• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96 
97 /*
98  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99  * inode->i_private (with i_mutex making sure that it has only one user at
100  * a time): we would prefer not to enlarge the shmem inode just for that.
101  */
102 struct shmem_falloc {
103 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 	pgoff_t start;		/* start of range currently being fallocated */
105 	pgoff_t next;		/* the next page offset to be fallocated */
106 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
107 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
108 };
109 
110 struct shmem_options {
111 	unsigned long long blocks;
112 	unsigned long long inodes;
113 	struct mempolicy *mpol;
114 	kuid_t uid;
115 	kgid_t gid;
116 	umode_t mode;
117 	bool full_inums;
118 	int huge;
119 	int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125 
126 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)127 static unsigned long shmem_default_max_blocks(void)
128 {
129 	return totalram_pages() / 2;
130 }
131 
shmem_default_max_inodes(void)132 static unsigned long shmem_default_max_inodes(void)
133 {
134 	unsigned long nr_pages = totalram_pages();
135 
136 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139 
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 				struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 			     struct page **pagep, enum sgp_type sgp,
145 			     gfp_t gfp, struct vm_area_struct *vma,
146 			     vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp,
149 		gfp_t gfp, struct vm_area_struct *vma,
150 		struct vm_fault *vmf, vm_fault_t *fault_type);
151 
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 		struct page **pagep, enum sgp_type sgp)
154 {
155 	return shmem_getpage_gfp(inode, index, pagep, sgp,
156 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158 
SHMEM_SB(struct super_block * sb)159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 	return sb->s_fs_info;
162 }
163 
164 /*
165  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166  * for shared memory and for shared anonymous (/dev/zero) mappings
167  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168  * consistent with the pre-accounting of private mappings ...
169  */
shmem_acct_size(unsigned long flags,loff_t size)170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 	return (flags & VM_NORESERVE) ?
173 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175 
shmem_unacct_size(unsigned long flags,loff_t size)176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 	if (!(flags & VM_NORESERVE))
179 		vm_unacct_memory(VM_ACCT(size));
180 }
181 
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)182 static inline int shmem_reacct_size(unsigned long flags,
183 		loff_t oldsize, loff_t newsize)
184 {
185 	if (!(flags & VM_NORESERVE)) {
186 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 			return security_vm_enough_memory_mm(current->mm,
188 					VM_ACCT(newsize) - VM_ACCT(oldsize));
189 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 	}
192 	return 0;
193 }
194 
195 /*
196  * ... whereas tmpfs objects are accounted incrementally as
197  * pages are allocated, in order to allow large sparse files.
198  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200  */
shmem_acct_block(unsigned long flags,long pages)201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 	if (!(flags & VM_NORESERVE))
204 		return 0;
205 
206 	return security_vm_enough_memory_mm(current->mm,
207 			pages * VM_ACCT(PAGE_SIZE));
208 }
209 
shmem_unacct_blocks(unsigned long flags,long pages)210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 	if (flags & VM_NORESERVE)
213 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215 
shmem_inode_acct_block(struct inode * inode,long pages)216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 
221 	if (shmem_acct_block(info->flags, pages))
222 		return false;
223 
224 	if (sbinfo->max_blocks) {
225 		if (percpu_counter_compare(&sbinfo->used_blocks,
226 					   sbinfo->max_blocks - pages) > 0)
227 			goto unacct;
228 		percpu_counter_add(&sbinfo->used_blocks, pages);
229 	}
230 
231 	return true;
232 
233 unacct:
234 	shmem_unacct_blocks(info->flags, pages);
235 	return false;
236 }
237 
shmem_inode_unacct_blocks(struct inode * inode,long pages)238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 	struct shmem_inode_info *info = SHMEM_I(inode);
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 
243 	if (sbinfo->max_blocks)
244 		percpu_counter_sub(&sbinfo->used_blocks, pages);
245 	shmem_unacct_blocks(info->flags, pages);
246 }
247 
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256 
vma_is_shmem(struct vm_area_struct * vma)257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 	return vma->vm_ops == &shmem_vm_ops;
260 }
261 
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 
265 /*
266  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267  * produces a novel ino for the newly allocated inode.
268  *
269  * It may also be called when making a hard link to permit the space needed by
270  * each dentry. However, in that case, no new inode number is needed since that
271  * internally draws from another pool of inode numbers (currently global
272  * get_next_ino()). This case is indicated by passing NULL as inop.
273  */
274 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 	ino_t ino;
279 
280 	if (!(sb->s_flags & SB_KERNMOUNT)) {
281 		spin_lock(&sbinfo->stat_lock);
282 		if (sbinfo->max_inodes) {
283 			if (!sbinfo->free_inodes) {
284 				spin_unlock(&sbinfo->stat_lock);
285 				return -ENOSPC;
286 			}
287 			sbinfo->free_inodes--;
288 		}
289 		if (inop) {
290 			ino = sbinfo->next_ino++;
291 			if (unlikely(is_zero_ino(ino)))
292 				ino = sbinfo->next_ino++;
293 			if (unlikely(!sbinfo->full_inums &&
294 				     ino > UINT_MAX)) {
295 				/*
296 				 * Emulate get_next_ino uint wraparound for
297 				 * compatibility
298 				 */
299 				if (IS_ENABLED(CONFIG_64BIT))
300 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 						__func__, MINOR(sb->s_dev));
302 				sbinfo->next_ino = 1;
303 				ino = sbinfo->next_ino++;
304 			}
305 			*inop = ino;
306 		}
307 		spin_unlock(&sbinfo->stat_lock);
308 	} else if (inop) {
309 		/*
310 		 * __shmem_file_setup, one of our callers, is lock-free: it
311 		 * doesn't hold stat_lock in shmem_reserve_inode since
312 		 * max_inodes is always 0, and is called from potentially
313 		 * unknown contexts. As such, use a per-cpu batched allocator
314 		 * which doesn't require the per-sb stat_lock unless we are at
315 		 * the batch boundary.
316 		 *
317 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 		 * shmem mounts are not exposed to userspace, so we don't need
319 		 * to worry about things like glibc compatibility.
320 		 */
321 		ino_t *next_ino;
322 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 		ino = *next_ino;
324 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 			spin_lock(&sbinfo->stat_lock);
326 			ino = sbinfo->next_ino;
327 			sbinfo->next_ino += SHMEM_INO_BATCH;
328 			spin_unlock(&sbinfo->stat_lock);
329 			if (unlikely(is_zero_ino(ino)))
330 				ino++;
331 		}
332 		*inop = ino;
333 		*next_ino = ++ino;
334 		put_cpu();
335 	}
336 
337 	return 0;
338 }
339 
shmem_free_inode(struct super_block * sb)340 static void shmem_free_inode(struct super_block *sb)
341 {
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 	if (sbinfo->max_inodes) {
344 		spin_lock(&sbinfo->stat_lock);
345 		sbinfo->free_inodes++;
346 		spin_unlock(&sbinfo->stat_lock);
347 	}
348 }
349 
350 /**
351  * shmem_recalc_inode - recalculate the block usage of an inode
352  * @inode: inode to recalc
353  *
354  * We have to calculate the free blocks since the mm can drop
355  * undirtied hole pages behind our back.
356  *
357  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
358  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359  *
360  * It has to be called with the spinlock held.
361  */
shmem_recalc_inode(struct inode * inode)362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 	struct shmem_inode_info *info = SHMEM_I(inode);
365 	long freed;
366 
367 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 	if (freed > 0) {
369 		info->alloced -= freed;
370 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 		shmem_inode_unacct_blocks(inode, freed);
372 	}
373 }
374 
shmem_charge(struct inode * inode,long pages)375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 	struct shmem_inode_info *info = SHMEM_I(inode);
378 	unsigned long flags;
379 
380 	if (!shmem_inode_acct_block(inode, pages))
381 		return false;
382 
383 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 	inode->i_mapping->nrpages += pages;
385 
386 	spin_lock_irqsave(&info->lock, flags);
387 	info->alloced += pages;
388 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 	shmem_recalc_inode(inode);
390 	spin_unlock_irqrestore(&info->lock, flags);
391 
392 	return true;
393 }
394 
shmem_uncharge(struct inode * inode,long pages)395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 	struct shmem_inode_info *info = SHMEM_I(inode);
398 	unsigned long flags;
399 
400 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
401 
402 	spin_lock_irqsave(&info->lock, flags);
403 	info->alloced -= pages;
404 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 	shmem_recalc_inode(inode);
406 	spin_unlock_irqrestore(&info->lock, flags);
407 
408 	shmem_inode_unacct_blocks(inode, pages);
409 }
410 
411 /*
412  * Replace item expected in xarray by a new item, while holding xa_lock.
413  */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)414 static int shmem_replace_entry(struct address_space *mapping,
415 			pgoff_t index, void *expected, void *replacement)
416 {
417 	XA_STATE(xas, &mapping->i_pages, index);
418 	void *item;
419 
420 	VM_BUG_ON(!expected);
421 	VM_BUG_ON(!replacement);
422 	item = xas_load(&xas);
423 	if (item != expected)
424 		return -ENOENT;
425 	xas_store(&xas, replacement);
426 	return 0;
427 }
428 
429 /*
430  * Sometimes, before we decide whether to proceed or to fail, we must check
431  * that an entry was not already brought back from swap by a racing thread.
432  *
433  * Checking page is not enough: by the time a SwapCache page is locked, it
434  * might be reused, and again be SwapCache, using the same swap as before.
435  */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)436 static bool shmem_confirm_swap(struct address_space *mapping,
437 			       pgoff_t index, swp_entry_t swap)
438 {
439 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441 
442 /*
443  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444  *
445  * SHMEM_HUGE_NEVER:
446  *	disables huge pages for the mount;
447  * SHMEM_HUGE_ALWAYS:
448  *	enables huge pages for the mount;
449  * SHMEM_HUGE_WITHIN_SIZE:
450  *	only allocate huge pages if the page will be fully within i_size,
451  *	also respect fadvise()/madvise() hints;
452  * SHMEM_HUGE_ADVISE:
453  *	only allocate huge pages if requested with fadvise()/madvise();
454  */
455 
456 #define SHMEM_HUGE_NEVER	0
457 #define SHMEM_HUGE_ALWAYS	1
458 #define SHMEM_HUGE_WITHIN_SIZE	2
459 #define SHMEM_HUGE_ADVISE	3
460 
461 /*
462  * Special values.
463  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464  *
465  * SHMEM_HUGE_DENY:
466  *	disables huge on shm_mnt and all mounts, for emergency use;
467  * SHMEM_HUGE_FORCE:
468  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469  *
470  */
471 #define SHMEM_HUGE_DENY		(-1)
472 #define SHMEM_HUGE_FORCE	(-2)
473 
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476 
477 static int shmem_huge __read_mostly;
478 
479 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)480 static int shmem_parse_huge(const char *str)
481 {
482 	if (!strcmp(str, "never"))
483 		return SHMEM_HUGE_NEVER;
484 	if (!strcmp(str, "always"))
485 		return SHMEM_HUGE_ALWAYS;
486 	if (!strcmp(str, "within_size"))
487 		return SHMEM_HUGE_WITHIN_SIZE;
488 	if (!strcmp(str, "advise"))
489 		return SHMEM_HUGE_ADVISE;
490 	if (!strcmp(str, "deny"))
491 		return SHMEM_HUGE_DENY;
492 	if (!strcmp(str, "force"))
493 		return SHMEM_HUGE_FORCE;
494 	return -EINVAL;
495 }
496 #endif
497 
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)499 static const char *shmem_format_huge(int huge)
500 {
501 	switch (huge) {
502 	case SHMEM_HUGE_NEVER:
503 		return "never";
504 	case SHMEM_HUGE_ALWAYS:
505 		return "always";
506 	case SHMEM_HUGE_WITHIN_SIZE:
507 		return "within_size";
508 	case SHMEM_HUGE_ADVISE:
509 		return "advise";
510 	case SHMEM_HUGE_DENY:
511 		return "deny";
512 	case SHMEM_HUGE_FORCE:
513 		return "force";
514 	default:
515 		VM_BUG_ON(1);
516 		return "bad_val";
517 	}
518 }
519 #endif
520 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 		struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 	LIST_HEAD(list), *pos, *next;
525 	LIST_HEAD(to_remove);
526 	struct inode *inode;
527 	struct shmem_inode_info *info;
528 	struct page *page;
529 	unsigned long batch = sc ? sc->nr_to_scan : 128;
530 	int split = 0;
531 
532 	if (list_empty(&sbinfo->shrinklist))
533 		return SHRINK_STOP;
534 
535 	spin_lock(&sbinfo->shrinklist_lock);
536 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
538 
539 		/* pin the inode */
540 		inode = igrab(&info->vfs_inode);
541 
542 		/* inode is about to be evicted */
543 		if (!inode) {
544 			list_del_init(&info->shrinklist);
545 			goto next;
546 		}
547 
548 		/* Check if there's anything to gain */
549 		if (round_up(inode->i_size, PAGE_SIZE) ==
550 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
551 			list_move(&info->shrinklist, &to_remove);
552 			goto next;
553 		}
554 
555 		list_move(&info->shrinklist, &list);
556 next:
557 		sbinfo->shrinklist_len--;
558 		if (!--batch)
559 			break;
560 	}
561 	spin_unlock(&sbinfo->shrinklist_lock);
562 
563 	list_for_each_safe(pos, next, &to_remove) {
564 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
565 		inode = &info->vfs_inode;
566 		list_del_init(&info->shrinklist);
567 		iput(inode);
568 	}
569 
570 	list_for_each_safe(pos, next, &list) {
571 		int ret;
572 
573 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
574 		inode = &info->vfs_inode;
575 
576 		if (nr_to_split && split >= nr_to_split)
577 			goto move_back;
578 
579 		page = find_get_page(inode->i_mapping,
580 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
581 		if (!page)
582 			goto drop;
583 
584 		/* No huge page at the end of the file: nothing to split */
585 		if (!PageTransHuge(page)) {
586 			put_page(page);
587 			goto drop;
588 		}
589 
590 		/*
591 		 * Move the inode on the list back to shrinklist if we failed
592 		 * to lock the page at this time.
593 		 *
594 		 * Waiting for the lock may lead to deadlock in the
595 		 * reclaim path.
596 		 */
597 		if (!trylock_page(page)) {
598 			put_page(page);
599 			goto move_back;
600 		}
601 
602 		ret = split_huge_page(page);
603 		unlock_page(page);
604 		put_page(page);
605 
606 		/* If split failed move the inode on the list back to shrinklist */
607 		if (ret)
608 			goto move_back;
609 
610 		split++;
611 drop:
612 		list_del_init(&info->shrinklist);
613 		goto put;
614 move_back:
615 		/*
616 		 * Make sure the inode is either on the global list or deleted
617 		 * from any local list before iput() since it could be deleted
618 		 * in another thread once we put the inode (then the local list
619 		 * is corrupted).
620 		 */
621 		spin_lock(&sbinfo->shrinklist_lock);
622 		list_move(&info->shrinklist, &sbinfo->shrinklist);
623 		sbinfo->shrinklist_len++;
624 		spin_unlock(&sbinfo->shrinklist_lock);
625 put:
626 		iput(inode);
627 	}
628 
629 	return split;
630 }
631 
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)632 static long shmem_unused_huge_scan(struct super_block *sb,
633 		struct shrink_control *sc)
634 {
635 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
636 
637 	if (!READ_ONCE(sbinfo->shrinklist_len))
638 		return SHRINK_STOP;
639 
640 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
641 }
642 
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)643 static long shmem_unused_huge_count(struct super_block *sb,
644 		struct shrink_control *sc)
645 {
646 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
647 	return READ_ONCE(sbinfo->shrinklist_len);
648 }
649 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
650 
651 #define shmem_huge SHMEM_HUGE_DENY
652 
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)653 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
654 		struct shrink_control *sc, unsigned long nr_to_split)
655 {
656 	return 0;
657 }
658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
659 
is_huge_enabled(struct shmem_sb_info * sbinfo)660 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
661 {
662 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
663 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
664 	    shmem_huge != SHMEM_HUGE_DENY)
665 		return true;
666 	return false;
667 }
668 
669 /*
670  * Like add_to_page_cache_locked, but error if expected item has gone.
671  */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)672 static int shmem_add_to_page_cache(struct page *page,
673 				   struct address_space *mapping,
674 				   pgoff_t index, void *expected, gfp_t gfp,
675 				   struct mm_struct *charge_mm)
676 {
677 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
678 	unsigned long i = 0;
679 	unsigned long nr = compound_nr(page);
680 	int error;
681 
682 	VM_BUG_ON_PAGE(PageTail(page), page);
683 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
684 	VM_BUG_ON_PAGE(!PageLocked(page), page);
685 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
686 	VM_BUG_ON(expected && PageTransHuge(page));
687 
688 	page_ref_add(page, nr);
689 	page->mapping = mapping;
690 	page->index = index;
691 
692 	if (!PageSwapCache(page)) {
693 		error = mem_cgroup_charge(page, charge_mm, gfp);
694 		if (error) {
695 			if (PageTransHuge(page)) {
696 				count_vm_event(THP_FILE_FALLBACK);
697 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
698 			}
699 			goto error;
700 		}
701 	}
702 	cgroup_throttle_swaprate(page, gfp);
703 
704 	do {
705 		void *entry;
706 		xas_lock_irq(&xas);
707 		entry = xas_find_conflict(&xas);
708 		if (entry != expected)
709 			xas_set_err(&xas, -EEXIST);
710 		xas_create_range(&xas);
711 		if (xas_error(&xas))
712 			goto unlock;
713 next:
714 		xas_store(&xas, page);
715 		if (++i < nr) {
716 			xas_next(&xas);
717 			goto next;
718 		}
719 		if (PageTransHuge(page)) {
720 			count_vm_event(THP_FILE_ALLOC);
721 			__inc_node_page_state(page, NR_SHMEM_THPS);
722 		}
723 		mapping->nrpages += nr;
724 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
725 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
726 unlock:
727 		xas_unlock_irq(&xas);
728 	} while (xas_nomem(&xas, gfp));
729 
730 	if (xas_error(&xas)) {
731 		error = xas_error(&xas);
732 		goto error;
733 	}
734 
735 	return 0;
736 error:
737 	page->mapping = NULL;
738 	page_ref_sub(page, nr);
739 	return error;
740 }
741 
742 /*
743  * Like delete_from_page_cache, but substitutes swap for page.
744  */
shmem_delete_from_page_cache(struct page * page,void * radswap)745 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
746 {
747 	struct address_space *mapping = page->mapping;
748 	int error;
749 
750 	VM_BUG_ON_PAGE(PageCompound(page), page);
751 
752 	xa_lock_irq(&mapping->i_pages);
753 	error = shmem_replace_entry(mapping, page->index, page, radswap);
754 	page->mapping = NULL;
755 	mapping->nrpages--;
756 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
757 	__dec_lruvec_page_state(page, NR_SHMEM);
758 	xa_unlock_irq(&mapping->i_pages);
759 	put_page(page);
760 	BUG_ON(error);
761 }
762 
763 /*
764  * Remove swap entry from page cache, free the swap and its page cache.
765  */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)766 static int shmem_free_swap(struct address_space *mapping,
767 			   pgoff_t index, void *radswap)
768 {
769 	void *old;
770 
771 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
772 	if (old != radswap)
773 		return -ENOENT;
774 	free_swap_and_cache(radix_to_swp_entry(radswap));
775 	return 0;
776 }
777 
778 /*
779  * Determine (in bytes) how many of the shmem object's pages mapped by the
780  * given offsets are swapped out.
781  *
782  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
783  * as long as the inode doesn't go away and racy results are not a problem.
784  */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)785 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
786 						pgoff_t start, pgoff_t end)
787 {
788 	XA_STATE(xas, &mapping->i_pages, start);
789 	struct page *page;
790 	unsigned long swapped = 0;
791 
792 	rcu_read_lock();
793 	xas_for_each(&xas, page, end - 1) {
794 		if (xas_retry(&xas, page))
795 			continue;
796 		if (xa_is_value(page))
797 			swapped++;
798 
799 		if (need_resched()) {
800 			xas_pause(&xas);
801 			cond_resched_rcu();
802 		}
803 	}
804 
805 	rcu_read_unlock();
806 
807 	return swapped << PAGE_SHIFT;
808 }
809 
810 /*
811  * Determine (in bytes) how many of the shmem object's pages mapped by the
812  * given vma is swapped out.
813  *
814  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
815  * as long as the inode doesn't go away and racy results are not a problem.
816  */
shmem_swap_usage(struct vm_area_struct * vma)817 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
818 {
819 	struct inode *inode = file_inode(vma->vm_file);
820 	struct shmem_inode_info *info = SHMEM_I(inode);
821 	struct address_space *mapping = inode->i_mapping;
822 	unsigned long swapped;
823 
824 	/* Be careful as we don't hold info->lock */
825 	swapped = READ_ONCE(info->swapped);
826 
827 	/*
828 	 * The easier cases are when the shmem object has nothing in swap, or
829 	 * the vma maps it whole. Then we can simply use the stats that we
830 	 * already track.
831 	 */
832 	if (!swapped)
833 		return 0;
834 
835 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
836 		return swapped << PAGE_SHIFT;
837 
838 	/* Here comes the more involved part */
839 	return shmem_partial_swap_usage(mapping,
840 			linear_page_index(vma, vma->vm_start),
841 			linear_page_index(vma, vma->vm_end));
842 }
843 
844 /*
845  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
846  */
shmem_unlock_mapping(struct address_space * mapping)847 void shmem_unlock_mapping(struct address_space *mapping)
848 {
849 	struct pagevec pvec;
850 	pgoff_t indices[PAGEVEC_SIZE];
851 	pgoff_t index = 0;
852 
853 	pagevec_init(&pvec);
854 	/*
855 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
856 	 */
857 	while (!mapping_unevictable(mapping)) {
858 		/*
859 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
860 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
861 		 */
862 		pvec.nr = find_get_entries(mapping, index,
863 					   PAGEVEC_SIZE, pvec.pages, indices);
864 		if (!pvec.nr)
865 			break;
866 		index = indices[pvec.nr - 1] + 1;
867 		pagevec_remove_exceptionals(&pvec);
868 		check_move_unevictable_pages(&pvec);
869 		pagevec_release(&pvec);
870 		cond_resched();
871 	}
872 }
873 
874 /*
875  * Check whether a hole-punch or truncation needs to split a huge page,
876  * returning true if no split was required, or the split has been successful.
877  *
878  * Eviction (or truncation to 0 size) should never need to split a huge page;
879  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
880  * head, and then succeeded to trylock on tail.
881  *
882  * A split can only succeed when there are no additional references on the
883  * huge page: so the split below relies upon find_get_entries() having stopped
884  * when it found a subpage of the huge page, without getting further references.
885  */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)886 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
887 {
888 	if (!PageTransCompound(page))
889 		return true;
890 
891 	/* Just proceed to delete a huge page wholly within the range punched */
892 	if (PageHead(page) &&
893 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
894 		return true;
895 
896 	/* Try to split huge page, so we can truly punch the hole or truncate */
897 	return split_huge_page(page) >= 0;
898 }
899 
900 /*
901  * Remove range of pages and swap entries from page cache, and free them.
902  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
903  */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)904 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
905 								 bool unfalloc)
906 {
907 	struct address_space *mapping = inode->i_mapping;
908 	struct shmem_inode_info *info = SHMEM_I(inode);
909 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
910 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
911 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
912 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
913 	struct pagevec pvec;
914 	pgoff_t indices[PAGEVEC_SIZE];
915 	long nr_swaps_freed = 0;
916 	pgoff_t index;
917 	int i;
918 
919 	if (lend == -1)
920 		end = -1;	/* unsigned, so actually very big */
921 
922 	pagevec_init(&pvec);
923 	index = start;
924 	while (index < end) {
925 		pvec.nr = find_get_entries(mapping, index,
926 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
927 			pvec.pages, indices);
928 		if (!pvec.nr)
929 			break;
930 		for (i = 0; i < pagevec_count(&pvec); i++) {
931 			struct page *page = pvec.pages[i];
932 
933 			index = indices[i];
934 			if (index >= end)
935 				break;
936 
937 			if (xa_is_value(page)) {
938 				if (unfalloc)
939 					continue;
940 				nr_swaps_freed += !shmem_free_swap(mapping,
941 								index, page);
942 				continue;
943 			}
944 
945 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
946 
947 			if (!trylock_page(page))
948 				continue;
949 
950 			if ((!unfalloc || !PageUptodate(page)) &&
951 			    page_mapping(page) == mapping) {
952 				VM_BUG_ON_PAGE(PageWriteback(page), page);
953 				if (shmem_punch_compound(page, start, end))
954 					truncate_inode_page(mapping, page);
955 			}
956 			unlock_page(page);
957 		}
958 		pagevec_remove_exceptionals(&pvec);
959 		pagevec_release(&pvec);
960 		cond_resched();
961 		index++;
962 	}
963 
964 	if (partial_start) {
965 		struct page *page = NULL;
966 		shmem_getpage(inode, start - 1, &page, SGP_READ);
967 		if (page) {
968 			unsigned int top = PAGE_SIZE;
969 			if (start > end) {
970 				top = partial_end;
971 				partial_end = 0;
972 			}
973 			zero_user_segment(page, partial_start, top);
974 			set_page_dirty(page);
975 			unlock_page(page);
976 			put_page(page);
977 		}
978 	}
979 	if (partial_end) {
980 		struct page *page = NULL;
981 		shmem_getpage(inode, end, &page, SGP_READ);
982 		if (page) {
983 			zero_user_segment(page, 0, partial_end);
984 			set_page_dirty(page);
985 			unlock_page(page);
986 			put_page(page);
987 		}
988 	}
989 	if (start >= end)
990 		return;
991 
992 	index = start;
993 	while (index < end) {
994 		cond_resched();
995 
996 		pvec.nr = find_get_entries(mapping, index,
997 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
998 				pvec.pages, indices);
999 		if (!pvec.nr) {
1000 			/* If all gone or hole-punch or unfalloc, we're done */
1001 			if (index == start || end != -1)
1002 				break;
1003 			/* But if truncating, restart to make sure all gone */
1004 			index = start;
1005 			continue;
1006 		}
1007 		for (i = 0; i < pagevec_count(&pvec); i++) {
1008 			struct page *page = pvec.pages[i];
1009 
1010 			index = indices[i];
1011 			if (index >= end)
1012 				break;
1013 
1014 			if (xa_is_value(page)) {
1015 				if (unfalloc)
1016 					continue;
1017 				if (shmem_free_swap(mapping, index, page)) {
1018 					/* Swap was replaced by page: retry */
1019 					index--;
1020 					break;
1021 				}
1022 				nr_swaps_freed++;
1023 				continue;
1024 			}
1025 
1026 			lock_page(page);
1027 
1028 			if (!unfalloc || !PageUptodate(page)) {
1029 				if (page_mapping(page) != mapping) {
1030 					/* Page was replaced by swap: retry */
1031 					unlock_page(page);
1032 					index--;
1033 					break;
1034 				}
1035 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1036 				if (shmem_punch_compound(page, start, end))
1037 					truncate_inode_page(mapping, page);
1038 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1039 					/* Wipe the page and don't get stuck */
1040 					clear_highpage(page);
1041 					flush_dcache_page(page);
1042 					set_page_dirty(page);
1043 					if (index <
1044 					    round_up(start, HPAGE_PMD_NR))
1045 						start = index + 1;
1046 				}
1047 			}
1048 			unlock_page(page);
1049 		}
1050 		pagevec_remove_exceptionals(&pvec);
1051 		pagevec_release(&pvec);
1052 		index++;
1053 	}
1054 
1055 	spin_lock_irq(&info->lock);
1056 	info->swapped -= nr_swaps_freed;
1057 	shmem_recalc_inode(inode);
1058 	spin_unlock_irq(&info->lock);
1059 }
1060 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1061 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1062 {
1063 	shmem_undo_range(inode, lstart, lend, false);
1064 	inode->i_ctime = inode->i_mtime = current_time(inode);
1065 }
1066 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1067 
shmem_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1068 static int shmem_getattr(const struct path *path, struct kstat *stat,
1069 			 u32 request_mask, unsigned int query_flags)
1070 {
1071 	struct inode *inode = path->dentry->d_inode;
1072 	struct shmem_inode_info *info = SHMEM_I(inode);
1073 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1074 
1075 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1076 		spin_lock_irq(&info->lock);
1077 		shmem_recalc_inode(inode);
1078 		spin_unlock_irq(&info->lock);
1079 	}
1080 	generic_fillattr(inode, stat);
1081 
1082 	if (is_huge_enabled(sb_info))
1083 		stat->blksize = HPAGE_PMD_SIZE;
1084 
1085 	return 0;
1086 }
1087 
shmem_setattr(struct dentry * dentry,struct iattr * attr)1088 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1089 {
1090 	struct inode *inode = d_inode(dentry);
1091 	struct shmem_inode_info *info = SHMEM_I(inode);
1092 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1093 	int error;
1094 
1095 	error = setattr_prepare(dentry, attr);
1096 	if (error)
1097 		return error;
1098 
1099 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1100 		loff_t oldsize = inode->i_size;
1101 		loff_t newsize = attr->ia_size;
1102 
1103 		/* protected by i_mutex */
1104 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1105 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1106 			return -EPERM;
1107 
1108 		if (newsize != oldsize) {
1109 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1110 					oldsize, newsize);
1111 			if (error)
1112 				return error;
1113 			i_size_write(inode, newsize);
1114 			inode->i_ctime = inode->i_mtime = current_time(inode);
1115 		}
1116 		if (newsize <= oldsize) {
1117 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1118 			if (oldsize > holebegin)
1119 				unmap_mapping_range(inode->i_mapping,
1120 							holebegin, 0, 1);
1121 			if (info->alloced)
1122 				shmem_truncate_range(inode,
1123 							newsize, (loff_t)-1);
1124 			/* unmap again to remove racily COWed private pages */
1125 			if (oldsize > holebegin)
1126 				unmap_mapping_range(inode->i_mapping,
1127 							holebegin, 0, 1);
1128 
1129 			/*
1130 			 * Part of the huge page can be beyond i_size: subject
1131 			 * to shrink under memory pressure.
1132 			 */
1133 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1134 				spin_lock(&sbinfo->shrinklist_lock);
1135 				/*
1136 				 * _careful to defend against unlocked access to
1137 				 * ->shrink_list in shmem_unused_huge_shrink()
1138 				 */
1139 				if (list_empty_careful(&info->shrinklist)) {
1140 					list_add_tail(&info->shrinklist,
1141 							&sbinfo->shrinklist);
1142 					sbinfo->shrinklist_len++;
1143 				}
1144 				spin_unlock(&sbinfo->shrinklist_lock);
1145 			}
1146 		}
1147 	}
1148 
1149 	setattr_copy(inode, attr);
1150 	if (attr->ia_valid & ATTR_MODE)
1151 		error = posix_acl_chmod(inode, inode->i_mode);
1152 	return error;
1153 }
1154 
shmem_evict_inode(struct inode * inode)1155 static void shmem_evict_inode(struct inode *inode)
1156 {
1157 	struct shmem_inode_info *info = SHMEM_I(inode);
1158 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1159 
1160 	if (inode->i_mapping->a_ops == &shmem_aops) {
1161 		shmem_unacct_size(info->flags, inode->i_size);
1162 		inode->i_size = 0;
1163 		shmem_truncate_range(inode, 0, (loff_t)-1);
1164 		if (!list_empty(&info->shrinklist)) {
1165 			spin_lock(&sbinfo->shrinklist_lock);
1166 			if (!list_empty(&info->shrinklist)) {
1167 				list_del_init(&info->shrinklist);
1168 				sbinfo->shrinklist_len--;
1169 			}
1170 			spin_unlock(&sbinfo->shrinklist_lock);
1171 		}
1172 		while (!list_empty(&info->swaplist)) {
1173 			/* Wait while shmem_unuse() is scanning this inode... */
1174 			wait_var_event(&info->stop_eviction,
1175 				       !atomic_read(&info->stop_eviction));
1176 			mutex_lock(&shmem_swaplist_mutex);
1177 			/* ...but beware of the race if we peeked too early */
1178 			if (!atomic_read(&info->stop_eviction))
1179 				list_del_init(&info->swaplist);
1180 			mutex_unlock(&shmem_swaplist_mutex);
1181 		}
1182 	}
1183 
1184 	simple_xattrs_free(&info->xattrs);
1185 	WARN_ON(inode->i_blocks);
1186 	shmem_free_inode(inode->i_sb);
1187 	clear_inode(inode);
1188 }
1189 
1190 extern struct swap_info_struct *swap_info[];
1191 
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1192 static int shmem_find_swap_entries(struct address_space *mapping,
1193 				   pgoff_t start, unsigned int nr_entries,
1194 				   struct page **entries, pgoff_t *indices,
1195 				   unsigned int type, bool frontswap)
1196 {
1197 	XA_STATE(xas, &mapping->i_pages, start);
1198 	struct page *page;
1199 	swp_entry_t entry;
1200 	unsigned int ret = 0;
1201 
1202 	if (!nr_entries)
1203 		return 0;
1204 
1205 	rcu_read_lock();
1206 	xas_for_each(&xas, page, ULONG_MAX) {
1207 		if (xas_retry(&xas, page))
1208 			continue;
1209 
1210 		if (!xa_is_value(page))
1211 			continue;
1212 
1213 		entry = radix_to_swp_entry(page);
1214 		if (swp_type(entry) != type)
1215 			continue;
1216 		if (frontswap &&
1217 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1218 			continue;
1219 
1220 		indices[ret] = xas.xa_index;
1221 		entries[ret] = page;
1222 
1223 		if (need_resched()) {
1224 			xas_pause(&xas);
1225 			cond_resched_rcu();
1226 		}
1227 		if (++ret == nr_entries)
1228 			break;
1229 	}
1230 	rcu_read_unlock();
1231 
1232 	return ret;
1233 }
1234 
1235 /*
1236  * Move the swapped pages for an inode to page cache. Returns the count
1237  * of pages swapped in, or the error in case of failure.
1238  */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1239 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1240 				    pgoff_t *indices)
1241 {
1242 	int i = 0;
1243 	int ret = 0;
1244 	int error = 0;
1245 	struct address_space *mapping = inode->i_mapping;
1246 
1247 	for (i = 0; i < pvec.nr; i++) {
1248 		struct page *page = pvec.pages[i];
1249 
1250 		if (!xa_is_value(page))
1251 			continue;
1252 		error = shmem_swapin_page(inode, indices[i],
1253 					  &page, SGP_CACHE,
1254 					  mapping_gfp_mask(mapping),
1255 					  NULL, NULL);
1256 		if (error == 0) {
1257 			unlock_page(page);
1258 			put_page(page);
1259 			ret++;
1260 		}
1261 		if (error == -ENOMEM)
1262 			break;
1263 		error = 0;
1264 	}
1265 	return error ? error : ret;
1266 }
1267 
1268 /*
1269  * If swap found in inode, free it and move page from swapcache to filecache.
1270  */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1271 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1272 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1273 {
1274 	struct address_space *mapping = inode->i_mapping;
1275 	pgoff_t start = 0;
1276 	struct pagevec pvec;
1277 	pgoff_t indices[PAGEVEC_SIZE];
1278 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1279 	int ret = 0;
1280 
1281 	pagevec_init(&pvec);
1282 	do {
1283 		unsigned int nr_entries = PAGEVEC_SIZE;
1284 
1285 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1286 			nr_entries = *fs_pages_to_unuse;
1287 
1288 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1289 						  pvec.pages, indices,
1290 						  type, frontswap);
1291 		if (pvec.nr == 0) {
1292 			ret = 0;
1293 			break;
1294 		}
1295 
1296 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1297 		if (ret < 0)
1298 			break;
1299 
1300 		if (frontswap_partial) {
1301 			*fs_pages_to_unuse -= ret;
1302 			if (*fs_pages_to_unuse == 0) {
1303 				ret = FRONTSWAP_PAGES_UNUSED;
1304 				break;
1305 			}
1306 		}
1307 
1308 		start = indices[pvec.nr - 1];
1309 	} while (true);
1310 
1311 	return ret;
1312 }
1313 
1314 /*
1315  * Read all the shared memory data that resides in the swap
1316  * device 'type' back into memory, so the swap device can be
1317  * unused.
1318  */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1319 int shmem_unuse(unsigned int type, bool frontswap,
1320 		unsigned long *fs_pages_to_unuse)
1321 {
1322 	struct shmem_inode_info *info, *next;
1323 	int error = 0;
1324 
1325 	if (list_empty(&shmem_swaplist))
1326 		return 0;
1327 
1328 	mutex_lock(&shmem_swaplist_mutex);
1329 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1330 		if (!info->swapped) {
1331 			list_del_init(&info->swaplist);
1332 			continue;
1333 		}
1334 		/*
1335 		 * Drop the swaplist mutex while searching the inode for swap;
1336 		 * but before doing so, make sure shmem_evict_inode() will not
1337 		 * remove placeholder inode from swaplist, nor let it be freed
1338 		 * (igrab() would protect from unlink, but not from unmount).
1339 		 */
1340 		atomic_inc(&info->stop_eviction);
1341 		mutex_unlock(&shmem_swaplist_mutex);
1342 
1343 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1344 					  fs_pages_to_unuse);
1345 		cond_resched();
1346 
1347 		mutex_lock(&shmem_swaplist_mutex);
1348 		next = list_next_entry(info, swaplist);
1349 		if (!info->swapped)
1350 			list_del_init(&info->swaplist);
1351 		if (atomic_dec_and_test(&info->stop_eviction))
1352 			wake_up_var(&info->stop_eviction);
1353 		if (error)
1354 			break;
1355 	}
1356 	mutex_unlock(&shmem_swaplist_mutex);
1357 
1358 	return error;
1359 }
1360 
1361 /*
1362  * Move the page from the page cache to the swap cache.
1363  */
shmem_writepage(struct page * page,struct writeback_control * wbc)1364 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1365 {
1366 	struct shmem_inode_info *info;
1367 	struct address_space *mapping;
1368 	struct inode *inode;
1369 	swp_entry_t swap;
1370 	pgoff_t index;
1371 
1372 	VM_BUG_ON_PAGE(PageCompound(page), page);
1373 	BUG_ON(!PageLocked(page));
1374 	mapping = page->mapping;
1375 	index = page->index;
1376 	inode = mapping->host;
1377 	info = SHMEM_I(inode);
1378 	if (info->flags & VM_LOCKED)
1379 		goto redirty;
1380 	if (!total_swap_pages)
1381 		goto redirty;
1382 
1383 	/*
1384 	 * Our capabilities prevent regular writeback or sync from ever calling
1385 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1386 	 * its underlying filesystem, in which case tmpfs should write out to
1387 	 * swap only in response to memory pressure, and not for the writeback
1388 	 * threads or sync.
1389 	 */
1390 	if (!wbc->for_reclaim) {
1391 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1392 		goto redirty;
1393 	}
1394 
1395 	/*
1396 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1397 	 * value into swapfile.c, the only way we can correctly account for a
1398 	 * fallocated page arriving here is now to initialize it and write it.
1399 	 *
1400 	 * That's okay for a page already fallocated earlier, but if we have
1401 	 * not yet completed the fallocation, then (a) we want to keep track
1402 	 * of this page in case we have to undo it, and (b) it may not be a
1403 	 * good idea to continue anyway, once we're pushing into swap.  So
1404 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1405 	 */
1406 	if (!PageUptodate(page)) {
1407 		if (inode->i_private) {
1408 			struct shmem_falloc *shmem_falloc;
1409 			spin_lock(&inode->i_lock);
1410 			shmem_falloc = inode->i_private;
1411 			if (shmem_falloc &&
1412 			    !shmem_falloc->waitq &&
1413 			    index >= shmem_falloc->start &&
1414 			    index < shmem_falloc->next)
1415 				shmem_falloc->nr_unswapped++;
1416 			else
1417 				shmem_falloc = NULL;
1418 			spin_unlock(&inode->i_lock);
1419 			if (shmem_falloc)
1420 				goto redirty;
1421 		}
1422 		clear_highpage(page);
1423 		flush_dcache_page(page);
1424 		SetPageUptodate(page);
1425 	}
1426 
1427 	swap = get_swap_page(page);
1428 	if (!swap.val)
1429 		goto redirty;
1430 
1431 	/*
1432 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1433 	 * if it's not already there.  Do it now before the page is
1434 	 * moved to swap cache, when its pagelock no longer protects
1435 	 * the inode from eviction.  But don't unlock the mutex until
1436 	 * we've incremented swapped, because shmem_unuse_inode() will
1437 	 * prune a !swapped inode from the swaplist under this mutex.
1438 	 */
1439 	mutex_lock(&shmem_swaplist_mutex);
1440 	if (list_empty(&info->swaplist))
1441 		list_add(&info->swaplist, &shmem_swaplist);
1442 
1443 	if (add_to_swap_cache(page, swap,
1444 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1445 			NULL) == 0) {
1446 		spin_lock_irq(&info->lock);
1447 		shmem_recalc_inode(inode);
1448 		info->swapped++;
1449 		spin_unlock_irq(&info->lock);
1450 
1451 		swap_shmem_alloc(swap);
1452 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1453 
1454 		mutex_unlock(&shmem_swaplist_mutex);
1455 		BUG_ON(page_mapped(page));
1456 		swap_writepage(page, wbc);
1457 		return 0;
1458 	}
1459 
1460 	mutex_unlock(&shmem_swaplist_mutex);
1461 	put_swap_page(page, swap);
1462 redirty:
1463 	set_page_dirty(page);
1464 	if (wbc->for_reclaim)
1465 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1466 	unlock_page(page);
1467 	return 0;
1468 }
1469 
1470 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1471 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472 {
1473 	char buffer[64];
1474 
1475 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1476 		return;		/* show nothing */
1477 
1478 	mpol_to_str(buffer, sizeof(buffer), mpol);
1479 
1480 	seq_printf(seq, ",mpol=%s", buffer);
1481 }
1482 
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1483 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1484 {
1485 	struct mempolicy *mpol = NULL;
1486 	if (sbinfo->mpol) {
1487 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1488 		mpol = sbinfo->mpol;
1489 		mpol_get(mpol);
1490 		spin_unlock(&sbinfo->stat_lock);
1491 	}
1492 	return mpol;
1493 }
1494 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1495 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1496 {
1497 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1498 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1499 {
1500 	return NULL;
1501 }
1502 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1503 #ifndef CONFIG_NUMA
1504 #define vm_policy vm_private_data
1505 #endif
1506 
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1507 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1508 		struct shmem_inode_info *info, pgoff_t index)
1509 {
1510 	/* Create a pseudo vma that just contains the policy */
1511 	vma_init(vma, NULL);
1512 	/* Bias interleave by inode number to distribute better across nodes */
1513 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1514 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1515 }
1516 
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1517 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1518 {
1519 	/* Drop reference taken by mpol_shared_policy_lookup() */
1520 	mpol_cond_put(vma->vm_policy);
1521 }
1522 
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1523 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1524 			struct shmem_inode_info *info, pgoff_t index)
1525 {
1526 	struct vm_area_struct pvma;
1527 	struct page *page;
1528 	struct vm_fault vmf;
1529 
1530 	shmem_pseudo_vma_init(&pvma, info, index);
1531 	vmf.vma = &pvma;
1532 	vmf.address = 0;
1533 	page = swap_cluster_readahead(swap, gfp, &vmf);
1534 	shmem_pseudo_vma_destroy(&pvma);
1535 
1536 	return page;
1537 }
1538 
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1539 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1540 		struct shmem_inode_info *info, pgoff_t index)
1541 {
1542 	struct vm_area_struct pvma;
1543 	struct address_space *mapping = info->vfs_inode.i_mapping;
1544 	pgoff_t hindex;
1545 	struct page *page;
1546 
1547 	hindex = round_down(index, HPAGE_PMD_NR);
1548 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1549 								XA_PRESENT))
1550 		return NULL;
1551 
1552 	shmem_pseudo_vma_init(&pvma, info, hindex);
1553 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1554 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1555 	shmem_pseudo_vma_destroy(&pvma);
1556 	if (page)
1557 		prep_transhuge_page(page);
1558 	else
1559 		count_vm_event(THP_FILE_FALLBACK);
1560 	return page;
1561 }
1562 
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1563 static struct page *shmem_alloc_page(gfp_t gfp,
1564 			struct shmem_inode_info *info, pgoff_t index)
1565 {
1566 	struct vm_area_struct pvma;
1567 	struct page *page;
1568 
1569 	shmem_pseudo_vma_init(&pvma, info, index);
1570 	page = alloc_page_vma(gfp, &pvma, 0);
1571 	shmem_pseudo_vma_destroy(&pvma);
1572 
1573 	return page;
1574 }
1575 
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1576 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1577 		struct inode *inode,
1578 		pgoff_t index, bool huge)
1579 {
1580 	struct shmem_inode_info *info = SHMEM_I(inode);
1581 	struct page *page;
1582 	int nr;
1583 	int err = -ENOSPC;
1584 
1585 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1586 		huge = false;
1587 	nr = huge ? HPAGE_PMD_NR : 1;
1588 
1589 	if (!shmem_inode_acct_block(inode, nr))
1590 		goto failed;
1591 
1592 	if (huge)
1593 		page = shmem_alloc_hugepage(gfp, info, index);
1594 	else
1595 		page = shmem_alloc_page(gfp, info, index);
1596 	if (page) {
1597 		__SetPageLocked(page);
1598 		__SetPageSwapBacked(page);
1599 		return page;
1600 	}
1601 
1602 	err = -ENOMEM;
1603 	shmem_inode_unacct_blocks(inode, nr);
1604 failed:
1605 	return ERR_PTR(err);
1606 }
1607 
1608 /*
1609  * When a page is moved from swapcache to shmem filecache (either by the
1610  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1611  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1612  * ignorance of the mapping it belongs to.  If that mapping has special
1613  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1614  * we may need to copy to a suitable page before moving to filecache.
1615  *
1616  * In a future release, this may well be extended to respect cpuset and
1617  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1618  * but for now it is a simple matter of zone.
1619  */
shmem_should_replace_page(struct page * page,gfp_t gfp)1620 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1621 {
1622 	return page_zonenum(page) > gfp_zone(gfp);
1623 }
1624 
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1625 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1626 				struct shmem_inode_info *info, pgoff_t index)
1627 {
1628 	struct page *oldpage, *newpage;
1629 	struct address_space *swap_mapping;
1630 	swp_entry_t entry;
1631 	pgoff_t swap_index;
1632 	int error;
1633 
1634 	oldpage = *pagep;
1635 	entry.val = page_private(oldpage);
1636 	swap_index = swp_offset(entry);
1637 	swap_mapping = page_mapping(oldpage);
1638 
1639 	/*
1640 	 * We have arrived here because our zones are constrained, so don't
1641 	 * limit chance of success by further cpuset and node constraints.
1642 	 */
1643 	gfp &= ~GFP_CONSTRAINT_MASK;
1644 	newpage = shmem_alloc_page(gfp, info, index);
1645 	if (!newpage)
1646 		return -ENOMEM;
1647 
1648 	get_page(newpage);
1649 	copy_highpage(newpage, oldpage);
1650 	flush_dcache_page(newpage);
1651 
1652 	__SetPageLocked(newpage);
1653 	__SetPageSwapBacked(newpage);
1654 	SetPageUptodate(newpage);
1655 	set_page_private(newpage, entry.val);
1656 	SetPageSwapCache(newpage);
1657 
1658 	/*
1659 	 * Our caller will very soon move newpage out of swapcache, but it's
1660 	 * a nice clean interface for us to replace oldpage by newpage there.
1661 	 */
1662 	xa_lock_irq(&swap_mapping->i_pages);
1663 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1664 	if (!error) {
1665 		mem_cgroup_migrate(oldpage, newpage);
1666 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1667 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1668 	}
1669 	xa_unlock_irq(&swap_mapping->i_pages);
1670 
1671 	if (unlikely(error)) {
1672 		/*
1673 		 * Is this possible?  I think not, now that our callers check
1674 		 * both PageSwapCache and page_private after getting page lock;
1675 		 * but be defensive.  Reverse old to newpage for clear and free.
1676 		 */
1677 		oldpage = newpage;
1678 	} else {
1679 		lru_cache_add(newpage);
1680 		*pagep = newpage;
1681 	}
1682 
1683 	ClearPageSwapCache(oldpage);
1684 	set_page_private(oldpage, 0);
1685 
1686 	unlock_page(oldpage);
1687 	put_page(oldpage);
1688 	put_page(oldpage);
1689 	return error;
1690 }
1691 
1692 /*
1693  * Swap in the page pointed to by *pagep.
1694  * Caller has to make sure that *pagep contains a valid swapped page.
1695  * Returns 0 and the page in pagep if success. On failure, returns the
1696  * error code and NULL in *pagep.
1697  */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1698 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1699 			     struct page **pagep, enum sgp_type sgp,
1700 			     gfp_t gfp, struct vm_area_struct *vma,
1701 			     vm_fault_t *fault_type)
1702 {
1703 	struct address_space *mapping = inode->i_mapping;
1704 	struct shmem_inode_info *info = SHMEM_I(inode);
1705 	struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1706 	struct page *page;
1707 	swp_entry_t swap;
1708 	int error;
1709 
1710 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1711 	swap = radix_to_swp_entry(*pagep);
1712 	*pagep = NULL;
1713 
1714 	/* Look it up and read it in.. */
1715 	page = lookup_swap_cache(swap, NULL, 0);
1716 	if (!page) {
1717 		/* Or update major stats only when swapin succeeds?? */
1718 		if (fault_type) {
1719 			*fault_type |= VM_FAULT_MAJOR;
1720 			count_vm_event(PGMAJFAULT);
1721 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1722 		}
1723 		/* Here we actually start the io */
1724 		page = shmem_swapin(swap, gfp, info, index);
1725 		if (!page) {
1726 			error = -ENOMEM;
1727 			goto failed;
1728 		}
1729 	}
1730 
1731 	/* We have to do this with page locked to prevent races */
1732 	lock_page(page);
1733 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1734 	    !shmem_confirm_swap(mapping, index, swap)) {
1735 		error = -EEXIST;
1736 		goto unlock;
1737 	}
1738 	if (!PageUptodate(page)) {
1739 		error = -EIO;
1740 		goto failed;
1741 	}
1742 	wait_on_page_writeback(page);
1743 
1744 	/*
1745 	 * Some architectures may have to restore extra metadata to the
1746 	 * physical page after reading from swap.
1747 	 */
1748 	arch_swap_restore(swap, page);
1749 
1750 	if (shmem_should_replace_page(page, gfp)) {
1751 		error = shmem_replace_page(&page, gfp, info, index);
1752 		if (error)
1753 			goto failed;
1754 	}
1755 
1756 	error = shmem_add_to_page_cache(page, mapping, index,
1757 					swp_to_radix_entry(swap), gfp,
1758 					charge_mm);
1759 	if (error)
1760 		goto failed;
1761 
1762 	spin_lock_irq(&info->lock);
1763 	info->swapped--;
1764 	shmem_recalc_inode(inode);
1765 	spin_unlock_irq(&info->lock);
1766 
1767 	if (sgp == SGP_WRITE)
1768 		mark_page_accessed(page);
1769 
1770 	delete_from_swap_cache(page);
1771 	set_page_dirty(page);
1772 	swap_free(swap);
1773 
1774 	*pagep = page;
1775 	return 0;
1776 failed:
1777 	if (!shmem_confirm_swap(mapping, index, swap))
1778 		error = -EEXIST;
1779 unlock:
1780 	if (page) {
1781 		unlock_page(page);
1782 		put_page(page);
1783 	}
1784 
1785 	return error;
1786 }
1787 
1788 /*
1789  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1790  *
1791  * If we allocate a new one we do not mark it dirty. That's up to the
1792  * vm. If we swap it in we mark it dirty since we also free the swap
1793  * entry since a page cannot live in both the swap and page cache.
1794  *
1795  * vmf and fault_type are only supplied by shmem_fault:
1796  * otherwise they are NULL.
1797  */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1798 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1799 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1800 	struct vm_area_struct *vma, struct vm_fault *vmf,
1801 			vm_fault_t *fault_type)
1802 {
1803 	struct address_space *mapping = inode->i_mapping;
1804 	struct shmem_inode_info *info = SHMEM_I(inode);
1805 	struct shmem_sb_info *sbinfo;
1806 	struct mm_struct *charge_mm;
1807 	struct page *page;
1808 	enum sgp_type sgp_huge = sgp;
1809 	pgoff_t hindex = index;
1810 	int error;
1811 	int once = 0;
1812 	int alloced = 0;
1813 
1814 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1815 		return -EFBIG;
1816 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1817 		sgp = SGP_CACHE;
1818 repeat:
1819 	if (sgp <= SGP_CACHE &&
1820 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1821 		return -EINVAL;
1822 	}
1823 
1824 	sbinfo = SHMEM_SB(inode->i_sb);
1825 	charge_mm = vma ? vma->vm_mm : current->mm;
1826 
1827 	page = find_lock_entry(mapping, index);
1828 	if (xa_is_value(page)) {
1829 		error = shmem_swapin_page(inode, index, &page,
1830 					  sgp, gfp, vma, fault_type);
1831 		if (error == -EEXIST)
1832 			goto repeat;
1833 
1834 		*pagep = page;
1835 		return error;
1836 	}
1837 
1838 	if (page)
1839 		hindex = page->index;
1840 	if (page && sgp == SGP_WRITE)
1841 		mark_page_accessed(page);
1842 
1843 	/* fallocated page? */
1844 	if (page && !PageUptodate(page)) {
1845 		if (sgp != SGP_READ)
1846 			goto clear;
1847 		unlock_page(page);
1848 		put_page(page);
1849 		page = NULL;
1850 		hindex = index;
1851 	}
1852 	if (page || sgp == SGP_READ)
1853 		goto out;
1854 
1855 	/*
1856 	 * Fast cache lookup did not find it:
1857 	 * bring it back from swap or allocate.
1858 	 */
1859 
1860 	if (vma && userfaultfd_missing(vma)) {
1861 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1862 		return 0;
1863 	}
1864 
1865 	/* shmem_symlink() */
1866 	if (mapping->a_ops != &shmem_aops)
1867 		goto alloc_nohuge;
1868 	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1869 		goto alloc_nohuge;
1870 	if (shmem_huge == SHMEM_HUGE_FORCE)
1871 		goto alloc_huge;
1872 	switch (sbinfo->huge) {
1873 	case SHMEM_HUGE_NEVER:
1874 		goto alloc_nohuge;
1875 	case SHMEM_HUGE_WITHIN_SIZE: {
1876 		loff_t i_size;
1877 		pgoff_t off;
1878 
1879 		off = round_up(index, HPAGE_PMD_NR);
1880 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1881 		if (i_size >= HPAGE_PMD_SIZE &&
1882 		    i_size >> PAGE_SHIFT >= off)
1883 			goto alloc_huge;
1884 
1885 		fallthrough;
1886 	}
1887 	case SHMEM_HUGE_ADVISE:
1888 		if (sgp_huge == SGP_HUGE)
1889 			goto alloc_huge;
1890 		/* TODO: implement fadvise() hints */
1891 		goto alloc_nohuge;
1892 	}
1893 
1894 alloc_huge:
1895 	page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1896 	if (IS_ERR(page)) {
1897 alloc_nohuge:
1898 		page = shmem_alloc_and_acct_page(gfp, inode,
1899 						 index, false);
1900 	}
1901 	if (IS_ERR(page)) {
1902 		int retry = 5;
1903 
1904 		error = PTR_ERR(page);
1905 		page = NULL;
1906 		if (error != -ENOSPC)
1907 			goto unlock;
1908 		/*
1909 		 * Try to reclaim some space by splitting a huge page
1910 		 * beyond i_size on the filesystem.
1911 		 */
1912 		while (retry--) {
1913 			int ret;
1914 
1915 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1916 			if (ret == SHRINK_STOP)
1917 				break;
1918 			if (ret)
1919 				goto alloc_nohuge;
1920 		}
1921 		goto unlock;
1922 	}
1923 
1924 	if (PageTransHuge(page))
1925 		hindex = round_down(index, HPAGE_PMD_NR);
1926 	else
1927 		hindex = index;
1928 
1929 	if (sgp == SGP_WRITE)
1930 		__SetPageReferenced(page);
1931 
1932 	error = shmem_add_to_page_cache(page, mapping, hindex,
1933 					NULL, gfp & GFP_RECLAIM_MASK,
1934 					charge_mm);
1935 	if (error)
1936 		goto unacct;
1937 	lru_cache_add(page);
1938 
1939 	spin_lock_irq(&info->lock);
1940 	info->alloced += compound_nr(page);
1941 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1942 	shmem_recalc_inode(inode);
1943 	spin_unlock_irq(&info->lock);
1944 	alloced = true;
1945 
1946 	if (PageTransHuge(page) &&
1947 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1948 			hindex + HPAGE_PMD_NR - 1) {
1949 		/*
1950 		 * Part of the huge page is beyond i_size: subject
1951 		 * to shrink under memory pressure.
1952 		 */
1953 		spin_lock(&sbinfo->shrinklist_lock);
1954 		/*
1955 		 * _careful to defend against unlocked access to
1956 		 * ->shrink_list in shmem_unused_huge_shrink()
1957 		 */
1958 		if (list_empty_careful(&info->shrinklist)) {
1959 			list_add_tail(&info->shrinklist,
1960 				      &sbinfo->shrinklist);
1961 			sbinfo->shrinklist_len++;
1962 		}
1963 		spin_unlock(&sbinfo->shrinklist_lock);
1964 	}
1965 
1966 	/*
1967 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1968 	 */
1969 	if (sgp == SGP_FALLOC)
1970 		sgp = SGP_WRITE;
1971 clear:
1972 	/*
1973 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1974 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1975 	 * it now, lest undo on failure cancel our earlier guarantee.
1976 	 */
1977 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1978 		int i;
1979 
1980 		for (i = 0; i < compound_nr(page); i++) {
1981 			clear_highpage(page + i);
1982 			flush_dcache_page(page + i);
1983 		}
1984 		SetPageUptodate(page);
1985 	}
1986 
1987 	/* Perhaps the file has been truncated since we checked */
1988 	if (sgp <= SGP_CACHE &&
1989 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1990 		if (alloced) {
1991 			ClearPageDirty(page);
1992 			delete_from_page_cache(page);
1993 			spin_lock_irq(&info->lock);
1994 			shmem_recalc_inode(inode);
1995 			spin_unlock_irq(&info->lock);
1996 		}
1997 		error = -EINVAL;
1998 		goto unlock;
1999 	}
2000 out:
2001 	*pagep = page + index - hindex;
2002 	return 0;
2003 
2004 	/*
2005 	 * Error recovery.
2006 	 */
2007 unacct:
2008 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2009 
2010 	if (PageTransHuge(page)) {
2011 		unlock_page(page);
2012 		put_page(page);
2013 		goto alloc_nohuge;
2014 	}
2015 unlock:
2016 	if (page) {
2017 		unlock_page(page);
2018 		put_page(page);
2019 	}
2020 	if (error == -ENOSPC && !once++) {
2021 		spin_lock_irq(&info->lock);
2022 		shmem_recalc_inode(inode);
2023 		spin_unlock_irq(&info->lock);
2024 		goto repeat;
2025 	}
2026 	if (error == -EEXIST)
2027 		goto repeat;
2028 	return error;
2029 }
2030 
2031 /*
2032  * This is like autoremove_wake_function, but it removes the wait queue
2033  * entry unconditionally - even if something else had already woken the
2034  * target.
2035  */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2036 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2037 {
2038 	int ret = default_wake_function(wait, mode, sync, key);
2039 	list_del_init(&wait->entry);
2040 	return ret;
2041 }
2042 
shmem_fault(struct vm_fault * vmf)2043 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2044 {
2045 	struct vm_area_struct *vma = vmf->vma;
2046 	struct inode *inode = file_inode(vma->vm_file);
2047 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2048 	enum sgp_type sgp;
2049 	int err;
2050 	vm_fault_t ret = VM_FAULT_LOCKED;
2051 
2052 	/*
2053 	 * Trinity finds that probing a hole which tmpfs is punching can
2054 	 * prevent the hole-punch from ever completing: which in turn
2055 	 * locks writers out with its hold on i_mutex.  So refrain from
2056 	 * faulting pages into the hole while it's being punched.  Although
2057 	 * shmem_undo_range() does remove the additions, it may be unable to
2058 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2059 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2060 	 *
2061 	 * It does not matter if we sometimes reach this check just before the
2062 	 * hole-punch begins, so that one fault then races with the punch:
2063 	 * we just need to make racing faults a rare case.
2064 	 *
2065 	 * The implementation below would be much simpler if we just used a
2066 	 * standard mutex or completion: but we cannot take i_mutex in fault,
2067 	 * and bloating every shmem inode for this unlikely case would be sad.
2068 	 */
2069 	if (unlikely(inode->i_private)) {
2070 		struct shmem_falloc *shmem_falloc;
2071 
2072 		spin_lock(&inode->i_lock);
2073 		shmem_falloc = inode->i_private;
2074 		if (shmem_falloc &&
2075 		    shmem_falloc->waitq &&
2076 		    vmf->pgoff >= shmem_falloc->start &&
2077 		    vmf->pgoff < shmem_falloc->next) {
2078 			struct file *fpin;
2079 			wait_queue_head_t *shmem_falloc_waitq;
2080 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2081 
2082 			ret = VM_FAULT_NOPAGE;
2083 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2084 			if (fpin)
2085 				ret = VM_FAULT_RETRY;
2086 
2087 			shmem_falloc_waitq = shmem_falloc->waitq;
2088 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2089 					TASK_UNINTERRUPTIBLE);
2090 			spin_unlock(&inode->i_lock);
2091 			schedule();
2092 
2093 			/*
2094 			 * shmem_falloc_waitq points into the shmem_fallocate()
2095 			 * stack of the hole-punching task: shmem_falloc_waitq
2096 			 * is usually invalid by the time we reach here, but
2097 			 * finish_wait() does not dereference it in that case;
2098 			 * though i_lock needed lest racing with wake_up_all().
2099 			 */
2100 			spin_lock(&inode->i_lock);
2101 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2102 			spin_unlock(&inode->i_lock);
2103 
2104 			if (fpin)
2105 				fput(fpin);
2106 			return ret;
2107 		}
2108 		spin_unlock(&inode->i_lock);
2109 	}
2110 
2111 	sgp = SGP_CACHE;
2112 
2113 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2114 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2115 		sgp = SGP_NOHUGE;
2116 	else if (vma->vm_flags & VM_HUGEPAGE)
2117 		sgp = SGP_HUGE;
2118 
2119 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2120 				  gfp, vma, vmf, &ret);
2121 	if (err)
2122 		return vmf_error(err);
2123 	return ret;
2124 }
2125 
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2126 unsigned long shmem_get_unmapped_area(struct file *file,
2127 				      unsigned long uaddr, unsigned long len,
2128 				      unsigned long pgoff, unsigned long flags)
2129 {
2130 	unsigned long (*get_area)(struct file *,
2131 		unsigned long, unsigned long, unsigned long, unsigned long);
2132 	unsigned long addr;
2133 	unsigned long offset;
2134 	unsigned long inflated_len;
2135 	unsigned long inflated_addr;
2136 	unsigned long inflated_offset;
2137 
2138 	if (len > TASK_SIZE)
2139 		return -ENOMEM;
2140 
2141 	get_area = current->mm->get_unmapped_area;
2142 	addr = get_area(file, uaddr, len, pgoff, flags);
2143 
2144 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2145 		return addr;
2146 	if (IS_ERR_VALUE(addr))
2147 		return addr;
2148 	if (addr & ~PAGE_MASK)
2149 		return addr;
2150 	if (addr > TASK_SIZE - len)
2151 		return addr;
2152 
2153 	if (shmem_huge == SHMEM_HUGE_DENY)
2154 		return addr;
2155 	if (len < HPAGE_PMD_SIZE)
2156 		return addr;
2157 	if (flags & MAP_FIXED)
2158 		return addr;
2159 	/*
2160 	 * Our priority is to support MAP_SHARED mapped hugely;
2161 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2162 	 * But if caller specified an address hint and we allocated area there
2163 	 * successfully, respect that as before.
2164 	 */
2165 	if (uaddr == addr)
2166 		return addr;
2167 
2168 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2169 		struct super_block *sb;
2170 
2171 		if (file) {
2172 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2173 			sb = file_inode(file)->i_sb;
2174 		} else {
2175 			/*
2176 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2177 			 * for "/dev/zero", to create a shared anonymous object.
2178 			 */
2179 			if (IS_ERR(shm_mnt))
2180 				return addr;
2181 			sb = shm_mnt->mnt_sb;
2182 		}
2183 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2184 			return addr;
2185 	}
2186 
2187 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2188 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2189 		return addr;
2190 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2191 		return addr;
2192 
2193 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2194 	if (inflated_len > TASK_SIZE)
2195 		return addr;
2196 	if (inflated_len < len)
2197 		return addr;
2198 
2199 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2200 	if (IS_ERR_VALUE(inflated_addr))
2201 		return addr;
2202 	if (inflated_addr & ~PAGE_MASK)
2203 		return addr;
2204 
2205 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2206 	inflated_addr += offset - inflated_offset;
2207 	if (inflated_offset > offset)
2208 		inflated_addr += HPAGE_PMD_SIZE;
2209 
2210 	if (inflated_addr > TASK_SIZE - len)
2211 		return addr;
2212 	return inflated_addr;
2213 }
2214 
2215 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2216 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2217 {
2218 	struct inode *inode = file_inode(vma->vm_file);
2219 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2220 }
2221 
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2222 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2223 					  unsigned long addr)
2224 {
2225 	struct inode *inode = file_inode(vma->vm_file);
2226 	pgoff_t index;
2227 
2228 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2229 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2230 }
2231 #endif
2232 
shmem_lock(struct file * file,int lock,struct user_struct * user)2233 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2234 {
2235 	struct inode *inode = file_inode(file);
2236 	struct shmem_inode_info *info = SHMEM_I(inode);
2237 	int retval = -ENOMEM;
2238 
2239 	/*
2240 	 * What serializes the accesses to info->flags?
2241 	 * ipc_lock_object() when called from shmctl_do_lock(),
2242 	 * no serialization needed when called from shm_destroy().
2243 	 */
2244 	if (lock && !(info->flags & VM_LOCKED)) {
2245 		if (!user_shm_lock(inode->i_size, user))
2246 			goto out_nomem;
2247 		info->flags |= VM_LOCKED;
2248 		mapping_set_unevictable(file->f_mapping);
2249 	}
2250 	if (!lock && (info->flags & VM_LOCKED) && user) {
2251 		user_shm_unlock(inode->i_size, user);
2252 		info->flags &= ~VM_LOCKED;
2253 		mapping_clear_unevictable(file->f_mapping);
2254 	}
2255 	retval = 0;
2256 
2257 out_nomem:
2258 	return retval;
2259 }
2260 
shmem_mmap(struct file * file,struct vm_area_struct * vma)2261 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2262 {
2263 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2264 	int ret;
2265 
2266 	ret = seal_check_future_write(info->seals, vma);
2267 	if (ret)
2268 		return ret;
2269 
2270 	/* arm64 - allow memory tagging on RAM-based files */
2271 	vma->vm_flags |= VM_MTE_ALLOWED;
2272 
2273 	file_accessed(file);
2274 	vma->vm_ops = &shmem_vm_ops;
2275 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2276 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2277 			(vma->vm_end & HPAGE_PMD_MASK)) {
2278 		khugepaged_enter(vma, vma->vm_flags);
2279 	}
2280 	return 0;
2281 }
2282 
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2283 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2284 				     umode_t mode, dev_t dev, unsigned long flags)
2285 {
2286 	struct inode *inode;
2287 	struct shmem_inode_info *info;
2288 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2289 	ino_t ino;
2290 
2291 	if (shmem_reserve_inode(sb, &ino))
2292 		return NULL;
2293 
2294 	inode = new_inode(sb);
2295 	if (inode) {
2296 		inode->i_ino = ino;
2297 		inode_init_owner(inode, dir, mode);
2298 		inode->i_blocks = 0;
2299 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2300 		inode->i_generation = prandom_u32();
2301 		info = SHMEM_I(inode);
2302 		memset(info, 0, (char *)inode - (char *)info);
2303 		spin_lock_init(&info->lock);
2304 		atomic_set(&info->stop_eviction, 0);
2305 		info->seals = F_SEAL_SEAL;
2306 		info->flags = flags & VM_NORESERVE;
2307 		INIT_LIST_HEAD(&info->shrinklist);
2308 		INIT_LIST_HEAD(&info->swaplist);
2309 		simple_xattrs_init(&info->xattrs);
2310 		cache_no_acl(inode);
2311 
2312 		switch (mode & S_IFMT) {
2313 		default:
2314 			inode->i_op = &shmem_special_inode_operations;
2315 			init_special_inode(inode, mode, dev);
2316 			break;
2317 		case S_IFREG:
2318 			inode->i_mapping->a_ops = &shmem_aops;
2319 			inode->i_op = &shmem_inode_operations;
2320 			inode->i_fop = &shmem_file_operations;
2321 			mpol_shared_policy_init(&info->policy,
2322 						 shmem_get_sbmpol(sbinfo));
2323 			break;
2324 		case S_IFDIR:
2325 			inc_nlink(inode);
2326 			/* Some things misbehave if size == 0 on a directory */
2327 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2328 			inode->i_op = &shmem_dir_inode_operations;
2329 			inode->i_fop = &simple_dir_operations;
2330 			break;
2331 		case S_IFLNK:
2332 			/*
2333 			 * Must not load anything in the rbtree,
2334 			 * mpol_free_shared_policy will not be called.
2335 			 */
2336 			mpol_shared_policy_init(&info->policy, NULL);
2337 			break;
2338 		}
2339 
2340 		lockdep_annotate_inode_mutex_key(inode);
2341 	} else
2342 		shmem_free_inode(sb);
2343 	return inode;
2344 }
2345 
shmem_mapping(struct address_space * mapping)2346 bool shmem_mapping(struct address_space *mapping)
2347 {
2348 	return mapping->a_ops == &shmem_aops;
2349 }
2350 
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2351 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2352 				  pmd_t *dst_pmd,
2353 				  struct vm_area_struct *dst_vma,
2354 				  unsigned long dst_addr,
2355 				  unsigned long src_addr,
2356 				  bool zeropage,
2357 				  struct page **pagep)
2358 {
2359 	struct inode *inode = file_inode(dst_vma->vm_file);
2360 	struct shmem_inode_info *info = SHMEM_I(inode);
2361 	struct address_space *mapping = inode->i_mapping;
2362 	gfp_t gfp = mapping_gfp_mask(mapping);
2363 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2364 	spinlock_t *ptl;
2365 	void *page_kaddr;
2366 	struct page *page;
2367 	pte_t _dst_pte, *dst_pte;
2368 	int ret;
2369 	pgoff_t offset, max_off;
2370 
2371 	ret = -ENOMEM;
2372 	if (!shmem_inode_acct_block(inode, 1)) {
2373 		/*
2374 		 * We may have got a page, returned -ENOENT triggering a retry,
2375 		 * and now we find ourselves with -ENOMEM. Release the page, to
2376 		 * avoid a BUG_ON in our caller.
2377 		 */
2378 		if (unlikely(*pagep)) {
2379 			put_page(*pagep);
2380 			*pagep = NULL;
2381 		}
2382 		goto out;
2383 	}
2384 
2385 	if (!*pagep) {
2386 		page = shmem_alloc_page(gfp, info, pgoff);
2387 		if (!page)
2388 			goto out_unacct_blocks;
2389 
2390 		if (!zeropage) {	/* mcopy_atomic */
2391 			page_kaddr = kmap_atomic(page);
2392 			ret = copy_from_user(page_kaddr,
2393 					     (const void __user *)src_addr,
2394 					     PAGE_SIZE);
2395 			kunmap_atomic(page_kaddr);
2396 
2397 			/* fallback to copy_from_user outside mmap_lock */
2398 			if (unlikely(ret)) {
2399 				*pagep = page;
2400 				shmem_inode_unacct_blocks(inode, 1);
2401 				/* don't free the page */
2402 				return -ENOENT;
2403 			}
2404 		} else {		/* mfill_zeropage_atomic */
2405 			clear_highpage(page);
2406 		}
2407 	} else {
2408 		page = *pagep;
2409 		*pagep = NULL;
2410 	}
2411 
2412 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2413 	__SetPageLocked(page);
2414 	__SetPageSwapBacked(page);
2415 	__SetPageUptodate(page);
2416 
2417 	ret = -EFAULT;
2418 	offset = linear_page_index(dst_vma, dst_addr);
2419 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2420 	if (unlikely(offset >= max_off))
2421 		goto out_release;
2422 
2423 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2424 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2425 	if (ret)
2426 		goto out_release;
2427 
2428 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2429 	if (dst_vma->vm_flags & VM_WRITE)
2430 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2431 	else {
2432 		/*
2433 		 * We don't set the pte dirty if the vma has no
2434 		 * VM_WRITE permission, so mark the page dirty or it
2435 		 * could be freed from under us. We could do it
2436 		 * unconditionally before unlock_page(), but doing it
2437 		 * only if VM_WRITE is not set is faster.
2438 		 */
2439 		set_page_dirty(page);
2440 	}
2441 
2442 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2443 
2444 	ret = -EFAULT;
2445 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2446 	if (unlikely(offset >= max_off))
2447 		goto out_release_unlock;
2448 
2449 	ret = -EEXIST;
2450 	if (!pte_none(*dst_pte))
2451 		goto out_release_unlock;
2452 
2453 	lru_cache_add(page);
2454 
2455 	spin_lock_irq(&info->lock);
2456 	info->alloced++;
2457 	inode->i_blocks += BLOCKS_PER_PAGE;
2458 	shmem_recalc_inode(inode);
2459 	spin_unlock_irq(&info->lock);
2460 
2461 	inc_mm_counter(dst_mm, mm_counter_file(page));
2462 	page_add_file_rmap(page, false);
2463 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2464 
2465 	/* No need to invalidate - it was non-present before */
2466 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2467 	pte_unmap_unlock(dst_pte, ptl);
2468 	unlock_page(page);
2469 	ret = 0;
2470 out:
2471 	return ret;
2472 out_release_unlock:
2473 	pte_unmap_unlock(dst_pte, ptl);
2474 	ClearPageDirty(page);
2475 	delete_from_page_cache(page);
2476 out_release:
2477 	unlock_page(page);
2478 	put_page(page);
2479 out_unacct_blocks:
2480 	shmem_inode_unacct_blocks(inode, 1);
2481 	goto out;
2482 }
2483 
shmem_mcopy_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,struct page ** pagep)2484 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2485 			   pmd_t *dst_pmd,
2486 			   struct vm_area_struct *dst_vma,
2487 			   unsigned long dst_addr,
2488 			   unsigned long src_addr,
2489 			   struct page **pagep)
2490 {
2491 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2492 				      dst_addr, src_addr, false, pagep);
2493 }
2494 
shmem_mfill_zeropage_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)2495 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2496 			     pmd_t *dst_pmd,
2497 			     struct vm_area_struct *dst_vma,
2498 			     unsigned long dst_addr)
2499 {
2500 	struct page *page = NULL;
2501 
2502 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2503 				      dst_addr, 0, true, &page);
2504 }
2505 
2506 #ifdef CONFIG_TMPFS
2507 static const struct inode_operations shmem_symlink_inode_operations;
2508 static const struct inode_operations shmem_short_symlink_operations;
2509 
2510 #ifdef CONFIG_TMPFS_XATTR
2511 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2512 #else
2513 #define shmem_initxattrs NULL
2514 #endif
2515 
2516 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2517 shmem_write_begin(struct file *file, struct address_space *mapping,
2518 			loff_t pos, unsigned len, unsigned flags,
2519 			struct page **pagep, void **fsdata)
2520 {
2521 	struct inode *inode = mapping->host;
2522 	struct shmem_inode_info *info = SHMEM_I(inode);
2523 	pgoff_t index = pos >> PAGE_SHIFT;
2524 
2525 	/* i_mutex is held by caller */
2526 	if (unlikely(info->seals & (F_SEAL_GROW |
2527 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2528 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2529 			return -EPERM;
2530 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2531 			return -EPERM;
2532 	}
2533 
2534 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2535 }
2536 
2537 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2538 shmem_write_end(struct file *file, struct address_space *mapping,
2539 			loff_t pos, unsigned len, unsigned copied,
2540 			struct page *page, void *fsdata)
2541 {
2542 	struct inode *inode = mapping->host;
2543 
2544 	if (pos + copied > inode->i_size)
2545 		i_size_write(inode, pos + copied);
2546 
2547 	if (!PageUptodate(page)) {
2548 		struct page *head = compound_head(page);
2549 		if (PageTransCompound(page)) {
2550 			int i;
2551 
2552 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2553 				if (head + i == page)
2554 					continue;
2555 				clear_highpage(head + i);
2556 				flush_dcache_page(head + i);
2557 			}
2558 		}
2559 		if (copied < PAGE_SIZE) {
2560 			unsigned from = pos & (PAGE_SIZE - 1);
2561 			zero_user_segments(page, 0, from,
2562 					from + copied, PAGE_SIZE);
2563 		}
2564 		SetPageUptodate(head);
2565 	}
2566 	set_page_dirty(page);
2567 	unlock_page(page);
2568 	put_page(page);
2569 
2570 	return copied;
2571 }
2572 
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2573 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2574 {
2575 	struct file *file = iocb->ki_filp;
2576 	struct inode *inode = file_inode(file);
2577 	struct address_space *mapping = inode->i_mapping;
2578 	pgoff_t index;
2579 	unsigned long offset;
2580 	enum sgp_type sgp = SGP_READ;
2581 	int error = 0;
2582 	ssize_t retval = 0;
2583 	loff_t *ppos = &iocb->ki_pos;
2584 
2585 	/*
2586 	 * Might this read be for a stacking filesystem?  Then when reading
2587 	 * holes of a sparse file, we actually need to allocate those pages,
2588 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2589 	 */
2590 	if (!iter_is_iovec(to))
2591 		sgp = SGP_CACHE;
2592 
2593 	index = *ppos >> PAGE_SHIFT;
2594 	offset = *ppos & ~PAGE_MASK;
2595 
2596 	for (;;) {
2597 		struct page *page = NULL;
2598 		pgoff_t end_index;
2599 		unsigned long nr, ret;
2600 		loff_t i_size = i_size_read(inode);
2601 
2602 		end_index = i_size >> PAGE_SHIFT;
2603 		if (index > end_index)
2604 			break;
2605 		if (index == end_index) {
2606 			nr = i_size & ~PAGE_MASK;
2607 			if (nr <= offset)
2608 				break;
2609 		}
2610 
2611 		error = shmem_getpage(inode, index, &page, sgp);
2612 		if (error) {
2613 			if (error == -EINVAL)
2614 				error = 0;
2615 			break;
2616 		}
2617 		if (page) {
2618 			if (sgp == SGP_CACHE)
2619 				set_page_dirty(page);
2620 			unlock_page(page);
2621 		}
2622 
2623 		/*
2624 		 * We must evaluate after, since reads (unlike writes)
2625 		 * are called without i_mutex protection against truncate
2626 		 */
2627 		nr = PAGE_SIZE;
2628 		i_size = i_size_read(inode);
2629 		end_index = i_size >> PAGE_SHIFT;
2630 		if (index == end_index) {
2631 			nr = i_size & ~PAGE_MASK;
2632 			if (nr <= offset) {
2633 				if (page)
2634 					put_page(page);
2635 				break;
2636 			}
2637 		}
2638 		nr -= offset;
2639 
2640 		if (page) {
2641 			/*
2642 			 * If users can be writing to this page using arbitrary
2643 			 * virtual addresses, take care about potential aliasing
2644 			 * before reading the page on the kernel side.
2645 			 */
2646 			if (mapping_writably_mapped(mapping))
2647 				flush_dcache_page(page);
2648 			/*
2649 			 * Mark the page accessed if we read the beginning.
2650 			 */
2651 			if (!offset)
2652 				mark_page_accessed(page);
2653 		} else {
2654 			page = ZERO_PAGE(0);
2655 			get_page(page);
2656 		}
2657 
2658 		/*
2659 		 * Ok, we have the page, and it's up-to-date, so
2660 		 * now we can copy it to user space...
2661 		 */
2662 		ret = copy_page_to_iter(page, offset, nr, to);
2663 		retval += ret;
2664 		offset += ret;
2665 		index += offset >> PAGE_SHIFT;
2666 		offset &= ~PAGE_MASK;
2667 
2668 		put_page(page);
2669 		if (!iov_iter_count(to))
2670 			break;
2671 		if (ret < nr) {
2672 			error = -EFAULT;
2673 			break;
2674 		}
2675 		cond_resched();
2676 	}
2677 
2678 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2679 	file_accessed(file);
2680 	return retval ? retval : error;
2681 }
2682 
2683 /*
2684  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2685  */
shmem_seek_hole_data(struct address_space * mapping,pgoff_t index,pgoff_t end,int whence)2686 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2687 				    pgoff_t index, pgoff_t end, int whence)
2688 {
2689 	struct page *page;
2690 	struct pagevec pvec;
2691 	pgoff_t indices[PAGEVEC_SIZE];
2692 	bool done = false;
2693 	int i;
2694 
2695 	pagevec_init(&pvec);
2696 	pvec.nr = 1;		/* start small: we may be there already */
2697 	while (!done) {
2698 		pvec.nr = find_get_entries(mapping, index,
2699 					pvec.nr, pvec.pages, indices);
2700 		if (!pvec.nr) {
2701 			if (whence == SEEK_DATA)
2702 				index = end;
2703 			break;
2704 		}
2705 		for (i = 0; i < pvec.nr; i++, index++) {
2706 			if (index < indices[i]) {
2707 				if (whence == SEEK_HOLE) {
2708 					done = true;
2709 					break;
2710 				}
2711 				index = indices[i];
2712 			}
2713 			page = pvec.pages[i];
2714 			if (page && !xa_is_value(page)) {
2715 				if (!PageUptodate(page))
2716 					page = NULL;
2717 			}
2718 			if (index >= end ||
2719 			    (page && whence == SEEK_DATA) ||
2720 			    (!page && whence == SEEK_HOLE)) {
2721 				done = true;
2722 				break;
2723 			}
2724 		}
2725 		pagevec_remove_exceptionals(&pvec);
2726 		pagevec_release(&pvec);
2727 		pvec.nr = PAGEVEC_SIZE;
2728 		cond_resched();
2729 	}
2730 	return index;
2731 }
2732 
shmem_file_llseek(struct file * file,loff_t offset,int whence)2733 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2734 {
2735 	struct address_space *mapping = file->f_mapping;
2736 	struct inode *inode = mapping->host;
2737 	pgoff_t start, end;
2738 	loff_t new_offset;
2739 
2740 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2741 		return generic_file_llseek_size(file, offset, whence,
2742 					MAX_LFS_FILESIZE, i_size_read(inode));
2743 	inode_lock(inode);
2744 	/* We're holding i_mutex so we can access i_size directly */
2745 
2746 	if (offset < 0 || offset >= inode->i_size)
2747 		offset = -ENXIO;
2748 	else {
2749 		start = offset >> PAGE_SHIFT;
2750 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2751 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2752 		new_offset <<= PAGE_SHIFT;
2753 		if (new_offset > offset) {
2754 			if (new_offset < inode->i_size)
2755 				offset = new_offset;
2756 			else if (whence == SEEK_DATA)
2757 				offset = -ENXIO;
2758 			else
2759 				offset = inode->i_size;
2760 		}
2761 	}
2762 
2763 	if (offset >= 0)
2764 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2765 	inode_unlock(inode);
2766 	return offset;
2767 }
2768 
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2769 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2770 							 loff_t len)
2771 {
2772 	struct inode *inode = file_inode(file);
2773 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2774 	struct shmem_inode_info *info = SHMEM_I(inode);
2775 	struct shmem_falloc shmem_falloc;
2776 	pgoff_t start, index, end;
2777 	int error;
2778 
2779 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2780 		return -EOPNOTSUPP;
2781 
2782 	inode_lock(inode);
2783 
2784 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2785 		struct address_space *mapping = file->f_mapping;
2786 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2787 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2788 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2789 
2790 		/* protected by i_mutex */
2791 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2792 			error = -EPERM;
2793 			goto out;
2794 		}
2795 
2796 		shmem_falloc.waitq = &shmem_falloc_waitq;
2797 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2798 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2799 		spin_lock(&inode->i_lock);
2800 		inode->i_private = &shmem_falloc;
2801 		spin_unlock(&inode->i_lock);
2802 
2803 		if ((u64)unmap_end > (u64)unmap_start)
2804 			unmap_mapping_range(mapping, unmap_start,
2805 					    1 + unmap_end - unmap_start, 0);
2806 		shmem_truncate_range(inode, offset, offset + len - 1);
2807 		/* No need to unmap again: hole-punching leaves COWed pages */
2808 
2809 		spin_lock(&inode->i_lock);
2810 		inode->i_private = NULL;
2811 		wake_up_all(&shmem_falloc_waitq);
2812 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2813 		spin_unlock(&inode->i_lock);
2814 		error = 0;
2815 		goto out;
2816 	}
2817 
2818 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2819 	error = inode_newsize_ok(inode, offset + len);
2820 	if (error)
2821 		goto out;
2822 
2823 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2824 		error = -EPERM;
2825 		goto out;
2826 	}
2827 
2828 	start = offset >> PAGE_SHIFT;
2829 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2830 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2831 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2832 		error = -ENOSPC;
2833 		goto out;
2834 	}
2835 
2836 	shmem_falloc.waitq = NULL;
2837 	shmem_falloc.start = start;
2838 	shmem_falloc.next  = start;
2839 	shmem_falloc.nr_falloced = 0;
2840 	shmem_falloc.nr_unswapped = 0;
2841 	spin_lock(&inode->i_lock);
2842 	inode->i_private = &shmem_falloc;
2843 	spin_unlock(&inode->i_lock);
2844 
2845 	for (index = start; index < end; index++) {
2846 		struct page *page;
2847 
2848 		/*
2849 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2850 		 * been interrupted because we are using up too much memory.
2851 		 */
2852 		if (signal_pending(current))
2853 			error = -EINTR;
2854 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2855 			error = -ENOMEM;
2856 		else
2857 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2858 		if (error) {
2859 			/* Remove the !PageUptodate pages we added */
2860 			if (index > start) {
2861 				shmem_undo_range(inode,
2862 				    (loff_t)start << PAGE_SHIFT,
2863 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2864 			}
2865 			goto undone;
2866 		}
2867 
2868 		/*
2869 		 * Inform shmem_writepage() how far we have reached.
2870 		 * No need for lock or barrier: we have the page lock.
2871 		 */
2872 		shmem_falloc.next++;
2873 		if (!PageUptodate(page))
2874 			shmem_falloc.nr_falloced++;
2875 
2876 		/*
2877 		 * If !PageUptodate, leave it that way so that freeable pages
2878 		 * can be recognized if we need to rollback on error later.
2879 		 * But set_page_dirty so that memory pressure will swap rather
2880 		 * than free the pages we are allocating (and SGP_CACHE pages
2881 		 * might still be clean: we now need to mark those dirty too).
2882 		 */
2883 		set_page_dirty(page);
2884 		unlock_page(page);
2885 		put_page(page);
2886 		cond_resched();
2887 	}
2888 
2889 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2890 		i_size_write(inode, offset + len);
2891 	inode->i_ctime = current_time(inode);
2892 undone:
2893 	spin_lock(&inode->i_lock);
2894 	inode->i_private = NULL;
2895 	spin_unlock(&inode->i_lock);
2896 out:
2897 	inode_unlock(inode);
2898 	return error;
2899 }
2900 
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2901 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2902 {
2903 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2904 
2905 	buf->f_type = TMPFS_MAGIC;
2906 	buf->f_bsize = PAGE_SIZE;
2907 	buf->f_namelen = NAME_MAX;
2908 	if (sbinfo->max_blocks) {
2909 		buf->f_blocks = sbinfo->max_blocks;
2910 		buf->f_bavail =
2911 		buf->f_bfree  = sbinfo->max_blocks -
2912 				percpu_counter_sum(&sbinfo->used_blocks);
2913 	}
2914 	if (sbinfo->max_inodes) {
2915 		buf->f_files = sbinfo->max_inodes;
2916 		buf->f_ffree = sbinfo->free_inodes;
2917 	}
2918 	/* else leave those fields 0 like simple_statfs */
2919 	return 0;
2920 }
2921 
2922 /*
2923  * File creation. Allocate an inode, and we're done..
2924  */
2925 static int
shmem_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2926 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2927 {
2928 	struct inode *inode;
2929 	int error = -ENOSPC;
2930 
2931 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2932 	if (inode) {
2933 		error = simple_acl_create(dir, inode);
2934 		if (error)
2935 			goto out_iput;
2936 		error = security_inode_init_security(inode, dir,
2937 						     &dentry->d_name,
2938 						     shmem_initxattrs, NULL);
2939 		if (error && error != -EOPNOTSUPP)
2940 			goto out_iput;
2941 
2942 		error = 0;
2943 		dir->i_size += BOGO_DIRENT_SIZE;
2944 		dir->i_ctime = dir->i_mtime = current_time(dir);
2945 		d_instantiate(dentry, inode);
2946 		dget(dentry); /* Extra count - pin the dentry in core */
2947 	}
2948 	return error;
2949 out_iput:
2950 	iput(inode);
2951 	return error;
2952 }
2953 
2954 static int
shmem_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2955 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2956 {
2957 	struct inode *inode;
2958 	int error = -ENOSPC;
2959 
2960 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2961 	if (inode) {
2962 		error = security_inode_init_security(inode, dir,
2963 						     NULL,
2964 						     shmem_initxattrs, NULL);
2965 		if (error && error != -EOPNOTSUPP)
2966 			goto out_iput;
2967 		error = simple_acl_create(dir, inode);
2968 		if (error)
2969 			goto out_iput;
2970 		d_tmpfile(dentry, inode);
2971 	}
2972 	return error;
2973 out_iput:
2974 	iput(inode);
2975 	return error;
2976 }
2977 
shmem_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2978 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2979 {
2980 	int error;
2981 
2982 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2983 		return error;
2984 	inc_nlink(dir);
2985 	return 0;
2986 }
2987 
shmem_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2988 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2989 		bool excl)
2990 {
2991 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2992 }
2993 
2994 /*
2995  * Link a file..
2996  */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2997 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2998 {
2999 	struct inode *inode = d_inode(old_dentry);
3000 	int ret = 0;
3001 
3002 	/*
3003 	 * No ordinary (disk based) filesystem counts links as inodes;
3004 	 * but each new link needs a new dentry, pinning lowmem, and
3005 	 * tmpfs dentries cannot be pruned until they are unlinked.
3006 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3007 	 * first link must skip that, to get the accounting right.
3008 	 */
3009 	if (inode->i_nlink) {
3010 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3011 		if (ret)
3012 			goto out;
3013 	}
3014 
3015 	dir->i_size += BOGO_DIRENT_SIZE;
3016 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3017 	inc_nlink(inode);
3018 	ihold(inode);	/* New dentry reference */
3019 	dget(dentry);		/* Extra pinning count for the created dentry */
3020 	d_instantiate(dentry, inode);
3021 out:
3022 	return ret;
3023 }
3024 
shmem_unlink(struct inode * dir,struct dentry * dentry)3025 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027 	struct inode *inode = d_inode(dentry);
3028 
3029 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3030 		shmem_free_inode(inode->i_sb);
3031 
3032 	dir->i_size -= BOGO_DIRENT_SIZE;
3033 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3034 	drop_nlink(inode);
3035 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3036 	return 0;
3037 }
3038 
shmem_rmdir(struct inode * dir,struct dentry * dentry)3039 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3040 {
3041 	if (!simple_empty(dentry))
3042 		return -ENOTEMPTY;
3043 
3044 	drop_nlink(d_inode(dentry));
3045 	drop_nlink(dir);
3046 	return shmem_unlink(dir, dentry);
3047 }
3048 
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3049 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3050 {
3051 	bool old_is_dir = d_is_dir(old_dentry);
3052 	bool new_is_dir = d_is_dir(new_dentry);
3053 
3054 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
3055 		if (old_is_dir) {
3056 			drop_nlink(old_dir);
3057 			inc_nlink(new_dir);
3058 		} else {
3059 			drop_nlink(new_dir);
3060 			inc_nlink(old_dir);
3061 		}
3062 	}
3063 	old_dir->i_ctime = old_dir->i_mtime =
3064 	new_dir->i_ctime = new_dir->i_mtime =
3065 	d_inode(old_dentry)->i_ctime =
3066 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
3067 
3068 	return 0;
3069 }
3070 
shmem_whiteout(struct inode * old_dir,struct dentry * old_dentry)3071 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3072 {
3073 	struct dentry *whiteout;
3074 	int error;
3075 
3076 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3077 	if (!whiteout)
3078 		return -ENOMEM;
3079 
3080 	error = shmem_mknod(old_dir, whiteout,
3081 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3082 	dput(whiteout);
3083 	if (error)
3084 		return error;
3085 
3086 	/*
3087 	 * Cheat and hash the whiteout while the old dentry is still in
3088 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3089 	 *
3090 	 * d_lookup() will consistently find one of them at this point,
3091 	 * not sure which one, but that isn't even important.
3092 	 */
3093 	d_rehash(whiteout);
3094 	return 0;
3095 }
3096 
3097 /*
3098  * The VFS layer already does all the dentry stuff for rename,
3099  * we just have to decrement the usage count for the target if
3100  * it exists so that the VFS layer correctly free's it when it
3101  * gets overwritten.
3102  */
shmem_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3103 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3104 {
3105 	struct inode *inode = d_inode(old_dentry);
3106 	int they_are_dirs = S_ISDIR(inode->i_mode);
3107 
3108 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3109 		return -EINVAL;
3110 
3111 	if (flags & RENAME_EXCHANGE)
3112 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3113 
3114 	if (!simple_empty(new_dentry))
3115 		return -ENOTEMPTY;
3116 
3117 	if (flags & RENAME_WHITEOUT) {
3118 		int error;
3119 
3120 		error = shmem_whiteout(old_dir, old_dentry);
3121 		if (error)
3122 			return error;
3123 	}
3124 
3125 	if (d_really_is_positive(new_dentry)) {
3126 		(void) shmem_unlink(new_dir, new_dentry);
3127 		if (they_are_dirs) {
3128 			drop_nlink(d_inode(new_dentry));
3129 			drop_nlink(old_dir);
3130 		}
3131 	} else if (they_are_dirs) {
3132 		drop_nlink(old_dir);
3133 		inc_nlink(new_dir);
3134 	}
3135 
3136 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3137 	new_dir->i_size += BOGO_DIRENT_SIZE;
3138 	old_dir->i_ctime = old_dir->i_mtime =
3139 	new_dir->i_ctime = new_dir->i_mtime =
3140 	inode->i_ctime = current_time(old_dir);
3141 	return 0;
3142 }
3143 
shmem_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3144 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3145 {
3146 	int error;
3147 	int len;
3148 	struct inode *inode;
3149 	struct page *page;
3150 
3151 	len = strlen(symname) + 1;
3152 	if (len > PAGE_SIZE)
3153 		return -ENAMETOOLONG;
3154 
3155 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3156 				VM_NORESERVE);
3157 	if (!inode)
3158 		return -ENOSPC;
3159 
3160 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3161 					     shmem_initxattrs, NULL);
3162 	if (error && error != -EOPNOTSUPP) {
3163 		iput(inode);
3164 		return error;
3165 	}
3166 
3167 	inode->i_size = len-1;
3168 	if (len <= SHORT_SYMLINK_LEN) {
3169 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3170 		if (!inode->i_link) {
3171 			iput(inode);
3172 			return -ENOMEM;
3173 		}
3174 		inode->i_op = &shmem_short_symlink_operations;
3175 	} else {
3176 		inode_nohighmem(inode);
3177 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3178 		if (error) {
3179 			iput(inode);
3180 			return error;
3181 		}
3182 		inode->i_mapping->a_ops = &shmem_aops;
3183 		inode->i_op = &shmem_symlink_inode_operations;
3184 		memcpy(page_address(page), symname, len);
3185 		SetPageUptodate(page);
3186 		set_page_dirty(page);
3187 		unlock_page(page);
3188 		put_page(page);
3189 	}
3190 	dir->i_size += BOGO_DIRENT_SIZE;
3191 	dir->i_ctime = dir->i_mtime = current_time(dir);
3192 	d_instantiate(dentry, inode);
3193 	dget(dentry);
3194 	return 0;
3195 }
3196 
shmem_put_link(void * arg)3197 static void shmem_put_link(void *arg)
3198 {
3199 	mark_page_accessed(arg);
3200 	put_page(arg);
3201 }
3202 
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3203 static const char *shmem_get_link(struct dentry *dentry,
3204 				  struct inode *inode,
3205 				  struct delayed_call *done)
3206 {
3207 	struct page *page = NULL;
3208 	int error;
3209 	if (!dentry) {
3210 		page = find_get_page(inode->i_mapping, 0);
3211 		if (!page)
3212 			return ERR_PTR(-ECHILD);
3213 		if (!PageUptodate(page)) {
3214 			put_page(page);
3215 			return ERR_PTR(-ECHILD);
3216 		}
3217 	} else {
3218 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3219 		if (error)
3220 			return ERR_PTR(error);
3221 		unlock_page(page);
3222 	}
3223 	set_delayed_call(done, shmem_put_link, page);
3224 	return page_address(page);
3225 }
3226 
3227 #ifdef CONFIG_TMPFS_XATTR
3228 /*
3229  * Superblocks without xattr inode operations may get some security.* xattr
3230  * support from the LSM "for free". As soon as we have any other xattrs
3231  * like ACLs, we also need to implement the security.* handlers at
3232  * filesystem level, though.
3233  */
3234 
3235 /*
3236  * Callback for security_inode_init_security() for acquiring xattrs.
3237  */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3238 static int shmem_initxattrs(struct inode *inode,
3239 			    const struct xattr *xattr_array,
3240 			    void *fs_info)
3241 {
3242 	struct shmem_inode_info *info = SHMEM_I(inode);
3243 	const struct xattr *xattr;
3244 	struct simple_xattr *new_xattr;
3245 	size_t len;
3246 
3247 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3248 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3249 		if (!new_xattr)
3250 			return -ENOMEM;
3251 
3252 		len = strlen(xattr->name) + 1;
3253 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3254 					  GFP_KERNEL);
3255 		if (!new_xattr->name) {
3256 			kvfree(new_xattr);
3257 			return -ENOMEM;
3258 		}
3259 
3260 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3261 		       XATTR_SECURITY_PREFIX_LEN);
3262 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3263 		       xattr->name, len);
3264 
3265 		simple_xattr_list_add(&info->xattrs, new_xattr);
3266 	}
3267 
3268 	return 0;
3269 }
3270 
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3271 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3272 				   struct dentry *unused, struct inode *inode,
3273 				   const char *name, void *buffer, size_t size)
3274 {
3275 	struct shmem_inode_info *info = SHMEM_I(inode);
3276 
3277 	name = xattr_full_name(handler, name);
3278 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3279 }
3280 
shmem_xattr_handler_set(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3281 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3282 				   struct dentry *unused, struct inode *inode,
3283 				   const char *name, const void *value,
3284 				   size_t size, int flags)
3285 {
3286 	struct shmem_inode_info *info = SHMEM_I(inode);
3287 
3288 	name = xattr_full_name(handler, name);
3289 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3290 }
3291 
3292 static const struct xattr_handler shmem_security_xattr_handler = {
3293 	.prefix = XATTR_SECURITY_PREFIX,
3294 	.get = shmem_xattr_handler_get,
3295 	.set = shmem_xattr_handler_set,
3296 };
3297 
3298 static const struct xattr_handler shmem_trusted_xattr_handler = {
3299 	.prefix = XATTR_TRUSTED_PREFIX,
3300 	.get = shmem_xattr_handler_get,
3301 	.set = shmem_xattr_handler_set,
3302 };
3303 
3304 static const struct xattr_handler *shmem_xattr_handlers[] = {
3305 #ifdef CONFIG_TMPFS_POSIX_ACL
3306 	&posix_acl_access_xattr_handler,
3307 	&posix_acl_default_xattr_handler,
3308 #endif
3309 	&shmem_security_xattr_handler,
3310 	&shmem_trusted_xattr_handler,
3311 	NULL
3312 };
3313 
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3314 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3315 {
3316 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3317 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3318 }
3319 #endif /* CONFIG_TMPFS_XATTR */
3320 
3321 static const struct inode_operations shmem_short_symlink_operations = {
3322 	.get_link	= simple_get_link,
3323 #ifdef CONFIG_TMPFS_XATTR
3324 	.listxattr	= shmem_listxattr,
3325 #endif
3326 };
3327 
3328 static const struct inode_operations shmem_symlink_inode_operations = {
3329 	.get_link	= shmem_get_link,
3330 #ifdef CONFIG_TMPFS_XATTR
3331 	.listxattr	= shmem_listxattr,
3332 #endif
3333 };
3334 
shmem_get_parent(struct dentry * child)3335 static struct dentry *shmem_get_parent(struct dentry *child)
3336 {
3337 	return ERR_PTR(-ESTALE);
3338 }
3339 
shmem_match(struct inode * ino,void * vfh)3340 static int shmem_match(struct inode *ino, void *vfh)
3341 {
3342 	__u32 *fh = vfh;
3343 	__u64 inum = fh[2];
3344 	inum = (inum << 32) | fh[1];
3345 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3346 }
3347 
3348 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3349 static struct dentry *shmem_find_alias(struct inode *inode)
3350 {
3351 	struct dentry *alias = d_find_alias(inode);
3352 
3353 	return alias ?: d_find_any_alias(inode);
3354 }
3355 
3356 
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3357 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3358 		struct fid *fid, int fh_len, int fh_type)
3359 {
3360 	struct inode *inode;
3361 	struct dentry *dentry = NULL;
3362 	u64 inum;
3363 
3364 	if (fh_len < 3)
3365 		return NULL;
3366 
3367 	inum = fid->raw[2];
3368 	inum = (inum << 32) | fid->raw[1];
3369 
3370 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3371 			shmem_match, fid->raw);
3372 	if (inode) {
3373 		dentry = shmem_find_alias(inode);
3374 		iput(inode);
3375 	}
3376 
3377 	return dentry;
3378 }
3379 
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3380 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3381 				struct inode *parent)
3382 {
3383 	if (*len < 3) {
3384 		*len = 3;
3385 		return FILEID_INVALID;
3386 	}
3387 
3388 	if (inode_unhashed(inode)) {
3389 		/* Unfortunately insert_inode_hash is not idempotent,
3390 		 * so as we hash inodes here rather than at creation
3391 		 * time, we need a lock to ensure we only try
3392 		 * to do it once
3393 		 */
3394 		static DEFINE_SPINLOCK(lock);
3395 		spin_lock(&lock);
3396 		if (inode_unhashed(inode))
3397 			__insert_inode_hash(inode,
3398 					    inode->i_ino + inode->i_generation);
3399 		spin_unlock(&lock);
3400 	}
3401 
3402 	fh[0] = inode->i_generation;
3403 	fh[1] = inode->i_ino;
3404 	fh[2] = ((__u64)inode->i_ino) >> 32;
3405 
3406 	*len = 3;
3407 	return 1;
3408 }
3409 
3410 static const struct export_operations shmem_export_ops = {
3411 	.get_parent     = shmem_get_parent,
3412 	.encode_fh      = shmem_encode_fh,
3413 	.fh_to_dentry	= shmem_fh_to_dentry,
3414 };
3415 
3416 enum shmem_param {
3417 	Opt_gid,
3418 	Opt_huge,
3419 	Opt_mode,
3420 	Opt_mpol,
3421 	Opt_nr_blocks,
3422 	Opt_nr_inodes,
3423 	Opt_size,
3424 	Opt_uid,
3425 	Opt_inode32,
3426 	Opt_inode64,
3427 };
3428 
3429 static const struct constant_table shmem_param_enums_huge[] = {
3430 	{"never",	SHMEM_HUGE_NEVER },
3431 	{"always",	SHMEM_HUGE_ALWAYS },
3432 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3433 	{"advise",	SHMEM_HUGE_ADVISE },
3434 	{}
3435 };
3436 
3437 const struct fs_parameter_spec shmem_fs_parameters[] = {
3438 	fsparam_u32   ("gid",		Opt_gid),
3439 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3440 	fsparam_u32oct("mode",		Opt_mode),
3441 	fsparam_string("mpol",		Opt_mpol),
3442 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3443 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3444 	fsparam_string("size",		Opt_size),
3445 	fsparam_u32   ("uid",		Opt_uid),
3446 	fsparam_flag  ("inode32",	Opt_inode32),
3447 	fsparam_flag  ("inode64",	Opt_inode64),
3448 	{}
3449 };
3450 
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3451 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3452 {
3453 	struct shmem_options *ctx = fc->fs_private;
3454 	struct fs_parse_result result;
3455 	unsigned long long size;
3456 	char *rest;
3457 	int opt;
3458 	kuid_t kuid;
3459 	kgid_t kgid;
3460 
3461 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3462 	if (opt < 0)
3463 		return opt;
3464 
3465 	switch (opt) {
3466 	case Opt_size:
3467 		size = memparse(param->string, &rest);
3468 		if (*rest == '%') {
3469 			size <<= PAGE_SHIFT;
3470 			size *= totalram_pages();
3471 			do_div(size, 100);
3472 			rest++;
3473 		}
3474 		if (*rest)
3475 			goto bad_value;
3476 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3477 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3478 		break;
3479 	case Opt_nr_blocks:
3480 		ctx->blocks = memparse(param->string, &rest);
3481 		if (*rest)
3482 			goto bad_value;
3483 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3484 		break;
3485 	case Opt_nr_inodes:
3486 		ctx->inodes = memparse(param->string, &rest);
3487 		if (*rest)
3488 			goto bad_value;
3489 		ctx->seen |= SHMEM_SEEN_INODES;
3490 		break;
3491 	case Opt_mode:
3492 		ctx->mode = result.uint_32 & 07777;
3493 		break;
3494 	case Opt_uid:
3495 		kuid = make_kuid(current_user_ns(), result.uint_32);
3496 		if (!uid_valid(kuid))
3497 			goto bad_value;
3498 
3499 		/*
3500 		 * The requested uid must be representable in the
3501 		 * filesystem's idmapping.
3502 		 */
3503 		if (!kuid_has_mapping(fc->user_ns, kuid))
3504 			goto bad_value;
3505 
3506 		ctx->uid = kuid;
3507 		break;
3508 	case Opt_gid:
3509 		kgid = make_kgid(current_user_ns(), result.uint_32);
3510 		if (!gid_valid(kgid))
3511 			goto bad_value;
3512 
3513 		/*
3514 		 * The requested gid must be representable in the
3515 		 * filesystem's idmapping.
3516 		 */
3517 		if (!kgid_has_mapping(fc->user_ns, kgid))
3518 			goto bad_value;
3519 
3520 		ctx->gid = kgid;
3521 		break;
3522 	case Opt_huge:
3523 		ctx->huge = result.uint_32;
3524 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3525 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3526 		      has_transparent_hugepage()))
3527 			goto unsupported_parameter;
3528 		ctx->seen |= SHMEM_SEEN_HUGE;
3529 		break;
3530 	case Opt_mpol:
3531 		if (IS_ENABLED(CONFIG_NUMA)) {
3532 			mpol_put(ctx->mpol);
3533 			ctx->mpol = NULL;
3534 			if (mpol_parse_str(param->string, &ctx->mpol))
3535 				goto bad_value;
3536 			break;
3537 		}
3538 		goto unsupported_parameter;
3539 	case Opt_inode32:
3540 		ctx->full_inums = false;
3541 		ctx->seen |= SHMEM_SEEN_INUMS;
3542 		break;
3543 	case Opt_inode64:
3544 		if (sizeof(ino_t) < 8) {
3545 			return invalfc(fc,
3546 				       "Cannot use inode64 with <64bit inums in kernel\n");
3547 		}
3548 		ctx->full_inums = true;
3549 		ctx->seen |= SHMEM_SEEN_INUMS;
3550 		break;
3551 	}
3552 	return 0;
3553 
3554 unsupported_parameter:
3555 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3556 bad_value:
3557 	return invalfc(fc, "Bad value for '%s'", param->key);
3558 }
3559 
shmem_parse_options(struct fs_context * fc,void * data)3560 static int shmem_parse_options(struct fs_context *fc, void *data)
3561 {
3562 	char *options = data;
3563 
3564 	if (options) {
3565 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3566 		if (err)
3567 			return err;
3568 	}
3569 
3570 	while (options != NULL) {
3571 		char *this_char = options;
3572 		for (;;) {
3573 			/*
3574 			 * NUL-terminate this option: unfortunately,
3575 			 * mount options form a comma-separated list,
3576 			 * but mpol's nodelist may also contain commas.
3577 			 */
3578 			options = strchr(options, ',');
3579 			if (options == NULL)
3580 				break;
3581 			options++;
3582 			if (!isdigit(*options)) {
3583 				options[-1] = '\0';
3584 				break;
3585 			}
3586 		}
3587 		if (*this_char) {
3588 			char *value = strchr(this_char,'=');
3589 			size_t len = 0;
3590 			int err;
3591 
3592 			if (value) {
3593 				*value++ = '\0';
3594 				len = strlen(value);
3595 			}
3596 			err = vfs_parse_fs_string(fc, this_char, value, len);
3597 			if (err < 0)
3598 				return err;
3599 		}
3600 	}
3601 	return 0;
3602 }
3603 
3604 /*
3605  * Reconfigure a shmem filesystem.
3606  *
3607  * Note that we disallow change from limited->unlimited blocks/inodes while any
3608  * are in use; but we must separately disallow unlimited->limited, because in
3609  * that case we have no record of how much is already in use.
3610  */
shmem_reconfigure(struct fs_context * fc)3611 static int shmem_reconfigure(struct fs_context *fc)
3612 {
3613 	struct shmem_options *ctx = fc->fs_private;
3614 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3615 	unsigned long inodes;
3616 	const char *err;
3617 
3618 	spin_lock(&sbinfo->stat_lock);
3619 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3620 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3621 		if (!sbinfo->max_blocks) {
3622 			err = "Cannot retroactively limit size";
3623 			goto out;
3624 		}
3625 		if (percpu_counter_compare(&sbinfo->used_blocks,
3626 					   ctx->blocks) > 0) {
3627 			err = "Too small a size for current use";
3628 			goto out;
3629 		}
3630 	}
3631 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3632 		if (!sbinfo->max_inodes) {
3633 			err = "Cannot retroactively limit inodes";
3634 			goto out;
3635 		}
3636 		if (ctx->inodes < inodes) {
3637 			err = "Too few inodes for current use";
3638 			goto out;
3639 		}
3640 	}
3641 
3642 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3643 	    sbinfo->next_ino > UINT_MAX) {
3644 		err = "Current inum too high to switch to 32-bit inums";
3645 		goto out;
3646 	}
3647 
3648 	if (ctx->seen & SHMEM_SEEN_HUGE)
3649 		sbinfo->huge = ctx->huge;
3650 	if (ctx->seen & SHMEM_SEEN_INUMS)
3651 		sbinfo->full_inums = ctx->full_inums;
3652 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3653 		sbinfo->max_blocks  = ctx->blocks;
3654 	if (ctx->seen & SHMEM_SEEN_INODES) {
3655 		sbinfo->max_inodes  = ctx->inodes;
3656 		sbinfo->free_inodes = ctx->inodes - inodes;
3657 	}
3658 
3659 	/*
3660 	 * Preserve previous mempolicy unless mpol remount option was specified.
3661 	 */
3662 	if (ctx->mpol) {
3663 		mpol_put(sbinfo->mpol);
3664 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3665 		ctx->mpol = NULL;
3666 	}
3667 	spin_unlock(&sbinfo->stat_lock);
3668 	return 0;
3669 out:
3670 	spin_unlock(&sbinfo->stat_lock);
3671 	return invalfc(fc, "%s", err);
3672 }
3673 
shmem_show_options(struct seq_file * seq,struct dentry * root)3674 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3675 {
3676 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3677 
3678 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3679 		seq_printf(seq, ",size=%luk",
3680 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3681 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3682 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3683 	if (sbinfo->mode != (0777 | S_ISVTX))
3684 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3685 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3686 		seq_printf(seq, ",uid=%u",
3687 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3688 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3689 		seq_printf(seq, ",gid=%u",
3690 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3691 
3692 	/*
3693 	 * Showing inode{64,32} might be useful even if it's the system default,
3694 	 * since then people don't have to resort to checking both here and
3695 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3696 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3697 	 *
3698 	 * We hide it when inode64 isn't the default and we are using 32-bit
3699 	 * inodes, since that probably just means the feature isn't even under
3700 	 * consideration.
3701 	 *
3702 	 * As such:
3703 	 *
3704 	 *                     +-----------------+-----------------+
3705 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3706 	 *  +------------------+-----------------+-----------------+
3707 	 *  | full_inums=true  | show            | show            |
3708 	 *  | full_inums=false | show            | hide            |
3709 	 *  +------------------+-----------------+-----------------+
3710 	 *
3711 	 */
3712 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3713 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3715 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3716 	if (sbinfo->huge)
3717 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3718 #endif
3719 	shmem_show_mpol(seq, sbinfo->mpol);
3720 	return 0;
3721 }
3722 
3723 #endif /* CONFIG_TMPFS */
3724 
shmem_put_super(struct super_block * sb)3725 static void shmem_put_super(struct super_block *sb)
3726 {
3727 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3728 
3729 	free_percpu(sbinfo->ino_batch);
3730 	percpu_counter_destroy(&sbinfo->used_blocks);
3731 	mpol_put(sbinfo->mpol);
3732 	kfree(sbinfo);
3733 	sb->s_fs_info = NULL;
3734 }
3735 
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3736 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3737 {
3738 	struct shmem_options *ctx = fc->fs_private;
3739 	struct inode *inode;
3740 	struct shmem_sb_info *sbinfo;
3741 	int err = -ENOMEM;
3742 
3743 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3744 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3745 				L1_CACHE_BYTES), GFP_KERNEL);
3746 	if (!sbinfo)
3747 		return -ENOMEM;
3748 
3749 	sb->s_fs_info = sbinfo;
3750 
3751 #ifdef CONFIG_TMPFS
3752 	/*
3753 	 * Per default we only allow half of the physical ram per
3754 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3755 	 * but the internal instance is left unlimited.
3756 	 */
3757 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3758 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3759 			ctx->blocks = shmem_default_max_blocks();
3760 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3761 			ctx->inodes = shmem_default_max_inodes();
3762 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3763 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3764 	} else {
3765 		sb->s_flags |= SB_NOUSER;
3766 	}
3767 	sb->s_export_op = &shmem_export_ops;
3768 	sb->s_flags |= SB_NOSEC;
3769 #else
3770 	sb->s_flags |= SB_NOUSER;
3771 #endif
3772 	sbinfo->max_blocks = ctx->blocks;
3773 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3774 	if (sb->s_flags & SB_KERNMOUNT) {
3775 		sbinfo->ino_batch = alloc_percpu(ino_t);
3776 		if (!sbinfo->ino_batch)
3777 			goto failed;
3778 	}
3779 	sbinfo->uid = ctx->uid;
3780 	sbinfo->gid = ctx->gid;
3781 	sbinfo->full_inums = ctx->full_inums;
3782 	sbinfo->mode = ctx->mode;
3783 	sbinfo->huge = ctx->huge;
3784 	sbinfo->mpol = ctx->mpol;
3785 	ctx->mpol = NULL;
3786 
3787 	spin_lock_init(&sbinfo->stat_lock);
3788 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3789 		goto failed;
3790 	spin_lock_init(&sbinfo->shrinklist_lock);
3791 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3792 
3793 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3794 	sb->s_blocksize = PAGE_SIZE;
3795 	sb->s_blocksize_bits = PAGE_SHIFT;
3796 	sb->s_magic = TMPFS_MAGIC;
3797 	sb->s_op = &shmem_ops;
3798 	sb->s_time_gran = 1;
3799 #ifdef CONFIG_TMPFS_XATTR
3800 	sb->s_xattr = shmem_xattr_handlers;
3801 #endif
3802 #ifdef CONFIG_TMPFS_POSIX_ACL
3803 	sb->s_flags |= SB_POSIXACL;
3804 #endif
3805 	uuid_gen(&sb->s_uuid);
3806 
3807 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3808 	if (!inode)
3809 		goto failed;
3810 	inode->i_uid = sbinfo->uid;
3811 	inode->i_gid = sbinfo->gid;
3812 	sb->s_root = d_make_root(inode);
3813 	if (!sb->s_root)
3814 		goto failed;
3815 	return 0;
3816 
3817 failed:
3818 	shmem_put_super(sb);
3819 	return err;
3820 }
3821 
shmem_get_tree(struct fs_context * fc)3822 static int shmem_get_tree(struct fs_context *fc)
3823 {
3824 	return get_tree_nodev(fc, shmem_fill_super);
3825 }
3826 
shmem_free_fc(struct fs_context * fc)3827 static void shmem_free_fc(struct fs_context *fc)
3828 {
3829 	struct shmem_options *ctx = fc->fs_private;
3830 
3831 	if (ctx) {
3832 		mpol_put(ctx->mpol);
3833 		kfree(ctx);
3834 	}
3835 }
3836 
3837 static const struct fs_context_operations shmem_fs_context_ops = {
3838 	.free			= shmem_free_fc,
3839 	.get_tree		= shmem_get_tree,
3840 #ifdef CONFIG_TMPFS
3841 	.parse_monolithic	= shmem_parse_options,
3842 	.parse_param		= shmem_parse_one,
3843 	.reconfigure		= shmem_reconfigure,
3844 #endif
3845 };
3846 
3847 static struct kmem_cache *shmem_inode_cachep;
3848 
shmem_alloc_inode(struct super_block * sb)3849 static struct inode *shmem_alloc_inode(struct super_block *sb)
3850 {
3851 	struct shmem_inode_info *info;
3852 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3853 	if (!info)
3854 		return NULL;
3855 	return &info->vfs_inode;
3856 }
3857 
shmem_free_in_core_inode(struct inode * inode)3858 static void shmem_free_in_core_inode(struct inode *inode)
3859 {
3860 	if (S_ISLNK(inode->i_mode))
3861 		kfree(inode->i_link);
3862 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3863 }
3864 
shmem_destroy_inode(struct inode * inode)3865 static void shmem_destroy_inode(struct inode *inode)
3866 {
3867 	if (S_ISREG(inode->i_mode))
3868 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3869 }
3870 
shmem_init_inode(void * foo)3871 static void shmem_init_inode(void *foo)
3872 {
3873 	struct shmem_inode_info *info = foo;
3874 	inode_init_once(&info->vfs_inode);
3875 }
3876 
shmem_init_inodecache(void)3877 static void shmem_init_inodecache(void)
3878 {
3879 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3880 				sizeof(struct shmem_inode_info),
3881 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3882 }
3883 
shmem_destroy_inodecache(void)3884 static void shmem_destroy_inodecache(void)
3885 {
3886 	kmem_cache_destroy(shmem_inode_cachep);
3887 }
3888 
3889 static const struct address_space_operations shmem_aops = {
3890 	.writepage	= shmem_writepage,
3891 	.set_page_dirty	= __set_page_dirty_no_writeback,
3892 #ifdef CONFIG_TMPFS
3893 	.write_begin	= shmem_write_begin,
3894 	.write_end	= shmem_write_end,
3895 #endif
3896 #ifdef CONFIG_MIGRATION
3897 	.migratepage	= migrate_page,
3898 #endif
3899 	.error_remove_page = generic_error_remove_page,
3900 };
3901 
3902 static const struct file_operations shmem_file_operations = {
3903 	.mmap		= shmem_mmap,
3904 	.get_unmapped_area = shmem_get_unmapped_area,
3905 #ifdef CONFIG_TMPFS
3906 	.llseek		= shmem_file_llseek,
3907 	.read_iter	= shmem_file_read_iter,
3908 	.write_iter	= generic_file_write_iter,
3909 	.fsync		= noop_fsync,
3910 	.splice_read	= generic_file_splice_read,
3911 	.splice_write	= iter_file_splice_write,
3912 	.fallocate	= shmem_fallocate,
3913 #endif
3914 };
3915 
3916 static const struct inode_operations shmem_inode_operations = {
3917 	.getattr	= shmem_getattr,
3918 	.setattr	= shmem_setattr,
3919 #ifdef CONFIG_TMPFS_XATTR
3920 	.listxattr	= shmem_listxattr,
3921 	.set_acl	= simple_set_acl,
3922 #endif
3923 };
3924 
3925 static const struct inode_operations shmem_dir_inode_operations = {
3926 #ifdef CONFIG_TMPFS
3927 	.create		= shmem_create,
3928 	.lookup		= simple_lookup,
3929 	.link		= shmem_link,
3930 	.unlink		= shmem_unlink,
3931 	.symlink	= shmem_symlink,
3932 	.mkdir		= shmem_mkdir,
3933 	.rmdir		= shmem_rmdir,
3934 	.mknod		= shmem_mknod,
3935 	.rename		= shmem_rename2,
3936 	.tmpfile	= shmem_tmpfile,
3937 #endif
3938 #ifdef CONFIG_TMPFS_XATTR
3939 	.listxattr	= shmem_listxattr,
3940 #endif
3941 #ifdef CONFIG_TMPFS_POSIX_ACL
3942 	.setattr	= shmem_setattr,
3943 	.set_acl	= simple_set_acl,
3944 #endif
3945 };
3946 
3947 static const struct inode_operations shmem_special_inode_operations = {
3948 #ifdef CONFIG_TMPFS_XATTR
3949 	.listxattr	= shmem_listxattr,
3950 #endif
3951 #ifdef CONFIG_TMPFS_POSIX_ACL
3952 	.setattr	= shmem_setattr,
3953 	.set_acl	= simple_set_acl,
3954 #endif
3955 };
3956 
3957 static const struct super_operations shmem_ops = {
3958 	.alloc_inode	= shmem_alloc_inode,
3959 	.free_inode	= shmem_free_in_core_inode,
3960 	.destroy_inode	= shmem_destroy_inode,
3961 #ifdef CONFIG_TMPFS
3962 	.statfs		= shmem_statfs,
3963 	.show_options	= shmem_show_options,
3964 #endif
3965 	.evict_inode	= shmem_evict_inode,
3966 	.drop_inode	= generic_delete_inode,
3967 	.put_super	= shmem_put_super,
3968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3969 	.nr_cached_objects	= shmem_unused_huge_count,
3970 	.free_cached_objects	= shmem_unused_huge_scan,
3971 #endif
3972 };
3973 
3974 static const struct vm_operations_struct shmem_vm_ops = {
3975 	.fault		= shmem_fault,
3976 	.map_pages	= filemap_map_pages,
3977 #ifdef CONFIG_NUMA
3978 	.set_policy     = shmem_set_policy,
3979 	.get_policy     = shmem_get_policy,
3980 #endif
3981 };
3982 
shmem_init_fs_context(struct fs_context * fc)3983 int shmem_init_fs_context(struct fs_context *fc)
3984 {
3985 	struct shmem_options *ctx;
3986 
3987 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3988 	if (!ctx)
3989 		return -ENOMEM;
3990 
3991 	ctx->mode = 0777 | S_ISVTX;
3992 	ctx->uid = current_fsuid();
3993 	ctx->gid = current_fsgid();
3994 
3995 	fc->fs_private = ctx;
3996 	fc->ops = &shmem_fs_context_ops;
3997 	return 0;
3998 }
3999 
4000 static struct file_system_type shmem_fs_type = {
4001 	.owner		= THIS_MODULE,
4002 	.name		= "tmpfs",
4003 	.init_fs_context = shmem_init_fs_context,
4004 #ifdef CONFIG_TMPFS
4005 	.parameters	= shmem_fs_parameters,
4006 #endif
4007 	.kill_sb	= kill_litter_super,
4008 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
4009 };
4010 
shmem_init(void)4011 int __init shmem_init(void)
4012 {
4013 	int error;
4014 
4015 	shmem_init_inodecache();
4016 
4017 	error = register_filesystem(&shmem_fs_type);
4018 	if (error) {
4019 		pr_err("Could not register tmpfs\n");
4020 		goto out2;
4021 	}
4022 
4023 	shm_mnt = kern_mount(&shmem_fs_type);
4024 	if (IS_ERR(shm_mnt)) {
4025 		error = PTR_ERR(shm_mnt);
4026 		pr_err("Could not kern_mount tmpfs\n");
4027 		goto out1;
4028 	}
4029 
4030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4032 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4033 	else
4034 		shmem_huge = 0; /* just in case it was patched */
4035 #endif
4036 	return 0;
4037 
4038 out1:
4039 	unregister_filesystem(&shmem_fs_type);
4040 out2:
4041 	shmem_destroy_inodecache();
4042 	shm_mnt = ERR_PTR(error);
4043 	return error;
4044 }
4045 
4046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4047 static ssize_t shmem_enabled_show(struct kobject *kobj,
4048 		struct kobj_attribute *attr, char *buf)
4049 {
4050 	static const int values[] = {
4051 		SHMEM_HUGE_ALWAYS,
4052 		SHMEM_HUGE_WITHIN_SIZE,
4053 		SHMEM_HUGE_ADVISE,
4054 		SHMEM_HUGE_NEVER,
4055 		SHMEM_HUGE_DENY,
4056 		SHMEM_HUGE_FORCE,
4057 	};
4058 	int i, count;
4059 
4060 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4061 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4062 
4063 		count += sprintf(buf + count, fmt,
4064 				shmem_format_huge(values[i]));
4065 	}
4066 	buf[count - 1] = '\n';
4067 	return count;
4068 }
4069 
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4070 static ssize_t shmem_enabled_store(struct kobject *kobj,
4071 		struct kobj_attribute *attr, const char *buf, size_t count)
4072 {
4073 	char tmp[16];
4074 	int huge;
4075 
4076 	if (count + 1 > sizeof(tmp))
4077 		return -EINVAL;
4078 	memcpy(tmp, buf, count);
4079 	tmp[count] = '\0';
4080 	if (count && tmp[count - 1] == '\n')
4081 		tmp[count - 1] = '\0';
4082 
4083 	huge = shmem_parse_huge(tmp);
4084 	if (huge == -EINVAL)
4085 		return -EINVAL;
4086 	if (!has_transparent_hugepage() &&
4087 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4088 		return -EINVAL;
4089 
4090 	shmem_huge = huge;
4091 	if (shmem_huge > SHMEM_HUGE_DENY)
4092 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4093 	return count;
4094 }
4095 
4096 struct kobj_attribute shmem_enabled_attr =
4097 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4098 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4099 
4100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_huge_enabled(struct vm_area_struct * vma)4101 bool shmem_huge_enabled(struct vm_area_struct *vma)
4102 {
4103 	struct inode *inode = file_inode(vma->vm_file);
4104 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4105 	loff_t i_size;
4106 	pgoff_t off;
4107 
4108 	if (!transhuge_vma_enabled(vma, vma->vm_flags))
4109 		return false;
4110 	if (shmem_huge == SHMEM_HUGE_FORCE)
4111 		return true;
4112 	if (shmem_huge == SHMEM_HUGE_DENY)
4113 		return false;
4114 	switch (sbinfo->huge) {
4115 		case SHMEM_HUGE_NEVER:
4116 			return false;
4117 		case SHMEM_HUGE_ALWAYS:
4118 			return true;
4119 		case SHMEM_HUGE_WITHIN_SIZE:
4120 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4121 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4122 			if (i_size >= HPAGE_PMD_SIZE &&
4123 					i_size >> PAGE_SHIFT >= off)
4124 				return true;
4125 			fallthrough;
4126 		case SHMEM_HUGE_ADVISE:
4127 			/* TODO: implement fadvise() hints */
4128 			return (vma->vm_flags & VM_HUGEPAGE);
4129 		default:
4130 			VM_BUG_ON(1);
4131 			return false;
4132 	}
4133 }
4134 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4135 
4136 #else /* !CONFIG_SHMEM */
4137 
4138 /*
4139  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4140  *
4141  * This is intended for small system where the benefits of the full
4142  * shmem code (swap-backed and resource-limited) are outweighed by
4143  * their complexity. On systems without swap this code should be
4144  * effectively equivalent, but much lighter weight.
4145  */
4146 
4147 static struct file_system_type shmem_fs_type = {
4148 	.name		= "tmpfs",
4149 	.init_fs_context = ramfs_init_fs_context,
4150 	.parameters	= ramfs_fs_parameters,
4151 	.kill_sb	= ramfs_kill_sb,
4152 	.fs_flags	= FS_USERNS_MOUNT,
4153 };
4154 
shmem_init(void)4155 int __init shmem_init(void)
4156 {
4157 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4158 
4159 	shm_mnt = kern_mount(&shmem_fs_type);
4160 	BUG_ON(IS_ERR(shm_mnt));
4161 
4162 	return 0;
4163 }
4164 
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4165 int shmem_unuse(unsigned int type, bool frontswap,
4166 		unsigned long *fs_pages_to_unuse)
4167 {
4168 	return 0;
4169 }
4170 
shmem_lock(struct file * file,int lock,struct user_struct * user)4171 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4172 {
4173 	return 0;
4174 }
4175 
shmem_unlock_mapping(struct address_space * mapping)4176 void shmem_unlock_mapping(struct address_space *mapping)
4177 {
4178 }
4179 
4180 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4181 unsigned long shmem_get_unmapped_area(struct file *file,
4182 				      unsigned long addr, unsigned long len,
4183 				      unsigned long pgoff, unsigned long flags)
4184 {
4185 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4186 }
4187 #endif
4188 
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4189 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4190 {
4191 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4192 }
4193 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4194 
4195 #define shmem_vm_ops				generic_file_vm_ops
4196 #define shmem_file_operations			ramfs_file_operations
4197 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4198 #define shmem_acct_size(flags, size)		0
4199 #define shmem_unacct_size(flags, size)		do {} while (0)
4200 
4201 #endif /* CONFIG_SHMEM */
4202 
4203 /* common code */
4204 
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4205 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4206 				       unsigned long flags, unsigned int i_flags)
4207 {
4208 	struct inode *inode;
4209 	struct file *res;
4210 
4211 	if (IS_ERR(mnt))
4212 		return ERR_CAST(mnt);
4213 
4214 	if (size < 0 || size > MAX_LFS_FILESIZE)
4215 		return ERR_PTR(-EINVAL);
4216 
4217 	if (shmem_acct_size(flags, size))
4218 		return ERR_PTR(-ENOMEM);
4219 
4220 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221 				flags);
4222 	if (unlikely(!inode)) {
4223 		shmem_unacct_size(flags, size);
4224 		return ERR_PTR(-ENOSPC);
4225 	}
4226 	inode->i_flags |= i_flags;
4227 	inode->i_size = size;
4228 	clear_nlink(inode);	/* It is unlinked */
4229 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230 	if (!IS_ERR(res))
4231 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232 				&shmem_file_operations);
4233 	if (IS_ERR(res))
4234 		iput(inode);
4235 	return res;
4236 }
4237 
4238 /**
4239  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240  * 	kernel internal.  There will be NO LSM permission checks against the
4241  * 	underlying inode.  So users of this interface must do LSM checks at a
4242  *	higher layer.  The users are the big_key and shm implementations.  LSM
4243  *	checks are provided at the key or shm level rather than the inode.
4244  * @name: name for dentry (to be seen in /proc/<pid>/maps
4245  * @size: size to be set for the file
4246  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247  */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4248 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249 {
4250 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251 }
4252 
4253 /**
4254  * shmem_file_setup - get an unlinked file living in tmpfs
4255  * @name: name for dentry (to be seen in /proc/<pid>/maps
4256  * @size: size to be set for the file
4257  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258  */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4259 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260 {
4261 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262 }
4263 EXPORT_SYMBOL_GPL(shmem_file_setup);
4264 
4265 /**
4266  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267  * @mnt: the tmpfs mount where the file will be created
4268  * @name: name for dentry (to be seen in /proc/<pid>/maps
4269  * @size: size to be set for the file
4270  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271  */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4272 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273 				       loff_t size, unsigned long flags)
4274 {
4275 	return __shmem_file_setup(mnt, name, size, flags, 0);
4276 }
4277 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278 
4279 /**
4280  * shmem_zero_setup - setup a shared anonymous mapping
4281  * @vma: the vma to be mmapped is prepared by do_mmap
4282  */
shmem_zero_setup(struct vm_area_struct * vma)4283 int shmem_zero_setup(struct vm_area_struct *vma)
4284 {
4285 	struct file *file;
4286 	loff_t size = vma->vm_end - vma->vm_start;
4287 
4288 	/*
4289 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290 	 * between XFS directory reading and selinux: since this file is only
4291 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4292 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4293 	 */
4294 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295 	if (IS_ERR(file))
4296 		return PTR_ERR(file);
4297 
4298 	if (vma->vm_file)
4299 		fput(vma->vm_file);
4300 	vma->vm_file = file;
4301 	vma->vm_ops = &shmem_vm_ops;
4302 
4303 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4304 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4305 			(vma->vm_end & HPAGE_PMD_MASK)) {
4306 		khugepaged_enter(vma, vma->vm_flags);
4307 	}
4308 
4309 	return 0;
4310 }
4311 
4312 /**
4313  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4314  * @mapping:	the page's address_space
4315  * @index:	the page index
4316  * @gfp:	the page allocator flags to use if allocating
4317  *
4318  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4319  * with any new page allocations done using the specified allocation flags.
4320  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4321  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4322  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4323  *
4324  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4325  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4326  */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4327 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4328 					 pgoff_t index, gfp_t gfp)
4329 {
4330 #ifdef CONFIG_SHMEM
4331 	struct inode *inode = mapping->host;
4332 	struct page *page;
4333 	int error;
4334 
4335 	BUG_ON(mapping->a_ops != &shmem_aops);
4336 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4337 				  gfp, NULL, NULL, NULL);
4338 	if (error)
4339 		page = ERR_PTR(error);
4340 	else
4341 		unlock_page(page);
4342 	return page;
4343 #else
4344 	/*
4345 	 * The tiny !SHMEM case uses ramfs without swap
4346 	 */
4347 	return read_cache_page_gfp(mapping, index, gfp);
4348 #endif
4349 }
4350 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4351