1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET4: Implementation of BSD Unix domain sockets.
4 *
5 * Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk>
6 *
7 * Fixes:
8 * Linus Torvalds : Assorted bug cures.
9 * Niibe Yutaka : async I/O support.
10 * Carsten Paeth : PF_UNIX check, address fixes.
11 * Alan Cox : Limit size of allocated blocks.
12 * Alan Cox : Fixed the stupid socketpair bug.
13 * Alan Cox : BSD compatibility fine tuning.
14 * Alan Cox : Fixed a bug in connect when interrupted.
15 * Alan Cox : Sorted out a proper draft version of
16 * file descriptor passing hacked up from
17 * Mike Shaver's work.
18 * Marty Leisner : Fixes to fd passing
19 * Nick Nevin : recvmsg bugfix.
20 * Alan Cox : Started proper garbage collector
21 * Heiko EiBfeldt : Missing verify_area check
22 * Alan Cox : Started POSIXisms
23 * Andreas Schwab : Replace inode by dentry for proper
24 * reference counting
25 * Kirk Petersen : Made this a module
26 * Christoph Rohland : Elegant non-blocking accept/connect algorithm.
27 * Lots of bug fixes.
28 * Alexey Kuznetosv : Repaired (I hope) bugs introduces
29 * by above two patches.
30 * Andrea Arcangeli : If possible we block in connect(2)
31 * if the max backlog of the listen socket
32 * is been reached. This won't break
33 * old apps and it will avoid huge amount
34 * of socks hashed (this for unix_gc()
35 * performances reasons).
36 * Security fix that limits the max
37 * number of socks to 2*max_files and
38 * the number of skb queueable in the
39 * dgram receiver.
40 * Artur Skawina : Hash function optimizations
41 * Alexey Kuznetsov : Full scale SMP. Lot of bugs are introduced 8)
42 * Malcolm Beattie : Set peercred for socketpair
43 * Michal Ostrowski : Module initialization cleanup.
44 * Arnaldo C. Melo : Remove MOD_{INC,DEC}_USE_COUNT,
45 * the core infrastructure is doing that
46 * for all net proto families now (2.5.69+)
47 *
48 * Known differences from reference BSD that was tested:
49 *
50 * [TO FIX]
51 * ECONNREFUSED is not returned from one end of a connected() socket to the
52 * other the moment one end closes.
53 * fstat() doesn't return st_dev=0, and give the blksize as high water mark
54 * and a fake inode identifier (nor the BSD first socket fstat twice bug).
55 * [NOT TO FIX]
56 * accept() returns a path name even if the connecting socket has closed
57 * in the meantime (BSD loses the path and gives up).
58 * accept() returns 0 length path for an unbound connector. BSD returns 16
59 * and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60 * socketpair(...SOCK_RAW..) doesn't panic the kernel.
61 * BSD af_unix apparently has connect forgetting to block properly.
62 * (need to check this with the POSIX spec in detail)
63 *
64 * Differences from 2.0.0-11-... (ANK)
65 * Bug fixes and improvements.
66 * - client shutdown killed server socket.
67 * - removed all useless cli/sti pairs.
68 *
69 * Semantic changes/extensions.
70 * - generic control message passing.
71 * - SCM_CREDENTIALS control message.
72 * - "Abstract" (not FS based) socket bindings.
73 * Abstract names are sequences of bytes (not zero terminated)
74 * started by 0, so that this name space does not intersect
75 * with BSD names.
76 */
77
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/termios.h>
93 #include <linux/sockios.h>
94 #include <linux/net.h>
95 #include <linux/in.h>
96 #include <linux/fs.h>
97 #include <linux/slab.h>
98 #include <linux/uaccess.h>
99 #include <linux/skbuff.h>
100 #include <linux/netdevice.h>
101 #include <net/net_namespace.h>
102 #include <net/sock.h>
103 #include <net/tcp_states.h>
104 #include <net/af_unix.h>
105 #include <linux/proc_fs.h>
106 #include <linux/seq_file.h>
107 #include <net/scm.h>
108 #include <linux/init.h>
109 #include <linux/poll.h>
110 #include <linux/rtnetlink.h>
111 #include <linux/mount.h>
112 #include <net/checksum.h>
113 #include <linux/security.h>
114 #include <linux/freezer.h>
115 #include <linux/file.h>
116
117 #include "scm.h"
118
119 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE];
120 EXPORT_SYMBOL_GPL(unix_socket_table);
121 DEFINE_SPINLOCK(unix_table_lock);
122 EXPORT_SYMBOL_GPL(unix_table_lock);
123 static atomic_long_t unix_nr_socks;
124
125
unix_sockets_unbound(void * addr)126 static struct hlist_head *unix_sockets_unbound(void *addr)
127 {
128 unsigned long hash = (unsigned long)addr;
129
130 hash ^= hash >> 16;
131 hash ^= hash >> 8;
132 hash %= UNIX_HASH_SIZE;
133 return &unix_socket_table[UNIX_HASH_SIZE + hash];
134 }
135
136 #define UNIX_ABSTRACT(sk) (unix_sk(sk)->addr->hash < UNIX_HASH_SIZE)
137
138 #ifdef CONFIG_SECURITY_NETWORK
unix_get_secdata(struct scm_cookie * scm,struct sk_buff * skb)139 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
140 {
141 UNIXCB(skb).secid = scm->secid;
142 }
143
unix_set_secdata(struct scm_cookie * scm,struct sk_buff * skb)144 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
145 {
146 scm->secid = UNIXCB(skb).secid;
147 }
148
unix_secdata_eq(struct scm_cookie * scm,struct sk_buff * skb)149 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
150 {
151 return (scm->secid == UNIXCB(skb).secid);
152 }
153 #else
unix_get_secdata(struct scm_cookie * scm,struct sk_buff * skb)154 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
155 { }
156
unix_set_secdata(struct scm_cookie * scm,struct sk_buff * skb)157 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
158 { }
159
unix_secdata_eq(struct scm_cookie * scm,struct sk_buff * skb)160 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
161 {
162 return true;
163 }
164 #endif /* CONFIG_SECURITY_NETWORK */
165
166 /*
167 * SMP locking strategy:
168 * hash table is protected with spinlock unix_table_lock
169 * each socket state is protected by separate spin lock.
170 */
171
unix_hash_fold(__wsum n)172 static inline unsigned int unix_hash_fold(__wsum n)
173 {
174 unsigned int hash = (__force unsigned int)csum_fold(n);
175
176 hash ^= hash>>8;
177 return hash&(UNIX_HASH_SIZE-1);
178 }
179
180 #define unix_peer(sk) (unix_sk(sk)->peer)
181
unix_our_peer(struct sock * sk,struct sock * osk)182 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
183 {
184 return unix_peer(osk) == sk;
185 }
186
unix_may_send(struct sock * sk,struct sock * osk)187 static inline int unix_may_send(struct sock *sk, struct sock *osk)
188 {
189 return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
190 }
191
unix_recvq_full(const struct sock * sk)192 static inline int unix_recvq_full(const struct sock *sk)
193 {
194 return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
195 }
196
unix_recvq_full_lockless(const struct sock * sk)197 static inline int unix_recvq_full_lockless(const struct sock *sk)
198 {
199 return skb_queue_len_lockless(&sk->sk_receive_queue) >
200 READ_ONCE(sk->sk_max_ack_backlog);
201 }
202
unix_peer_get(struct sock * s)203 struct sock *unix_peer_get(struct sock *s)
204 {
205 struct sock *peer;
206
207 unix_state_lock(s);
208 peer = unix_peer(s);
209 if (peer)
210 sock_hold(peer);
211 unix_state_unlock(s);
212 return peer;
213 }
214 EXPORT_SYMBOL_GPL(unix_peer_get);
215
unix_release_addr(struct unix_address * addr)216 static inline void unix_release_addr(struct unix_address *addr)
217 {
218 if (refcount_dec_and_test(&addr->refcnt))
219 kfree(addr);
220 }
221
222 /*
223 * Check unix socket name:
224 * - should be not zero length.
225 * - if started by not zero, should be NULL terminated (FS object)
226 * - if started by zero, it is abstract name.
227 */
228
unix_mkname(struct sockaddr_un * sunaddr,int len,unsigned int * hashp)229 static int unix_mkname(struct sockaddr_un *sunaddr, int len, unsigned int *hashp)
230 {
231 *hashp = 0;
232
233 if (len <= sizeof(short) || len > sizeof(*sunaddr))
234 return -EINVAL;
235 if (!sunaddr || sunaddr->sun_family != AF_UNIX)
236 return -EINVAL;
237 if (sunaddr->sun_path[0]) {
238 /*
239 * This may look like an off by one error but it is a bit more
240 * subtle. 108 is the longest valid AF_UNIX path for a binding.
241 * sun_path[108] doesn't as such exist. However in kernel space
242 * we are guaranteed that it is a valid memory location in our
243 * kernel address buffer.
244 */
245 ((char *)sunaddr)[len] = 0;
246 len = strlen(sunaddr->sun_path)+1+sizeof(short);
247 return len;
248 }
249
250 *hashp = unix_hash_fold(csum_partial(sunaddr, len, 0));
251 return len;
252 }
253
__unix_remove_socket(struct sock * sk)254 static void __unix_remove_socket(struct sock *sk)
255 {
256 sk_del_node_init(sk);
257 }
258
__unix_insert_socket(struct hlist_head * list,struct sock * sk)259 static void __unix_insert_socket(struct hlist_head *list, struct sock *sk)
260 {
261 WARN_ON(!sk_unhashed(sk));
262 sk_add_node(sk, list);
263 }
264
unix_remove_socket(struct sock * sk)265 static inline void unix_remove_socket(struct sock *sk)
266 {
267 spin_lock(&unix_table_lock);
268 __unix_remove_socket(sk);
269 spin_unlock(&unix_table_lock);
270 }
271
unix_insert_socket(struct hlist_head * list,struct sock * sk)272 static inline void unix_insert_socket(struct hlist_head *list, struct sock *sk)
273 {
274 spin_lock(&unix_table_lock);
275 __unix_insert_socket(list, sk);
276 spin_unlock(&unix_table_lock);
277 }
278
__unix_find_socket_byname(struct net * net,struct sockaddr_un * sunname,int len,int type,unsigned int hash)279 static struct sock *__unix_find_socket_byname(struct net *net,
280 struct sockaddr_un *sunname,
281 int len, int type, unsigned int hash)
282 {
283 struct sock *s;
284
285 sk_for_each(s, &unix_socket_table[hash ^ type]) {
286 struct unix_sock *u = unix_sk(s);
287
288 if (!net_eq(sock_net(s), net))
289 continue;
290
291 if (u->addr->len == len &&
292 !memcmp(u->addr->name, sunname, len))
293 return s;
294 }
295 return NULL;
296 }
297
unix_find_socket_byname(struct net * net,struct sockaddr_un * sunname,int len,int type,unsigned int hash)298 static inline struct sock *unix_find_socket_byname(struct net *net,
299 struct sockaddr_un *sunname,
300 int len, int type,
301 unsigned int hash)
302 {
303 struct sock *s;
304
305 spin_lock(&unix_table_lock);
306 s = __unix_find_socket_byname(net, sunname, len, type, hash);
307 if (s)
308 sock_hold(s);
309 spin_unlock(&unix_table_lock);
310 return s;
311 }
312
unix_find_socket_byinode(struct inode * i)313 static struct sock *unix_find_socket_byinode(struct inode *i)
314 {
315 struct sock *s;
316
317 spin_lock(&unix_table_lock);
318 sk_for_each(s,
319 &unix_socket_table[i->i_ino & (UNIX_HASH_SIZE - 1)]) {
320 struct dentry *dentry = unix_sk(s)->path.dentry;
321
322 if (dentry && d_backing_inode(dentry) == i) {
323 sock_hold(s);
324 goto found;
325 }
326 }
327 s = NULL;
328 found:
329 spin_unlock(&unix_table_lock);
330 return s;
331 }
332
333 /* Support code for asymmetrically connected dgram sockets
334 *
335 * If a datagram socket is connected to a socket not itself connected
336 * to the first socket (eg, /dev/log), clients may only enqueue more
337 * messages if the present receive queue of the server socket is not
338 * "too large". This means there's a second writeability condition
339 * poll and sendmsg need to test. The dgram recv code will do a wake
340 * up on the peer_wait wait queue of a socket upon reception of a
341 * datagram which needs to be propagated to sleeping would-be writers
342 * since these might not have sent anything so far. This can't be
343 * accomplished via poll_wait because the lifetime of the server
344 * socket might be less than that of its clients if these break their
345 * association with it or if the server socket is closed while clients
346 * are still connected to it and there's no way to inform "a polling
347 * implementation" that it should let go of a certain wait queue
348 *
349 * In order to propagate a wake up, a wait_queue_entry_t of the client
350 * socket is enqueued on the peer_wait queue of the server socket
351 * whose wake function does a wake_up on the ordinary client socket
352 * wait queue. This connection is established whenever a write (or
353 * poll for write) hit the flow control condition and broken when the
354 * association to the server socket is dissolved or after a wake up
355 * was relayed.
356 */
357
unix_dgram_peer_wake_relay(wait_queue_entry_t * q,unsigned mode,int flags,void * key)358 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
359 void *key)
360 {
361 struct unix_sock *u;
362 wait_queue_head_t *u_sleep;
363
364 u = container_of(q, struct unix_sock, peer_wake);
365
366 __remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
367 q);
368 u->peer_wake.private = NULL;
369
370 /* relaying can only happen while the wq still exists */
371 u_sleep = sk_sleep(&u->sk);
372 if (u_sleep)
373 wake_up_interruptible_poll(u_sleep, key_to_poll(key));
374
375 return 0;
376 }
377
unix_dgram_peer_wake_connect(struct sock * sk,struct sock * other)378 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
379 {
380 struct unix_sock *u, *u_other;
381 int rc;
382
383 u = unix_sk(sk);
384 u_other = unix_sk(other);
385 rc = 0;
386 spin_lock(&u_other->peer_wait.lock);
387
388 if (!u->peer_wake.private) {
389 u->peer_wake.private = other;
390 __add_wait_queue(&u_other->peer_wait, &u->peer_wake);
391
392 rc = 1;
393 }
394
395 spin_unlock(&u_other->peer_wait.lock);
396 return rc;
397 }
398
unix_dgram_peer_wake_disconnect(struct sock * sk,struct sock * other)399 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
400 struct sock *other)
401 {
402 struct unix_sock *u, *u_other;
403
404 u = unix_sk(sk);
405 u_other = unix_sk(other);
406 spin_lock(&u_other->peer_wait.lock);
407
408 if (u->peer_wake.private == other) {
409 __remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
410 u->peer_wake.private = NULL;
411 }
412
413 spin_unlock(&u_other->peer_wait.lock);
414 }
415
unix_dgram_peer_wake_disconnect_wakeup(struct sock * sk,struct sock * other)416 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
417 struct sock *other)
418 {
419 unix_dgram_peer_wake_disconnect(sk, other);
420 wake_up_interruptible_poll(sk_sleep(sk),
421 EPOLLOUT |
422 EPOLLWRNORM |
423 EPOLLWRBAND);
424 }
425
426 /* preconditions:
427 * - unix_peer(sk) == other
428 * - association is stable
429 */
unix_dgram_peer_wake_me(struct sock * sk,struct sock * other)430 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
431 {
432 int connected;
433
434 connected = unix_dgram_peer_wake_connect(sk, other);
435
436 /* If other is SOCK_DEAD, we want to make sure we signal
437 * POLLOUT, such that a subsequent write() can get a
438 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
439 * to other and its full, we will hang waiting for POLLOUT.
440 */
441 if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD))
442 return 1;
443
444 if (connected)
445 unix_dgram_peer_wake_disconnect(sk, other);
446
447 return 0;
448 }
449
unix_writable(const struct sock * sk)450 static int unix_writable(const struct sock *sk)
451 {
452 return sk->sk_state != TCP_LISTEN &&
453 (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
454 }
455
unix_write_space(struct sock * sk)456 static void unix_write_space(struct sock *sk)
457 {
458 struct socket_wq *wq;
459
460 rcu_read_lock();
461 if (unix_writable(sk)) {
462 wq = rcu_dereference(sk->sk_wq);
463 if (skwq_has_sleeper(wq))
464 wake_up_interruptible_sync_poll(&wq->wait,
465 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
466 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
467 }
468 rcu_read_unlock();
469 }
470
471 /* When dgram socket disconnects (or changes its peer), we clear its receive
472 * queue of packets arrived from previous peer. First, it allows to do
473 * flow control based only on wmem_alloc; second, sk connected to peer
474 * may receive messages only from that peer. */
unix_dgram_disconnected(struct sock * sk,struct sock * other)475 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
476 {
477 if (!skb_queue_empty(&sk->sk_receive_queue)) {
478 skb_queue_purge(&sk->sk_receive_queue);
479 wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
480
481 /* If one link of bidirectional dgram pipe is disconnected,
482 * we signal error. Messages are lost. Do not make this,
483 * when peer was not connected to us.
484 */
485 if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
486 other->sk_err = ECONNRESET;
487 other->sk_error_report(other);
488 }
489 }
490 }
491
unix_sock_destructor(struct sock * sk)492 static void unix_sock_destructor(struct sock *sk)
493 {
494 struct unix_sock *u = unix_sk(sk);
495
496 skb_queue_purge(&sk->sk_receive_queue);
497
498 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
499 WARN_ON(!sk_unhashed(sk));
500 WARN_ON(sk->sk_socket);
501 if (!sock_flag(sk, SOCK_DEAD)) {
502 pr_info("Attempt to release alive unix socket: %p\n", sk);
503 return;
504 }
505
506 if (u->addr)
507 unix_release_addr(u->addr);
508
509 atomic_long_dec(&unix_nr_socks);
510 local_bh_disable();
511 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
512 local_bh_enable();
513 #ifdef UNIX_REFCNT_DEBUG
514 pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
515 atomic_long_read(&unix_nr_socks));
516 #endif
517 }
518
unix_release_sock(struct sock * sk,int embrion)519 static void unix_release_sock(struct sock *sk, int embrion)
520 {
521 struct unix_sock *u = unix_sk(sk);
522 struct path path;
523 struct sock *skpair;
524 struct sk_buff *skb;
525 int state;
526
527 unix_remove_socket(sk);
528
529 /* Clear state */
530 unix_state_lock(sk);
531 sock_orphan(sk);
532 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
533 path = u->path;
534 u->path.dentry = NULL;
535 u->path.mnt = NULL;
536 state = sk->sk_state;
537 sk->sk_state = TCP_CLOSE;
538
539 skpair = unix_peer(sk);
540 unix_peer(sk) = NULL;
541
542 unix_state_unlock(sk);
543
544 wake_up_interruptible_all(&u->peer_wait);
545
546 if (skpair != NULL) {
547 if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
548 unix_state_lock(skpair);
549 /* No more writes */
550 WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK);
551 if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
552 skpair->sk_err = ECONNRESET;
553 unix_state_unlock(skpair);
554 skpair->sk_state_change(skpair);
555 sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
556 }
557
558 unix_dgram_peer_wake_disconnect(sk, skpair);
559 sock_put(skpair); /* It may now die */
560 }
561
562 /* Try to flush out this socket. Throw out buffers at least */
563
564 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
565 if (state == TCP_LISTEN)
566 unix_release_sock(skb->sk, 1);
567 /* passed fds are erased in the kfree_skb hook */
568 UNIXCB(skb).consumed = skb->len;
569 kfree_skb(skb);
570 }
571
572 if (path.dentry)
573 path_put(&path);
574
575 sock_put(sk);
576
577 /* ---- Socket is dead now and most probably destroyed ---- */
578
579 /*
580 * Fixme: BSD difference: In BSD all sockets connected to us get
581 * ECONNRESET and we die on the spot. In Linux we behave
582 * like files and pipes do and wait for the last
583 * dereference.
584 *
585 * Can't we simply set sock->err?
586 *
587 * What the above comment does talk about? --ANK(980817)
588 */
589
590 if (unix_tot_inflight)
591 unix_gc(); /* Garbage collect fds */
592 }
593
init_peercred(struct sock * sk)594 static void init_peercred(struct sock *sk)
595 {
596 const struct cred *old_cred;
597 struct pid *old_pid;
598
599 spin_lock(&sk->sk_peer_lock);
600 old_pid = sk->sk_peer_pid;
601 old_cred = sk->sk_peer_cred;
602 sk->sk_peer_pid = get_pid(task_tgid(current));
603 sk->sk_peer_cred = get_current_cred();
604 spin_unlock(&sk->sk_peer_lock);
605
606 put_pid(old_pid);
607 put_cred(old_cred);
608 }
609
copy_peercred(struct sock * sk,struct sock * peersk)610 static void copy_peercred(struct sock *sk, struct sock *peersk)
611 {
612 const struct cred *old_cred;
613 struct pid *old_pid;
614
615 if (sk < peersk) {
616 spin_lock(&sk->sk_peer_lock);
617 spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
618 } else {
619 spin_lock(&peersk->sk_peer_lock);
620 spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
621 }
622 old_pid = sk->sk_peer_pid;
623 old_cred = sk->sk_peer_cred;
624 sk->sk_peer_pid = get_pid(peersk->sk_peer_pid);
625 sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
626
627 spin_unlock(&sk->sk_peer_lock);
628 spin_unlock(&peersk->sk_peer_lock);
629
630 put_pid(old_pid);
631 put_cred(old_cred);
632 }
633
unix_listen(struct socket * sock,int backlog)634 static int unix_listen(struct socket *sock, int backlog)
635 {
636 int err;
637 struct sock *sk = sock->sk;
638 struct unix_sock *u = unix_sk(sk);
639
640 err = -EOPNOTSUPP;
641 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
642 goto out; /* Only stream/seqpacket sockets accept */
643 err = -EINVAL;
644 if (!u->addr)
645 goto out; /* No listens on an unbound socket */
646 unix_state_lock(sk);
647 if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
648 goto out_unlock;
649 if (backlog > sk->sk_max_ack_backlog)
650 wake_up_interruptible_all(&u->peer_wait);
651 sk->sk_max_ack_backlog = backlog;
652 sk->sk_state = TCP_LISTEN;
653 /* set credentials so connect can copy them */
654 init_peercred(sk);
655 err = 0;
656
657 out_unlock:
658 unix_state_unlock(sk);
659 out:
660 return err;
661 }
662
663 static int unix_release(struct socket *);
664 static int unix_bind(struct socket *, struct sockaddr *, int);
665 static int unix_stream_connect(struct socket *, struct sockaddr *,
666 int addr_len, int flags);
667 static int unix_socketpair(struct socket *, struct socket *);
668 static int unix_accept(struct socket *, struct socket *, int, bool);
669 static int unix_getname(struct socket *, struct sockaddr *, int);
670 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
671 static __poll_t unix_dgram_poll(struct file *, struct socket *,
672 poll_table *);
673 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
674 #ifdef CONFIG_COMPAT
675 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
676 #endif
677 static int unix_shutdown(struct socket *, int);
678 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
679 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
680 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset,
681 size_t size, int flags);
682 static ssize_t unix_stream_splice_read(struct socket *, loff_t *ppos,
683 struct pipe_inode_info *, size_t size,
684 unsigned int flags);
685 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
686 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
687 static int unix_dgram_connect(struct socket *, struct sockaddr *,
688 int, int);
689 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
690 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
691 int);
692
unix_set_peek_off(struct sock * sk,int val)693 static int unix_set_peek_off(struct sock *sk, int val)
694 {
695 struct unix_sock *u = unix_sk(sk);
696
697 if (mutex_lock_interruptible(&u->iolock))
698 return -EINTR;
699
700 WRITE_ONCE(sk->sk_peek_off, val);
701 mutex_unlock(&u->iolock);
702
703 return 0;
704 }
705
706 #ifdef CONFIG_PROC_FS
unix_show_fdinfo(struct seq_file * m,struct socket * sock)707 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
708 {
709 struct sock *sk = sock->sk;
710 struct unix_sock *u;
711
712 if (sk) {
713 u = unix_sk(sock->sk);
714 seq_printf(m, "scm_fds: %u\n",
715 atomic_read(&u->scm_stat.nr_fds));
716 }
717 }
718 #else
719 #define unix_show_fdinfo NULL
720 #endif
721
722 static const struct proto_ops unix_stream_ops = {
723 .family = PF_UNIX,
724 .owner = THIS_MODULE,
725 .release = unix_release,
726 .bind = unix_bind,
727 .connect = unix_stream_connect,
728 .socketpair = unix_socketpair,
729 .accept = unix_accept,
730 .getname = unix_getname,
731 .poll = unix_poll,
732 .ioctl = unix_ioctl,
733 #ifdef CONFIG_COMPAT
734 .compat_ioctl = unix_compat_ioctl,
735 #endif
736 .listen = unix_listen,
737 .shutdown = unix_shutdown,
738 .sendmsg = unix_stream_sendmsg,
739 .recvmsg = unix_stream_recvmsg,
740 .mmap = sock_no_mmap,
741 .sendpage = unix_stream_sendpage,
742 .splice_read = unix_stream_splice_read,
743 .set_peek_off = unix_set_peek_off,
744 .show_fdinfo = unix_show_fdinfo,
745 };
746
747 static const struct proto_ops unix_dgram_ops = {
748 .family = PF_UNIX,
749 .owner = THIS_MODULE,
750 .release = unix_release,
751 .bind = unix_bind,
752 .connect = unix_dgram_connect,
753 .socketpair = unix_socketpair,
754 .accept = sock_no_accept,
755 .getname = unix_getname,
756 .poll = unix_dgram_poll,
757 .ioctl = unix_ioctl,
758 #ifdef CONFIG_COMPAT
759 .compat_ioctl = unix_compat_ioctl,
760 #endif
761 .listen = sock_no_listen,
762 .shutdown = unix_shutdown,
763 .sendmsg = unix_dgram_sendmsg,
764 .recvmsg = unix_dgram_recvmsg,
765 .mmap = sock_no_mmap,
766 .sendpage = sock_no_sendpage,
767 .set_peek_off = unix_set_peek_off,
768 .show_fdinfo = unix_show_fdinfo,
769 };
770
771 static const struct proto_ops unix_seqpacket_ops = {
772 .family = PF_UNIX,
773 .owner = THIS_MODULE,
774 .release = unix_release,
775 .bind = unix_bind,
776 .connect = unix_stream_connect,
777 .socketpair = unix_socketpair,
778 .accept = unix_accept,
779 .getname = unix_getname,
780 .poll = unix_dgram_poll,
781 .ioctl = unix_ioctl,
782 #ifdef CONFIG_COMPAT
783 .compat_ioctl = unix_compat_ioctl,
784 #endif
785 .listen = unix_listen,
786 .shutdown = unix_shutdown,
787 .sendmsg = unix_seqpacket_sendmsg,
788 .recvmsg = unix_seqpacket_recvmsg,
789 .mmap = sock_no_mmap,
790 .sendpage = sock_no_sendpage,
791 .set_peek_off = unix_set_peek_off,
792 .show_fdinfo = unix_show_fdinfo,
793 };
794
795 static struct proto unix_proto = {
796 .name = "UNIX",
797 .owner = THIS_MODULE,
798 .obj_size = sizeof(struct unix_sock),
799 };
800
unix_create1(struct net * net,struct socket * sock,int kern)801 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern)
802 {
803 struct sock *sk = NULL;
804 struct unix_sock *u;
805
806 atomic_long_inc(&unix_nr_socks);
807 if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files())
808 goto out;
809
810 sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_proto, kern);
811 if (!sk)
812 goto out;
813
814 sock_init_data(sock, sk);
815
816 sk->sk_allocation = GFP_KERNEL_ACCOUNT;
817 sk->sk_write_space = unix_write_space;
818 sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen;
819 sk->sk_destruct = unix_sock_destructor;
820 u = unix_sk(sk);
821 u->path.dentry = NULL;
822 u->path.mnt = NULL;
823 spin_lock_init(&u->lock);
824 atomic_long_set(&u->inflight, 0);
825 INIT_LIST_HEAD(&u->link);
826 mutex_init(&u->iolock); /* single task reading lock */
827 mutex_init(&u->bindlock); /* single task binding lock */
828 init_waitqueue_head(&u->peer_wait);
829 init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
830 memset(&u->scm_stat, 0, sizeof(struct scm_stat));
831 unix_insert_socket(unix_sockets_unbound(sk), sk);
832 out:
833 if (sk == NULL)
834 atomic_long_dec(&unix_nr_socks);
835 else {
836 local_bh_disable();
837 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
838 local_bh_enable();
839 }
840 return sk;
841 }
842
unix_create(struct net * net,struct socket * sock,int protocol,int kern)843 static int unix_create(struct net *net, struct socket *sock, int protocol,
844 int kern)
845 {
846 if (protocol && protocol != PF_UNIX)
847 return -EPROTONOSUPPORT;
848
849 sock->state = SS_UNCONNECTED;
850
851 switch (sock->type) {
852 case SOCK_STREAM:
853 sock->ops = &unix_stream_ops;
854 break;
855 /*
856 * Believe it or not BSD has AF_UNIX, SOCK_RAW though
857 * nothing uses it.
858 */
859 case SOCK_RAW:
860 sock->type = SOCK_DGRAM;
861 fallthrough;
862 case SOCK_DGRAM:
863 sock->ops = &unix_dgram_ops;
864 break;
865 case SOCK_SEQPACKET:
866 sock->ops = &unix_seqpacket_ops;
867 break;
868 default:
869 return -ESOCKTNOSUPPORT;
870 }
871
872 return unix_create1(net, sock, kern) ? 0 : -ENOMEM;
873 }
874
unix_release(struct socket * sock)875 static int unix_release(struct socket *sock)
876 {
877 struct sock *sk = sock->sk;
878
879 if (!sk)
880 return 0;
881
882 unix_release_sock(sk, 0);
883 sock->sk = NULL;
884
885 return 0;
886 }
887
unix_autobind(struct socket * sock)888 static int unix_autobind(struct socket *sock)
889 {
890 struct sock *sk = sock->sk;
891 struct net *net = sock_net(sk);
892 struct unix_sock *u = unix_sk(sk);
893 static u32 ordernum = 1;
894 struct unix_address *addr;
895 int err;
896 unsigned int retries = 0;
897
898 err = mutex_lock_interruptible(&u->bindlock);
899 if (err)
900 return err;
901
902 if (u->addr)
903 goto out;
904
905 err = -ENOMEM;
906 addr = kzalloc(sizeof(*addr) + sizeof(short) + 16, GFP_KERNEL);
907 if (!addr)
908 goto out;
909
910 addr->name->sun_family = AF_UNIX;
911 refcount_set(&addr->refcnt, 1);
912
913 retry:
914 addr->len = sprintf(addr->name->sun_path+1, "%05x", ordernum) + 1 + sizeof(short);
915 addr->hash = unix_hash_fold(csum_partial(addr->name, addr->len, 0));
916
917 spin_lock(&unix_table_lock);
918 ordernum = (ordernum+1)&0xFFFFF;
919
920 if (__unix_find_socket_byname(net, addr->name, addr->len, sock->type,
921 addr->hash)) {
922 spin_unlock(&unix_table_lock);
923 /*
924 * __unix_find_socket_byname() may take long time if many names
925 * are already in use.
926 */
927 cond_resched();
928 /* Give up if all names seems to be in use. */
929 if (retries++ == 0xFFFFF) {
930 err = -ENOSPC;
931 kfree(addr);
932 goto out;
933 }
934 goto retry;
935 }
936 addr->hash ^= sk->sk_type;
937
938 __unix_remove_socket(sk);
939 smp_store_release(&u->addr, addr);
940 __unix_insert_socket(&unix_socket_table[addr->hash], sk);
941 spin_unlock(&unix_table_lock);
942 err = 0;
943
944 out: mutex_unlock(&u->bindlock);
945 return err;
946 }
947
unix_find_other(struct net * net,struct sockaddr_un * sunname,int len,int type,unsigned int hash,int * error)948 static struct sock *unix_find_other(struct net *net,
949 struct sockaddr_un *sunname, int len,
950 int type, unsigned int hash, int *error)
951 {
952 struct sock *u;
953 struct path path;
954 int err = 0;
955
956 if (sunname->sun_path[0]) {
957 struct inode *inode;
958 err = kern_path(sunname->sun_path, LOOKUP_FOLLOW, &path);
959 if (err)
960 goto fail;
961 inode = d_backing_inode(path.dentry);
962 err = inode_permission(inode, MAY_WRITE);
963 if (err)
964 goto put_fail;
965
966 err = -ECONNREFUSED;
967 if (!S_ISSOCK(inode->i_mode))
968 goto put_fail;
969 u = unix_find_socket_byinode(inode);
970 if (!u)
971 goto put_fail;
972
973 if (u->sk_type == type)
974 touch_atime(&path);
975
976 path_put(&path);
977
978 err = -EPROTOTYPE;
979 if (u->sk_type != type) {
980 sock_put(u);
981 goto fail;
982 }
983 } else {
984 err = -ECONNREFUSED;
985 u = unix_find_socket_byname(net, sunname, len, type, hash);
986 if (u) {
987 struct dentry *dentry;
988 dentry = unix_sk(u)->path.dentry;
989 if (dentry)
990 touch_atime(&unix_sk(u)->path);
991 } else
992 goto fail;
993 }
994 return u;
995
996 put_fail:
997 path_put(&path);
998 fail:
999 *error = err;
1000 return NULL;
1001 }
1002
unix_mknod(const char * sun_path,umode_t mode,struct path * res)1003 static int unix_mknod(const char *sun_path, umode_t mode, struct path *res)
1004 {
1005 struct dentry *dentry;
1006 struct path path;
1007 int err = 0;
1008 /*
1009 * Get the parent directory, calculate the hash for last
1010 * component.
1011 */
1012 dentry = kern_path_create(AT_FDCWD, sun_path, &path, 0);
1013 err = PTR_ERR(dentry);
1014 if (IS_ERR(dentry))
1015 return err;
1016
1017 /*
1018 * All right, let's create it.
1019 */
1020 err = security_path_mknod(&path, dentry, mode, 0);
1021 if (!err) {
1022 err = vfs_mknod(d_inode(path.dentry), dentry, mode, 0);
1023 if (!err) {
1024 res->mnt = mntget(path.mnt);
1025 res->dentry = dget(dentry);
1026 }
1027 }
1028 done_path_create(&path, dentry);
1029 return err;
1030 }
1031
unix_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)1032 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1033 {
1034 struct sock *sk = sock->sk;
1035 struct net *net = sock_net(sk);
1036 struct unix_sock *u = unix_sk(sk);
1037 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1038 char *sun_path = sunaddr->sun_path;
1039 int err;
1040 unsigned int hash;
1041 struct unix_address *addr;
1042 struct hlist_head *list;
1043 struct path path = { };
1044
1045 err = -EINVAL;
1046 if (addr_len < offsetofend(struct sockaddr_un, sun_family) ||
1047 sunaddr->sun_family != AF_UNIX)
1048 goto out;
1049
1050 if (addr_len == sizeof(short)) {
1051 err = unix_autobind(sock);
1052 goto out;
1053 }
1054
1055 err = unix_mkname(sunaddr, addr_len, &hash);
1056 if (err < 0)
1057 goto out;
1058 addr_len = err;
1059
1060 if (sun_path[0]) {
1061 umode_t mode = S_IFSOCK |
1062 (SOCK_INODE(sock)->i_mode & ~current_umask());
1063 err = unix_mknod(sun_path, mode, &path);
1064 if (err) {
1065 if (err == -EEXIST)
1066 err = -EADDRINUSE;
1067 goto out;
1068 }
1069 }
1070
1071 err = mutex_lock_interruptible(&u->bindlock);
1072 if (err)
1073 goto out_put;
1074
1075 err = -EINVAL;
1076 if (u->addr)
1077 goto out_up;
1078
1079 err = -ENOMEM;
1080 addr = kmalloc(sizeof(*addr)+addr_len, GFP_KERNEL);
1081 if (!addr)
1082 goto out_up;
1083
1084 memcpy(addr->name, sunaddr, addr_len);
1085 addr->len = addr_len;
1086 addr->hash = hash ^ sk->sk_type;
1087 refcount_set(&addr->refcnt, 1);
1088
1089 if (sun_path[0]) {
1090 addr->hash = UNIX_HASH_SIZE;
1091 hash = d_backing_inode(path.dentry)->i_ino & (UNIX_HASH_SIZE - 1);
1092 spin_lock(&unix_table_lock);
1093 u->path = path;
1094 list = &unix_socket_table[hash];
1095 } else {
1096 spin_lock(&unix_table_lock);
1097 err = -EADDRINUSE;
1098 if (__unix_find_socket_byname(net, sunaddr, addr_len,
1099 sk->sk_type, hash)) {
1100 unix_release_addr(addr);
1101 goto out_unlock;
1102 }
1103
1104 list = &unix_socket_table[addr->hash];
1105 }
1106
1107 err = 0;
1108 __unix_remove_socket(sk);
1109 smp_store_release(&u->addr, addr);
1110 __unix_insert_socket(list, sk);
1111
1112 out_unlock:
1113 spin_unlock(&unix_table_lock);
1114 out_up:
1115 mutex_unlock(&u->bindlock);
1116 out_put:
1117 if (err)
1118 path_put(&path);
1119 out:
1120 return err;
1121 }
1122
unix_state_double_lock(struct sock * sk1,struct sock * sk2)1123 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1124 {
1125 if (unlikely(sk1 == sk2) || !sk2) {
1126 unix_state_lock(sk1);
1127 return;
1128 }
1129 if (sk1 < sk2) {
1130 unix_state_lock(sk1);
1131 unix_state_lock_nested(sk2);
1132 } else {
1133 unix_state_lock(sk2);
1134 unix_state_lock_nested(sk1);
1135 }
1136 }
1137
unix_state_double_unlock(struct sock * sk1,struct sock * sk2)1138 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1139 {
1140 if (unlikely(sk1 == sk2) || !sk2) {
1141 unix_state_unlock(sk1);
1142 return;
1143 }
1144 unix_state_unlock(sk1);
1145 unix_state_unlock(sk2);
1146 }
1147
unix_dgram_connect(struct socket * sock,struct sockaddr * addr,int alen,int flags)1148 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1149 int alen, int flags)
1150 {
1151 struct sock *sk = sock->sk;
1152 struct net *net = sock_net(sk);
1153 struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1154 struct sock *other;
1155 unsigned int hash;
1156 int err;
1157
1158 err = -EINVAL;
1159 if (alen < offsetofend(struct sockaddr, sa_family))
1160 goto out;
1161
1162 if (addr->sa_family != AF_UNSPEC) {
1163 err = unix_mkname(sunaddr, alen, &hash);
1164 if (err < 0)
1165 goto out;
1166 alen = err;
1167
1168 if (test_bit(SOCK_PASSCRED, &sock->flags) &&
1169 !unix_sk(sk)->addr && (err = unix_autobind(sock)) != 0)
1170 goto out;
1171
1172 restart:
1173 other = unix_find_other(net, sunaddr, alen, sock->type, hash, &err);
1174 if (!other)
1175 goto out;
1176
1177 unix_state_double_lock(sk, other);
1178
1179 /* Apparently VFS overslept socket death. Retry. */
1180 if (sock_flag(other, SOCK_DEAD)) {
1181 unix_state_double_unlock(sk, other);
1182 sock_put(other);
1183 goto restart;
1184 }
1185
1186 err = -EPERM;
1187 if (!unix_may_send(sk, other))
1188 goto out_unlock;
1189
1190 err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1191 if (err)
1192 goto out_unlock;
1193
1194 } else {
1195 /*
1196 * 1003.1g breaking connected state with AF_UNSPEC
1197 */
1198 other = NULL;
1199 unix_state_double_lock(sk, other);
1200 }
1201
1202 /*
1203 * If it was connected, reconnect.
1204 */
1205 if (unix_peer(sk)) {
1206 struct sock *old_peer = unix_peer(sk);
1207 unix_peer(sk) = other;
1208 unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1209
1210 unix_state_double_unlock(sk, other);
1211
1212 if (other != old_peer)
1213 unix_dgram_disconnected(sk, old_peer);
1214 sock_put(old_peer);
1215 } else {
1216 unix_peer(sk) = other;
1217 unix_state_double_unlock(sk, other);
1218 }
1219 return 0;
1220
1221 out_unlock:
1222 unix_state_double_unlock(sk, other);
1223 sock_put(other);
1224 out:
1225 return err;
1226 }
1227
unix_wait_for_peer(struct sock * other,long timeo)1228 static long unix_wait_for_peer(struct sock *other, long timeo)
1229 __releases(&unix_sk(other)->lock)
1230 {
1231 struct unix_sock *u = unix_sk(other);
1232 int sched;
1233 DEFINE_WAIT(wait);
1234
1235 prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1236
1237 sched = !sock_flag(other, SOCK_DEAD) &&
1238 !(other->sk_shutdown & RCV_SHUTDOWN) &&
1239 unix_recvq_full_lockless(other);
1240
1241 unix_state_unlock(other);
1242
1243 if (sched)
1244 timeo = schedule_timeout(timeo);
1245
1246 finish_wait(&u->peer_wait, &wait);
1247 return timeo;
1248 }
1249
unix_stream_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)1250 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1251 int addr_len, int flags)
1252 {
1253 struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1254 struct sock *sk = sock->sk;
1255 struct net *net = sock_net(sk);
1256 struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1257 struct sock *newsk = NULL;
1258 struct sock *other = NULL;
1259 struct sk_buff *skb = NULL;
1260 unsigned int hash;
1261 int st;
1262 int err;
1263 long timeo;
1264
1265 err = unix_mkname(sunaddr, addr_len, &hash);
1266 if (err < 0)
1267 goto out;
1268 addr_len = err;
1269
1270 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr &&
1271 (err = unix_autobind(sock)) != 0)
1272 goto out;
1273
1274 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1275
1276 /* First of all allocate resources.
1277 If we will make it after state is locked,
1278 we will have to recheck all again in any case.
1279 */
1280
1281 err = -ENOMEM;
1282
1283 /* create new sock for complete connection */
1284 newsk = unix_create1(sock_net(sk), NULL, 0);
1285 if (newsk == NULL)
1286 goto out;
1287
1288 /* Allocate skb for sending to listening sock */
1289 skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1290 if (skb == NULL)
1291 goto out;
1292
1293 restart:
1294 /* Find listening sock. */
1295 other = unix_find_other(net, sunaddr, addr_len, sk->sk_type, hash, &err);
1296 if (!other)
1297 goto out;
1298
1299 /* Latch state of peer */
1300 unix_state_lock(other);
1301
1302 /* Apparently VFS overslept socket death. Retry. */
1303 if (sock_flag(other, SOCK_DEAD)) {
1304 unix_state_unlock(other);
1305 sock_put(other);
1306 goto restart;
1307 }
1308
1309 err = -ECONNREFUSED;
1310 if (other->sk_state != TCP_LISTEN)
1311 goto out_unlock;
1312 if (other->sk_shutdown & RCV_SHUTDOWN)
1313 goto out_unlock;
1314
1315 if (unix_recvq_full(other)) {
1316 err = -EAGAIN;
1317 if (!timeo)
1318 goto out_unlock;
1319
1320 timeo = unix_wait_for_peer(other, timeo);
1321
1322 err = sock_intr_errno(timeo);
1323 if (signal_pending(current))
1324 goto out;
1325 sock_put(other);
1326 goto restart;
1327 }
1328
1329 /* Latch our state.
1330
1331 It is tricky place. We need to grab our state lock and cannot
1332 drop lock on peer. It is dangerous because deadlock is
1333 possible. Connect to self case and simultaneous
1334 attempt to connect are eliminated by checking socket
1335 state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1336 check this before attempt to grab lock.
1337
1338 Well, and we have to recheck the state after socket locked.
1339 */
1340 st = sk->sk_state;
1341
1342 switch (st) {
1343 case TCP_CLOSE:
1344 /* This is ok... continue with connect */
1345 break;
1346 case TCP_ESTABLISHED:
1347 /* Socket is already connected */
1348 err = -EISCONN;
1349 goto out_unlock;
1350 default:
1351 err = -EINVAL;
1352 goto out_unlock;
1353 }
1354
1355 unix_state_lock_nested(sk);
1356
1357 if (sk->sk_state != st) {
1358 unix_state_unlock(sk);
1359 unix_state_unlock(other);
1360 sock_put(other);
1361 goto restart;
1362 }
1363
1364 err = security_unix_stream_connect(sk, other, newsk);
1365 if (err) {
1366 unix_state_unlock(sk);
1367 goto out_unlock;
1368 }
1369
1370 /* The way is open! Fastly set all the necessary fields... */
1371
1372 sock_hold(sk);
1373 unix_peer(newsk) = sk;
1374 newsk->sk_state = TCP_ESTABLISHED;
1375 newsk->sk_type = sk->sk_type;
1376 init_peercred(newsk);
1377 newu = unix_sk(newsk);
1378 RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1379 otheru = unix_sk(other);
1380
1381 /* copy address information from listening to new sock
1382 *
1383 * The contents of *(otheru->addr) and otheru->path
1384 * are seen fully set up here, since we have found
1385 * otheru in hash under unix_table_lock. Insertion
1386 * into the hash chain we'd found it in had been done
1387 * in an earlier critical area protected by unix_table_lock,
1388 * the same one where we'd set *(otheru->addr) contents,
1389 * as well as otheru->path and otheru->addr itself.
1390 *
1391 * Using smp_store_release() here to set newu->addr
1392 * is enough to make those stores, as well as stores
1393 * to newu->path visible to anyone who gets newu->addr
1394 * by smp_load_acquire(). IOW, the same warranties
1395 * as for unix_sock instances bound in unix_bind() or
1396 * in unix_autobind().
1397 */
1398 if (otheru->path.dentry) {
1399 path_get(&otheru->path);
1400 newu->path = otheru->path;
1401 }
1402 refcount_inc(&otheru->addr->refcnt);
1403 smp_store_release(&newu->addr, otheru->addr);
1404
1405 /* Set credentials */
1406 copy_peercred(sk, other);
1407
1408 sock->state = SS_CONNECTED;
1409 sk->sk_state = TCP_ESTABLISHED;
1410 sock_hold(newsk);
1411
1412 smp_mb__after_atomic(); /* sock_hold() does an atomic_inc() */
1413 unix_peer(sk) = newsk;
1414
1415 unix_state_unlock(sk);
1416
1417 /* take ten and and send info to listening sock */
1418 spin_lock(&other->sk_receive_queue.lock);
1419 __skb_queue_tail(&other->sk_receive_queue, skb);
1420 spin_unlock(&other->sk_receive_queue.lock);
1421 unix_state_unlock(other);
1422 other->sk_data_ready(other);
1423 sock_put(other);
1424 return 0;
1425
1426 out_unlock:
1427 if (other)
1428 unix_state_unlock(other);
1429
1430 out:
1431 kfree_skb(skb);
1432 if (newsk)
1433 unix_release_sock(newsk, 0);
1434 if (other)
1435 sock_put(other);
1436 return err;
1437 }
1438
unix_socketpair(struct socket * socka,struct socket * sockb)1439 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1440 {
1441 struct sock *ska = socka->sk, *skb = sockb->sk;
1442
1443 /* Join our sockets back to back */
1444 sock_hold(ska);
1445 sock_hold(skb);
1446 unix_peer(ska) = skb;
1447 unix_peer(skb) = ska;
1448 init_peercred(ska);
1449 init_peercred(skb);
1450
1451 if (ska->sk_type != SOCK_DGRAM) {
1452 ska->sk_state = TCP_ESTABLISHED;
1453 skb->sk_state = TCP_ESTABLISHED;
1454 socka->state = SS_CONNECTED;
1455 sockb->state = SS_CONNECTED;
1456 }
1457 return 0;
1458 }
1459
unix_sock_inherit_flags(const struct socket * old,struct socket * new)1460 static void unix_sock_inherit_flags(const struct socket *old,
1461 struct socket *new)
1462 {
1463 if (test_bit(SOCK_PASSCRED, &old->flags))
1464 set_bit(SOCK_PASSCRED, &new->flags);
1465 if (test_bit(SOCK_PASSSEC, &old->flags))
1466 set_bit(SOCK_PASSSEC, &new->flags);
1467 }
1468
unix_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1469 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1470 bool kern)
1471 {
1472 struct sock *sk = sock->sk;
1473 struct sock *tsk;
1474 struct sk_buff *skb;
1475 int err;
1476
1477 err = -EOPNOTSUPP;
1478 if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1479 goto out;
1480
1481 err = -EINVAL;
1482 if (sk->sk_state != TCP_LISTEN)
1483 goto out;
1484
1485 /* If socket state is TCP_LISTEN it cannot change (for now...),
1486 * so that no locks are necessary.
1487 */
1488
1489 skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err);
1490 if (!skb) {
1491 /* This means receive shutdown. */
1492 if (err == 0)
1493 err = -EINVAL;
1494 goto out;
1495 }
1496
1497 tsk = skb->sk;
1498 skb_free_datagram(sk, skb);
1499 wake_up_interruptible(&unix_sk(sk)->peer_wait);
1500
1501 /* attach accepted sock to socket */
1502 unix_state_lock(tsk);
1503 newsock->state = SS_CONNECTED;
1504 unix_sock_inherit_flags(sock, newsock);
1505 sock_graft(tsk, newsock);
1506 unix_state_unlock(tsk);
1507 return 0;
1508
1509 out:
1510 return err;
1511 }
1512
1513
unix_getname(struct socket * sock,struct sockaddr * uaddr,int peer)1514 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1515 {
1516 struct sock *sk = sock->sk;
1517 struct unix_address *addr;
1518 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1519 int err = 0;
1520
1521 if (peer) {
1522 sk = unix_peer_get(sk);
1523
1524 err = -ENOTCONN;
1525 if (!sk)
1526 goto out;
1527 err = 0;
1528 } else {
1529 sock_hold(sk);
1530 }
1531
1532 addr = smp_load_acquire(&unix_sk(sk)->addr);
1533 if (!addr) {
1534 sunaddr->sun_family = AF_UNIX;
1535 sunaddr->sun_path[0] = 0;
1536 err = sizeof(short);
1537 } else {
1538 err = addr->len;
1539 memcpy(sunaddr, addr->name, addr->len);
1540 }
1541 sock_put(sk);
1542 out:
1543 return err;
1544 }
1545
unix_peek_fds(struct scm_cookie * scm,struct sk_buff * skb)1546 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1547 {
1548 scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1549
1550 /*
1551 * Garbage collection of unix sockets starts by selecting a set of
1552 * candidate sockets which have reference only from being in flight
1553 * (total_refs == inflight_refs). This condition is checked once during
1554 * the candidate collection phase, and candidates are marked as such, so
1555 * that non-candidates can later be ignored. While inflight_refs is
1556 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1557 * is an instantaneous decision.
1558 *
1559 * Once a candidate, however, the socket must not be reinstalled into a
1560 * file descriptor while the garbage collection is in progress.
1561 *
1562 * If the above conditions are met, then the directed graph of
1563 * candidates (*) does not change while unix_gc_lock is held.
1564 *
1565 * Any operations that changes the file count through file descriptors
1566 * (dup, close, sendmsg) does not change the graph since candidates are
1567 * not installed in fds.
1568 *
1569 * Dequeing a candidate via recvmsg would install it into an fd, but
1570 * that takes unix_gc_lock to decrement the inflight count, so it's
1571 * serialized with garbage collection.
1572 *
1573 * MSG_PEEK is special in that it does not change the inflight count,
1574 * yet does install the socket into an fd. The following lock/unlock
1575 * pair is to ensure serialization with garbage collection. It must be
1576 * done between incrementing the file count and installing the file into
1577 * an fd.
1578 *
1579 * If garbage collection starts after the barrier provided by the
1580 * lock/unlock, then it will see the elevated refcount and not mark this
1581 * as a candidate. If a garbage collection is already in progress
1582 * before the file count was incremented, then the lock/unlock pair will
1583 * ensure that garbage collection is finished before progressing to
1584 * installing the fd.
1585 *
1586 * (*) A -> B where B is on the queue of A or B is on the queue of C
1587 * which is on the queue of listening socket A.
1588 */
1589 spin_lock(&unix_gc_lock);
1590 spin_unlock(&unix_gc_lock);
1591 }
1592
unix_scm_to_skb(struct scm_cookie * scm,struct sk_buff * skb,bool send_fds)1593 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1594 {
1595 int err = 0;
1596
1597 UNIXCB(skb).pid = get_pid(scm->pid);
1598 UNIXCB(skb).uid = scm->creds.uid;
1599 UNIXCB(skb).gid = scm->creds.gid;
1600 UNIXCB(skb).fp = NULL;
1601 unix_get_secdata(scm, skb);
1602 if (scm->fp && send_fds)
1603 err = unix_attach_fds(scm, skb);
1604
1605 skb->destructor = unix_destruct_scm;
1606 return err;
1607 }
1608
unix_passcred_enabled(const struct socket * sock,const struct sock * other)1609 static bool unix_passcred_enabled(const struct socket *sock,
1610 const struct sock *other)
1611 {
1612 return test_bit(SOCK_PASSCRED, &sock->flags) ||
1613 !other->sk_socket ||
1614 test_bit(SOCK_PASSCRED, &other->sk_socket->flags);
1615 }
1616
1617 /*
1618 * Some apps rely on write() giving SCM_CREDENTIALS
1619 * We include credentials if source or destination socket
1620 * asserted SOCK_PASSCRED.
1621 */
maybe_add_creds(struct sk_buff * skb,const struct socket * sock,const struct sock * other)1622 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1623 const struct sock *other)
1624 {
1625 if (UNIXCB(skb).pid)
1626 return;
1627 if (unix_passcred_enabled(sock, other)) {
1628 UNIXCB(skb).pid = get_pid(task_tgid(current));
1629 current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1630 }
1631 }
1632
maybe_init_creds(struct scm_cookie * scm,struct socket * socket,const struct sock * other)1633 static int maybe_init_creds(struct scm_cookie *scm,
1634 struct socket *socket,
1635 const struct sock *other)
1636 {
1637 int err;
1638 struct msghdr msg = { .msg_controllen = 0 };
1639
1640 err = scm_send(socket, &msg, scm, false);
1641 if (err)
1642 return err;
1643
1644 if (unix_passcred_enabled(socket, other)) {
1645 scm->pid = get_pid(task_tgid(current));
1646 current_uid_gid(&scm->creds.uid, &scm->creds.gid);
1647 }
1648 return err;
1649 }
1650
unix_skb_scm_eq(struct sk_buff * skb,struct scm_cookie * scm)1651 static bool unix_skb_scm_eq(struct sk_buff *skb,
1652 struct scm_cookie *scm)
1653 {
1654 const struct unix_skb_parms *u = &UNIXCB(skb);
1655
1656 return u->pid == scm->pid &&
1657 uid_eq(u->uid, scm->creds.uid) &&
1658 gid_eq(u->gid, scm->creds.gid) &&
1659 unix_secdata_eq(scm, skb);
1660 }
1661
scm_stat_add(struct sock * sk,struct sk_buff * skb)1662 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1663 {
1664 struct scm_fp_list *fp = UNIXCB(skb).fp;
1665 struct unix_sock *u = unix_sk(sk);
1666
1667 if (unlikely(fp && fp->count))
1668 atomic_add(fp->count, &u->scm_stat.nr_fds);
1669 }
1670
scm_stat_del(struct sock * sk,struct sk_buff * skb)1671 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1672 {
1673 struct scm_fp_list *fp = UNIXCB(skb).fp;
1674 struct unix_sock *u = unix_sk(sk);
1675
1676 if (unlikely(fp && fp->count))
1677 atomic_sub(fp->count, &u->scm_stat.nr_fds);
1678 }
1679
1680 /*
1681 * Send AF_UNIX data.
1682 */
1683
unix_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1684 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1685 size_t len)
1686 {
1687 struct sock *sk = sock->sk;
1688 struct net *net = sock_net(sk);
1689 struct unix_sock *u = unix_sk(sk);
1690 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1691 struct sock *other = NULL;
1692 int namelen = 0; /* fake GCC */
1693 int err;
1694 unsigned int hash;
1695 struct sk_buff *skb;
1696 long timeo;
1697 struct scm_cookie scm;
1698 int data_len = 0;
1699 int sk_locked;
1700
1701 wait_for_unix_gc();
1702 err = scm_send(sock, msg, &scm, false);
1703 if (err < 0)
1704 return err;
1705
1706 err = -EOPNOTSUPP;
1707 if (msg->msg_flags&MSG_OOB)
1708 goto out;
1709
1710 if (msg->msg_namelen) {
1711 err = unix_mkname(sunaddr, msg->msg_namelen, &hash);
1712 if (err < 0)
1713 goto out;
1714 namelen = err;
1715 } else {
1716 sunaddr = NULL;
1717 err = -ENOTCONN;
1718 other = unix_peer_get(sk);
1719 if (!other)
1720 goto out;
1721 }
1722
1723 if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr
1724 && (err = unix_autobind(sock)) != 0)
1725 goto out;
1726
1727 err = -EMSGSIZE;
1728 if (len > sk->sk_sndbuf - 32)
1729 goto out;
1730
1731 if (len > SKB_MAX_ALLOC) {
1732 data_len = min_t(size_t,
1733 len - SKB_MAX_ALLOC,
1734 MAX_SKB_FRAGS * PAGE_SIZE);
1735 data_len = PAGE_ALIGN(data_len);
1736
1737 BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1738 }
1739
1740 skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1741 msg->msg_flags & MSG_DONTWAIT, &err,
1742 PAGE_ALLOC_COSTLY_ORDER);
1743 if (skb == NULL)
1744 goto out;
1745
1746 err = unix_scm_to_skb(&scm, skb, true);
1747 if (err < 0)
1748 goto out_free;
1749
1750 skb_put(skb, len - data_len);
1751 skb->data_len = data_len;
1752 skb->len = len;
1753 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1754 if (err)
1755 goto out_free;
1756
1757 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1758
1759 restart:
1760 if (!other) {
1761 err = -ECONNRESET;
1762 if (sunaddr == NULL)
1763 goto out_free;
1764
1765 other = unix_find_other(net, sunaddr, namelen, sk->sk_type,
1766 hash, &err);
1767 if (other == NULL)
1768 goto out_free;
1769 }
1770
1771 if (sk_filter(other, skb) < 0) {
1772 /* Toss the packet but do not return any error to the sender */
1773 err = len;
1774 goto out_free;
1775 }
1776
1777 sk_locked = 0;
1778 unix_state_lock(other);
1779 restart_locked:
1780 err = -EPERM;
1781 if (!unix_may_send(sk, other))
1782 goto out_unlock;
1783
1784 if (unlikely(sock_flag(other, SOCK_DEAD))) {
1785 /*
1786 * Check with 1003.1g - what should
1787 * datagram error
1788 */
1789 unix_state_unlock(other);
1790 sock_put(other);
1791
1792 if (!sk_locked)
1793 unix_state_lock(sk);
1794
1795 err = 0;
1796 if (unix_peer(sk) == other) {
1797 unix_peer(sk) = NULL;
1798 unix_dgram_peer_wake_disconnect_wakeup(sk, other);
1799
1800 unix_state_unlock(sk);
1801
1802 unix_dgram_disconnected(sk, other);
1803 sock_put(other);
1804 err = -ECONNREFUSED;
1805 } else {
1806 unix_state_unlock(sk);
1807 }
1808
1809 other = NULL;
1810 if (err)
1811 goto out_free;
1812 goto restart;
1813 }
1814
1815 err = -EPIPE;
1816 if (other->sk_shutdown & RCV_SHUTDOWN)
1817 goto out_unlock;
1818
1819 if (sk->sk_type != SOCK_SEQPACKET) {
1820 err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1821 if (err)
1822 goto out_unlock;
1823 }
1824
1825 /* other == sk && unix_peer(other) != sk if
1826 * - unix_peer(sk) == NULL, destination address bound to sk
1827 * - unix_peer(sk) == sk by time of get but disconnected before lock
1828 */
1829 if (other != sk &&
1830 unlikely(unix_peer(other) != sk &&
1831 unix_recvq_full_lockless(other))) {
1832 if (timeo) {
1833 timeo = unix_wait_for_peer(other, timeo);
1834
1835 err = sock_intr_errno(timeo);
1836 if (signal_pending(current))
1837 goto out_free;
1838
1839 goto restart;
1840 }
1841
1842 if (!sk_locked) {
1843 unix_state_unlock(other);
1844 unix_state_double_lock(sk, other);
1845 }
1846
1847 if (unix_peer(sk) != other ||
1848 unix_dgram_peer_wake_me(sk, other)) {
1849 err = -EAGAIN;
1850 sk_locked = 1;
1851 goto out_unlock;
1852 }
1853
1854 if (!sk_locked) {
1855 sk_locked = 1;
1856 goto restart_locked;
1857 }
1858 }
1859
1860 if (unlikely(sk_locked))
1861 unix_state_unlock(sk);
1862
1863 if (sock_flag(other, SOCK_RCVTSTAMP))
1864 __net_timestamp(skb);
1865 maybe_add_creds(skb, sock, other);
1866 scm_stat_add(other, skb);
1867 skb_queue_tail(&other->sk_receive_queue, skb);
1868 unix_state_unlock(other);
1869 other->sk_data_ready(other);
1870 sock_put(other);
1871 scm_destroy(&scm);
1872 return len;
1873
1874 out_unlock:
1875 if (sk_locked)
1876 unix_state_unlock(sk);
1877 unix_state_unlock(other);
1878 out_free:
1879 kfree_skb(skb);
1880 out:
1881 if (other)
1882 sock_put(other);
1883 scm_destroy(&scm);
1884 return err;
1885 }
1886
1887 /* We use paged skbs for stream sockets, and limit occupancy to 32768
1888 * bytes, and a minimum of a full page.
1889 */
1890 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
1891
unix_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1892 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1893 size_t len)
1894 {
1895 struct sock *sk = sock->sk;
1896 struct sock *other = NULL;
1897 int err, size;
1898 struct sk_buff *skb;
1899 int sent = 0;
1900 struct scm_cookie scm;
1901 bool fds_sent = false;
1902 int data_len;
1903
1904 wait_for_unix_gc();
1905 err = scm_send(sock, msg, &scm, false);
1906 if (err < 0)
1907 return err;
1908
1909 err = -EOPNOTSUPP;
1910 if (msg->msg_flags&MSG_OOB)
1911 goto out_err;
1912
1913 if (msg->msg_namelen) {
1914 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1915 goto out_err;
1916 } else {
1917 err = -ENOTCONN;
1918 other = unix_peer(sk);
1919 if (!other)
1920 goto out_err;
1921 }
1922
1923 if (sk->sk_shutdown & SEND_SHUTDOWN)
1924 goto pipe_err;
1925
1926 while (sent < len) {
1927 size = len - sent;
1928
1929 /* Keep two messages in the pipe so it schedules better */
1930 size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
1931
1932 /* allow fallback to order-0 allocations */
1933 size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
1934
1935 data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
1936
1937 data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
1938
1939 skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
1940 msg->msg_flags & MSG_DONTWAIT, &err,
1941 get_order(UNIX_SKB_FRAGS_SZ));
1942 if (!skb)
1943 goto out_err;
1944
1945 /* Only send the fds in the first buffer */
1946 err = unix_scm_to_skb(&scm, skb, !fds_sent);
1947 if (err < 0) {
1948 kfree_skb(skb);
1949 goto out_err;
1950 }
1951 fds_sent = true;
1952
1953 skb_put(skb, size - data_len);
1954 skb->data_len = data_len;
1955 skb->len = size;
1956 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
1957 if (err) {
1958 kfree_skb(skb);
1959 goto out_err;
1960 }
1961
1962 unix_state_lock(other);
1963
1964 if (sock_flag(other, SOCK_DEAD) ||
1965 (other->sk_shutdown & RCV_SHUTDOWN))
1966 goto pipe_err_free;
1967
1968 maybe_add_creds(skb, sock, other);
1969 scm_stat_add(other, skb);
1970 skb_queue_tail(&other->sk_receive_queue, skb);
1971 unix_state_unlock(other);
1972 other->sk_data_ready(other);
1973 sent += size;
1974 }
1975
1976 scm_destroy(&scm);
1977
1978 return sent;
1979
1980 pipe_err_free:
1981 unix_state_unlock(other);
1982 kfree_skb(skb);
1983 pipe_err:
1984 if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
1985 send_sig(SIGPIPE, current, 0);
1986 err = -EPIPE;
1987 out_err:
1988 scm_destroy(&scm);
1989 return sent ? : err;
1990 }
1991
unix_stream_sendpage(struct socket * socket,struct page * page,int offset,size_t size,int flags)1992 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page,
1993 int offset, size_t size, int flags)
1994 {
1995 int err;
1996 bool send_sigpipe = false;
1997 bool init_scm = true;
1998 struct scm_cookie scm;
1999 struct sock *other, *sk = socket->sk;
2000 struct sk_buff *skb, *newskb = NULL, *tail = NULL;
2001
2002 if (flags & MSG_OOB)
2003 return -EOPNOTSUPP;
2004
2005 other = unix_peer(sk);
2006 if (!other || sk->sk_state != TCP_ESTABLISHED)
2007 return -ENOTCONN;
2008
2009 if (false) {
2010 alloc_skb:
2011 spin_unlock(&other->sk_receive_queue.lock);
2012 unix_state_unlock(other);
2013 mutex_unlock(&unix_sk(other)->iolock);
2014 newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT,
2015 &err, 0);
2016 if (!newskb)
2017 goto err;
2018 }
2019
2020 /* we must acquire iolock as we modify already present
2021 * skbs in the sk_receive_queue and mess with skb->len
2022 */
2023 err = mutex_lock_interruptible(&unix_sk(other)->iolock);
2024 if (err) {
2025 err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS;
2026 goto err;
2027 }
2028
2029 if (sk->sk_shutdown & SEND_SHUTDOWN) {
2030 err = -EPIPE;
2031 send_sigpipe = true;
2032 goto err_unlock;
2033 }
2034
2035 unix_state_lock(other);
2036
2037 if (sock_flag(other, SOCK_DEAD) ||
2038 other->sk_shutdown & RCV_SHUTDOWN) {
2039 err = -EPIPE;
2040 send_sigpipe = true;
2041 goto err_state_unlock;
2042 }
2043
2044 if (init_scm) {
2045 err = maybe_init_creds(&scm, socket, other);
2046 if (err)
2047 goto err_state_unlock;
2048 init_scm = false;
2049 }
2050
2051 spin_lock(&other->sk_receive_queue.lock);
2052 skb = skb_peek_tail(&other->sk_receive_queue);
2053 if (tail && tail == skb) {
2054 skb = newskb;
2055 } else if (!skb || !unix_skb_scm_eq(skb, &scm)) {
2056 if (newskb) {
2057 skb = newskb;
2058 } else {
2059 tail = skb;
2060 goto alloc_skb;
2061 }
2062 } else if (newskb) {
2063 /* this is fast path, we don't necessarily need to
2064 * call to kfree_skb even though with newskb == NULL
2065 * this - does no harm
2066 */
2067 consume_skb(newskb);
2068 newskb = NULL;
2069 }
2070
2071 if (skb_append_pagefrags(skb, page, offset, size)) {
2072 tail = skb;
2073 goto alloc_skb;
2074 }
2075
2076 skb->len += size;
2077 skb->data_len += size;
2078 skb->truesize += size;
2079 refcount_add(size, &sk->sk_wmem_alloc);
2080
2081 if (newskb) {
2082 unix_scm_to_skb(&scm, skb, false);
2083 __skb_queue_tail(&other->sk_receive_queue, newskb);
2084 }
2085
2086 spin_unlock(&other->sk_receive_queue.lock);
2087 unix_state_unlock(other);
2088 mutex_unlock(&unix_sk(other)->iolock);
2089
2090 other->sk_data_ready(other);
2091 scm_destroy(&scm);
2092 return size;
2093
2094 err_state_unlock:
2095 unix_state_unlock(other);
2096 err_unlock:
2097 mutex_unlock(&unix_sk(other)->iolock);
2098 err:
2099 kfree_skb(newskb);
2100 if (send_sigpipe && !(flags & MSG_NOSIGNAL))
2101 send_sig(SIGPIPE, current, 0);
2102 if (!init_scm)
2103 scm_destroy(&scm);
2104 return err;
2105 }
2106
unix_seqpacket_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2107 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2108 size_t len)
2109 {
2110 int err;
2111 struct sock *sk = sock->sk;
2112
2113 err = sock_error(sk);
2114 if (err)
2115 return err;
2116
2117 if (sk->sk_state != TCP_ESTABLISHED)
2118 return -ENOTCONN;
2119
2120 if (msg->msg_namelen)
2121 msg->msg_namelen = 0;
2122
2123 return unix_dgram_sendmsg(sock, msg, len);
2124 }
2125
unix_seqpacket_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)2126 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2127 size_t size, int flags)
2128 {
2129 struct sock *sk = sock->sk;
2130
2131 if (sk->sk_state != TCP_ESTABLISHED)
2132 return -ENOTCONN;
2133
2134 return unix_dgram_recvmsg(sock, msg, size, flags);
2135 }
2136
unix_copy_addr(struct msghdr * msg,struct sock * sk)2137 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2138 {
2139 struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2140
2141 if (addr) {
2142 msg->msg_namelen = addr->len;
2143 memcpy(msg->msg_name, addr->name, addr->len);
2144 }
2145 }
2146
unix_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)2147 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
2148 size_t size, int flags)
2149 {
2150 struct scm_cookie scm;
2151 struct sock *sk = sock->sk;
2152 struct unix_sock *u = unix_sk(sk);
2153 struct sk_buff *skb, *last;
2154 long timeo;
2155 int skip;
2156 int err;
2157
2158 err = -EOPNOTSUPP;
2159 if (flags&MSG_OOB)
2160 goto out;
2161
2162 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2163
2164 do {
2165 mutex_lock(&u->iolock);
2166
2167 skip = sk_peek_offset(sk, flags);
2168 skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2169 &skip, &err, &last);
2170 if (skb) {
2171 if (!(flags & MSG_PEEK))
2172 scm_stat_del(sk, skb);
2173 break;
2174 }
2175
2176 mutex_unlock(&u->iolock);
2177
2178 if (err != -EAGAIN)
2179 break;
2180 } while (timeo &&
2181 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2182 &err, &timeo, last));
2183
2184 if (!skb) { /* implies iolock unlocked */
2185 unix_state_lock(sk);
2186 /* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2187 if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2188 (sk->sk_shutdown & RCV_SHUTDOWN))
2189 err = 0;
2190 unix_state_unlock(sk);
2191 goto out;
2192 }
2193
2194 if (wq_has_sleeper(&u->peer_wait))
2195 wake_up_interruptible_sync_poll(&u->peer_wait,
2196 EPOLLOUT | EPOLLWRNORM |
2197 EPOLLWRBAND);
2198
2199 if (msg->msg_name)
2200 unix_copy_addr(msg, skb->sk);
2201
2202 if (size > skb->len - skip)
2203 size = skb->len - skip;
2204 else if (size < skb->len - skip)
2205 msg->msg_flags |= MSG_TRUNC;
2206
2207 err = skb_copy_datagram_msg(skb, skip, msg, size);
2208 if (err)
2209 goto out_free;
2210
2211 if (sock_flag(sk, SOCK_RCVTSTAMP))
2212 __sock_recv_timestamp(msg, sk, skb);
2213
2214 memset(&scm, 0, sizeof(scm));
2215
2216 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2217 unix_set_secdata(&scm, skb);
2218
2219 if (!(flags & MSG_PEEK)) {
2220 if (UNIXCB(skb).fp)
2221 unix_detach_fds(&scm, skb);
2222
2223 sk_peek_offset_bwd(sk, skb->len);
2224 } else {
2225 /* It is questionable: on PEEK we could:
2226 - do not return fds - good, but too simple 8)
2227 - return fds, and do not return them on read (old strategy,
2228 apparently wrong)
2229 - clone fds (I chose it for now, it is the most universal
2230 solution)
2231
2232 POSIX 1003.1g does not actually define this clearly
2233 at all. POSIX 1003.1g doesn't define a lot of things
2234 clearly however!
2235
2236 */
2237
2238 sk_peek_offset_fwd(sk, size);
2239
2240 if (UNIXCB(skb).fp)
2241 unix_peek_fds(&scm, skb);
2242 }
2243 err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2244
2245 scm_recv(sock, msg, &scm, flags);
2246
2247 out_free:
2248 skb_free_datagram(sk, skb);
2249 mutex_unlock(&u->iolock);
2250 out:
2251 return err;
2252 }
2253
2254 /*
2255 * Sleep until more data has arrived. But check for races..
2256 */
unix_stream_data_wait(struct sock * sk,long timeo,struct sk_buff * last,unsigned int last_len,bool freezable)2257 static long unix_stream_data_wait(struct sock *sk, long timeo,
2258 struct sk_buff *last, unsigned int last_len,
2259 bool freezable)
2260 {
2261 struct sk_buff *tail;
2262 DEFINE_WAIT(wait);
2263
2264 unix_state_lock(sk);
2265
2266 for (;;) {
2267 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2268
2269 tail = skb_peek_tail(&sk->sk_receive_queue);
2270 if (tail != last ||
2271 (tail && tail->len != last_len) ||
2272 sk->sk_err ||
2273 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2274 signal_pending(current) ||
2275 !timeo)
2276 break;
2277
2278 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2279 unix_state_unlock(sk);
2280 if (freezable)
2281 timeo = freezable_schedule_timeout(timeo);
2282 else
2283 timeo = schedule_timeout(timeo);
2284 unix_state_lock(sk);
2285
2286 if (sock_flag(sk, SOCK_DEAD))
2287 break;
2288
2289 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2290 }
2291
2292 finish_wait(sk_sleep(sk), &wait);
2293 unix_state_unlock(sk);
2294 return timeo;
2295 }
2296
unix_skb_len(const struct sk_buff * skb)2297 static unsigned int unix_skb_len(const struct sk_buff *skb)
2298 {
2299 return skb->len - UNIXCB(skb).consumed;
2300 }
2301
2302 struct unix_stream_read_state {
2303 int (*recv_actor)(struct sk_buff *, int, int,
2304 struct unix_stream_read_state *);
2305 struct socket *socket;
2306 struct msghdr *msg;
2307 struct pipe_inode_info *pipe;
2308 size_t size;
2309 int flags;
2310 unsigned int splice_flags;
2311 };
2312
unix_stream_read_generic(struct unix_stream_read_state * state,bool freezable)2313 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2314 bool freezable)
2315 {
2316 struct scm_cookie scm;
2317 struct socket *sock = state->socket;
2318 struct sock *sk = sock->sk;
2319 struct unix_sock *u = unix_sk(sk);
2320 int copied = 0;
2321 int flags = state->flags;
2322 int noblock = flags & MSG_DONTWAIT;
2323 bool check_creds = false;
2324 int target;
2325 int err = 0;
2326 long timeo;
2327 int skip;
2328 size_t size = state->size;
2329 unsigned int last_len;
2330
2331 if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2332 err = -EINVAL;
2333 goto out;
2334 }
2335
2336 if (unlikely(flags & MSG_OOB)) {
2337 err = -EOPNOTSUPP;
2338 goto out;
2339 }
2340
2341 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2342 timeo = sock_rcvtimeo(sk, noblock);
2343
2344 memset(&scm, 0, sizeof(scm));
2345
2346 /* Lock the socket to prevent queue disordering
2347 * while sleeps in memcpy_tomsg
2348 */
2349 mutex_lock(&u->iolock);
2350
2351 skip = max(sk_peek_offset(sk, flags), 0);
2352
2353 do {
2354 int chunk;
2355 bool drop_skb;
2356 struct sk_buff *skb, *last;
2357
2358 redo:
2359 unix_state_lock(sk);
2360 if (sock_flag(sk, SOCK_DEAD)) {
2361 err = -ECONNRESET;
2362 goto unlock;
2363 }
2364 last = skb = skb_peek(&sk->sk_receive_queue);
2365 last_len = last ? last->len : 0;
2366 again:
2367 if (skb == NULL) {
2368 if (copied >= target)
2369 goto unlock;
2370
2371 /*
2372 * POSIX 1003.1g mandates this order.
2373 */
2374
2375 err = sock_error(sk);
2376 if (err)
2377 goto unlock;
2378 if (sk->sk_shutdown & RCV_SHUTDOWN)
2379 goto unlock;
2380
2381 unix_state_unlock(sk);
2382 if (!timeo) {
2383 err = -EAGAIN;
2384 break;
2385 }
2386
2387 mutex_unlock(&u->iolock);
2388
2389 timeo = unix_stream_data_wait(sk, timeo, last,
2390 last_len, freezable);
2391
2392 if (signal_pending(current)) {
2393 err = sock_intr_errno(timeo);
2394 scm_destroy(&scm);
2395 goto out;
2396 }
2397
2398 mutex_lock(&u->iolock);
2399 goto redo;
2400 unlock:
2401 unix_state_unlock(sk);
2402 break;
2403 }
2404
2405 while (skip >= unix_skb_len(skb)) {
2406 skip -= unix_skb_len(skb);
2407 last = skb;
2408 last_len = skb->len;
2409 skb = skb_peek_next(skb, &sk->sk_receive_queue);
2410 if (!skb)
2411 goto again;
2412 }
2413
2414 unix_state_unlock(sk);
2415
2416 if (check_creds) {
2417 /* Never glue messages from different writers */
2418 if (!unix_skb_scm_eq(skb, &scm))
2419 break;
2420 } else if (test_bit(SOCK_PASSCRED, &sock->flags)) {
2421 /* Copy credentials */
2422 scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2423 unix_set_secdata(&scm, skb);
2424 check_creds = true;
2425 }
2426
2427 /* Copy address just once */
2428 if (state->msg && state->msg->msg_name) {
2429 DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2430 state->msg->msg_name);
2431 unix_copy_addr(state->msg, skb->sk);
2432 sunaddr = NULL;
2433 }
2434
2435 chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2436 skb_get(skb);
2437 chunk = state->recv_actor(skb, skip, chunk, state);
2438 drop_skb = !unix_skb_len(skb);
2439 /* skb is only safe to use if !drop_skb */
2440 consume_skb(skb);
2441 if (chunk < 0) {
2442 if (copied == 0)
2443 copied = -EFAULT;
2444 break;
2445 }
2446 copied += chunk;
2447 size -= chunk;
2448
2449 if (drop_skb) {
2450 /* the skb was touched by a concurrent reader;
2451 * we should not expect anything from this skb
2452 * anymore and assume it invalid - we can be
2453 * sure it was dropped from the socket queue
2454 *
2455 * let's report a short read
2456 */
2457 err = 0;
2458 break;
2459 }
2460
2461 /* Mark read part of skb as used */
2462 if (!(flags & MSG_PEEK)) {
2463 UNIXCB(skb).consumed += chunk;
2464
2465 sk_peek_offset_bwd(sk, chunk);
2466
2467 if (UNIXCB(skb).fp) {
2468 scm_stat_del(sk, skb);
2469 unix_detach_fds(&scm, skb);
2470 }
2471
2472 if (unix_skb_len(skb))
2473 break;
2474
2475 skb_unlink(skb, &sk->sk_receive_queue);
2476 consume_skb(skb);
2477
2478 if (scm.fp)
2479 break;
2480 } else {
2481 /* It is questionable, see note in unix_dgram_recvmsg.
2482 */
2483 if (UNIXCB(skb).fp)
2484 unix_peek_fds(&scm, skb);
2485
2486 sk_peek_offset_fwd(sk, chunk);
2487
2488 if (UNIXCB(skb).fp)
2489 break;
2490
2491 skip = 0;
2492 last = skb;
2493 last_len = skb->len;
2494 unix_state_lock(sk);
2495 skb = skb_peek_next(skb, &sk->sk_receive_queue);
2496 if (skb)
2497 goto again;
2498 unix_state_unlock(sk);
2499 break;
2500 }
2501 } while (size);
2502
2503 mutex_unlock(&u->iolock);
2504 if (state->msg)
2505 scm_recv(sock, state->msg, &scm, flags);
2506 else
2507 scm_destroy(&scm);
2508 out:
2509 return copied ? : err;
2510 }
2511
unix_stream_read_actor(struct sk_buff * skb,int skip,int chunk,struct unix_stream_read_state * state)2512 static int unix_stream_read_actor(struct sk_buff *skb,
2513 int skip, int chunk,
2514 struct unix_stream_read_state *state)
2515 {
2516 int ret;
2517
2518 ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2519 state->msg, chunk);
2520 return ret ?: chunk;
2521 }
2522
unix_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)2523 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2524 size_t size, int flags)
2525 {
2526 struct unix_stream_read_state state = {
2527 .recv_actor = unix_stream_read_actor,
2528 .socket = sock,
2529 .msg = msg,
2530 .size = size,
2531 .flags = flags
2532 };
2533
2534 return unix_stream_read_generic(&state, true);
2535 }
2536
unix_stream_splice_actor(struct sk_buff * skb,int skip,int chunk,struct unix_stream_read_state * state)2537 static int unix_stream_splice_actor(struct sk_buff *skb,
2538 int skip, int chunk,
2539 struct unix_stream_read_state *state)
2540 {
2541 return skb_splice_bits(skb, state->socket->sk,
2542 UNIXCB(skb).consumed + skip,
2543 state->pipe, chunk, state->splice_flags);
2544 }
2545
unix_stream_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t size,unsigned int flags)2546 static ssize_t unix_stream_splice_read(struct socket *sock, loff_t *ppos,
2547 struct pipe_inode_info *pipe,
2548 size_t size, unsigned int flags)
2549 {
2550 struct unix_stream_read_state state = {
2551 .recv_actor = unix_stream_splice_actor,
2552 .socket = sock,
2553 .pipe = pipe,
2554 .size = size,
2555 .splice_flags = flags,
2556 };
2557
2558 if (unlikely(*ppos))
2559 return -ESPIPE;
2560
2561 if (sock->file->f_flags & O_NONBLOCK ||
2562 flags & SPLICE_F_NONBLOCK)
2563 state.flags = MSG_DONTWAIT;
2564
2565 return unix_stream_read_generic(&state, false);
2566 }
2567
unix_shutdown(struct socket * sock,int mode)2568 static int unix_shutdown(struct socket *sock, int mode)
2569 {
2570 struct sock *sk = sock->sk;
2571 struct sock *other;
2572
2573 if (mode < SHUT_RD || mode > SHUT_RDWR)
2574 return -EINVAL;
2575 /* This maps:
2576 * SHUT_RD (0) -> RCV_SHUTDOWN (1)
2577 * SHUT_WR (1) -> SEND_SHUTDOWN (2)
2578 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
2579 */
2580 ++mode;
2581
2582 unix_state_lock(sk);
2583 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode);
2584 other = unix_peer(sk);
2585 if (other)
2586 sock_hold(other);
2587 unix_state_unlock(sk);
2588 sk->sk_state_change(sk);
2589
2590 if (other &&
2591 (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
2592
2593 int peer_mode = 0;
2594
2595 if (mode&RCV_SHUTDOWN)
2596 peer_mode |= SEND_SHUTDOWN;
2597 if (mode&SEND_SHUTDOWN)
2598 peer_mode |= RCV_SHUTDOWN;
2599 unix_state_lock(other);
2600 WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode);
2601 unix_state_unlock(other);
2602 other->sk_state_change(other);
2603 if (peer_mode == SHUTDOWN_MASK)
2604 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
2605 else if (peer_mode & RCV_SHUTDOWN)
2606 sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
2607 }
2608 if (other)
2609 sock_put(other);
2610
2611 return 0;
2612 }
2613
unix_inq_len(struct sock * sk)2614 long unix_inq_len(struct sock *sk)
2615 {
2616 struct sk_buff *skb;
2617 long amount = 0;
2618
2619 if (sk->sk_state == TCP_LISTEN)
2620 return -EINVAL;
2621
2622 spin_lock(&sk->sk_receive_queue.lock);
2623 if (sk->sk_type == SOCK_STREAM ||
2624 sk->sk_type == SOCK_SEQPACKET) {
2625 skb_queue_walk(&sk->sk_receive_queue, skb)
2626 amount += unix_skb_len(skb);
2627 } else {
2628 skb = skb_peek(&sk->sk_receive_queue);
2629 if (skb)
2630 amount = skb->len;
2631 }
2632 spin_unlock(&sk->sk_receive_queue.lock);
2633
2634 return amount;
2635 }
2636 EXPORT_SYMBOL_GPL(unix_inq_len);
2637
unix_outq_len(struct sock * sk)2638 long unix_outq_len(struct sock *sk)
2639 {
2640 return sk_wmem_alloc_get(sk);
2641 }
2642 EXPORT_SYMBOL_GPL(unix_outq_len);
2643
unix_open_file(struct sock * sk)2644 static int unix_open_file(struct sock *sk)
2645 {
2646 struct path path;
2647 struct file *f;
2648 int fd;
2649
2650 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2651 return -EPERM;
2652
2653 if (!smp_load_acquire(&unix_sk(sk)->addr))
2654 return -ENOENT;
2655
2656 path = unix_sk(sk)->path;
2657 if (!path.dentry)
2658 return -ENOENT;
2659
2660 path_get(&path);
2661
2662 fd = get_unused_fd_flags(O_CLOEXEC);
2663 if (fd < 0)
2664 goto out;
2665
2666 f = dentry_open(&path, O_PATH, current_cred());
2667 if (IS_ERR(f)) {
2668 put_unused_fd(fd);
2669 fd = PTR_ERR(f);
2670 goto out;
2671 }
2672
2673 fd_install(fd, f);
2674 out:
2675 path_put(&path);
2676
2677 return fd;
2678 }
2679
unix_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2680 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2681 {
2682 struct sock *sk = sock->sk;
2683 long amount = 0;
2684 int err;
2685
2686 switch (cmd) {
2687 case SIOCOUTQ:
2688 amount = unix_outq_len(sk);
2689 err = put_user(amount, (int __user *)arg);
2690 break;
2691 case SIOCINQ:
2692 amount = unix_inq_len(sk);
2693 if (amount < 0)
2694 err = amount;
2695 else
2696 err = put_user(amount, (int __user *)arg);
2697 break;
2698 case SIOCUNIXFILE:
2699 err = unix_open_file(sk);
2700 break;
2701 default:
2702 err = -ENOIOCTLCMD;
2703 break;
2704 }
2705 return err;
2706 }
2707
2708 #ifdef CONFIG_COMPAT
unix_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2709 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2710 {
2711 return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
2712 }
2713 #endif
2714
unix_poll(struct file * file,struct socket * sock,poll_table * wait)2715 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
2716 {
2717 struct sock *sk = sock->sk;
2718 __poll_t mask;
2719 u8 shutdown;
2720
2721 sock_poll_wait(file, sock, wait);
2722 mask = 0;
2723 shutdown = READ_ONCE(sk->sk_shutdown);
2724
2725 /* exceptional events? */
2726 if (sk->sk_err)
2727 mask |= EPOLLERR;
2728 if (shutdown == SHUTDOWN_MASK)
2729 mask |= EPOLLHUP;
2730 if (shutdown & RCV_SHUTDOWN)
2731 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
2732
2733 /* readable? */
2734 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
2735 mask |= EPOLLIN | EPOLLRDNORM;
2736
2737 /* Connection-based need to check for termination and startup */
2738 if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
2739 sk->sk_state == TCP_CLOSE)
2740 mask |= EPOLLHUP;
2741
2742 /*
2743 * we set writable also when the other side has shut down the
2744 * connection. This prevents stuck sockets.
2745 */
2746 if (unix_writable(sk))
2747 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
2748
2749 return mask;
2750 }
2751
unix_dgram_poll(struct file * file,struct socket * sock,poll_table * wait)2752 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
2753 poll_table *wait)
2754 {
2755 struct sock *sk = sock->sk, *other;
2756 unsigned int writable;
2757 __poll_t mask;
2758 u8 shutdown;
2759
2760 sock_poll_wait(file, sock, wait);
2761 mask = 0;
2762 shutdown = READ_ONCE(sk->sk_shutdown);
2763
2764 /* exceptional events? */
2765 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
2766 mask |= EPOLLERR |
2767 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
2768
2769 if (shutdown & RCV_SHUTDOWN)
2770 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
2771 if (shutdown == SHUTDOWN_MASK)
2772 mask |= EPOLLHUP;
2773
2774 /* readable? */
2775 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
2776 mask |= EPOLLIN | EPOLLRDNORM;
2777
2778 /* Connection-based need to check for termination and startup */
2779 if (sk->sk_type == SOCK_SEQPACKET) {
2780 if (sk->sk_state == TCP_CLOSE)
2781 mask |= EPOLLHUP;
2782 /* connection hasn't started yet? */
2783 if (sk->sk_state == TCP_SYN_SENT)
2784 return mask;
2785 }
2786
2787 /* No write status requested, avoid expensive OUT tests. */
2788 if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
2789 return mask;
2790
2791 writable = unix_writable(sk);
2792 if (writable) {
2793 unix_state_lock(sk);
2794
2795 other = unix_peer(sk);
2796 if (other && unix_peer(other) != sk &&
2797 unix_recvq_full_lockless(other) &&
2798 unix_dgram_peer_wake_me(sk, other))
2799 writable = 0;
2800
2801 unix_state_unlock(sk);
2802 }
2803
2804 if (writable)
2805 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
2806 else
2807 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2808
2809 return mask;
2810 }
2811
2812 #ifdef CONFIG_PROC_FS
2813
2814 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
2815
2816 #define get_bucket(x) ((x) >> BUCKET_SPACE)
2817 #define get_offset(x) ((x) & ((1L << BUCKET_SPACE) - 1))
2818 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
2819
unix_from_bucket(struct seq_file * seq,loff_t * pos)2820 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
2821 {
2822 unsigned long offset = get_offset(*pos);
2823 unsigned long bucket = get_bucket(*pos);
2824 struct sock *sk;
2825 unsigned long count = 0;
2826
2827 for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) {
2828 if (sock_net(sk) != seq_file_net(seq))
2829 continue;
2830 if (++count == offset)
2831 break;
2832 }
2833
2834 return sk;
2835 }
2836
unix_next_socket(struct seq_file * seq,struct sock * sk,loff_t * pos)2837 static struct sock *unix_next_socket(struct seq_file *seq,
2838 struct sock *sk,
2839 loff_t *pos)
2840 {
2841 unsigned long bucket;
2842
2843 while (sk > (struct sock *)SEQ_START_TOKEN) {
2844 sk = sk_next(sk);
2845 if (!sk)
2846 goto next_bucket;
2847 if (sock_net(sk) == seq_file_net(seq))
2848 return sk;
2849 }
2850
2851 do {
2852 sk = unix_from_bucket(seq, pos);
2853 if (sk)
2854 return sk;
2855
2856 next_bucket:
2857 bucket = get_bucket(*pos) + 1;
2858 *pos = set_bucket_offset(bucket, 1);
2859 } while (bucket < ARRAY_SIZE(unix_socket_table));
2860
2861 return NULL;
2862 }
2863
unix_seq_start(struct seq_file * seq,loff_t * pos)2864 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
2865 __acquires(unix_table_lock)
2866 {
2867 spin_lock(&unix_table_lock);
2868
2869 if (!*pos)
2870 return SEQ_START_TOKEN;
2871
2872 if (get_bucket(*pos) >= ARRAY_SIZE(unix_socket_table))
2873 return NULL;
2874
2875 return unix_next_socket(seq, NULL, pos);
2876 }
2877
unix_seq_next(struct seq_file * seq,void * v,loff_t * pos)2878 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2879 {
2880 ++*pos;
2881 return unix_next_socket(seq, v, pos);
2882 }
2883
unix_seq_stop(struct seq_file * seq,void * v)2884 static void unix_seq_stop(struct seq_file *seq, void *v)
2885 __releases(unix_table_lock)
2886 {
2887 spin_unlock(&unix_table_lock);
2888 }
2889
unix_seq_show(struct seq_file * seq,void * v)2890 static int unix_seq_show(struct seq_file *seq, void *v)
2891 {
2892
2893 if (v == SEQ_START_TOKEN)
2894 seq_puts(seq, "Num RefCount Protocol Flags Type St "
2895 "Inode Path\n");
2896 else {
2897 struct sock *s = v;
2898 struct unix_sock *u = unix_sk(s);
2899 unix_state_lock(s);
2900
2901 seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
2902 s,
2903 refcount_read(&s->sk_refcnt),
2904 0,
2905 s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
2906 s->sk_type,
2907 s->sk_socket ?
2908 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
2909 (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
2910 sock_i_ino(s));
2911
2912 if (u->addr) { // under unix_table_lock here
2913 int i, len;
2914 seq_putc(seq, ' ');
2915
2916 i = 0;
2917 len = u->addr->len - sizeof(short);
2918 if (!UNIX_ABSTRACT(s))
2919 len--;
2920 else {
2921 seq_putc(seq, '@');
2922 i++;
2923 }
2924 for ( ; i < len; i++)
2925 seq_putc(seq, u->addr->name->sun_path[i] ?:
2926 '@');
2927 }
2928 unix_state_unlock(s);
2929 seq_putc(seq, '\n');
2930 }
2931
2932 return 0;
2933 }
2934
2935 static const struct seq_operations unix_seq_ops = {
2936 .start = unix_seq_start,
2937 .next = unix_seq_next,
2938 .stop = unix_seq_stop,
2939 .show = unix_seq_show,
2940 };
2941 #endif
2942
2943 static const struct net_proto_family unix_family_ops = {
2944 .family = PF_UNIX,
2945 .create = unix_create,
2946 .owner = THIS_MODULE,
2947 };
2948
2949
unix_net_init(struct net * net)2950 static int __net_init unix_net_init(struct net *net)
2951 {
2952 int error = -ENOMEM;
2953
2954 net->unx.sysctl_max_dgram_qlen = 10;
2955 if (unix_sysctl_register(net))
2956 goto out;
2957
2958 #ifdef CONFIG_PROC_FS
2959 if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
2960 sizeof(struct seq_net_private))) {
2961 unix_sysctl_unregister(net);
2962 goto out;
2963 }
2964 #endif
2965 error = 0;
2966 out:
2967 return error;
2968 }
2969
unix_net_exit(struct net * net)2970 static void __net_exit unix_net_exit(struct net *net)
2971 {
2972 unix_sysctl_unregister(net);
2973 remove_proc_entry("unix", net->proc_net);
2974 }
2975
2976 static struct pernet_operations unix_net_ops = {
2977 .init = unix_net_init,
2978 .exit = unix_net_exit,
2979 };
2980
af_unix_init(void)2981 static int __init af_unix_init(void)
2982 {
2983 int rc = -1;
2984
2985 BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
2986
2987 rc = proto_register(&unix_proto, 1);
2988 if (rc != 0) {
2989 pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
2990 goto out;
2991 }
2992
2993 sock_register(&unix_family_ops);
2994 register_pernet_subsys(&unix_net_ops);
2995 out:
2996 return rc;
2997 }
2998
af_unix_exit(void)2999 static void __exit af_unix_exit(void)
3000 {
3001 sock_unregister(PF_UNIX);
3002 proto_unregister(&unix_proto);
3003 unregister_pernet_subsys(&unix_net_ops);
3004 }
3005
3006 /* Earlier than device_initcall() so that other drivers invoking
3007 request_module() don't end up in a loop when modprobe tries
3008 to use a UNIX socket. But later than subsys_initcall() because
3009 we depend on stuff initialised there */
3010 fs_initcall(af_unix_init);
3011 module_exit(af_unix_exit);
3012
3013 MODULE_LICENSE("GPL");
3014 MODULE_ALIAS_NETPROTO(PF_UNIX);
3015