• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications Inc.
4  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5  */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12 
13 #include <net/sock.h>
14 
15 #include "qrtr.h"
16 
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19 
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 		XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25 
26 /**
27  * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
28  * @version: protocol version
29  * @type: packet type; one of QRTR_TYPE_*
30  * @src_node_id: source node
31  * @src_port_id: source port
32  * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
33  * @size: length of packet, excluding this header
34  * @dst_node_id: destination node
35  * @dst_port_id: destination port
36  */
37 struct qrtr_hdr_v1 {
38 	__le32 version;
39 	__le32 type;
40 	__le32 src_node_id;
41 	__le32 src_port_id;
42 	__le32 confirm_rx;
43 	__le32 size;
44 	__le32 dst_node_id;
45 	__le32 dst_port_id;
46 } __packed;
47 
48 /**
49  * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
50  * @version: protocol version
51  * @type: packet type; one of QRTR_TYPE_*
52  * @flags: bitmask of QRTR_FLAGS_*
53  * @optlen: length of optional header data
54  * @size: length of packet, excluding this header and optlen
55  * @src_node_id: source node
56  * @src_port_id: source port
57  * @dst_node_id: destination node
58  * @dst_port_id: destination port
59  */
60 struct qrtr_hdr_v2 {
61 	u8 version;
62 	u8 type;
63 	u8 flags;
64 	u8 optlen;
65 	__le32 size;
66 	__le16 src_node_id;
67 	__le16 src_port_id;
68 	__le16 dst_node_id;
69 	__le16 dst_port_id;
70 };
71 
72 #define QRTR_FLAGS_CONFIRM_RX	BIT(0)
73 
74 struct qrtr_cb {
75 	u32 src_node;
76 	u32 src_port;
77 	u32 dst_node;
78 	u32 dst_port;
79 
80 	u8 type;
81 	u8 confirm_rx;
82 };
83 
84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
85 					sizeof(struct qrtr_hdr_v2))
86 
87 struct qrtr_sock {
88 	/* WARNING: sk must be the first member */
89 	struct sock sk;
90 	struct sockaddr_qrtr us;
91 	struct sockaddr_qrtr peer;
92 };
93 
qrtr_sk(struct sock * sk)94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 {
96 	BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
97 	return container_of(sk, struct qrtr_sock, sk);
98 }
99 
100 static unsigned int qrtr_local_nid = 1;
101 
102 /* for node ids */
103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
104 static DEFINE_SPINLOCK(qrtr_nodes_lock);
105 /* broadcast list */
106 static LIST_HEAD(qrtr_all_nodes);
107 /* lock for qrtr_all_nodes and node reference */
108 static DEFINE_MUTEX(qrtr_node_lock);
109 
110 /* local port allocation management */
111 static DEFINE_XARRAY_ALLOC(qrtr_ports);
112 
113 /**
114  * struct qrtr_node - endpoint node
115  * @ep_lock: lock for endpoint management and callbacks
116  * @ep: endpoint
117  * @ref: reference count for node
118  * @nid: node id
119  * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120  * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121  * @rx_queue: receive queue
122  * @item: list item for broadcast list
123  */
124 struct qrtr_node {
125 	struct mutex ep_lock;
126 	struct qrtr_endpoint *ep;
127 	struct kref ref;
128 	unsigned int nid;
129 
130 	struct radix_tree_root qrtr_tx_flow;
131 	struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
132 
133 	struct sk_buff_head rx_queue;
134 	struct list_head item;
135 };
136 
137 /**
138  * struct qrtr_tx_flow - tx flow control
139  * @resume_tx: waiters for a resume tx from the remote
140  * @pending: number of waiting senders
141  * @tx_failed: indicates that a message with confirm_rx flag was lost
142  */
143 struct qrtr_tx_flow {
144 	struct wait_queue_head resume_tx;
145 	int pending;
146 	int tx_failed;
147 };
148 
149 #define QRTR_TX_FLOW_HIGH	10
150 #define QRTR_TX_FLOW_LOW	5
151 
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 			      int type, struct sockaddr_qrtr *from,
154 			      struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 			      int type, struct sockaddr_qrtr *from,
157 			      struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
160 
161 /* Release node resources and free the node.
162  *
163  * Do not call directly, use qrtr_node_release.  To be used with
164  * kref_put_mutex.  As such, the node mutex is expected to be locked on call.
165  */
__qrtr_node_release(struct kref * kref)166 static void __qrtr_node_release(struct kref *kref)
167 {
168 	struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 	struct radix_tree_iter iter;
170 	struct qrtr_tx_flow *flow;
171 	unsigned long flags;
172 	void __rcu **slot;
173 
174 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
175 	if (node->nid != QRTR_EP_NID_AUTO)
176 		radix_tree_delete(&qrtr_nodes, node->nid);
177 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
178 
179 	list_del(&node->item);
180 	mutex_unlock(&qrtr_node_lock);
181 
182 	skb_queue_purge(&node->rx_queue);
183 
184 	/* Free tx flow counters */
185 	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
186 		flow = *slot;
187 		radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
188 		kfree(flow);
189 	}
190 	kfree(node);
191 }
192 
193 /* Increment reference to node. */
qrtr_node_acquire(struct qrtr_node * node)194 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
195 {
196 	if (node)
197 		kref_get(&node->ref);
198 	return node;
199 }
200 
201 /* Decrement reference to node and release as necessary. */
qrtr_node_release(struct qrtr_node * node)202 static void qrtr_node_release(struct qrtr_node *node)
203 {
204 	if (!node)
205 		return;
206 	kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
207 }
208 
209 /**
210  * qrtr_tx_resume() - reset flow control counter
211  * @node:	qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
212  * @skb:	resume_tx packet
213  */
qrtr_tx_resume(struct qrtr_node * node,struct sk_buff * skb)214 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
215 {
216 	struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
217 	u64 remote_node = le32_to_cpu(pkt->client.node);
218 	u32 remote_port = le32_to_cpu(pkt->client.port);
219 	struct qrtr_tx_flow *flow;
220 	unsigned long key;
221 
222 	key = remote_node << 32 | remote_port;
223 
224 	rcu_read_lock();
225 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
226 	rcu_read_unlock();
227 	if (flow) {
228 		spin_lock(&flow->resume_tx.lock);
229 		flow->pending = 0;
230 		spin_unlock(&flow->resume_tx.lock);
231 		wake_up_interruptible_all(&flow->resume_tx);
232 	}
233 
234 	consume_skb(skb);
235 }
236 
237 /**
238  * qrtr_tx_wait() - flow control for outgoing packets
239  * @node:	qrtr_node that the packet is to be send to
240  * @dest_node:	node id of the destination
241  * @dest_port:	port number of the destination
242  * @type:	type of message
243  *
244  * The flow control scheme is based around the low and high "watermarks". When
245  * the low watermark is passed the confirm_rx flag is set on the outgoing
246  * message, which will trigger the remote to send a control message of the type
247  * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
248  * further transmision should be paused.
249  *
250  * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
251  */
qrtr_tx_wait(struct qrtr_node * node,int dest_node,int dest_port,int type)252 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
253 			int type)
254 {
255 	unsigned long key = (u64)dest_node << 32 | dest_port;
256 	struct qrtr_tx_flow *flow;
257 	int confirm_rx = 0;
258 	int ret;
259 
260 	/* Never set confirm_rx on non-data packets */
261 	if (type != QRTR_TYPE_DATA)
262 		return 0;
263 
264 	mutex_lock(&node->qrtr_tx_lock);
265 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
266 	if (!flow) {
267 		flow = kzalloc(sizeof(*flow), GFP_KERNEL);
268 		if (flow) {
269 			init_waitqueue_head(&flow->resume_tx);
270 			if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
271 				kfree(flow);
272 				flow = NULL;
273 			}
274 		}
275 	}
276 	mutex_unlock(&node->qrtr_tx_lock);
277 
278 	/* Set confirm_rx if we where unable to find and allocate a flow */
279 	if (!flow)
280 		return 1;
281 
282 	spin_lock_irq(&flow->resume_tx.lock);
283 	ret = wait_event_interruptible_locked_irq(flow->resume_tx,
284 						  flow->pending < QRTR_TX_FLOW_HIGH ||
285 						  flow->tx_failed ||
286 						  !node->ep);
287 	if (ret < 0) {
288 		confirm_rx = ret;
289 	} else if (!node->ep) {
290 		confirm_rx = -EPIPE;
291 	} else if (flow->tx_failed) {
292 		flow->tx_failed = 0;
293 		confirm_rx = 1;
294 	} else {
295 		flow->pending++;
296 		confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
297 	}
298 	spin_unlock_irq(&flow->resume_tx.lock);
299 
300 	return confirm_rx;
301 }
302 
303 /**
304  * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
305  * @node:	qrtr_node that the packet is to be send to
306  * @dest_node:	node id of the destination
307  * @dest_port:	port number of the destination
308  *
309  * Signal that the transmission of a message with confirm_rx flag failed. The
310  * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
311  * at which point transmission would stall forever waiting for the resume TX
312  * message associated with the dropped confirm_rx message.
313  * Work around this by marking the flow as having a failed transmission and
314  * cause the next transmission attempt to be sent with the confirm_rx.
315  */
qrtr_tx_flow_failed(struct qrtr_node * node,int dest_node,int dest_port)316 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
317 				int dest_port)
318 {
319 	unsigned long key = (u64)dest_node << 32 | dest_port;
320 	struct qrtr_tx_flow *flow;
321 
322 	rcu_read_lock();
323 	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
324 	rcu_read_unlock();
325 	if (flow) {
326 		spin_lock_irq(&flow->resume_tx.lock);
327 		flow->tx_failed = 1;
328 		spin_unlock_irq(&flow->resume_tx.lock);
329 	}
330 }
331 
332 /* Pass an outgoing packet socket buffer to the endpoint driver. */
qrtr_node_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)333 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
334 			     int type, struct sockaddr_qrtr *from,
335 			     struct sockaddr_qrtr *to)
336 {
337 	struct qrtr_hdr_v1 *hdr;
338 	size_t len = skb->len;
339 	int rc, confirm_rx;
340 
341 	confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
342 	if (confirm_rx < 0) {
343 		kfree_skb(skb);
344 		return confirm_rx;
345 	}
346 
347 	hdr = skb_push(skb, sizeof(*hdr));
348 	hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
349 	hdr->type = cpu_to_le32(type);
350 	hdr->src_node_id = cpu_to_le32(from->sq_node);
351 	hdr->src_port_id = cpu_to_le32(from->sq_port);
352 	if (to->sq_port == QRTR_PORT_CTRL) {
353 		hdr->dst_node_id = cpu_to_le32(node->nid);
354 		hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
355 	} else {
356 		hdr->dst_node_id = cpu_to_le32(to->sq_node);
357 		hdr->dst_port_id = cpu_to_le32(to->sq_port);
358 	}
359 
360 	hdr->size = cpu_to_le32(len);
361 	hdr->confirm_rx = !!confirm_rx;
362 
363 	rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
364 
365 	if (!rc) {
366 		mutex_lock(&node->ep_lock);
367 		rc = -ENODEV;
368 		if (node->ep)
369 			rc = node->ep->xmit(node->ep, skb);
370 		else
371 			kfree_skb(skb);
372 		mutex_unlock(&node->ep_lock);
373 	}
374 	/* Need to ensure that a subsequent message carries the otherwise lost
375 	 * confirm_rx flag if we dropped this one */
376 	if (rc && confirm_rx)
377 		qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
378 
379 	return rc;
380 }
381 
382 /* Lookup node by id.
383  *
384  * callers must release with qrtr_node_release()
385  */
qrtr_node_lookup(unsigned int nid)386 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
387 {
388 	struct qrtr_node *node;
389 	unsigned long flags;
390 
391 	mutex_lock(&qrtr_node_lock);
392 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
393 	node = radix_tree_lookup(&qrtr_nodes, nid);
394 	node = qrtr_node_acquire(node);
395 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
396 	mutex_unlock(&qrtr_node_lock);
397 
398 	return node;
399 }
400 
401 /* Assign node id to node.
402  *
403  * This is mostly useful for automatic node id assignment, based on
404  * the source id in the incoming packet.
405  */
qrtr_node_assign(struct qrtr_node * node,unsigned int nid)406 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
407 {
408 	unsigned long flags;
409 
410 	if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO)
411 		return;
412 
413 	spin_lock_irqsave(&qrtr_nodes_lock, flags);
414 	radix_tree_insert(&qrtr_nodes, nid, node);
415 	node->nid = nid;
416 	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
417 }
418 
419 /**
420  * qrtr_endpoint_post() - post incoming data
421  * @ep: endpoint handle
422  * @data: data pointer
423  * @len: size of data in bytes
424  *
425  * Return: 0 on success; negative error code on failure
426  */
qrtr_endpoint_post(struct qrtr_endpoint * ep,const void * data,size_t len)427 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
428 {
429 	struct qrtr_node *node = ep->node;
430 	const struct qrtr_hdr_v1 *v1;
431 	const struct qrtr_hdr_v2 *v2;
432 	struct qrtr_sock *ipc;
433 	struct sk_buff *skb;
434 	struct qrtr_cb *cb;
435 	size_t size;
436 	unsigned int ver;
437 	size_t hdrlen;
438 
439 	if (len == 0 || len & 3)
440 		return -EINVAL;
441 
442 	skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
443 	if (!skb)
444 		return -ENOMEM;
445 
446 	cb = (struct qrtr_cb *)skb->cb;
447 
448 	/* Version field in v1 is little endian, so this works for both cases */
449 	ver = *(u8*)data;
450 
451 	switch (ver) {
452 	case QRTR_PROTO_VER_1:
453 		if (len < sizeof(*v1))
454 			goto err;
455 		v1 = data;
456 		hdrlen = sizeof(*v1);
457 
458 		cb->type = le32_to_cpu(v1->type);
459 		cb->src_node = le32_to_cpu(v1->src_node_id);
460 		cb->src_port = le32_to_cpu(v1->src_port_id);
461 		cb->confirm_rx = !!v1->confirm_rx;
462 		cb->dst_node = le32_to_cpu(v1->dst_node_id);
463 		cb->dst_port = le32_to_cpu(v1->dst_port_id);
464 
465 		size = le32_to_cpu(v1->size);
466 		break;
467 	case QRTR_PROTO_VER_2:
468 		if (len < sizeof(*v2))
469 			goto err;
470 		v2 = data;
471 		hdrlen = sizeof(*v2) + v2->optlen;
472 
473 		cb->type = v2->type;
474 		cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
475 		cb->src_node = le16_to_cpu(v2->src_node_id);
476 		cb->src_port = le16_to_cpu(v2->src_port_id);
477 		cb->dst_node = le16_to_cpu(v2->dst_node_id);
478 		cb->dst_port = le16_to_cpu(v2->dst_port_id);
479 
480 		if (cb->src_port == (u16)QRTR_PORT_CTRL)
481 			cb->src_port = QRTR_PORT_CTRL;
482 		if (cb->dst_port == (u16)QRTR_PORT_CTRL)
483 			cb->dst_port = QRTR_PORT_CTRL;
484 
485 		size = le32_to_cpu(v2->size);
486 		break;
487 	default:
488 		pr_err("qrtr: Invalid version %d\n", ver);
489 		goto err;
490 	}
491 
492 	if (!size || len != ALIGN(size, 4) + hdrlen)
493 		goto err;
494 
495 	if ((cb->type == QRTR_TYPE_NEW_SERVER ||
496 	     cb->type == QRTR_TYPE_RESUME_TX) &&
497 	    size < sizeof(struct qrtr_ctrl_pkt))
498 		goto err;
499 
500 	if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
501 	    cb->type != QRTR_TYPE_RESUME_TX)
502 		goto err;
503 
504 	skb_put_data(skb, data + hdrlen, size);
505 
506 	qrtr_node_assign(node, cb->src_node);
507 
508 	if (cb->type == QRTR_TYPE_NEW_SERVER) {
509 		/* Remote node endpoint can bridge other distant nodes */
510 		const struct qrtr_ctrl_pkt *pkt;
511 
512 		pkt = data + hdrlen;
513 		qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
514 	}
515 
516 	if (cb->type == QRTR_TYPE_RESUME_TX) {
517 		qrtr_tx_resume(node, skb);
518 	} else {
519 		ipc = qrtr_port_lookup(cb->dst_port);
520 		if (!ipc)
521 			goto err;
522 
523 		if (sock_queue_rcv_skb(&ipc->sk, skb)) {
524 			qrtr_port_put(ipc);
525 			goto err;
526 		}
527 
528 		qrtr_port_put(ipc);
529 	}
530 
531 	return 0;
532 
533 err:
534 	kfree_skb(skb);
535 	return -EINVAL;
536 
537 }
538 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
539 
540 /**
541  * qrtr_alloc_ctrl_packet() - allocate control packet skb
542  * @pkt: reference to qrtr_ctrl_pkt pointer
543  *
544  * Returns newly allocated sk_buff, or NULL on failure
545  *
546  * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
547  * on success returns a reference to the control packet in @pkt.
548  */
qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt ** pkt)549 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt)
550 {
551 	const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
552 	struct sk_buff *skb;
553 
554 	skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL);
555 	if (!skb)
556 		return NULL;
557 
558 	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
559 	*pkt = skb_put_zero(skb, pkt_len);
560 
561 	return skb;
562 }
563 
564 /**
565  * qrtr_endpoint_register() - register a new endpoint
566  * @ep: endpoint to register
567  * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
568  * Return: 0 on success; negative error code on failure
569  *
570  * The specified endpoint must have the xmit function pointer set on call.
571  */
qrtr_endpoint_register(struct qrtr_endpoint * ep,unsigned int nid)572 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
573 {
574 	struct qrtr_node *node;
575 
576 	if (!ep || !ep->xmit)
577 		return -EINVAL;
578 
579 	node = kzalloc(sizeof(*node), GFP_KERNEL);
580 	if (!node)
581 		return -ENOMEM;
582 
583 	kref_init(&node->ref);
584 	mutex_init(&node->ep_lock);
585 	skb_queue_head_init(&node->rx_queue);
586 	node->nid = QRTR_EP_NID_AUTO;
587 	node->ep = ep;
588 
589 	INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
590 	mutex_init(&node->qrtr_tx_lock);
591 
592 	qrtr_node_assign(node, nid);
593 
594 	mutex_lock(&qrtr_node_lock);
595 	list_add(&node->item, &qrtr_all_nodes);
596 	mutex_unlock(&qrtr_node_lock);
597 	ep->node = node;
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
602 
603 /**
604  * qrtr_endpoint_unregister - unregister endpoint
605  * @ep: endpoint to unregister
606  */
qrtr_endpoint_unregister(struct qrtr_endpoint * ep)607 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
608 {
609 	struct qrtr_node *node = ep->node;
610 	struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
611 	struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
612 	struct radix_tree_iter iter;
613 	struct qrtr_ctrl_pkt *pkt;
614 	struct qrtr_tx_flow *flow;
615 	struct sk_buff *skb;
616 	void __rcu **slot;
617 
618 	mutex_lock(&node->ep_lock);
619 	node->ep = NULL;
620 	mutex_unlock(&node->ep_lock);
621 
622 	/* Notify the local controller about the event */
623 	skb = qrtr_alloc_ctrl_packet(&pkt);
624 	if (skb) {
625 		pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
626 		qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
627 	}
628 
629 	/* Wake up any transmitters waiting for resume-tx from the node */
630 	mutex_lock(&node->qrtr_tx_lock);
631 	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
632 		flow = *slot;
633 		wake_up_interruptible_all(&flow->resume_tx);
634 	}
635 	mutex_unlock(&node->qrtr_tx_lock);
636 
637 	qrtr_node_release(node);
638 	ep->node = NULL;
639 }
640 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
641 
642 /* Lookup socket by port.
643  *
644  * Callers must release with qrtr_port_put()
645  */
qrtr_port_lookup(int port)646 static struct qrtr_sock *qrtr_port_lookup(int port)
647 {
648 	struct qrtr_sock *ipc;
649 
650 	if (port == QRTR_PORT_CTRL)
651 		port = 0;
652 
653 	rcu_read_lock();
654 	ipc = xa_load(&qrtr_ports, port);
655 	if (ipc)
656 		sock_hold(&ipc->sk);
657 	rcu_read_unlock();
658 
659 	return ipc;
660 }
661 
662 /* Release acquired socket. */
qrtr_port_put(struct qrtr_sock * ipc)663 static void qrtr_port_put(struct qrtr_sock *ipc)
664 {
665 	sock_put(&ipc->sk);
666 }
667 
668 /* Remove port assignment. */
qrtr_port_remove(struct qrtr_sock * ipc)669 static void qrtr_port_remove(struct qrtr_sock *ipc)
670 {
671 	struct qrtr_ctrl_pkt *pkt;
672 	struct sk_buff *skb;
673 	int port = ipc->us.sq_port;
674 	struct sockaddr_qrtr to;
675 
676 	to.sq_family = AF_QIPCRTR;
677 	to.sq_node = QRTR_NODE_BCAST;
678 	to.sq_port = QRTR_PORT_CTRL;
679 
680 	skb = qrtr_alloc_ctrl_packet(&pkt);
681 	if (skb) {
682 		pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
683 		pkt->client.node = cpu_to_le32(ipc->us.sq_node);
684 		pkt->client.port = cpu_to_le32(ipc->us.sq_port);
685 
686 		skb_set_owner_w(skb, &ipc->sk);
687 		qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
688 				   &to);
689 	}
690 
691 	if (port == QRTR_PORT_CTRL)
692 		port = 0;
693 
694 	__sock_put(&ipc->sk);
695 
696 	xa_erase(&qrtr_ports, port);
697 
698 	/* Ensure that if qrtr_port_lookup() did enter the RCU read section we
699 	 * wait for it to up increment the refcount */
700 	synchronize_rcu();
701 }
702 
703 /* Assign port number to socket.
704  *
705  * Specify port in the integer pointed to by port, and it will be adjusted
706  * on return as necesssary.
707  *
708  * Port may be:
709  *   0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
710  *   <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
711  *   >QRTR_MIN_EPH_SOCKET: Specified; available to all
712  */
qrtr_port_assign(struct qrtr_sock * ipc,int * port)713 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
714 {
715 	int rc;
716 
717 	if (!*port) {
718 		rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
719 				GFP_KERNEL);
720 	} else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
721 		rc = -EACCES;
722 	} else if (*port == QRTR_PORT_CTRL) {
723 		rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
724 	} else {
725 		rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
726 	}
727 
728 	if (rc == -EBUSY)
729 		return -EADDRINUSE;
730 	else if (rc < 0)
731 		return rc;
732 
733 	sock_hold(&ipc->sk);
734 
735 	return 0;
736 }
737 
738 /* Reset all non-control ports */
qrtr_reset_ports(void)739 static void qrtr_reset_ports(void)
740 {
741 	struct qrtr_sock *ipc;
742 	unsigned long index;
743 
744 	rcu_read_lock();
745 	xa_for_each_start(&qrtr_ports, index, ipc, 1) {
746 		sock_hold(&ipc->sk);
747 		ipc->sk.sk_err = ENETRESET;
748 		ipc->sk.sk_error_report(&ipc->sk);
749 		sock_put(&ipc->sk);
750 	}
751 	rcu_read_unlock();
752 }
753 
754 /* Bind socket to address.
755  *
756  * Socket should be locked upon call.
757  */
__qrtr_bind(struct socket * sock,const struct sockaddr_qrtr * addr,int zapped)758 static int __qrtr_bind(struct socket *sock,
759 		       const struct sockaddr_qrtr *addr, int zapped)
760 {
761 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
762 	struct sock *sk = sock->sk;
763 	int port;
764 	int rc;
765 
766 	/* rebinding ok */
767 	if (!zapped && addr->sq_port == ipc->us.sq_port)
768 		return 0;
769 
770 	port = addr->sq_port;
771 	rc = qrtr_port_assign(ipc, &port);
772 	if (rc)
773 		return rc;
774 
775 	/* unbind previous, if any */
776 	if (!zapped)
777 		qrtr_port_remove(ipc);
778 	ipc->us.sq_port = port;
779 
780 	sock_reset_flag(sk, SOCK_ZAPPED);
781 
782 	/* Notify all open ports about the new controller */
783 	if (port == QRTR_PORT_CTRL)
784 		qrtr_reset_ports();
785 
786 	return 0;
787 }
788 
789 /* Auto bind to an ephemeral port. */
qrtr_autobind(struct socket * sock)790 static int qrtr_autobind(struct socket *sock)
791 {
792 	struct sock *sk = sock->sk;
793 	struct sockaddr_qrtr addr;
794 
795 	if (!sock_flag(sk, SOCK_ZAPPED))
796 		return 0;
797 
798 	addr.sq_family = AF_QIPCRTR;
799 	addr.sq_node = qrtr_local_nid;
800 	addr.sq_port = 0;
801 
802 	return __qrtr_bind(sock, &addr, 1);
803 }
804 
805 /* Bind socket to specified sockaddr. */
qrtr_bind(struct socket * sock,struct sockaddr * saddr,int len)806 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
807 {
808 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
809 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
810 	struct sock *sk = sock->sk;
811 	int rc;
812 
813 	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
814 		return -EINVAL;
815 
816 	if (addr->sq_node != ipc->us.sq_node)
817 		return -EINVAL;
818 
819 	lock_sock(sk);
820 	rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
821 	release_sock(sk);
822 
823 	return rc;
824 }
825 
826 /* Queue packet to local peer socket. */
qrtr_local_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)827 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
828 			      int type, struct sockaddr_qrtr *from,
829 			      struct sockaddr_qrtr *to)
830 {
831 	struct qrtr_sock *ipc;
832 	struct qrtr_cb *cb;
833 
834 	ipc = qrtr_port_lookup(to->sq_port);
835 	if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
836 		if (ipc)
837 			qrtr_port_put(ipc);
838 		kfree_skb(skb);
839 		return -ENODEV;
840 	}
841 
842 	cb = (struct qrtr_cb *)skb->cb;
843 	cb->src_node = from->sq_node;
844 	cb->src_port = from->sq_port;
845 
846 	if (sock_queue_rcv_skb(&ipc->sk, skb)) {
847 		qrtr_port_put(ipc);
848 		kfree_skb(skb);
849 		return -ENOSPC;
850 	}
851 
852 	qrtr_port_put(ipc);
853 
854 	return 0;
855 }
856 
857 /* Queue packet for broadcast. */
qrtr_bcast_enqueue(struct qrtr_node * node,struct sk_buff * skb,int type,struct sockaddr_qrtr * from,struct sockaddr_qrtr * to)858 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
859 			      int type, struct sockaddr_qrtr *from,
860 			      struct sockaddr_qrtr *to)
861 {
862 	struct sk_buff *skbn;
863 
864 	mutex_lock(&qrtr_node_lock);
865 	list_for_each_entry(node, &qrtr_all_nodes, item) {
866 		skbn = skb_clone(skb, GFP_KERNEL);
867 		if (!skbn)
868 			break;
869 		skb_set_owner_w(skbn, skb->sk);
870 		qrtr_node_enqueue(node, skbn, type, from, to);
871 	}
872 	mutex_unlock(&qrtr_node_lock);
873 
874 	qrtr_local_enqueue(NULL, skb, type, from, to);
875 
876 	return 0;
877 }
878 
qrtr_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)879 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
880 {
881 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
882 	int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
883 			  struct sockaddr_qrtr *, struct sockaddr_qrtr *);
884 	__le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
885 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
886 	struct sock *sk = sock->sk;
887 	struct qrtr_node *node;
888 	struct sk_buff *skb;
889 	size_t plen;
890 	u32 type;
891 	int rc;
892 
893 	if (msg->msg_flags & ~(MSG_DONTWAIT))
894 		return -EINVAL;
895 
896 	if (len > 65535)
897 		return -EMSGSIZE;
898 
899 	lock_sock(sk);
900 
901 	if (addr) {
902 		if (msg->msg_namelen < sizeof(*addr)) {
903 			release_sock(sk);
904 			return -EINVAL;
905 		}
906 
907 		if (addr->sq_family != AF_QIPCRTR) {
908 			release_sock(sk);
909 			return -EINVAL;
910 		}
911 
912 		rc = qrtr_autobind(sock);
913 		if (rc) {
914 			release_sock(sk);
915 			return rc;
916 		}
917 	} else if (sk->sk_state == TCP_ESTABLISHED) {
918 		addr = &ipc->peer;
919 	} else {
920 		release_sock(sk);
921 		return -ENOTCONN;
922 	}
923 
924 	node = NULL;
925 	if (addr->sq_node == QRTR_NODE_BCAST) {
926 		if (addr->sq_port != QRTR_PORT_CTRL &&
927 		    qrtr_local_nid != QRTR_NODE_BCAST) {
928 			release_sock(sk);
929 			return -ENOTCONN;
930 		}
931 		enqueue_fn = qrtr_bcast_enqueue;
932 	} else if (addr->sq_node == ipc->us.sq_node) {
933 		enqueue_fn = qrtr_local_enqueue;
934 	} else {
935 		node = qrtr_node_lookup(addr->sq_node);
936 		if (!node) {
937 			release_sock(sk);
938 			return -ECONNRESET;
939 		}
940 		enqueue_fn = qrtr_node_enqueue;
941 	}
942 
943 	plen = (len + 3) & ~3;
944 	skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
945 				  msg->msg_flags & MSG_DONTWAIT, &rc);
946 	if (!skb) {
947 		rc = -ENOMEM;
948 		goto out_node;
949 	}
950 
951 	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
952 
953 	rc = memcpy_from_msg(skb_put(skb, len), msg, len);
954 	if (rc) {
955 		kfree_skb(skb);
956 		goto out_node;
957 	}
958 
959 	if (ipc->us.sq_port == QRTR_PORT_CTRL) {
960 		if (len < 4) {
961 			rc = -EINVAL;
962 			kfree_skb(skb);
963 			goto out_node;
964 		}
965 
966 		/* control messages already require the type as 'command' */
967 		skb_copy_bits(skb, 0, &qrtr_type, 4);
968 	}
969 
970 	type = le32_to_cpu(qrtr_type);
971 	rc = enqueue_fn(node, skb, type, &ipc->us, addr);
972 	if (rc >= 0)
973 		rc = len;
974 
975 out_node:
976 	qrtr_node_release(node);
977 	release_sock(sk);
978 
979 	return rc;
980 }
981 
qrtr_send_resume_tx(struct qrtr_cb * cb)982 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
983 {
984 	struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
985 	struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
986 	struct qrtr_ctrl_pkt *pkt;
987 	struct qrtr_node *node;
988 	struct sk_buff *skb;
989 	int ret;
990 
991 	node = qrtr_node_lookup(remote.sq_node);
992 	if (!node)
993 		return -EINVAL;
994 
995 	skb = qrtr_alloc_ctrl_packet(&pkt);
996 	if (!skb)
997 		return -ENOMEM;
998 
999 	pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1000 	pkt->client.node = cpu_to_le32(cb->dst_node);
1001 	pkt->client.port = cpu_to_le32(cb->dst_port);
1002 
1003 	ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1004 
1005 	qrtr_node_release(node);
1006 
1007 	return ret;
1008 }
1009 
qrtr_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)1010 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1011 			size_t size, int flags)
1012 {
1013 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1014 	struct sock *sk = sock->sk;
1015 	struct sk_buff *skb;
1016 	struct qrtr_cb *cb;
1017 	int copied, rc;
1018 
1019 	lock_sock(sk);
1020 
1021 	if (sock_flag(sk, SOCK_ZAPPED)) {
1022 		release_sock(sk);
1023 		return -EADDRNOTAVAIL;
1024 	}
1025 
1026 	skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1027 				flags & MSG_DONTWAIT, &rc);
1028 	if (!skb) {
1029 		release_sock(sk);
1030 		return rc;
1031 	}
1032 	cb = (struct qrtr_cb *)skb->cb;
1033 
1034 	copied = skb->len;
1035 	if (copied > size) {
1036 		copied = size;
1037 		msg->msg_flags |= MSG_TRUNC;
1038 	}
1039 
1040 	rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1041 	if (rc < 0)
1042 		goto out;
1043 	rc = copied;
1044 
1045 	if (addr) {
1046 		/* There is an anonymous 2-byte hole after sq_family,
1047 		 * make sure to clear it.
1048 		 */
1049 		memset(addr, 0, sizeof(*addr));
1050 
1051 		addr->sq_family = AF_QIPCRTR;
1052 		addr->sq_node = cb->src_node;
1053 		addr->sq_port = cb->src_port;
1054 		msg->msg_namelen = sizeof(*addr);
1055 	}
1056 
1057 out:
1058 	if (cb->confirm_rx)
1059 		qrtr_send_resume_tx(cb);
1060 
1061 	skb_free_datagram(sk, skb);
1062 	release_sock(sk);
1063 
1064 	return rc;
1065 }
1066 
qrtr_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)1067 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1068 			int len, int flags)
1069 {
1070 	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1071 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1072 	struct sock *sk = sock->sk;
1073 	int rc;
1074 
1075 	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1076 		return -EINVAL;
1077 
1078 	lock_sock(sk);
1079 
1080 	sk->sk_state = TCP_CLOSE;
1081 	sock->state = SS_UNCONNECTED;
1082 
1083 	rc = qrtr_autobind(sock);
1084 	if (rc) {
1085 		release_sock(sk);
1086 		return rc;
1087 	}
1088 
1089 	ipc->peer = *addr;
1090 	sock->state = SS_CONNECTED;
1091 	sk->sk_state = TCP_ESTABLISHED;
1092 
1093 	release_sock(sk);
1094 
1095 	return 0;
1096 }
1097 
qrtr_getname(struct socket * sock,struct sockaddr * saddr,int peer)1098 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1099 			int peer)
1100 {
1101 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1102 	struct sockaddr_qrtr qaddr;
1103 	struct sock *sk = sock->sk;
1104 
1105 	lock_sock(sk);
1106 	if (peer) {
1107 		if (sk->sk_state != TCP_ESTABLISHED) {
1108 			release_sock(sk);
1109 			return -ENOTCONN;
1110 		}
1111 
1112 		qaddr = ipc->peer;
1113 	} else {
1114 		qaddr = ipc->us;
1115 	}
1116 	release_sock(sk);
1117 
1118 	qaddr.sq_family = AF_QIPCRTR;
1119 
1120 	memcpy(saddr, &qaddr, sizeof(qaddr));
1121 
1122 	return sizeof(qaddr);
1123 }
1124 
qrtr_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1125 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1126 {
1127 	void __user *argp = (void __user *)arg;
1128 	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1129 	struct sock *sk = sock->sk;
1130 	struct sockaddr_qrtr *sq;
1131 	struct sk_buff *skb;
1132 	struct ifreq ifr;
1133 	long len = 0;
1134 	int rc = 0;
1135 
1136 	lock_sock(sk);
1137 
1138 	switch (cmd) {
1139 	case TIOCOUTQ:
1140 		len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1141 		if (len < 0)
1142 			len = 0;
1143 		rc = put_user(len, (int __user *)argp);
1144 		break;
1145 	case TIOCINQ:
1146 		skb = skb_peek(&sk->sk_receive_queue);
1147 		if (skb)
1148 			len = skb->len;
1149 		rc = put_user(len, (int __user *)argp);
1150 		break;
1151 	case SIOCGIFADDR:
1152 		if (copy_from_user(&ifr, argp, sizeof(ifr))) {
1153 			rc = -EFAULT;
1154 			break;
1155 		}
1156 
1157 		sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1158 		*sq = ipc->us;
1159 		if (copy_to_user(argp, &ifr, sizeof(ifr))) {
1160 			rc = -EFAULT;
1161 			break;
1162 		}
1163 		break;
1164 	case SIOCADDRT:
1165 	case SIOCDELRT:
1166 	case SIOCSIFADDR:
1167 	case SIOCGIFDSTADDR:
1168 	case SIOCSIFDSTADDR:
1169 	case SIOCGIFBRDADDR:
1170 	case SIOCSIFBRDADDR:
1171 	case SIOCGIFNETMASK:
1172 	case SIOCSIFNETMASK:
1173 		rc = -EINVAL;
1174 		break;
1175 	default:
1176 		rc = -ENOIOCTLCMD;
1177 		break;
1178 	}
1179 
1180 	release_sock(sk);
1181 
1182 	return rc;
1183 }
1184 
qrtr_release(struct socket * sock)1185 static int qrtr_release(struct socket *sock)
1186 {
1187 	struct sock *sk = sock->sk;
1188 	struct qrtr_sock *ipc;
1189 
1190 	if (!sk)
1191 		return 0;
1192 
1193 	lock_sock(sk);
1194 
1195 	ipc = qrtr_sk(sk);
1196 	sk->sk_shutdown = SHUTDOWN_MASK;
1197 	if (!sock_flag(sk, SOCK_DEAD))
1198 		sk->sk_state_change(sk);
1199 
1200 	sock_set_flag(sk, SOCK_DEAD);
1201 	sock_orphan(sk);
1202 	sock->sk = NULL;
1203 
1204 	if (!sock_flag(sk, SOCK_ZAPPED))
1205 		qrtr_port_remove(ipc);
1206 
1207 	skb_queue_purge(&sk->sk_receive_queue);
1208 
1209 	release_sock(sk);
1210 	sock_put(sk);
1211 
1212 	return 0;
1213 }
1214 
1215 static const struct proto_ops qrtr_proto_ops = {
1216 	.owner		= THIS_MODULE,
1217 	.family		= AF_QIPCRTR,
1218 	.bind		= qrtr_bind,
1219 	.connect	= qrtr_connect,
1220 	.socketpair	= sock_no_socketpair,
1221 	.accept		= sock_no_accept,
1222 	.listen		= sock_no_listen,
1223 	.sendmsg	= qrtr_sendmsg,
1224 	.recvmsg	= qrtr_recvmsg,
1225 	.getname	= qrtr_getname,
1226 	.ioctl		= qrtr_ioctl,
1227 	.gettstamp	= sock_gettstamp,
1228 	.poll		= datagram_poll,
1229 	.shutdown	= sock_no_shutdown,
1230 	.release	= qrtr_release,
1231 	.mmap		= sock_no_mmap,
1232 	.sendpage	= sock_no_sendpage,
1233 };
1234 
1235 static struct proto qrtr_proto = {
1236 	.name		= "QIPCRTR",
1237 	.owner		= THIS_MODULE,
1238 	.obj_size	= sizeof(struct qrtr_sock),
1239 };
1240 
qrtr_create(struct net * net,struct socket * sock,int protocol,int kern)1241 static int qrtr_create(struct net *net, struct socket *sock,
1242 		       int protocol, int kern)
1243 {
1244 	struct qrtr_sock *ipc;
1245 	struct sock *sk;
1246 
1247 	if (sock->type != SOCK_DGRAM)
1248 		return -EPROTOTYPE;
1249 
1250 	sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1251 	if (!sk)
1252 		return -ENOMEM;
1253 
1254 	sock_set_flag(sk, SOCK_ZAPPED);
1255 
1256 	sock_init_data(sock, sk);
1257 	sock->ops = &qrtr_proto_ops;
1258 
1259 	ipc = qrtr_sk(sk);
1260 	ipc->us.sq_family = AF_QIPCRTR;
1261 	ipc->us.sq_node = qrtr_local_nid;
1262 	ipc->us.sq_port = 0;
1263 
1264 	return 0;
1265 }
1266 
1267 static const struct net_proto_family qrtr_family = {
1268 	.owner	= THIS_MODULE,
1269 	.family	= AF_QIPCRTR,
1270 	.create	= qrtr_create,
1271 };
1272 
qrtr_proto_init(void)1273 static int __init qrtr_proto_init(void)
1274 {
1275 	int rc;
1276 
1277 	rc = proto_register(&qrtr_proto, 1);
1278 	if (rc)
1279 		return rc;
1280 
1281 	rc = sock_register(&qrtr_family);
1282 	if (rc) {
1283 		proto_unregister(&qrtr_proto);
1284 		return rc;
1285 	}
1286 
1287 	qrtr_ns_init();
1288 
1289 	return rc;
1290 }
1291 postcore_initcall(qrtr_proto_init);
1292 
qrtr_proto_fini(void)1293 static void __exit qrtr_proto_fini(void)
1294 {
1295 	qrtr_ns_remove();
1296 	sock_unregister(qrtr_family.family);
1297 	proto_unregister(&qrtr_proto);
1298 }
1299 module_exit(qrtr_proto_fini);
1300 
1301 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1302 MODULE_LICENSE("GPL v2");
1303 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1304