• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * adaptive and fixed codebook vector operations for ACELP-based codecs
3  *
4  * Copyright (c) 2008 Vladimir Voroshilov
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/avassert.h"
26 #include "libavutil/common.h"
27 #include "libavutil/float_dsp.h"
28 #include "avcodec.h"
29 #include "acelp_vectors.h"
30 
31 const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
32 {
33   1,  3,
34   8,  6,
35   18, 16,
36   11, 13,
37   38, 36,
38   31, 33,
39   21, 23,
40   28, 26,
41 };
42 
43 const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
44 {
45   0,  2,
46   5,  4,
47   12, 10,
48   7,  9,
49   25, 24,
50   20, 22,
51   14, 15,
52   19, 17,
53   36, 31,
54   21, 26,
55   1,  6,
56   16, 11,
57   27, 29,
58   32, 30,
59   39, 37,
60   34, 35,
61 };
62 
63 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
64 {
65   0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
66 };
67 
68 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
69 {
70     3,  4,
71     8,  9,
72     13, 14,
73     18, 19,
74     23, 24,
75     28, 29,
76     33, 34,
77     38, 39,
78     43, 44,
79     48, 49,
80     53, 54,
81     58, 59,
82     63, 64,
83     68, 69,
84     73, 74,
85     78, 79,
86 };
87 
88 const float ff_pow_0_7[10] = {
89     0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
90     0.117649, 0.082354, 0.057648, 0.040354, 0.028248
91 };
92 
93 const float ff_pow_0_75[10] = {
94     0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
95     0.177979, 0.133484, 0.100113, 0.075085, 0.056314
96 };
97 
98 const float ff_pow_0_55[10] = {
99     0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
100     0.027681, 0.015224, 0.008373, 0.004605, 0.002533
101 };
102 
103 const float ff_b60_sinc[61] = {
104  0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
105  0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
106 -0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
107  0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
108 -0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
109  0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
110 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
111  0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
112 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
113  0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
114  0.
115 };
116 
ff_acelp_fc_pulse_per_track(int16_t * fc_v,const uint8_t * tab1,const uint8_t * tab2,int pulse_indexes,int pulse_signs,int pulse_count,int bits)117 void ff_acelp_fc_pulse_per_track(
118         int16_t* fc_v,
119         const uint8_t *tab1,
120         const uint8_t *tab2,
121         int pulse_indexes,
122         int pulse_signs,
123         int pulse_count,
124         int bits)
125 {
126     int mask = (1 << bits) - 1;
127     int i;
128 
129     for(i=0; i<pulse_count; i++)
130     {
131         fc_v[i + tab1[pulse_indexes & mask]] +=
132                 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
133 
134         pulse_indexes >>= bits;
135         pulse_signs >>= 1;
136     }
137 
138     fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
139 }
140 
ff_decode_10_pulses_35bits(const int16_t * fixed_index,AMRFixed * fixed_sparse,const uint8_t * gray_decode,int half_pulse_count,int bits)141 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
142                                 AMRFixed *fixed_sparse,
143                                 const uint8_t *gray_decode,
144                                 int half_pulse_count, int bits)
145 {
146     int i;
147     int mask = (1 << bits) - 1;
148 
149     fixed_sparse->no_repeat_mask = 0;
150     fixed_sparse->n = 2 * half_pulse_count;
151     for (i = 0; i < half_pulse_count; i++) {
152         const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
153         const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
154         const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
155         fixed_sparse->x[2*i+1] = pos1;
156         fixed_sparse->x[2*i  ] = pos2;
157         fixed_sparse->y[2*i+1] = sign;
158         fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
159     }
160 }
161 
ff_acelp_weighted_vector_sum(int16_t * out,const int16_t * in_a,const int16_t * in_b,int16_t weight_coeff_a,int16_t weight_coeff_b,int16_t rounder,int shift,int length)162 void ff_acelp_weighted_vector_sum(
163         int16_t* out,
164         const int16_t *in_a,
165         const int16_t *in_b,
166         int16_t weight_coeff_a,
167         int16_t weight_coeff_b,
168         int16_t rounder,
169         int shift,
170         int length)
171 {
172     int i;
173 
174     // Clipping required here; breaks OVERFLOW test.
175     for(i=0; i<length; i++)
176         out[i] = av_clip_int16((
177                  in_a[i] * weight_coeff_a +
178                  in_b[i] * weight_coeff_b +
179                  rounder) >> shift);
180 }
181 
ff_weighted_vector_sumf(float * out,const float * in_a,const float * in_b,float weight_coeff_a,float weight_coeff_b,int length)182 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
183                              float weight_coeff_a, float weight_coeff_b, int length)
184 {
185     int i;
186 
187     for(i=0; i<length; i++)
188         out[i] = weight_coeff_a * in_a[i]
189                + weight_coeff_b * in_b[i];
190 }
191 
ff_adaptive_gain_control(float * out,const float * in,float speech_energ,int size,float alpha,float * gain_mem)192 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
193                               int size, float alpha, float *gain_mem)
194 {
195     int i;
196     float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
197     float gain_scale_factor = 1.0;
198     float mem = *gain_mem;
199 
200     if (postfilter_energ)
201         gain_scale_factor = sqrt(speech_energ / postfilter_energ);
202 
203     gain_scale_factor *= 1.0 - alpha;
204 
205     for (i = 0; i < size; i++) {
206         mem = alpha * mem + gain_scale_factor;
207         out[i] = in[i] * mem;
208     }
209 
210     *gain_mem = mem;
211 }
212 
ff_scale_vector_to_given_sum_of_squares(float * out,const float * in,float sum_of_squares,const int n)213 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
214                                              float sum_of_squares, const int n)
215 {
216     int i;
217     float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
218     if (scalefactor)
219         scalefactor = sqrt(sum_of_squares / scalefactor);
220     for (i = 0; i < n; i++)
221         out[i] = in[i] * scalefactor;
222 }
223 
ff_set_fixed_vector(float * out,const AMRFixed * in,float scale,int size)224 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
225 {
226     int i;
227 
228     for (i=0; i < in->n; i++) {
229         int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
230         float y = in->y[i] * scale;
231 
232         if (in->pitch_lag > 0) {
233             av_assert0(x < size);
234             do {
235                 out[x] += y;
236                 y *= in->pitch_fac;
237                 x += in->pitch_lag;
238             } while (x < size && repeats);
239         }
240     }
241 }
242 
ff_clear_fixed_vector(float * out,const AMRFixed * in,int size)243 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
244 {
245     int i;
246 
247     for (i=0; i < in->n; i++) {
248         int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
249 
250         if (in->pitch_lag > 0)
251             do {
252                 out[x] = 0.0;
253                 x += in->pitch_lag;
254             } while (x < size && repeats);
255     }
256 }
257 
ff_acelp_vectors_init(ACELPVContext * c)258 void ff_acelp_vectors_init(ACELPVContext *c)
259 {
260     c->weighted_vector_sumf   = ff_weighted_vector_sumf;
261 
262 #if HAVE_MIPSFPU
263     ff_acelp_vectors_init_mips(c);
264 #endif
265 }
266