• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * G.723.1 compatible decoder
3  * Copyright (c) 2006 Benjamin Larsson
4  * Copyright (c) 2010 Mohamed Naufal Basheer
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * G.723.1 compatible decoder
26  */
27 
28 #include "libavutil/channel_layout.h"
29 #include "libavutil/mem.h"
30 #include "libavutil/opt.h"
31 
32 #define BITSTREAM_READER_LE
33 #include "acelp_vectors.h"
34 #include "avcodec.h"
35 #include "celp_filters.h"
36 #include "celp_math.h"
37 #include "codec_internal.h"
38 #include "get_bits.h"
39 #include "internal.h"
40 #include "g723_1.h"
41 
42 #define CNG_RANDOM_SEED 12345
43 
44 /**
45  * Postfilter gain weighting factors scaled by 2^15
46  */
47 static const int16_t ppf_gain_weight[2] = {0x1800, 0x2000};
48 
49 static const int16_t pitch_contrib[340] = {
50     60,     0,  0,  2489, 60,     0,  0,  5217,
51      1,  6171,  0,  3953,  0, 10364,  1,  9357,
52     -1,  8843,  1,  9396,  0,  5794, -1, 10816,
53      2, 11606, -2, 12072,  0,  8616,  1, 12170,
54      0, 14440,  0,  7787, -1, 13721,  0, 18205,
55      0, 14471,  0, 15807,  1, 15275,  0, 13480,
56     -1, 18375, -1,     0,  1, 11194, -1, 13010,
57      1, 18836, -2, 20354,  1, 16233, -1,     0,
58     60,     0,  0, 12130,  0, 13385,  1, 17834,
59      1, 20875,  0, 21996,  1,     0,  1, 18277,
60     -1, 21321,  1, 13738, -1, 19094, -1, 20387,
61     -1,     0,  0, 21008, 60,     0, -2, 22807,
62      0, 15900,  1,     0,  0, 17989, -1, 22259,
63      1, 24395,  1, 23138,  0, 23948,  1, 22997,
64      2, 22604, -1, 25942,  0, 26246,  1, 25321,
65      0, 26423,  0, 24061,  0, 27247, 60,     0,
66     -1, 25572,  1, 23918,  1, 25930,  2, 26408,
67     -1, 19049,  1, 27357, -1, 24538, 60,     0,
68     -1, 25093,  0, 28549,  1,     0,  0, 22793,
69     -1, 25659,  0, 29377,  0, 30276,  0, 26198,
70      1, 22521, -1, 28919,  0, 27384,  1, 30162,
71     -1,     0,  0, 24237, -1, 30062,  0, 21763,
72      1, 30917, 60,     0,  0, 31284,  0, 29433,
73      1, 26821,  1, 28655,  0, 31327,  2, 30799,
74      1, 31389,  0, 32322,  1, 31760, -2, 31830,
75      0, 26936, -1, 31180,  1, 30875,  0, 27873,
76     -1, 30429,  1, 31050,  0,     0,  0, 31912,
77      1, 31611,  0, 31565,  0, 25557,  0, 31357,
78     60,     0,  1, 29536,  1, 28985, -1, 26984,
79     -1, 31587,  2, 30836, -2, 31133,  0, 30243,
80     -1, 30742, -1, 32090, 60,     0,  2, 30902,
81     60,     0,  0, 30027,  0, 29042, 60,     0,
82      0, 31756,  0, 24553,  0, 25636, -2, 30501,
83     60,     0, -1, 29617,  0, 30649, 60,     0,
84      0, 29274,  2, 30415,  0, 27480,  0, 31213,
85     -1, 28147,  0, 30600,  1, 31652,  2, 29068,
86     60,     0,  1, 28571,  1, 28730,  1, 31422,
87      0, 28257,  0, 24797, 60,     0,  0,     0,
88     60,     0,  0, 22105,  0, 27852, 60,     0,
89     60,     0, -1, 24214,  0, 24642,  0, 23305,
90     60,     0, 60,     0,  1, 22883,  0, 21601,
91     60,     0,  2, 25650, 60,     0, -2, 31253,
92     -2, 25144,  0, 17998
93 };
94 
95 /**
96  * Size of the MP-MLQ fixed excitation codebooks
97  */
98 static const int32_t max_pos[4] = {593775, 142506, 593775, 142506};
99 
100 /**
101  * 0.65^i (Zero part) and 0.75^i (Pole part) scaled by 2^15
102  */
103 static const int16_t postfilter_tbl[2][LPC_ORDER] = {
104     /* Zero */
105     {21299, 13844,  8999,  5849, 3802, 2471, 1606, 1044,  679,  441},
106     /* Pole */
107     {24576, 18432, 13824, 10368, 7776, 5832, 4374, 3281, 2460, 1845}
108 };
109 
110 static const int cng_adaptive_cb_lag[4] = { 1, 0, 1, 3 };
111 
112 static const int cng_filt[4] = { 273, 998, 499, 333 };
113 
114 static const int cng_bseg[3] = { 2048, 18432, 231233 };
115 
g723_1_decode_init(AVCodecContext * avctx)116 static av_cold int g723_1_decode_init(AVCodecContext *avctx)
117 {
118     G723_1_Context *s = avctx->priv_data;
119 
120     avctx->sample_fmt     = AV_SAMPLE_FMT_S16P;
121     if (avctx->ch_layout.nb_channels < 1 || avctx->ch_layout.nb_channels > 2) {
122         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n",
123                avctx->ch_layout.nb_channels);
124         return AVERROR(EINVAL);
125     }
126     for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
127         G723_1_ChannelContext *p = &s->ch[ch];
128 
129         p->pf_gain = 1 << 12;
130 
131         memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
132         memcpy(p->sid_lsp,  dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp));
133 
134         p->cng_random_seed = CNG_RANDOM_SEED;
135         p->past_frame_type = SID_FRAME;
136     }
137 
138     return 0;
139 }
140 
141 /**
142  * Unpack the frame into parameters.
143  *
144  * @param p           the context
145  * @param buf         pointer to the input buffer
146  * @param buf_size    size of the input buffer
147  */
unpack_bitstream(G723_1_ChannelContext * p,const uint8_t * buf,int buf_size)148 static int unpack_bitstream(G723_1_ChannelContext *p, const uint8_t *buf,
149                             int buf_size)
150 {
151     GetBitContext gb;
152     int ad_cb_len;
153     int temp, info_bits, i;
154     int ret;
155 
156     ret = init_get_bits8(&gb, buf, buf_size);
157     if (ret < 0)
158         return ret;
159 
160     /* Extract frame type and rate info */
161     info_bits = get_bits(&gb, 2);
162 
163     if (info_bits == 3) {
164         p->cur_frame_type = UNTRANSMITTED_FRAME;
165         return 0;
166     }
167 
168     /* Extract 24 bit lsp indices, 8 bit for each band */
169     p->lsp_index[2] = get_bits(&gb, 8);
170     p->lsp_index[1] = get_bits(&gb, 8);
171     p->lsp_index[0] = get_bits(&gb, 8);
172 
173     if (info_bits == 2) {
174         p->cur_frame_type = SID_FRAME;
175         p->subframe[0].amp_index = get_bits(&gb, 6);
176         return 0;
177     }
178 
179     /* Extract the info common to both rates */
180     p->cur_rate       = info_bits ? RATE_5300 : RATE_6300;
181     p->cur_frame_type = ACTIVE_FRAME;
182 
183     p->pitch_lag[0] = get_bits(&gb, 7);
184     if (p->pitch_lag[0] > 123)       /* test if forbidden code */
185         return -1;
186     p->pitch_lag[0] += PITCH_MIN;
187     p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
188 
189     p->pitch_lag[1] = get_bits(&gb, 7);
190     if (p->pitch_lag[1] > 123)
191         return -1;
192     p->pitch_lag[1] += PITCH_MIN;
193     p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
194     p->subframe[0].ad_cb_lag = 1;
195     p->subframe[2].ad_cb_lag = 1;
196 
197     for (i = 0; i < SUBFRAMES; i++) {
198         /* Extract combined gain */
199         temp = get_bits(&gb, 12);
200         ad_cb_len = 170;
201         p->subframe[i].dirac_train = 0;
202         if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
203             p->subframe[i].dirac_train = temp >> 11;
204             temp &= 0x7FF;
205             ad_cb_len = 85;
206         }
207         p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
208         if (p->subframe[i].ad_cb_gain < ad_cb_len) {
209             p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
210                                        GAIN_LEVELS;
211         } else {
212             return -1;
213         }
214     }
215 
216     p->subframe[0].grid_index = get_bits1(&gb);
217     p->subframe[1].grid_index = get_bits1(&gb);
218     p->subframe[2].grid_index = get_bits1(&gb);
219     p->subframe[3].grid_index = get_bits1(&gb);
220 
221     if (p->cur_rate == RATE_6300) {
222         skip_bits1(&gb);  /* skip reserved bit */
223 
224         /* Compute pulse_pos index using the 13-bit combined position index */
225         temp = get_bits(&gb, 13);
226         p->subframe[0].pulse_pos = temp / 810;
227 
228         temp -= p->subframe[0].pulse_pos * 810;
229         p->subframe[1].pulse_pos = FASTDIV(temp, 90);
230 
231         temp -= p->subframe[1].pulse_pos * 90;
232         p->subframe[2].pulse_pos = FASTDIV(temp, 9);
233         p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
234 
235         p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
236                                    get_bits(&gb, 16);
237         p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
238                                    get_bits(&gb, 14);
239         p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
240                                    get_bits(&gb, 16);
241         p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
242                                    get_bits(&gb, 14);
243 
244         p->subframe[0].pulse_sign = get_bits(&gb, 6);
245         p->subframe[1].pulse_sign = get_bits(&gb, 5);
246         p->subframe[2].pulse_sign = get_bits(&gb, 6);
247         p->subframe[3].pulse_sign = get_bits(&gb, 5);
248     } else { /* 5300 bps */
249         p->subframe[0].pulse_pos  = get_bits(&gb, 12);
250         p->subframe[1].pulse_pos  = get_bits(&gb, 12);
251         p->subframe[2].pulse_pos  = get_bits(&gb, 12);
252         p->subframe[3].pulse_pos  = get_bits(&gb, 12);
253 
254         p->subframe[0].pulse_sign = get_bits(&gb, 4);
255         p->subframe[1].pulse_sign = get_bits(&gb, 4);
256         p->subframe[2].pulse_sign = get_bits(&gb, 4);
257         p->subframe[3].pulse_sign = get_bits(&gb, 4);
258     }
259 
260     return 0;
261 }
262 
263 /**
264  * Bitexact implementation of sqrt(val/2).
265  */
square_root(unsigned val)266 static int16_t square_root(unsigned val)
267 {
268     av_assert2(!(val & 0x80000000));
269 
270     return (ff_sqrt(val << 1) >> 1) & (~1);
271 }
272 
273 /**
274  * Generate fixed codebook excitation vector.
275  *
276  * @param vector    decoded excitation vector
277  * @param subfrm    current subframe
278  * @param cur_rate  current bitrate
279  * @param pitch_lag closed loop pitch lag
280  * @param index     current subframe index
281  */
gen_fcb_excitation(int16_t * vector,G723_1_Subframe * subfrm,enum Rate cur_rate,int pitch_lag,int index)282 static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
283                                enum Rate cur_rate, int pitch_lag, int index)
284 {
285     int temp, i, j;
286 
287     memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
288 
289     if (cur_rate == RATE_6300) {
290         if (subfrm->pulse_pos >= max_pos[index])
291             return;
292 
293         /* Decode amplitudes and positions */
294         j = PULSE_MAX - pulses[index];
295         temp = subfrm->pulse_pos;
296         for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
297             temp -= ff_g723_1_combinatorial_table[j][i];
298             if (temp >= 0)
299                 continue;
300             temp += ff_g723_1_combinatorial_table[j++][i];
301             if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
302                 vector[subfrm->grid_index + GRID_SIZE * i] =
303                                         -ff_g723_1_fixed_cb_gain[subfrm->amp_index];
304             } else {
305                 vector[subfrm->grid_index + GRID_SIZE * i] =
306                                          ff_g723_1_fixed_cb_gain[subfrm->amp_index];
307             }
308             if (j == PULSE_MAX)
309                 break;
310         }
311         if (subfrm->dirac_train == 1)
312             ff_g723_1_gen_dirac_train(vector, pitch_lag);
313     } else { /* 5300 bps */
314         int cb_gain  = ff_g723_1_fixed_cb_gain[subfrm->amp_index];
315         int cb_shift = subfrm->grid_index;
316         int cb_sign  = subfrm->pulse_sign;
317         int cb_pos   = subfrm->pulse_pos;
318         int offset, beta, lag;
319 
320         for (i = 0; i < 8; i += 2) {
321             offset         = ((cb_pos & 7) << 3) + cb_shift + i;
322             vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
323             cb_pos  >>= 3;
324             cb_sign >>= 1;
325         }
326 
327         /* Enhance harmonic components */
328         lag  = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
329                subfrm->ad_cb_lag - 1;
330         beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
331 
332         if (lag < SUBFRAME_LEN - 2) {
333             for (i = lag; i < SUBFRAME_LEN; i++)
334                 vector[i] += beta * vector[i - lag] >> 15;
335         }
336     }
337 }
338 
339 /**
340  * Estimate maximum auto-correlation around pitch lag.
341  *
342  * @param buf       buffer with offset applied
343  * @param offset    offset of the excitation vector
344  * @param ccr_max   pointer to the maximum auto-correlation
345  * @param pitch_lag decoded pitch lag
346  * @param length    length of autocorrelation
347  * @param dir       forward lag(1) / backward lag(-1)
348  */
autocorr_max(const int16_t * buf,int offset,int * ccr_max,int pitch_lag,int length,int dir)349 static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
350                         int pitch_lag, int length, int dir)
351 {
352     int limit, ccr, lag = 0;
353     int i;
354 
355     pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
356     if (dir > 0)
357         limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
358     else
359         limit = pitch_lag + 3;
360 
361     for (i = pitch_lag - 3; i <= limit; i++) {
362         ccr = ff_g723_1_dot_product(buf, buf + dir * i, length);
363 
364         if (ccr > *ccr_max) {
365             *ccr_max = ccr;
366             lag = i;
367         }
368     }
369     return lag;
370 }
371 
372 /**
373  * Calculate pitch postfilter optimal and scaling gains.
374  *
375  * @param lag      pitch postfilter forward/backward lag
376  * @param ppf      pitch postfilter parameters
377  * @param cur_rate current bitrate
378  * @param tgt_eng  target energy
379  * @param ccr      cross-correlation
380  * @param res_eng  residual energy
381  */
comp_ppf_gains(int lag,PPFParam * ppf,enum Rate cur_rate,int tgt_eng,int ccr,int res_eng)382 static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
383                            int tgt_eng, int ccr, int res_eng)
384 {
385     int pf_residual;     /* square of postfiltered residual */
386     int temp1, temp2;
387 
388     ppf->index = lag;
389 
390     temp1 = tgt_eng * res_eng >> 1;
391     temp2 = ccr * ccr << 1;
392 
393     if (temp2 > temp1) {
394         if (ccr >= res_eng) {
395             ppf->opt_gain = ppf_gain_weight[cur_rate];
396         } else {
397             ppf->opt_gain = (ccr << 15) / res_eng *
398                             ppf_gain_weight[cur_rate] >> 15;
399         }
400         /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
401         temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
402         temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
403         pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
404 
405         if (tgt_eng >= pf_residual << 1) {
406             temp1 = 0x7fff;
407         } else {
408             temp1 = (tgt_eng << 14) / pf_residual;
409         }
410 
411         /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
412         ppf->sc_gain = square_root(temp1 << 16);
413     } else {
414         ppf->opt_gain = 0;
415         ppf->sc_gain  = 0x7fff;
416     }
417 
418     ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
419 }
420 
421 /**
422  * Calculate pitch postfilter parameters.
423  *
424  * @param p         the context
425  * @param offset    offset of the excitation vector
426  * @param pitch_lag decoded pitch lag
427  * @param ppf       pitch postfilter parameters
428  * @param cur_rate  current bitrate
429  */
comp_ppf_coeff(G723_1_ChannelContext * p,int offset,int pitch_lag,PPFParam * ppf,enum Rate cur_rate)430 static void comp_ppf_coeff(G723_1_ChannelContext *p, int offset, int pitch_lag,
431                            PPFParam *ppf, enum Rate cur_rate)
432 {
433 
434     int16_t scale;
435     int i;
436     int temp1, temp2;
437 
438     /*
439      * 0 - target energy
440      * 1 - forward cross-correlation
441      * 2 - forward residual energy
442      * 3 - backward cross-correlation
443      * 4 - backward residual energy
444      */
445     int energy[5] = {0, 0, 0, 0, 0};
446     int16_t *buf  = p->audio + LPC_ORDER + offset;
447     int fwd_lag   = autocorr_max(buf, offset, &energy[1], pitch_lag,
448                                  SUBFRAME_LEN, 1);
449     int back_lag  = autocorr_max(buf, offset, &energy[3], pitch_lag,
450                                  SUBFRAME_LEN, -1);
451 
452     ppf->index    = 0;
453     ppf->opt_gain = 0;
454     ppf->sc_gain  = 0x7fff;
455 
456     /* Case 0, Section 3.6 */
457     if (!back_lag && !fwd_lag)
458         return;
459 
460     /* Compute target energy */
461     energy[0] = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN);
462 
463     /* Compute forward residual energy */
464     if (fwd_lag)
465         energy[2] = ff_g723_1_dot_product(buf + fwd_lag, buf + fwd_lag,
466                                           SUBFRAME_LEN);
467 
468     /* Compute backward residual energy */
469     if (back_lag)
470         energy[4] = ff_g723_1_dot_product(buf - back_lag, buf - back_lag,
471                                           SUBFRAME_LEN);
472 
473     /* Normalize and shorten */
474     temp1 = 0;
475     for (i = 0; i < 5; i++)
476         temp1 = FFMAX(energy[i], temp1);
477 
478     scale = ff_g723_1_normalize_bits(temp1, 31);
479     for (i = 0; i < 5; i++)
480         energy[i] = (energy[i] << scale) >> 16;
481 
482     if (fwd_lag && !back_lag) {  /* Case 1 */
483         comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
484                        energy[2]);
485     } else if (!fwd_lag) {       /* Case 2 */
486         comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
487                        energy[4]);
488     } else {                     /* Case 3 */
489 
490         /*
491          * Select the largest of energy[1]^2/energy[2]
492          * and energy[3]^2/energy[4]
493          */
494         temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
495         temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
496         if (temp1 >= temp2) {
497             comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
498                            energy[2]);
499         } else {
500             comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
501                            energy[4]);
502         }
503     }
504 }
505 
506 /**
507  * Classify frames as voiced/unvoiced.
508  *
509  * @param p         the context
510  * @param pitch_lag decoded pitch_lag
511  * @param exc_eng   excitation energy estimation
512  * @param scale     scaling factor of exc_eng
513  *
514  * @return residual interpolation index if voiced, 0 otherwise
515  */
comp_interp_index(G723_1_ChannelContext * p,int pitch_lag,int * exc_eng,int * scale)516 static int comp_interp_index(G723_1_ChannelContext *p, int pitch_lag,
517                              int *exc_eng, int *scale)
518 {
519     int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
520     int16_t *buf = p->audio + LPC_ORDER;
521 
522     int index, ccr, tgt_eng, best_eng, temp;
523 
524     *scale = ff_g723_1_scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
525     buf   += offset;
526 
527     /* Compute maximum backward cross-correlation */
528     ccr   = 0;
529     index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
530     ccr   = av_sat_add32(ccr, 1 << 15) >> 16;
531 
532     /* Compute target energy */
533     tgt_eng  = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN * 2);
534     *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
535 
536     if (ccr <= 0)
537         return 0;
538 
539     /* Compute best energy */
540     best_eng = ff_g723_1_dot_product(buf - index, buf - index,
541                                      SUBFRAME_LEN * 2);
542     best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
543 
544     temp = best_eng * *exc_eng >> 3;
545 
546     if (temp < ccr * ccr) {
547         return index;
548     } else
549         return 0;
550 }
551 
552 /**
553  * Perform residual interpolation based on frame classification.
554  *
555  * @param buf   decoded excitation vector
556  * @param out   output vector
557  * @param lag   decoded pitch lag
558  * @param gain  interpolated gain
559  * @param rseed seed for random number generator
560  */
residual_interp(int16_t * buf,int16_t * out,int lag,int gain,int * rseed)561 static void residual_interp(int16_t *buf, int16_t *out, int lag,
562                             int gain, int *rseed)
563 {
564     int i;
565     if (lag) { /* Voiced */
566         int16_t *vector_ptr = buf + PITCH_MAX;
567         /* Attenuate */
568         for (i = 0; i < lag; i++)
569             out[i] = vector_ptr[i - lag] * 3 >> 2;
570         av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
571                           (FRAME_LEN - lag) * sizeof(*out));
572     } else {  /* Unvoiced */
573         for (i = 0; i < FRAME_LEN; i++) {
574             *rseed = (int16_t)(*rseed * 521 + 259);
575             out[i] = gain * *rseed >> 15;
576         }
577         memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
578     }
579 }
580 
581 /**
582  * Perform IIR filtering.
583  *
584  * @param fir_coef FIR coefficients
585  * @param iir_coef IIR coefficients
586  * @param src      source vector
587  * @param dest     destination vector
588  * @param width    width of the output, 16 bits(0) / 32 bits(1)
589  */
590 #define iir_filter(fir_coef, iir_coef, src, dest, width)\
591 {\
592     int m, n;\
593     int res_shift = 16 & ~-(width);\
594     int in_shift  = 16 - res_shift;\
595 \
596     for (m = 0; m < SUBFRAME_LEN; m++) {\
597         int64_t filter = 0;\
598         for (n = 1; n <= LPC_ORDER; n++) {\
599             filter -= (fir_coef)[n - 1] * (src)[m - n] -\
600                       (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
601         }\
602 \
603         (dest)[m] = av_clipl_int32(((src)[m] * 65536) + (filter * 8) +\
604                                    (1 << 15)) >> res_shift;\
605     }\
606 }
607 
608 /**
609  * Adjust gain of postfiltered signal.
610  *
611  * @param p      the context
612  * @param buf    postfiltered output vector
613  * @param energy input energy coefficient
614  */
gain_scale(G723_1_ChannelContext * p,int16_t * buf,int energy)615 static void gain_scale(G723_1_ChannelContext *p, int16_t * buf, int energy)
616 {
617     int num, denom, gain, bits1, bits2;
618     int i;
619 
620     num   = energy;
621     denom = 0;
622     for (i = 0; i < SUBFRAME_LEN; i++) {
623         int temp = buf[i] >> 2;
624         temp *= temp;
625         denom = av_sat_dadd32(denom, temp);
626     }
627 
628     if (num && denom) {
629         bits1   = ff_g723_1_normalize_bits(num,   31);
630         bits2   = ff_g723_1_normalize_bits(denom, 31);
631         num     = num << bits1 >> 1;
632         denom <<= bits2;
633 
634         bits2 = 5 + bits1 - bits2;
635         bits2 = av_clip_uintp2(bits2, 5);
636 
637         gain = (num >> 1) / (denom >> 16);
638         gain = square_root(gain << 16 >> bits2);
639     } else {
640         gain = 1 << 12;
641     }
642 
643     for (i = 0; i < SUBFRAME_LEN; i++) {
644         p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
645         buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
646                                    (1 << 10)) >> 11);
647     }
648 }
649 
650 /**
651  * Perform formant filtering.
652  *
653  * @param p   the context
654  * @param lpc quantized lpc coefficients
655  * @param buf input buffer
656  * @param dst output buffer
657  */
formant_postfilter(G723_1_ChannelContext * p,int16_t * lpc,int16_t * buf,int16_t * dst)658 static void formant_postfilter(G723_1_ChannelContext *p, int16_t *lpc,
659                                int16_t *buf, int16_t *dst)
660 {
661     int16_t filter_coef[2][LPC_ORDER];
662     int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
663     int i, j, k;
664 
665     memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
666     memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
667 
668     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
669         for (k = 0; k < LPC_ORDER; k++) {
670             filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
671                                  (1 << 14)) >> 15;
672             filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
673                                  (1 << 14)) >> 15;
674         }
675         iir_filter(filter_coef[0], filter_coef[1], buf + i, filter_signal + i, 1);
676         lpc += LPC_ORDER;
677     }
678 
679     memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
680     memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int));
681 
682     buf += LPC_ORDER;
683     signal_ptr = filter_signal + LPC_ORDER;
684     for (i = 0; i < SUBFRAMES; i++) {
685         int temp;
686         int auto_corr[2];
687         int scale, energy;
688 
689         /* Normalize */
690         scale = ff_g723_1_scale_vector(dst, buf, SUBFRAME_LEN);
691 
692         /* Compute auto correlation coefficients */
693         auto_corr[0] = ff_g723_1_dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
694         auto_corr[1] = ff_g723_1_dot_product(dst, dst,     SUBFRAME_LEN);
695 
696         /* Compute reflection coefficient */
697         temp = auto_corr[1] >> 16;
698         if (temp) {
699             temp = (auto_corr[0] >> 2) / temp;
700         }
701         p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
702         temp = -p->reflection_coef >> 1 & ~3;
703 
704         /* Compensation filter */
705         for (j = 0; j < SUBFRAME_LEN; j++) {
706             dst[j] = av_sat_dadd32(signal_ptr[j],
707                                    (signal_ptr[j - 1] >> 16) * temp) >> 16;
708         }
709 
710         /* Compute normalized signal energy */
711         temp = 2 * scale + 4;
712         if (temp < 0) {
713             energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
714         } else
715             energy = auto_corr[1] >> temp;
716 
717         gain_scale(p, dst, energy);
718 
719         buf        += SUBFRAME_LEN;
720         signal_ptr += SUBFRAME_LEN;
721         dst        += SUBFRAME_LEN;
722     }
723 }
724 
sid_gain_to_lsp_index(int gain)725 static int sid_gain_to_lsp_index(int gain)
726 {
727     if (gain < 0x10)
728         return gain << 6;
729     else if (gain < 0x20)
730         return gain - 8 << 7;
731     else
732         return gain - 20 << 8;
733 }
734 
cng_rand(int * state,int base)735 static inline int cng_rand(int *state, int base)
736 {
737     *state = (*state * 521 + 259) & 0xFFFF;
738     return (*state & 0x7FFF) * base >> 15;
739 }
740 
estimate_sid_gain(G723_1_ChannelContext * p)741 static int estimate_sid_gain(G723_1_ChannelContext *p)
742 {
743     int i, shift, seg, seg2, t, val, val_add, x, y;
744 
745     shift = 16 - p->cur_gain * 2;
746     if (shift > 0) {
747         if (p->sid_gain == 0) {
748             t = 0;
749         } else if (shift >= 31 || (int32_t)((uint32_t)p->sid_gain << shift) >> shift != p->sid_gain) {
750             if (p->sid_gain < 0) t = INT32_MIN;
751             else                 t = INT32_MAX;
752         } else
753             t = p->sid_gain * (1 << shift);
754     } else if(shift < -31) {
755         t = (p->sid_gain < 0) ? -1 : 0;
756     }else
757         t = p->sid_gain >> -shift;
758     x = av_clipl_int32(t * (int64_t)cng_filt[0] >> 16);
759 
760     if (x >= cng_bseg[2])
761         return 0x3F;
762 
763     if (x >= cng_bseg[1]) {
764         shift = 4;
765         seg   = 3;
766     } else {
767         shift = 3;
768         seg   = (x >= cng_bseg[0]);
769     }
770     seg2 = FFMIN(seg, 3);
771 
772     val     = 1 << shift;
773     val_add = val >> 1;
774     for (i = 0; i < shift; i++) {
775         t = seg * 32 + (val << seg2);
776         t *= t;
777         if (x >= t)
778             val += val_add;
779         else
780             val -= val_add;
781         val_add >>= 1;
782     }
783 
784     t = seg * 32 + (val << seg2);
785     y = t * t - x;
786     if (y <= 0) {
787         t = seg * 32 + (val + 1 << seg2);
788         t = t * t - x;
789         val = (seg2 - 1) * 16 + val;
790         if (t >= y)
791             val++;
792     } else {
793         t = seg * 32 + (val - 1 << seg2);
794         t = t * t - x;
795         val = (seg2 - 1) * 16 + val;
796         if (t >= y)
797             val--;
798     }
799 
800     return val;
801 }
802 
generate_noise(G723_1_ChannelContext * p)803 static void generate_noise(G723_1_ChannelContext *p)
804 {
805     int i, j, idx, t;
806     int off[SUBFRAMES];
807     int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11];
808     int tmp[SUBFRAME_LEN * 2];
809     int16_t *vector_ptr;
810     int64_t sum;
811     int b0, c, delta, x, shift;
812 
813     p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123;
814     p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123;
815 
816     for (i = 0; i < SUBFRAMES; i++) {
817         p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1;
818         p->subframe[i].ad_cb_lag  = cng_adaptive_cb_lag[i];
819     }
820 
821     for (i = 0; i < SUBFRAMES / 2; i++) {
822         t = cng_rand(&p->cng_random_seed, 1 << 13);
823         off[i * 2]     =   t       & 1;
824         off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN;
825         t >>= 2;
826         for (j = 0; j < 11; j++) {
827             signs[i * 11 + j] = ((t & 1) * 2 - 1)  * (1 << 14);
828             t >>= 1;
829         }
830     }
831 
832     idx = 0;
833     for (i = 0; i < SUBFRAMES; i++) {
834         for (j = 0; j < SUBFRAME_LEN / 2; j++)
835             tmp[j] = j;
836         t = SUBFRAME_LEN / 2;
837         for (j = 0; j < pulses[i]; j++, idx++) {
838             int idx2 = cng_rand(&p->cng_random_seed, t);
839 
840             pos[idx]  = tmp[idx2] * 2 + off[i];
841             tmp[idx2] = tmp[--t];
842         }
843     }
844 
845     vector_ptr = p->audio + LPC_ORDER;
846     memcpy(vector_ptr, p->prev_excitation,
847            PITCH_MAX * sizeof(*p->excitation));
848     for (i = 0; i < SUBFRAMES; i += 2) {
849         ff_g723_1_gen_acb_excitation(vector_ptr, vector_ptr,
850                                      p->pitch_lag[i >> 1], &p->subframe[i],
851                                      p->cur_rate);
852         ff_g723_1_gen_acb_excitation(vector_ptr + SUBFRAME_LEN,
853                                      vector_ptr + SUBFRAME_LEN,
854                                      p->pitch_lag[i >> 1], &p->subframe[i + 1],
855                                      p->cur_rate);
856 
857         t = 0;
858         for (j = 0; j < SUBFRAME_LEN * 2; j++)
859             t |= FFABS(vector_ptr[j]);
860         t = FFMIN(t, 0x7FFF);
861         if (!t) {
862             shift = 0;
863         } else {
864             shift = -10 + av_log2(t);
865             if (shift < -2)
866                 shift = -2;
867         }
868         sum = 0;
869         if (shift < 0) {
870            for (j = 0; j < SUBFRAME_LEN * 2; j++) {
871                t      = vector_ptr[j] * (1 << -shift);
872                sum   += t * t;
873                tmp[j] = t;
874            }
875         } else {
876            for (j = 0; j < SUBFRAME_LEN * 2; j++) {
877                t      = vector_ptr[j] >> shift;
878                sum   += t * t;
879                tmp[j] = t;
880            }
881         }
882 
883         b0 = 0;
884         for (j = 0; j < 11; j++)
885             b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
886         b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11
887 
888         c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5);
889         if (shift * 2 + 3 >= 0)
890             c >>= shift * 2 + 3;
891         else
892             c <<= -(shift * 2 + 3);
893         c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15;
894 
895         delta = b0 * b0 * 2 - c;
896         if (delta <= 0) {
897             x = -b0;
898         } else {
899             delta = square_root(delta);
900             x     = delta - b0;
901             t     = delta + b0;
902             if (FFABS(t) < FFABS(x))
903                 x = -t;
904         }
905         shift++;
906         if (shift < 0)
907            x >>= -shift;
908         else
909            x *= 1 << shift;
910         x = av_clip(x, -10000, 10000);
911 
912         for (j = 0; j < 11; j++) {
913             idx = (i / 2) * 11 + j;
914             vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
915                                                  (x * signs[idx] >> 15));
916         }
917 
918         /* copy decoded data to serve as a history for the next decoded subframes */
919         memcpy(vector_ptr + PITCH_MAX, vector_ptr,
920                sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
921         vector_ptr += SUBFRAME_LEN * 2;
922     }
923     /* Save the excitation for the next frame */
924     memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN,
925            PITCH_MAX * sizeof(*p->excitation));
926 }
927 
g723_1_decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)928 static int g723_1_decode_frame(AVCodecContext *avctx, AVFrame *frame,
929                                int *got_frame_ptr, AVPacket *avpkt)
930 {
931     G723_1_Context *s  = avctx->priv_data;
932     const uint8_t *buf = avpkt->data;
933     int buf_size       = avpkt->size;
934     int dec_mode       = buf[0] & 3;
935     int channels       = avctx->ch_layout.nb_channels;
936 
937     PPFParam ppf[SUBFRAMES];
938     int16_t cur_lsp[LPC_ORDER];
939     int16_t lpc[SUBFRAMES * LPC_ORDER];
940     int16_t acb_vector[SUBFRAME_LEN];
941     int16_t *out;
942     int bad_frame = 0, i, j, ret;
943 
944     if (buf_size < frame_size[dec_mode] * channels) {
945         if (buf_size)
946             av_log(avctx, AV_LOG_WARNING,
947                    "Expected %d bytes, got %d - skipping packet\n",
948                    frame_size[dec_mode], buf_size);
949         *got_frame_ptr = 0;
950         return buf_size;
951     }
952 
953     frame->nb_samples = FRAME_LEN;
954     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
955         return ret;
956 
957     for (int ch = 0; ch < channels; ch++) {
958         G723_1_ChannelContext *p = &s->ch[ch];
959         int16_t *audio = p->audio;
960 
961         if (unpack_bitstream(p, buf + ch * (buf_size / channels),
962                              buf_size / channels) < 0) {
963             bad_frame = 1;
964             if (p->past_frame_type == ACTIVE_FRAME)
965                 p->cur_frame_type = ACTIVE_FRAME;
966             else
967                 p->cur_frame_type = UNTRANSMITTED_FRAME;
968         }
969 
970         out = (int16_t *)frame->extended_data[ch];
971 
972         if (p->cur_frame_type == ACTIVE_FRAME) {
973             if (!bad_frame)
974                 p->erased_frames = 0;
975             else if (p->erased_frames != 3)
976                 p->erased_frames++;
977 
978             ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
979             ff_g723_1_lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
980 
981             /* Save the lsp_vector for the next frame */
982             memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
983 
984             /* Generate the excitation for the frame */
985             memcpy(p->excitation, p->prev_excitation,
986                    PITCH_MAX * sizeof(*p->excitation));
987             if (!p->erased_frames) {
988                 int16_t *vector_ptr = p->excitation + PITCH_MAX;
989 
990                 /* Update interpolation gain memory */
991                 p->interp_gain = ff_g723_1_fixed_cb_gain[(p->subframe[2].amp_index +
992                                                 p->subframe[3].amp_index) >> 1];
993                 for (i = 0; i < SUBFRAMES; i++) {
994                     gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
995                                        p->pitch_lag[i >> 1], i);
996                     ff_g723_1_gen_acb_excitation(acb_vector,
997                                                  &p->excitation[SUBFRAME_LEN * i],
998                                                  p->pitch_lag[i >> 1],
999                                                  &p->subframe[i], p->cur_rate);
1000                     /* Get the total excitation */
1001                     for (j = 0; j < SUBFRAME_LEN; j++) {
1002                         int v = av_clip_int16(vector_ptr[j] * 2);
1003                         vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
1004                     }
1005                     vector_ptr += SUBFRAME_LEN;
1006                 }
1007 
1008                 vector_ptr = p->excitation + PITCH_MAX;
1009 
1010                 p->interp_index = comp_interp_index(p, p->pitch_lag[1],
1011                                                     &p->sid_gain, &p->cur_gain);
1012 
1013                 /* Perform pitch postfiltering */
1014                 if (s->postfilter) {
1015                     i = PITCH_MAX;
1016                     for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1017                         comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
1018                                        ppf + j, p->cur_rate);
1019 
1020                     for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1021                         ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
1022                                                      vector_ptr + i,
1023                                                      vector_ptr + i + ppf[j].index,
1024                                                      ppf[j].sc_gain,
1025                                                      ppf[j].opt_gain,
1026                                                      1 << 14, 15, SUBFRAME_LEN);
1027                 } else {
1028                     audio = vector_ptr - LPC_ORDER;
1029                 }
1030 
1031                 /* Save the excitation for the next frame */
1032                 memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
1033                        PITCH_MAX * sizeof(*p->excitation));
1034             } else {
1035                 p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
1036                 if (p->erased_frames == 3) {
1037                     /* Mute output */
1038                     memset(p->excitation, 0,
1039                            (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
1040                     memset(p->prev_excitation, 0,
1041                            PITCH_MAX * sizeof(*p->excitation));
1042                     memset(frame->data[0], 0,
1043                            (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
1044                 } else {
1045                     int16_t *buf = p->audio + LPC_ORDER;
1046 
1047                     /* Regenerate frame */
1048                     residual_interp(p->excitation, buf, p->interp_index,
1049                                     p->interp_gain, &p->random_seed);
1050 
1051                     /* Save the excitation for the next frame */
1052                     memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
1053                            PITCH_MAX * sizeof(*p->excitation));
1054                 }
1055             }
1056             p->cng_random_seed = CNG_RANDOM_SEED;
1057         } else {
1058             if (p->cur_frame_type == SID_FRAME) {
1059                 p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index);
1060                 ff_g723_1_inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0);
1061             } else if (p->past_frame_type == ACTIVE_FRAME) {
1062                 p->sid_gain = estimate_sid_gain(p);
1063             }
1064 
1065             if (p->past_frame_type == ACTIVE_FRAME)
1066                 p->cur_gain = p->sid_gain;
1067             else
1068                 p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3;
1069             generate_noise(p);
1070             ff_g723_1_lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp);
1071             /* Save the lsp_vector for the next frame */
1072             memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
1073         }
1074 
1075         p->past_frame_type = p->cur_frame_type;
1076 
1077         memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
1078         for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1079             ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
1080                                         audio + i, SUBFRAME_LEN, LPC_ORDER,
1081                                         0, 1, 1 << 12);
1082         memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
1083 
1084         if (s->postfilter) {
1085             formant_postfilter(p, lpc, p->audio, out);
1086         } else { // if output is not postfiltered it should be scaled by 2
1087             for (i = 0; i < FRAME_LEN; i++)
1088                 out[i] = av_clip_int16(2 * p->audio[LPC_ORDER + i]);
1089         }
1090     }
1091 
1092     *got_frame_ptr = 1;
1093 
1094     return frame_size[dec_mode] * channels;
1095 }
1096 
1097 #define OFFSET(x) offsetof(G723_1_Context, x)
1098 #define AD     AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1099 
1100 static const AVOption options[] = {
1101     { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL,
1102       { .i64 = 1 }, 0, 1, AD },
1103     { NULL }
1104 };
1105 
1106 
1107 static const AVClass g723_1dec_class = {
1108     .class_name = "G.723.1 decoder",
1109     .item_name  = av_default_item_name,
1110     .option     = options,
1111     .version    = LIBAVUTIL_VERSION_INT,
1112 };
1113 
1114 const FFCodec ff_g723_1_decoder = {
1115     .p.name         = "g723_1",
1116     .p.long_name    = NULL_IF_CONFIG_SMALL("G.723.1"),
1117     .p.type         = AVMEDIA_TYPE_AUDIO,
1118     .p.id           = AV_CODEC_ID_G723_1,
1119     .priv_data_size = sizeof(G723_1_Context),
1120     .init           = g723_1_decode_init,
1121     FF_CODEC_DECODE_CB(g723_1_decode_frame),
1122     .p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1123     .p.priv_class   = &g723_1dec_class,
1124     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1125 };
1126