
2701 if (whence == SEEK_DATA)
2702 index = end;
2703 break;
2704 }
2705 for (i = 0; i < pvec.nr; i++, index++) {
2706 if (index < indices[i]) {
2707 if (whence == SEEK_HOLE) {
2708 done = true;
2709 break;
2710 }
2711 index = indices[i];
2712 }
2713 page = pvec.pages[i];
2714 if (page && !xa_is_value(page)) {
2715 if (!PageUptodate(page))
2716 page = NULL;
2717 }
2718 if (index >= end ||
2719 (page && whence == SEEK_DATA) ||
2720 (!page && whence == SEEK_HOLE)) {
2721 done = true;
2722 break;
2723 }
2724 }
2725 pagevec_remove_exceptionals(&pvec);
2726 pagevec_release(&pvec);
2727 pvec.nr = PAGEVEC_SIZE;
2728 cond_resched();
2729 }
2730 return index;
2731 }
2732
shmem_file_llseek(struct file * file,loff_t offset,int whence)2733 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2734 {
2735 struct address_space *mapping = file->f_mapping;
2736 struct inode *inode = mapping->host;
2737 pgoff_t start, end;
2738 loff_t new_offset;
2739
2740 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2741 return generic_file_llseek_size(file, offset, whence,
2742 MAX_LFS_FILESIZE, i_size_read(inode));
2743 inode_lock(inode);
2744 /* We're holding i_mutex so we can access i_size directly */
2745
2746 if (offset < 0 || offset >= inode->i_size)
2747 offset = -ENXIO;
2748 else {
2749 start = offset >> PAGE_SHIFT;
2750 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2751 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2752 new_offset <<= PAGE_SHIFT;
2753 if (new_offset > offset) {
2754 if (new_offset < inode->i_size)
2755 offset = new_offset;
2756 else if (whence == SEEK_DATA)
2757 offset = -ENXIO;
2758 else
2759 offset = inode->i_size;
2760 }
2761 }
2762
2763 if (offset >= 0)
2764 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2765 inode_unlock(inode);
2766 return offset;
2767 }
2768
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2769 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2770 loff_t len)
2771 {
2772 struct inode *inode = file_inode(file);
2773 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2774 struct shmem_inode_info *info = SHMEM_I(inode);
2775 struct shmem_falloc shmem_falloc;
2776 pgoff_t start, index, end;
2777 int error;
2778
2779 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2780 return -EOPNOTSUPP;
2781
2782 inode_lock(inode);
2783
2784 if (mode & FALLOC_FL_PUNCH_HOLE) {
2785 struct address_space *mapping = file->f_mapping;
2786 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2787 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2788 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2789
2790 /* protected by i_mutex */
2791 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2792 error = -EPERM;
2793 goto out;
2794 }
2795
2796 shmem_falloc.waitq = &shmem_falloc_waitq;
2797 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2798 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2799 spin_lock(&inode->i_lock);
2800 inode->i_private = &shmem_falloc;
2801 spin_unlock(&inode->i_lock);
2802
2803 if ((u64)unmap_end > (u64)unmap_start)
2804 unmap_mapping_range(mapping, unmap_start,
2805 1 + unmap_end - unmap_start, 0);
2806 shmem_truncate_range(inode, offset, offset + len - 1);
2807 /* No need to unmap again: hole-punching leaves COWed pages */
2808
2809 spin_lock(&inode->i_lock);
2810 inode->i_private = NULL;
2811 wake_up_all(&shmem_falloc_waitq);
2812 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2813 spin_unlock(&inode->i_lock);
2814 error = 0;
2815 goto out;
2816 }
2817
2818 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2819 error = inode_newsize_ok(inode, offset + len);
2820 if (error)
2821 goto out;
2822
2823 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2824 error = -EPERM;
2825 goto out;
2826 }
2827
2828 start = offset >> PAGE_SHIFT;
2829 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2830 /* Try to avoid a swapstorm if len is impossible to satisfy */
2831 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2832 error = -ENOSPC;
2833 goto out;
2834 }
2835
2836 shmem_falloc.waitq = NULL;
2837 shmem_falloc.start = start;
2838 shmem_falloc.next = start;
2839 shmem_falloc.nr_falloced = 0;
2840 shmem_falloc.nr_unswapped = 0;
2841 spin_lock(&inode->i_lock);
2842 inode->i_private = &shmem_falloc;
2843 spin_unlock(&inode->i_lock);
2844
2845 for (index = start; index < end; index++) {
2846 struct page *page;
2847
2848 /*
2849 * Good, the fallocate(2) manpage permits EINTR: we may have
2850 * been interrupted because we are using up too much memory.
2851 */
2852 if (signal_pending(current))
2853 error = -EINTR;
2854 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2855 error = -ENOMEM;
2856 else
2857 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2858 if (error) {
2859 /* Remove the !PageUptodate pages we added */
2860 if (index > start) {
2861 shmem_undo_range(inode,
2862 (loff_t)start << PAGE_SHIFT,
2863 ((loff_t)index << PAGE_SHIFT) - 1, true);
2864 }
2865 goto undone;
2866 }
2867
2868 /*
2869 * Inform shmem_writepage() how far we have reached.
2870 * No need for lock or barrier: we have the page lock.
2871 */
2872 shmem_falloc.next++;
2873 if (!PageUptodate(page))
2874 shmem_falloc.nr_falloced++;
2875
2876 /*
2877 * If !PageUptodate, leave it that way so that freeable pages
2878 * can be recognized if we need to rollback on error later.
2879 * But set_page_dirty so that memory pressure will swap rather
2880 * than free the pages we are allocating (and SGP_CACHE pages
2881 * might still be clean: we now need to mark those dirty too).
2882 */
2883 set_page_dirty(page);
2884 unlock_page(page);
2885 put_page(page);
2886 cond_resched();
2887 }
2888
2889 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2890 i_size_write(inode, offset + len);
2891 inode->i_ctime = current_time(inode);
2892 undone:
2893 spin_lock(&inode->i_lock);
2894 inode->i_private = NULL;
2895 spin_unlock(&inode->i_lock);
2896 out:
2897 inode_unlock(inode);
2898 return error;
2899 }
2900
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2901 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2902 {
2903 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2904
2905 buf->f_type = TMPFS_MAGIC;
2906 buf->f_bsize = PAGE_SIZE;
2907 buf->f_namelen = NAME_MAX;
2908 if (sbinfo->max_blocks) {
2909 buf->f_blocks = sbinfo->max_blocks;
2910 buf->f_bavail =
2911 buf->f_bfree = sbinfo->max_blocks -
2912 percpu_counter_sum(&sbinfo->used_blocks);
2913 }
2914 if (sbinfo->max_inodes) {
2915 buf->f_files = sbinfo->max_inodes;
2916 buf->f_ffree = sbinfo->free_inodes;
2917 }
2918 /* else leave those fields 0 like simple_statfs */
2919 return 0;
2920 }
2921
2922 /*
2923 * File creation. Allocate an inode, and we're done..
2924 */
2925 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2926 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2927 {
2928 struct inode *inode;
2929 int error = -ENOSPC;
2930
2931 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2932 if (inode) {
2933 error = simple_acl_create(dir, inode);
2934 if (error)
2935 goto out_iput;
2936 error = security_inode_init_security(inode, dir,
2937 &dentry->d_name,
2938 shmem_initxattrs, NULL);
2939 if (error && error != -EOPNOTSUPP)
2940 goto out_iput;
2941
2942 error = 0;
2943 dir->i_size += BOGO_DIRENT_SIZE;
2944 dir->i_ctime = dir->i_mtime = current_time(dir);
2945 d_instantiate(dentry, inode);
2946 dget(dentry); /* Extra count - pin the dentry in core */
2947 }
2948 return error;
2949 out_iput:
2950 iput(inode);
2951 return error;
2952 }
2953
2954 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2955 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2956 {
2957 struct inode *inode;
2958 int error = -ENOSPC;
2959
2960 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2961 if (inode) {
2962 error = security_inode_init_security(inode, dir,
2963 NULL,
2964 shmem_initxattrs, NULL);
2965 if (error && error != -EOPNOTSUPP)
2966 goto out_iput;
2967 error = simple_acl_create(dir, inode);
2968 if (error)
2969 goto out_iput;
2970 d_tmpfile(dentry, inode);
2971 }
2972 return error;
2973 out_iput:
2974 iput(inode);
2975 return error;
2976 }
2977
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2978 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2979 {
2980 int error;
2981
2982 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2983 return error;
2984 inc_nlink(dir);
2985 return 0;
2986 }
2987
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2988 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2989 bool excl)
2990 {
2991 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2992 }
2993
2994 /*
2995 * Link a file..
2996 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2997 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2998 {
2999 struct inode *inode = d_inode(old_dentry);
3000 int ret = 0;
3001
3002 /*
3003 * No ordinary (disk based) filesystem counts links as inodes;
3004 * but each new link needs a new dentry, pinning lowmem, and
3005 * tmpfs dentries cannot be pruned until they are unlinked.
3006 * But if an O_TMPFILE file is linked into the tmpfs, the
3007 * first link must skip that, to get the accounting right.
3008 */
3009 if (inode->i_nlink) {
3010 ret = shmem_reserve_inode(inode->i_sb, NULL);
3011 if (ret)
3012 goto out;
3013 }
3014
3015 dir->i_size += BOGO_DIRENT_SIZE;
3016 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3017 inc_nlink(inode);
3018 ihold(inode); /* New dentry reference */
3019 dget(dentry); /* Extra pinning count for the created dentry */
3020 d_instantiate(dentry, inode);
3021 out:
3022 return ret;
3023 }
3024
shmem_unlink(struct inode * dir,struct dentry * dentry)3025 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027 struct inode *inode = d_inode(dentry);
3028
3029 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3030 shmem_free_inode(inode->i_sb);
3031
3032 dir->i_size -= BOGO_DIRENT_SIZE;
3033 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3034 drop_nlink(inode);
3035 dput(dentry); /* Undo the count from "create" - this does all the work */
3036 return 0;
3037 }
3038
shmem_rmdir(struct inode * dir,struct dentry * dentry)3039 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3040 {
3041 if (!simple_empty(dentry))
3042 return -ENOTEMPTY;
3043
3044 drop_nlink(d_inode(dentry));
3045 drop_nlink(dir);
3046 return shmem_unlink(dir, dentry);
3047 }
3048
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3049 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3050 {
3051 bool old_is_dir = d_is_dir(old_dentry);
3052 bool new_is_dir = d_is_dir(new_dentry);
3053
3054 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3055 if (old_is_dir) {
3056 drop_nlink(old_dir);
3057 inc_nlink(new_dir);
3058 } else {
3059 drop_nlink(new_dir);
3060 inc_nlink(old_dir);
3061 }
3062 }
3063 old_dir->i_ctime = old_dir->i_mtime =
3064 new_dir->i_ctime = new_dir->i_mtime =
3065 d_inode(old_dentry)->i_ctime =
3066 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3067
3068 return 0;
3069 }
3070
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3071 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3072 {
3073 struct dentry *whiteout;
3074 int error;
3075
3076 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3077 if (!whiteout)
3078 return -ENOMEM;
3079
3080 error = shmem_mknod(old_dir, whiteout,
3081 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3082 dput(whiteout);
3083 if (error)
3084 return error;
3085
3086 /*
3087 * Cheat and hash the whiteout while the old dentry is still in
3088 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3089 *
3090 * d_lookup() will consistently find one of them at this point,
3091 * not sure which one, but that isn't even important.
3092 */
3093 d_rehash(whiteout);
3094 return 0;
3095 }
3096
3097 /*
3098 * The VFS layer already does all the dentry stuff for rename,
3099 * we just have to decrement the usage count for the target if
3100 * it exists so that the VFS layer correctly free's it when it
3101 * gets overwritten.
3102 */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3103 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3104 {
3105 struct inode *inode = d_inode(old_dentry);
3106 int they_are_dirs = S_ISDIR(inode->i_mode);
3107
3108 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3109 return -EINVAL;
3110
3111 if (flags & RENAME_EXCHANGE)
3112 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3113
3114 if (!simple_empty(new_dentry))
3115 return -ENOTEMPTY;
3116
3117 if (flags & RENAME_WHITEOUT) {
3118 int error;
3119
3120 error = shmem_whiteout(old_dir, old_dentry);
3121 if (error)
3122 return error;
3123 }
3124
3125 if (d_really_is_positive(new_dentry)) {
3126 (void) shmem_unlink(new_dir, new_dentry);
3127 if (they_are_dirs) {
3128 drop_nlink(d_inode(new_dentry));
3129 drop_nlink(old_dir);
3130 }
3131 } else if (they_are_dirs) {
3132 drop_nlink(old_dir);
3133 inc_nlink(new_dir);
3134 }
3135
3136 old_dir->i_size -= BOGO_DIRENT_SIZE;
3137 new_dir->i_size += BOGO_DIRENT_SIZE;
3138 old_dir->i_ctime = old_dir->i_mtime =
3139 new_dir->i_ctime = new_dir->i_mtime =
3140 inode->i_ctime = current_time(old_dir);
3141 return 0;
3142 }
3143
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3144 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3145 {
3146 int error;
3147 int len;
3148 struct inode *inode;
3149 struct page *page;
3150
3151 len = strlen(symname) + 1;
3152 if (len > PAGE_SIZE)
3153 return -ENAMETOOLONG;
3154
3155 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3156 VM_NORESERVE);
3157 if (!inode)
3158 return -ENOSPC;
3159
3160 error = security_inode_init_security(inode, dir, &dentry->d_name,
3161 shmem_initxattrs, NULL);
3162 if (error && error != -EOPNOTSUPP) {
3163 iput(inode);
3164 return error;
3165 }
3166
3167 inode->i_size = len-1;
3168 if (len <= SHORT_SYMLINK_LEN) {
3169 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3170 if (!inode->i_link) {
3171 iput(inode);
3172 return -ENOMEM;
3173 }
3174 inode->i_op = &shmem_short_symlink_operations;
3175 } else {
3176 inode_nohighmem(inode);
3177 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3178 if (error) {
3179 iput(inode);
3180 return error;
3181 }
3182 inode->i_mapping->a_ops = &shmem_aops;
3183 inode->i_op = &shmem_symlink_inode_operations;
3184 memcpy(page_address(page), symname, len);
3185 SetPageUptodate(page);
3186 set_page_dirty(page);
3187 unlock_page(page);
3188 put_page(page);
3189 }
3190 dir->i_size += BOGO_DIRENT_SIZE;
3191 dir->i_ctime = dir->i_mtime = current_time(dir);
3192 d_instantiate(dentry, inode);
3193 dget(dentry);
3194 return 0;
3195 }
3196
shmem_put_link(void * arg)3197 static void shmem_put_link(void *arg)
3198 {
3199 mark_page_accessed(arg);
3200 put_page(arg);
3201 }
3202
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3203 static const char *shmem_get_link(struct dentry *dentry,
3204 struct inode *inode,
3205 struct delayed_call *done)
3206 {
3207 struct page *page = NULL;
3208 int error;
3209 if (!dentry) {
3210 page = find_get_page(inode->i_mapping, 0);
3211 if (!page)
3212 return ERR_PTR(-ECHILD);
3213 if (!PageUptodate(page)) {
3214 put_page(page);
3215 return ERR_PTR(-ECHILD);
3216 }
3217 } else {
3218 error = shmem_getpage(inode, 0, &page, SGP_READ);
3219 if (error)
3220 return ERR_PTR(error);
3221 unlock_page(page);
3222 }
3223 set_delayed_call(done, shmem_put_link, page);
3224 return page_address(page);
3225 }
3226
3227 #ifdef CONFIG_TMPFS_XATTR
3228 /*
3229 * Superblocks without xattr inode operations may get some security.* xattr
3230 * support from the LSM "for free". As soon as we have any other xattrs
3231 * like ACLs, we also need to implement the security.* handlers at
3232 * filesystem level, though.
3233 */
3234
3235 /*
3236 * Callback for security_inode_init_security() for acquiring xattrs.
3237 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3238 static int shmem_initxattrs(struct inode *inode,
3239 const struct xattr *xattr_array,
3240 void *fs_info)
3241 {
3242 struct shmem_inode_info *info = SHMEM_I(inode);
3243 const struct xattr *xattr;
3244 struct simple_xattr *new_xattr;
3245 size_t len;
3246
3247 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3248 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3249 if (!new_xattr)
3250 return -ENOMEM;
3251
3252 len = strlen(xattr->name) + 1;
3253 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3254 GFP_KERNEL);
3255 if (!new_xattr->name) {
3256 kvfree(new_xattr);
3257 return -ENOMEM;
3258 }
3259
3260 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3261 XATTR_SECURITY_PREFIX_LEN);
3262 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3263 xattr->name, len);
3264
3265 simple_xattr_list_add(&info->xattrs, new_xattr);
3266 }
3267
3268 return 0;
3269 }
3270
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3271 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3272 struct dentry *unused, struct inode *inode,
3273 const char *name, void *buffer, size_t size)
3274 {
3275 struct shmem_inode_info *info = SHMEM_I(inode);
3276
3277 name = xattr_full_name(handler, name);
3278 return simple_xattr_get(&info->xattrs, name, buffer, size);
3279 }
3280
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3281 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3282 struct dentry *unused, struct inode *inode,
3283 const char *name, const void *value,
3284 size_t size, int flags)
3285 {
3286 struct shmem_inode_info *info = SHMEM_I(inode);
3287
3288 name = xattr_full_name(handler, name);
3289 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3290 }
3291
3292 static const struct xattr_handler shmem_security_xattr_handler = {
3293 .prefix = XATTR_SECURITY_PREFIX,
3294 .get = shmem_xattr_handler_get,
3295 .set = shmem_xattr_handler_set,
3296 };
3297
3298 static const struct xattr_handler shmem_trusted_xattr_handler = {
3299 .prefix = XATTR_TRUSTED_PREFIX,
3300 .get = shmem_xattr_handler_get,
3301 .set = shmem_xattr_handler_set,
3302 };
3303
3304 static const struct xattr_handler *shmem_xattr_handlers[] = {
3305 #ifdef CONFIG_TMPFS_POSIX_ACL
3306 &posix_acl_access_xattr_handler,
3307 &posix_acl_default_xattr_handler,
3308 #endif
3309 &shmem_security_xattr_handler,
3310 &shmem_trusted_xattr_handler,
3311 NULL
3312 };
3313
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3314 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3315 {
3316 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3317 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3318 }
3319 #endif /* CONFIG_TMPFS_XATTR */
3320
3321 static const struct inode_operations shmem_short_symlink_operations = {
3322 .get_link = simple_get_link,
3323 #ifdef CONFIG_TMPFS_XATTR
3324 .listxattr = shmem_listxattr,
3325 #endif
3326 };
3327
3328 static const struct inode_operations shmem_symlink_inode_operations = {
3329 .get_link = shmem_get_link,
3330 #ifdef CONFIG_TMPFS_XATTR
3331 .listxattr = shmem_listxattr,
3332 #endif
3333 };
3334
shmem_get_parent(struct dentry * child)3335 static struct dentry *shmem_get_parent(struct dentry *child)
3336 {
3337 return ERR_PTR(-ESTALE);
3338 }
3339
shmem_match(struct inode * ino,void * vfh)3340 static int shmem_match(struct inode *ino, void *vfh)
3341 {
3342 __u32 *fh = vfh;
3343 __u64 inum = fh[2];
3344 inum = (inum << 32) | fh[1];
3345 return ino->i_ino == inum && fh[0] == ino->i_generation;
3346 }
3347
3348 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3349 static struct dentry *shmem_find_alias(struct inode *inode)
3350 {
3351 struct dentry *alias = d_find_alias(inode);
3352
3353 return alias ?: d_find_any_alias(inode);
3354 }
3355
3356
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3357 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3358 struct fid *fid, int fh_len, int fh_type)
3359 {
3360 struct inode *inode;
3361 struct dentry *dentry = NULL;
3362 u64 inum;
3363
3364 if (fh_len < 3)
3365 return NULL;
3366
3367 inum = fid->raw[2];
3368 inum = (inum << 32) | fid->raw[1];
3369
3370 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3371 shmem_match, fid->raw);
3372 if (inode) {
3373 dentry = shmem_find_alias(inode);
3374 iput(inode);
3375 }
3376
3377 return dentry;
3378 }
3379
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3380 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3381 struct inode *parent)
3382 {
3383 if (*len < 3) {
3384 *len = 3;
3385 return FILEID_INVALID;
3386 }
3387
3388 if (inode_unhashed(inode)) {
3389 /* Unfortunately insert_inode_hash is not idempotent,
3390 * so as we hash inodes here rather than at creation
3391 * time, we need a lock to ensure we only try
3392 * to do it once
3393 */
3394 static DEFINE_SPINLOCK(lock);
3395 spin_lock(&lock);
3396 if (inode_unhashed(inode))
3397 __insert_inode_hash(inode,
3398 inode->i_ino + inode->i_generation);
3399 spin_unlock(&lock);
3400 }
3401
3402 fh[0] = inode->i_generation;
3403 fh[1] = inode->i_ino;
3404 fh[2] = ((__u64)inode->i_ino) >> 32;
3405
3406 *len = 3;
3407 return 1;
3408 }
3409
3410 static const struct export_operations shmem_export_ops = {
3411 .get_parent = shmem_get_parent,
3412 .encode_fh = shmem_encode_fh,
3413 .fh_to_dentry = shmem_fh_to_dentry,
3414 };
3415
3416 enum shmem_param {
3417 Opt_gid,
3418 Opt_huge,
3419 Opt_mode,
3420 Opt_mpol,
3421 Opt_nr_blocks,
3422 Opt_nr_inodes,
3423 Opt_size,
3424 Opt_uid,
3425 Opt_inode32,
3426 Opt_inode64,
3427 };
3428
3429 static const struct constant_table shmem_param_enums_huge[] = {
3430 {"never", SHMEM_HUGE_NEVER },
3431 {"always", SHMEM_HUGE_ALWAYS },
3432 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3433 {"advise", SHMEM_HUGE_ADVISE },
3434 {}
3435 };
3436
3437 const struct fs_parameter_spec shmem_fs_parameters[] = {
3438 fsparam_u32 ("gid", Opt_gid),
3439 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3440 fsparam_u32oct("mode", Opt_mode),
3441 fsparam_string("mpol", Opt_mpol),
3442 fsparam_string("nr_blocks", Opt_nr_blocks),
3443 fsparam_string("nr_inodes", Opt_nr_inodes),
3444 fsparam_string("size", Opt_size),
3445 fsparam_u32 ("uid", Opt_uid),
3446 fsparam_flag ("inode32", Opt_inode32),
3447 fsparam_flag ("inode64", Opt_inode64),
3448 {}
3449 };
3450
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3451 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3452 {
3453 struct shmem_options *ctx = fc->fs_private;
3454 struct fs_parse_result result;
3455 unsigned long long size;
3456 char *rest;
3457 int opt;
3458 kuid_t kuid;
3459 kgid_t kgid;
3460
3461 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3462 if (opt < 0)
3463 return opt;
3464
3465 switch (opt) {
3466 case Opt_size:
3467 size = memparse(param->string, &rest);
3468 if (*rest == '%') {
3469 size <<= PAGE_SHIFT;
3470 size *= totalram_pages();
3471 do_div(size, 100);
3472 rest++;
3473 }
3474 if (*rest)
3475 goto bad_value;
3476 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3477 ctx->seen |= SHMEM_SEEN_BLOCKS;
3478 break;
3479 case Opt_nr_blocks:
3480 ctx->blocks = memparse(param->string, &rest);
3481 if (*rest)
3482 goto bad_value;
3483 ctx->seen |= SHMEM_SEEN_BLOCKS;
3484 break;
3485 case Opt_nr_inodes:
3486 ctx->inodes = memparse(param->string, &rest);
3487 if (*rest)
3488 goto bad_value;
3489 ctx->seen |= SHMEM_SEEN_INODES;
3490 break;
3491 case Opt_mode:
3492 ctx->mode = result.uint_32 & 07777;
3493 break;
3494 case Opt_uid:
3495 kuid = make_kuid(current_user_ns(), result.uint_32);
3496 if (!uid_valid(kuid))
3497 goto bad_value;
3498
3499 /*
3500 * The requested uid must be representable in the
3501 * filesystem's idmapping.
3502 */
3503 if (!kuid_has_mapping(fc->user_ns, kuid))
3504 goto bad_value;
3505
3506 ctx->uid = kuid;
3507 break;
3508 case Opt_gid:
3509 kgid = make_kgid(current_user_ns(), result.uint_32);
3510 if (!gid_valid(kgid))
3511 goto bad_value;
3512
3513 /*
3514 * The requested gid must be representable in the
3515 * filesystem's idmapping.
3516 */
3517 if (!kgid_has_mapping(fc->user_ns, kgid))
3518 goto bad_value;
3519
3520 ctx->gid = kgid;
3521 break;
3522 case Opt_huge:
3523 ctx->huge = result.uint_32;
3524 if (ctx->huge != SHMEM_HUGE_NEVER &&
3525 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3526 has_transparent_hugepage()))
3527 goto unsupported_parameter;
3528 ctx->seen |= SHMEM_SEEN_HUGE;
3529 break;
3530 case Opt_mpol:
3531 if (IS_ENABLED(CONFIG_NUMA)) {
3532 mpol_put(ctx->mpol);
3533 ctx->mpol = NULL;
3534 if (mpol_parse_str(param->string, &ctx->mpol))
3535 goto bad_value;
3536 break;
3537 }
3538 goto unsupported_parameter;
3539 case Opt_inode32:
3540 ctx->full_inums = false;
3541 ctx->seen |= SHMEM_SEEN_INUMS;
3542 break;
3543 case Opt_inode64:
3544 if (sizeof(ino_t) < 8) {
3545 return invalfc(fc,
3546 "Cannot use inode64 with <64bit inums in kernel\n");
3547 }
3548 ctx->full_inums = true;
3549 ctx->seen |= SHMEM_SEEN_INUMS;
3550 break;
3551 }
3552 return 0;
3553
3554 unsupported_parameter:
3555 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3556 bad_value:
3557 return invalfc(fc, "Bad value for '%s'", param->key);
3558 }
3559
shmem_parse_options(struct fs_context * fc,void * data)3560 static int shmem_parse_options(struct fs_context *fc, void *data)
3561 {
3562 char *options = data;
3563
3564 if (options) {
3565 int err = security_sb_eat_lsm_opts(options, &fc->security);
3566 if (err)
3567 return err;
3568 }
3569
3570 while (options != NULL) {
3571 char *this_char = options;
3572 for (;;) {
3573 /*
3574 * NUL-terminate this option: unfortunately,
3575 * mount options form a comma-separated list,
3576 * but mpol's nodelist may also contain commas.
3577 */
3578 options = strchr(options, ',');
3579 if (options == NULL)
3580 break;
3581 options++;
3582 if (!isdigit(*options)) {
3583 options[-1] = '\0';
3584 break;
3585 }
3586 }
3587 if (*this_char) {
3588 char *value = strchr(this_char,'=');
3589 size_t len = 0;
3590 int err;
3591
3592 if (value) {
3593 *value++ = '\0';
3594 len = strlen(value);
3595 }
3596 err = vfs_parse_fs_string(fc, this_char, value, len);
3597 if (err < 0)
3598 return err;
3599 }
3600 }
3601 return 0;
3602 }
3603
3604 /*
3605 * Reconfigure a shmem filesystem.
3606 *
3607 * Note that we disallow change from limited->unlimited blocks/inodes while any
3608 * are in use; but we must separately disallow unlimited->limited, because in
3609 * that case we have no record of how much is already in use.
3610 */
shmem_reconfigure(struct fs_context * fc)3611 static int shmem_reconfigure(struct fs_context *fc)
3612 {
3613 struct shmem_options *ctx = fc->fs_private;
3614 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3615 unsigned long inodes;
3616 const char *err;
3617
3618 spin_lock(&sbinfo->stat_lock);
3619 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3620 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3621 if (!sbinfo->max_blocks) {
3622 err = "Cannot retroactively limit size";
3623 goto out;
3624 }
3625 if (percpu_counter_compare(&sbinfo->used_blocks,
3626 ctx->blocks) > 0) {
3627 err = "Too small a size for current use";
3628 goto out;
3629 }
3630 }
3631 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3632 if (!sbinfo->max_inodes) {
3633 err = "Cannot retroactively limit inodes";
3634 goto out;
3635 }
3636 if (ctx->inodes < inodes) {
3637 err = "Too few inodes for current use";
3638 goto out;
3639 }
3640 }
3641
3642 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3643 sbinfo->next_ino > UINT_MAX) {
3644 err = "Current inum too high to switch to 32-bit inums";
3645 goto out;
3646 }
3647
3648 if (ctx->seen & SHMEM_SEEN_HUGE)
3649 sbinfo->huge = ctx->huge;
3650 if (ctx->seen & SHMEM_SEEN_INUMS)
3651 sbinfo->full_inums = ctx->full_inums;
3652 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3653 sbinfo->max_blocks = ctx->blocks;
3654 if (ctx->seen & SHMEM_SEEN_INODES) {
3655 sbinfo->max_inodes = ctx->inodes;
3656 sbinfo->free_inodes = ctx->inodes - inodes;
3657 }
3658
3659 /*
3660 * Preserve previous mempolicy unless mpol remount option was specified.
3661 */
3662 if (ctx->mpol) {
3663 mpol_put(sbinfo->mpol);
3664 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3665 ctx->mpol = NULL;
3666 }
3667 spin_unlock(&sbinfo->stat_lock);
3668 return 0;
3669 out:
3670 spin_unlock(&sbinfo->stat_lock);
3671 return invalfc(fc, "%s", err);
3672 }
3673
shmem_show_options(struct seq_file * seq,struct dentry * root)3674 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3675 {
3676 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3677
3678 if (sbinfo->max_blocks != shmem_default_max_blocks())
3679 seq_printf(seq, ",size=%luk",
3680 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3681 if (sbinfo->max_inodes != shmem_default_max_inodes())
3682 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3683 if (sbinfo->mode != (0777 | S_ISVTX))
3684 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3685 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3686 seq_printf(seq, ",uid=%u",
3687 from_kuid_munged(&init_user_ns, sbinfo->uid));
3688 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3689 seq_printf(seq, ",gid=%u",
3690 from_kgid_munged(&init_user_ns, sbinfo->gid));
3691
3692 /*
3693 * Showing inode{64,32} might be useful even if it's the system default,
3694 * since then people don't have to resort to checking both here and
3695 * /proc/config.gz to confirm 64-bit inums were successfully applied
3696 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3697 *
3698 * We hide it when inode64 isn't the default and we are using 32-bit
3699 * inodes, since that probably just means the feature isn't even under
3700 * consideration.
3701 *
3702 * As such:
3703 *
3704 * +-----------------+-----------------+
3705 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3706 * +------------------+-----------------+-----------------+
3707 * | full_inums=true | show | show |
3708 * | full_inums=false | show | hide |
3709 * +------------------+-----------------+-----------------+
3710 *
3711 */
3712 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3713 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3715 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3716 if (sbinfo->huge)
3717 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3718 #endif
3719 shmem_show_mpol(seq, sbinfo->mpol);
3720 return 0;
3721 }
3722
3723 #endif /* CONFIG_TMPFS */
3724
shmem_put_super(struct super_block * sb)3725 static void shmem_put_super(struct super_block *sb)
3726 {
3727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3728
3729 free_percpu(sbinfo->ino_batch);
3730 percpu_counter_destroy(&sbinfo->used_blocks);
3731 mpol_put(sbinfo->mpol);
3732 kfree(sbinfo);
3733 sb->s_fs_info = NULL;
3734 }
3735
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3736 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3737 {
3738 struct shmem_options *ctx = fc->fs_private;
3739 struct inode *inode;
3740 struct shmem_sb_info *sbinfo;
3741 int err = -ENOMEM;
3742
3743 /* Round up to L1_CACHE_BYTES to resist false sharing */
3744 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3745 L1_CACHE_BYTES), GFP_KERNEL);
3746 if (!sbinfo)
3747 return -ENOMEM;
3748
3749 sb->s_fs_info = sbinfo;
3750
3751 #ifdef CONFIG_TMPFS
3752 /*
3753 * Per default we only allow half of the physical ram per
3754 * tmpfs instance, limiting inodes to one per page of lowmem;
3755 * but the internal instance is left unlimited.
3756 */
3757 if (!(sb->s_flags & SB_KERNMOUNT)) {
3758 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3759 ctx->blocks = shmem_default_max_blocks();
3760 if (!(ctx->seen & SHMEM_SEEN_INODES))
3761 ctx->inodes = shmem_default_max_inodes();
3762 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3763 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3764 } else {
3765 sb->s_flags |= SB_NOUSER;
3766 }
3767 sb->s_export_op = &shmem_export_ops;
3768 sb->s_flags |= SB_NOSEC;
3769 #else
3770 sb->s_flags |= SB_NOUSER;
3771 #endif
3772 sbinfo->max_blocks = ctx->blocks;
3773 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3774 if (sb->s_flags & SB_KERNMOUNT) {
3775 sbinfo->ino_batch = alloc_percpu(ino_t);
3776 if (!sbinfo->ino_batch)
3777 goto failed;
3778 }
3779 sbinfo->uid = ctx->uid;
3780 sbinfo->gid = ctx->gid;
3781 sbinfo->full_inums = ctx->full_inums;
3782 sbinfo->mode = ctx->mode;
3783 sbinfo->huge = ctx->huge;
3784 sbinfo->mpol = ctx->mpol;
3785 ctx->mpol = NULL;
3786
3787 spin_lock_init(&sbinfo->stat_lock);
3788 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3789 goto failed;
3790 spin_lock_init(&sbinfo->shrinklist_lock);
3791 INIT_LIST_HEAD(&sbinfo->shrinklist);
3792
3793 sb->s_maxbytes = MAX_LFS_FILESIZE;
3794 sb->s_blocksize = PAGE_SIZE;
3795 sb->s_blocksize_bits = PAGE_SHIFT;
3796 sb->s_magic = TMPFS_MAGIC;
3797 sb->s_op = &shmem_ops;
3798 sb->s_time_gran = 1;
3799 #ifdef CONFIG_TMPFS_XATTR
3800 sb->s_xattr = shmem_xattr_handlers;
3801 #endif
3802 #ifdef CONFIG_TMPFS_POSIX_ACL
3803 sb->s_flags |= SB_POSIXACL;
3804 #endif
3805 uuid_gen(&sb->s_uuid);
3806
3807 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3808 if (!inode)
3809 goto failed;
3810 inode->i_uid = sbinfo->uid;
3811 inode->i_gid = sbinfo->gid;
3812 sb->s_root = d_make_root(inode);
3813 if (!sb->s_root)
3814 goto failed;
3815 return 0;
3816
3817 failed:
3818 shmem_put_super(sb);
3819 return err;
3820 }
3821
shmem_get_tree(struct fs_context * fc)3822 static int shmem_get_tree(struct fs_context *fc)
3823 {
3824 return get_tree_nodev(fc, shmem_fill_super);
3825 }
3826
shmem_free_fc(struct fs_context * fc)3827 static void shmem_free_fc(struct fs_context *fc)
3828 {
3829 struct shmem_options *ctx = fc->fs_private;
3830
3831 if (ctx) {
3832 mpol_put(ctx->mpol);
3833 kfree(ctx);
3834 }
3835 }
3836
3837 static const struct fs_context_operations shmem_fs_context_ops = {
3838 .free = shmem_free_fc,
3839 .get_tree = shmem_get_tree,
3840 #ifdef CONFIG_TMPFS
3841 .parse_monolithic = shmem_parse_options,
3842 .parse_param = shmem_parse_one,
3843 .reconfigure = shmem_reconfigure,
3844 #endif
3845 };
3846
3847 static struct kmem_cache *shmem_inode_cachep;
3848
shmem_alloc_inode(struct super_block * sb)3849 static struct inode *shmem_alloc_inode(struct super_block *sb)
3850 {
3851 struct shmem_inode_info *info;
3852 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3853 if (!info)
3854 return NULL;
3855 return &info->vfs_inode;
3856 }
3857
shmem_free_in_core_inode(struct inode * inode)3858 static void shmem_free_in_core_inode(struct inode *inode)
3859 {
3860 if (S_ISLNK(inode->i_mode))
3861 kfree(inode->i_link);
3862 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3863 }
3864
shmem_destroy_inode(struct inode * inode)3865 static void shmem_destroy_inode(struct inode *inode)
3866 {
3867 if (S_ISREG(inode->i_mode))
3868 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3869 }
3870
shmem_init_inode(void * foo)3871 static void shmem_init_inode(void *foo)
3872 {
3873 struct shmem_inode_info *info = foo;
3874 inode_init_once(&info->vfs_inode);
3875 }
3876
shmem_init_inodecache(void)3877 static void shmem_init_inodecache(void)
3878 {
3879 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3880 sizeof(struct shmem_inode_info),
3881 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3882 }
3883
shmem_destroy_inodecache(void)3884 static void shmem_destroy_inodecache(void)
3885 {
3886 kmem_cache_destroy(shmem_inode_cachep);
3887 }
3888
3889 static const struct address_space_operations shmem_aops = {
3890 .writepage = shmem_writepage,
3891 .set_page_dirty = __set_page_dirty_no_writeback,
3892 #ifdef CONFIG_TMPFS
3893 .write_begin = shmem_write_begin,
3894 .write_end = shmem_write_end,
3895 #endif
3896 #ifdef CONFIG_MIGRATION
3897 .migratepage = migrate_page,
3898 #endif
3899 .error_remove_page = generic_error_remove_page,
3900 };
3901
3902 static const struct file_operations shmem_file_operations = {
3903 .mmap = shmem_mmap,
3904 .get_unmapped_area = shmem_get_unmapped_area,
3905 #ifdef CONFIG_TMPFS
3906 .llseek = shmem_file_llseek,
3907 .read_iter = shmem_file_read_iter,
3908 .write_iter = generic_file_write_iter,
3909 .fsync = noop_fsync,
3910 .splice_read = generic_file_splice_read,
3911 .splice_write = iter_file_splice_write,
3912 .fallocate = shmem_fallocate,
3913 #endif
3914 };
3915
3916 static const struct inode_operations shmem_inode_operations = {
3917 .getattr = shmem_getattr,
3918 .setattr = shmem_setattr,
3919 #ifdef CONFIG_TMPFS_XATTR
3920 .listxattr = shmem_listxattr,
3921 .set_acl = simple_set_acl,
3922 #endif
3923 };
3924
3925 static const struct inode_operations shmem_dir_inode_operations = {
3926 #ifdef CONFIG_TMPFS
3927 .create = shmem_create,
3928 .lookup = simple_lookup,
3929 .link = shmem_link,
3930 .unlink = shmem_unlink,
3931 .symlink = shmem_symlink,
3932 .mkdir = shmem_mkdir,
3933 .rmdir = shmem_rmdir,
3934 .mknod = shmem_mknod,
3935 .rename = shmem_rename2,
3936 .tmpfile = shmem_tmpfile,
3937 #endif
3938 #ifdef CONFIG_TMPFS_XATTR
3939 .listxattr = shmem_listxattr,
3940 #endif
3941 #ifdef CONFIG_TMPFS_POSIX_ACL
3942 .setattr = shmem_setattr,
3943 .set_acl = simple_set_acl,
3944 #endif
3945 };
3946
3947 static const struct inode_operations shmem_special_inode_operations = {
3948 #ifdef CONFIG_TMPFS_XATTR
3949 .listxattr = shmem_listxattr,
3950 #endif
3951 #ifdef CONFIG_TMPFS_POSIX_ACL
3952 .setattr = shmem_setattr,
3953 .set_acl = simple_set_acl,
3954 #endif
3955 };
3956
3957 static const struct super_operations shmem_ops = {
3958 .alloc_inode = shmem_alloc_inode,
3959 .free_inode = shmem_free_in_core_inode,
3960 .destroy_inode = shmem_destroy_inode,
3961 #ifdef CONFIG_TMPFS
3962 .statfs = shmem_statfs,
3963 .show_options = shmem_show_options,
3964 #endif
3965 .evict_inode = shmem_evict_inode,
3966 .drop_inode = generic_delete_inode,
3967 .put_super = shmem_put_super,
3968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3969 .nr_cached_objects = shmem_unused_huge_count,
3970 .free_cached_objects = shmem_unused_huge_scan,
3971 #endif
3972 };
3973
3974 static const struct vm_operations_struct shmem_vm_ops = {
3975 .fault = shmem_fault,
3976 .map_pages = filemap_map_pages,
3977 #ifdef CONFIG_NUMA
3978 .set_policy = shmem_set_policy,
3979 .get_policy = shmem_get_policy,
3980 #endif
3981 };
3982
shmem_init_fs_context(struct fs_context * fc)3983 int shmem_init_fs_context(struct fs_context *fc)
3984 {
3985 struct shmem_options *ctx;
3986
3987 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3988 if (!ctx)
3989 return -ENOMEM;
3990
3991 ctx->mode = 0777 | S_ISVTX;
3992 ctx->uid = current_fsuid();
3993 ctx->gid = current_fsgid();
3994
3995 fc->fs_private = ctx;
3996 fc->ops = &shmem_fs_context_ops;
3997 return 0;
3998 }
3999
4000 static struct file_system_type shmem_fs_type = {
4001 .owner = THIS_MODULE,
4002 .name = "tmpfs",
4003 .init_fs_context = shmem_init_fs_context,
4004 #ifdef CONFIG_TMPFS
4005 .parameters = shmem_fs_parameters,
4006 #endif
4007 .kill_sb = kill_litter_super,
4008 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
4009 };
4010
shmem_init(void)4011 int __init shmem_init(void)
4012 {
4013 int error;
4014
4015 shmem_init_inodecache();
4016
4017 error = register_filesystem(&shmem_fs_type);
4018 if (error) {
4019 pr_err("Could not register tmpfs\n");
4020 goto out2;
4021 }
4022
4023 shm_mnt = kern_mount(&shmem_fs_type);
4024 if (IS_ERR(shm_mnt)) {
4025 error = PTR_ERR(shm_mnt);
4026 pr_err("Could not kern_mount tmpfs\n");
4027 goto out1;
4028 }
4029
4030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4032 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4033 else
4034 shmem_huge = 0; /* just in case it was patched */
4035 #endif
4036 return 0;
4037
4038 out1:
4039 unregister_filesystem(&shmem_fs_type);
4040 out2:
4041 shmem_destroy_inodecache();
4042 shm_mnt = ERR_PTR(error);
4043 return error;
4044 }
4045
4046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4047 static ssize_t shmem_enabled_show(struct kobject *kobj,
4048 struct kobj_attribute *attr, char *buf)
4049 {
4050 static const int values[] = {
4051 SHMEM_HUGE_ALWAYS,
4052 SHMEM_HUGE_WITHIN_SIZE,
4053 SHMEM_HUGE_ADVISE,
4054 SHMEM_HUGE_NEVER,
4055 SHMEM_HUGE_DENY,
4056 SHMEM_HUGE_FORCE,
4057 };
4058 int i, count;
4059
4060 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4061 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4062
4063 count += sprintf(buf + count, fmt,
4064 shmem_format_huge(values[i]));
4065 }
4066 buf[count - 1] = '\n';
4067 return count;
4068 }
4069
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4070 static ssize_t shmem_enabled_store(struct kobject *kobj,
4071 struct kobj_attribute *attr, const char *buf, size_t count)
4072 {
4073 char tmp[16];
4074 int huge;
4075
4076 if (count + 1 > sizeof(tmp))
4077 return -EINVAL;
4078 memcpy(tmp, buf, count);
4079 tmp[count] = '\0';
4080 if (count && tmp[count - 1] == '\n')
4081 tmp[count - 1] = '\0';
4082
4083 huge = shmem_parse_huge(tmp);
4084 if (huge == -EINVAL)
4085 return -EINVAL;
4086 if (!has_transparent_hugepage() &&
4087 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4088 return -EINVAL;
4089
4090 shmem_huge = huge;
4091 if (shmem_huge > SHMEM_HUGE_DENY)
4092 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4093 return count;
4094 }
4095
4096 struct kobj_attribute shmem_enabled_attr =
4097 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4098 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4099
4100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_huge_enabled(struct vm_area_struct * vma)4101 bool shmem_huge_enabled(struct vm_area_struct *vma)
4102 {
4103 struct inode *inode = file_inode(vma->vm_file);
4104 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4105 loff_t i_size;
4106 pgoff_t off;
4107
4108 if (!transhuge_vma_enabled(vma, vma->vm_flags))
4109 return false;
4110 if (shmem_huge == SHMEM_HUGE_FORCE)
4111 return true;
4112 if (shmem_huge == SHMEM_HUGE_DENY)
4113 return false;
4114 switch (sbinfo->huge) {
4115 case SHMEM_HUGE_NEVER:
4116 return false;
4117 case SHMEM_HUGE_ALWAYS:
4118 return true;
4119 case SHMEM_HUGE_WITHIN_SIZE:
4120 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4121 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4122 if (i_size >= HPAGE_PMD_SIZE &&
4123 i_size >> PAGE_SHIFT >= off)
4124 return true;
4125 fallthrough;
4126 case SHMEM_HUGE_ADVISE:
4127 /* TODO: implement fadvise() hints */
4128 return (vma->vm_flags & VM_HUGEPAGE);
4129 default:
4130 VM_BUG_ON(1);
4131 return false;
4132 }
4133 }
4134 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4135
4136 #else /* !CONFIG_SHMEM */
4137
4138 /*
4139 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4140 *
4141 * This is intended for small system where the benefits of the full
4142 * shmem code (swap-backed and resource-limited) are outweighed by
4143 * their complexity. On systems without swap this code should be
4144 * effectively equivalent, but much lighter weight.
4145 */
4146
4147 static struct file_system_type shmem_fs_type = {
4148 .name = "tmpfs",
4149 .init_fs_context = ramfs_init_fs_context,
4150 .parameters = ramfs_fs_parameters,
4151 .kill_sb = ramfs_kill_sb,
4152 .fs_flags = FS_USERNS_MOUNT,
4153 };
4154
shmem_init(void)4155 int __init shmem_init(void)
4156 {
4157 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4158
4159 shm_mnt = kern_mount(&shmem_fs_type);
4160 BUG_ON(IS_ERR(shm_mnt));
4161
4162 return 0;
4163 }
4164
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4165 int shmem_unuse(unsigned int type, bool frontswap,
4166 unsigned long *fs_pages_to_unuse)
4167 {
4168 return 0;
4169 }
4170
shmem_lock(struct file * file,int lock,struct user_struct * user)4171 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4172 {
4173 return 0;
4174 }
4175
shmem_unlock_mapping(struct address_space * mapping)4176 void shmem_unlock_mapping(struct address_space *mapping)
4177 {
4178 }
4179
4180 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4181 unsigned long shmem_get_unmapped_area(struct file *file,
4182 unsigned long addr, unsigned long len,
4183 unsigned long pgoff, unsigned long flags)
4184 {
4185 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4186 }
4187 #endif
4188
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4189 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4190 {
4191 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4192 }
4193 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4194
4195 #define shmem_vm_ops generic_file_vm_ops
4196 #define shmem_file_operations ramfs_file_operations
4197 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4198 #define shmem_acct_size(flags, size) 0
4199 #define shmem_unacct_size(flags, size) do {} while (0)
4200
4201 #endif /* CONFIG_SHMEM */
4202
4203 /* common code */
4204
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4205 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4206 unsigned long flags, unsigned int i_flags)
4207 {
4208 struct inode *inode;
4209 struct file *res;
4210
4211 if (IS_ERR(mnt))
4212 return ERR_CAST(mnt);
4213
4214 if (size < 0 || size > MAX_LFS_FILESIZE)
4215 return ERR_PTR(-EINVAL);
4216
4217 if (shmem_acct_size(flags, size))
4218 return ERR_PTR(-ENOMEM);
4219
4220 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221 flags);
4222 if (unlikely(!inode)) {
4223 shmem_unacct_size(flags, size);
4224 return ERR_PTR(-ENOSPC);
4225 }
4226 inode->i_flags |= i_flags;
4227 inode->i_size = size;
4228 clear_nlink(inode); /* It is unlinked */
4229 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230 if (!IS_ERR(res))
4231 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232 &shmem_file_operations);
4233 if (IS_ERR(res))
4234 iput(inode);
4235 return res;
4236 }
4237
4238 /**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * kernel internal. There will be NO LSM permission checks against the
4241 * underlying inode. So users of this interface must do LSM checks at a
4242 * higher layer. The users are the big_key and shm implementations. LSM
4243 * checks are provided at the key or shm level rather than the inode.
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4248 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249 {
4250 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251 }
4252
4253 /**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4259 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260 {
4261 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262 }
4263 EXPORT_SYMBOL_GPL(shmem_file_setup);
4264
4265 /**
4266 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267 * @mnt: the tmpfs mount where the file will be created
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4272 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273 loff_t size, unsigned long flags)
4274 {
4275 return __shmem_file_setup(mnt, name, size, flags, 0);
4276 }
4277 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278
4279 /**
4280 * shmem_zero_setup - setup a shared anonymous mapping
4281 * @vma: the vma to be mmapped is prepared by do_mmap
4282 */
shmem_zero_setup(struct vm_area_struct * vma)4283 int shmem_zero_setup(struct vm_area_struct *vma)
4284 {
4285 struct file *file;
4286 loff_t size = vma->vm_end - vma->vm_start;
4287
4288 /*
4289 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290 * between XFS directory reading and selinux: since this file is only
4291 * accessible to the user through its mapping, use S_PRIVATE flag to
4292 * bypass file security, in the same way as shmem_kernel_file_setup().
4293 */
4294 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295 if (IS_ERR(file))
4296 return PTR_ERR(file);
4297
4298 if (vma->vm_file)
4299 fput(vma->vm_file);
4300 vma->vm_file = file;
4301 vma->vm_ops = &shmem_vm_ops;
4302
4303 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4304 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4305 (vma->vm_end & HPAGE_PMD_MASK)) {
4306 khugepaged_enter(vma, vma->vm_flags);
4307 }
4308
4309 return 0;
4310 }
4311
4312 /**
4313 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4314 * @mapping: the page's address_space
4315 * @index: the page index
4316 * @gfp: the page allocator flags to use if allocating
4317 *
4318 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4319 * with any new page allocations done using the specified allocation flags.
4320 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4321 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4322 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4323 *
4324 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4325 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4326 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4327 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4328 pgoff_t index, gfp_t gfp)
4329 {
4330 #ifdef CONFIG_SHMEM
4331 struct inode *inode = mapping->host;
4332 struct page *page;
4333 int error;
4334
4335 BUG_ON(mapping->a_ops != &shmem_aops);
4336 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4337 gfp, NULL, NULL, NULL);
4338 if (error)
4339 page = ERR_PTR(error);
4340 else
4341 unlock_page(page);
4342 return page;
4343 #else
4344 /*
4345 * The tiny !SHMEM case uses ramfs without swap
4346 */
4347 return read_cache_page_gfp(mapping, index, gfp);
4348 #endif
4349 }
4350 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4351