1 /*
2 * G.729, G729 Annex D postfilter
3 * Copyright (c) 2008 Vladimir Voroshilov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <stdint.h>
23 #include <string.h>
24
25 #include "libavutil/common.h"
26 #include "libavutil/intmath.h"
27
28 #include "audiodsp.h"
29 #include "g729.h"
30 #include "g729postfilter.h"
31 #include "celp_math.h"
32 #include "acelp_filters.h"
33 #include "acelp_vectors.h"
34 #include "celp_filters.h"
35
36 #define FRAC_BITS 15
37 #include "mathops.h"
38
39 /**
40 * short interpolation filter (of length 33, according to spec)
41 * for computing signal with non-integer delay
42 */
43 static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
44 0, 31650, 28469, 23705, 18050, 12266, 7041, 2873,
45 0, -1597, -2147, -1992, -1492, -933, -484, -188,
46 };
47
48 /**
49 * long interpolation filter (of length 129, according to spec)
50 * for computing signal with non-integer delay
51 */
52 static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
53 0, 31915, 29436, 25569, 20676, 15206, 9639, 4439,
54 0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
55 0, 1595, 2727, 3303, 3319, 2850, 2030, 1023,
56 0, -887, -1527, -1860, -1876, -1614, -1150, -579,
57 0, 501, 859, 1041, 1044, 892, 631, 315,
58 0, -266, -453, -543, -538, -455, -317, -156,
59 0, 130, 218, 258, 253, 212, 147, 72,
60 0, -59, -101, -122, -123, -106, -77, -40,
61 };
62
63 /**
64 * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
65 */
66 static const int16_t formant_pp_factor_num_pow[10]= {
67 /* (0.15) */
68 18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
69 };
70
71 /**
72 * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
73 */
74 static const int16_t formant_pp_factor_den_pow[10] = {
75 /* (0.15) */
76 22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
77 };
78
79 /**
80 * \brief Residual signal calculation (4.2.1 if G.729)
81 * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
82 * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
83 * \param in input speech data to process
84 * \param subframe_size size of one subframe
85 *
86 * \note in buffer must contain 10 items of previous speech data before top of the buffer
87 * \remark It is safe to pass the same buffer for input and output.
88 */
residual_filter(int16_t * out,const int16_t * filter_coeffs,const int16_t * in,int subframe_size)89 static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
90 int subframe_size)
91 {
92 int i, n;
93
94 for (n = subframe_size - 1; n >= 0; n--) {
95 int sum = 0x800;
96 for (i = 0; i < 10; i++)
97 sum += filter_coeffs[i] * in[n - i - 1];
98
99 out[n] = in[n] + (sum >> 12);
100 }
101 }
102
103 /**
104 * \brief long-term postfilter (4.2.1)
105 * \param dsp initialized DSP context
106 * \param pitch_delay_int integer part of the pitch delay in the first subframe
107 * \param residual filtering input data
108 * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
109 * \param subframe_size size of subframe
110 *
111 * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise
112 */
long_term_filter(AudioDSPContext * adsp,int pitch_delay_int,const int16_t * residual,int16_t * residual_filt,int subframe_size)113 static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int,
114 const int16_t* residual, int16_t *residual_filt,
115 int subframe_size)
116 {
117 int i, k, tmp, tmp2;
118 int sum;
119 int L_temp0;
120 int L_temp1;
121 int64_t L64_temp0;
122 int64_t L64_temp1;
123 int16_t shift;
124 int corr_int_num, corr_int_den;
125
126 int ener;
127 int16_t sh_ener;
128
129 int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
130 int16_t sh_gain_num, sh_gain_den;
131 int gain_num_square;
132
133 int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
134 int16_t sh_gain_long_num, sh_gain_long_den;
135
136 int16_t best_delay_int, best_delay_frac;
137
138 int16_t delayed_signal_offset;
139 int lt_filt_factor_a, lt_filt_factor_b;
140
141 int16_t * selected_signal;
142 const int16_t * selected_signal_const; //Necessary to avoid compiler warning
143
144 int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
145 int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
146 int corr_den[ANALYZED_FRAC_DELAYS][2];
147
148 tmp = 0;
149 for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
150 tmp |= FFABS(residual[i]);
151
152 if(!tmp)
153 shift = 3;
154 else
155 shift = av_log2(tmp) - 11;
156
157 if (shift > 0)
158 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
159 sig_scaled[i] = residual[i] >> shift;
160 else
161 for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
162 sig_scaled[i] = (unsigned)residual[i] << -shift;
163
164 /* Start of best delay searching code */
165 gain_num = 0;
166
167 ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
168 sig_scaled + RES_PREV_DATA_SIZE,
169 subframe_size);
170 if (ener) {
171 sh_ener = av_log2(ener) - 14;
172 sh_ener = FFMAX(sh_ener, 0);
173 ener >>= sh_ener;
174 /* Search for best pitch delay.
175
176 sum{ r(n) * r(k,n) ] }^2
177 R'(k)^2 := -------------------------
178 sum{ r(k,n) * r(k,n) }
179
180
181 R(T) := sum{ r(n) * r(n-T) ] }
182
183
184 where
185 r(n-T) is integer delayed signal with delay T
186 r(k,n) is non-integer delayed signal with integer delay best_delay
187 and fractional delay k */
188
189 /* Find integer delay best_delay which maximizes correlation R(T).
190
191 This is also equals to numerator of R'(0),
192 since the fine search (second step) is done with 1/8
193 precision around best_delay. */
194 corr_int_num = 0;
195 best_delay_int = pitch_delay_int - 1;
196 for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
197 sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
198 sig_scaled + RES_PREV_DATA_SIZE - i,
199 subframe_size);
200 if (sum > corr_int_num) {
201 corr_int_num = sum;
202 best_delay_int = i;
203 }
204 }
205 if (corr_int_num) {
206 /* Compute denominator of pseudo-normalized correlation R'(0). */
207 corr_int_den = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
208 sig_scaled + RES_PREV_DATA_SIZE - best_delay_int,
209 subframe_size);
210
211 /* Compute signals with non-integer delay k (with 1/8 precision),
212 where k is in [0;6] range.
213 Entire delay is qual to best_delay+(k+1)/8
214 This is archieved by applying an interpolation filter of
215 legth 33 to source signal. */
216 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
217 ff_acelp_interpolate(&delayed_signal[k][0],
218 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
219 ff_g729_interp_filt_short,
220 ANALYZED_FRAC_DELAYS+1,
221 8 - k - 1,
222 SHORT_INT_FILT_LEN,
223 subframe_size + 1);
224 }
225
226 /* Compute denominator of pseudo-normalized correlation R'(k).
227
228 corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
229 corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
230
231 Also compute maximum value of above denominators over all k. */
232 tmp = corr_int_den;
233 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
234 sum = adsp->scalarproduct_int16(&delayed_signal[k][1],
235 &delayed_signal[k][1],
236 subframe_size - 1);
237 corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ];
238 corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
239
240 tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
241 }
242
243 sh_gain_den = av_log2(tmp) - 14;
244 if (sh_gain_den >= 0) {
245
246 sh_gain_num = FFMAX(sh_gain_den, sh_ener);
247 /* Loop through all k and find delay that maximizes
248 R'(k) correlation.
249 Search is done in [int(T0)-1; intT(0)+1] range
250 with 1/8 precision. */
251 delayed_signal_offset = 1;
252 best_delay_frac = 0;
253 gain_den = corr_int_den >> sh_gain_den;
254 gain_num = corr_int_num >> sh_gain_num;
255 gain_num_square = gain_num * gain_num;
256 for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
257 for (i = 0; i < 2; i++) {
258 int16_t gain_num_short, gain_den_short;
259 int gain_num_short_square;
260 /* Compute numerator of pseudo-normalized
261 correlation R'(k). */
262 sum = adsp->scalarproduct_int16(&delayed_signal[k][i],
263 sig_scaled + RES_PREV_DATA_SIZE,
264 subframe_size);
265 gain_num_short = FFMAX(sum >> sh_gain_num, 0);
266
267 /*
268 gain_num_short_square gain_num_square
269 R'(T)^2 = -----------------------, max R'(T)^2= --------------
270 den gain_den
271 */
272 gain_num_short_square = gain_num_short * gain_num_short;
273 gain_den_short = corr_den[k][i] >> sh_gain_den;
274
275 tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
276 tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
277
278 // R'(T)^2 > max R'(T)^2
279 if (tmp > tmp2) {
280 gain_num = gain_num_short;
281 gain_den = gain_den_short;
282 gain_num_square = gain_num_short_square;
283 delayed_signal_offset = i;
284 best_delay_frac = k + 1;
285 }
286 }
287 }
288
289 /*
290 R'(T)^2
291 2 * --------- < 1
292 R(0)
293 */
294 L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1);
295 L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
296 if (L64_temp0 < L64_temp1)
297 gain_num = 0;
298 } // if(sh_gain_den >= 0)
299 } // if(corr_int_num)
300 } // if(ener)
301 /* End of best delay searching code */
302
303 if (!gain_num) {
304 memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
305
306 /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
307 return 0;
308 }
309 if (best_delay_frac) {
310 /* Recompute delayed signal with an interpolation filter of length 129. */
311 ff_acelp_interpolate(residual_filt,
312 &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
313 ff_g729_interp_filt_long,
314 ANALYZED_FRAC_DELAYS + 1,
315 8 - best_delay_frac,
316 LONG_INT_FILT_LEN,
317 subframe_size + 1);
318 /* Compute R'(k) correlation's numerator. */
319 sum = adsp->scalarproduct_int16(residual_filt,
320 sig_scaled + RES_PREV_DATA_SIZE,
321 subframe_size);
322
323 if (sum < 0) {
324 gain_long_num = 0;
325 sh_gain_long_num = 0;
326 } else {
327 tmp = av_log2(sum) - 14;
328 tmp = FFMAX(tmp, 0);
329 sum >>= tmp;
330 gain_long_num = sum;
331 sh_gain_long_num = tmp;
332 }
333
334 /* Compute R'(k) correlation's denominator. */
335 sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size);
336
337 tmp = av_log2(sum) - 14;
338 tmp = FFMAX(tmp, 0);
339 sum >>= tmp;
340 gain_long_den = sum;
341 sh_gain_long_den = tmp;
342
343 /* Select between original and delayed signal.
344 Delayed signal will be selected if it increases R'(k)
345 correlation. */
346 L_temp0 = gain_num * gain_num;
347 L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
348
349 L_temp1 = gain_long_num * gain_long_num;
350 L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
351
352 tmp = ((sh_gain_long_num - sh_gain_num) * 2) - (sh_gain_long_den - sh_gain_den);
353 if (tmp > 0)
354 L_temp0 >>= tmp;
355 else
356 L_temp1 >>= FFMIN(-tmp, 31);
357
358 /* Check if longer filter increases the values of R'(k). */
359 if (L_temp1 > L_temp0) {
360 /* Select long filter. */
361 selected_signal = residual_filt;
362 gain_num = gain_long_num;
363 gain_den = gain_long_den;
364 sh_gain_num = sh_gain_long_num;
365 sh_gain_den = sh_gain_long_den;
366 } else
367 /* Select short filter. */
368 selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
369
370 /* Rescale selected signal to original value. */
371 if (shift > 0)
372 for (i = 0; i < subframe_size; i++)
373 selected_signal[i] *= 1 << shift;
374 else
375 for (i = 0; i < subframe_size; i++)
376 selected_signal[i] >>= -shift;
377
378 /* necessary to avoid compiler warning */
379 selected_signal_const = selected_signal;
380 } // if(best_delay_frac)
381 else
382 selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
383 #ifdef G729_BITEXACT
384 tmp = sh_gain_num - sh_gain_den;
385 if (tmp > 0)
386 gain_den >>= tmp;
387 else
388 gain_num >>= -tmp;
389
390 if (gain_num > gain_den)
391 lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
392 else {
393 gain_num >>= 2;
394 gain_den >>= 1;
395 lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
396 }
397 #else
398 L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1;
399 L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
400 lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
401 #endif
402
403 /* Filter through selected filter. */
404 lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
405
406 ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
407 selected_signal_const,
408 lt_filt_factor_a, lt_filt_factor_b,
409 1<<14, 15, subframe_size);
410
411 // Long-term prediction gain is larger than 3dB.
412 return 1;
413 }
414
415 /**
416 * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
417 * \param dsp initialized DSP context
418 * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
419 * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
420 * \param speech speech to update
421 * \param subframe_size size of subframe
422 *
423 * \return (3.12) reflection coefficient
424 *
425 * \remark The routine also calculates the gain term for the short-term
426 * filter (gf) and multiplies the speech data by 1/gf.
427 *
428 * \note All members of lp_gn, except 10-19 must be equal to zero.
429 */
get_tilt_comp(AudioDSPContext * adsp,int16_t * lp_gn,const int16_t * lp_gd,int16_t * speech,int subframe_size)430 static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn,
431 const int16_t *lp_gd, int16_t* speech,
432 int subframe_size)
433 {
434 int rh1,rh0; // (3.12)
435 int temp;
436 int i;
437 int gain_term;
438
439 lp_gn[10] = 4096; //1.0 in (3.12)
440
441 /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
442 ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
443 /* Now lp_gn (starting with 10) contains impulse response
444 of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
445
446 rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20);
447 rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20);
448
449 /* downscale to avoid overflow */
450 temp = av_log2(rh0) - 14;
451 if (temp > 0) {
452 rh0 >>= temp;
453 rh1 >>= temp;
454 }
455
456 if (FFABS(rh1) > rh0 || !rh0)
457 return 0;
458
459 gain_term = 0;
460 for (i = 0; i < 20; i++)
461 gain_term += FFABS(lp_gn[i + 10]);
462 gain_term >>= 2; // (3.12) -> (5.10)
463
464 if (gain_term > 0x400) { // 1.0 in (5.10)
465 temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
466 for (i = 0; i < subframe_size; i++)
467 speech[i] = (speech[i] * temp + 0x4000) >> 15;
468 }
469
470 return -(rh1 * (1 << 15)) / rh0;
471 }
472
473 /**
474 * \brief Apply tilt compensation filter (4.2.3).
475 * \param res_pst [in/out] residual signal (partially filtered)
476 * \param k1 (3.12) reflection coefficient
477 * \param subframe_size size of subframe
478 * \param ht_prev_data previous data for 4.2.3, equation 86
479 *
480 * \return new value for ht_prev_data
481 */
apply_tilt_comp(int16_t * out,int16_t * res_pst,int refl_coeff,int subframe_size,int16_t ht_prev_data)482 static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
483 int subframe_size, int16_t ht_prev_data)
484 {
485 int tmp, tmp2;
486 int i;
487 int gt, ga;
488 int fact, sh_fact;
489
490 if (refl_coeff > 0) {
491 gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
492 fact = 0x2000; // 0.5 in (0.15)
493 sh_fact = 14;
494 } else {
495 gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
496 fact = 0x400; // 0.5 in (3.12)
497 sh_fact = 11;
498 }
499 ga = (fact << 16) / av_clip_int16(32768 - FFABS(gt));
500 gt >>= 1;
501
502 /* Apply tilt compensation filter to signal. */
503 tmp = res_pst[subframe_size - 1];
504
505 for (i = subframe_size - 1; i >= 1; i--) {
506 tmp2 = (gt * res_pst[i-1]) * 2 + 0x4000;
507 tmp2 = res_pst[i] + (tmp2 >> 15);
508
509 tmp2 = (tmp2 * ga + fact) >> sh_fact;
510 out[i] = tmp2;
511 }
512 tmp2 = (gt * ht_prev_data) * 2 + 0x4000;
513 tmp2 = res_pst[0] + (tmp2 >> 15);
514 tmp2 = (tmp2 * ga + fact) >> sh_fact;
515 out[0] = tmp2;
516
517 return tmp;
518 }
519
ff_g729_postfilter(AudioDSPContext * adsp,int16_t * ht_prev_data,int * voicing,const int16_t * lp_filter_coeffs,int pitch_delay_int,int16_t * residual,int16_t * res_filter_data,int16_t * pos_filter_data,int16_t * speech,int subframe_size)520 void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing,
521 const int16_t *lp_filter_coeffs, int pitch_delay_int,
522 int16_t* residual, int16_t* res_filter_data,
523 int16_t* pos_filter_data, int16_t *speech, int subframe_size)
524 {
525 int16_t residual_filt_buf[SUBFRAME_SIZE+11];
526 int16_t lp_gn[33]; // (3.12)
527 int16_t lp_gd[11]; // (3.12)
528 int tilt_comp_coeff;
529 int i;
530
531 /* Zero-filling is necessary for tilt-compensation filter. */
532 memset(lp_gn, 0, 33 * sizeof(int16_t));
533
534 /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
535 for (i = 0; i < 10; i++)
536 lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
537
538 /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
539 for (i = 0; i < 10; i++)
540 lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
541
542 /* residual signal calculation (one-half of short-term postfilter) */
543 memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
544 residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
545 /* Save data to use it in the next subframe. */
546 memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
547
548 /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
549 nonzero) then declare current subframe as periodic. */
550 i = long_term_filter(adsp, pitch_delay_int,
551 residual, residual_filt_buf + 10,
552 subframe_size);
553 *voicing = FFMAX(*voicing, i);
554
555 /* shift residual for using in next subframe */
556 memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
557
558 /* short-term filter tilt compensation */
559 tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
560
561 /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
562 ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
563 residual_filt_buf + 10,
564 subframe_size, 10, 0, 0, 0x800);
565 memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
566
567 *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
568 subframe_size, *ht_prev_data);
569 }
570
571 /**
572 * \brief Adaptive gain control (4.2.4)
573 * \param gain_before gain of speech before applying postfilters
574 * \param gain_after gain of speech after applying postfilters
575 * \param speech [in/out] signal buffer
576 * \param subframe_size length of subframe
577 * \param gain_prev (3.12) previous value of gain coefficient
578 *
579 * \return (3.12) last value of gain coefficient
580 */
ff_g729_adaptive_gain_control(int gain_before,int gain_after,int16_t * speech,int subframe_size,int16_t gain_prev)581 int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
582 int subframe_size, int16_t gain_prev)
583 {
584 unsigned gain; // (3.12)
585 int n;
586 int exp_before, exp_after;
587
588 if(!gain_after && gain_before)
589 return 0;
590
591 if (gain_before) {
592
593 exp_before = 14 - av_log2(gain_before);
594 gain_before = bidir_sal(gain_before, exp_before);
595
596 exp_after = 14 - av_log2(gain_after);
597 gain_after = bidir_sal(gain_after, exp_after);
598
599 if (gain_before < gain_after) {
600 gain = (gain_before << 15) / gain_after;
601 gain = bidir_sal(gain, exp_after - exp_before - 1);
602 } else {
603 gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
604 gain = bidir_sal(gain, exp_after - exp_before);
605 }
606 gain = FFMIN(gain, 32767);
607 gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
608 } else
609 gain = 0;
610
611 for (n = 0; n < subframe_size; n++) {
612 // gain_prev = gain + 0.9875 * gain_prev
613 gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
614 gain_prev = av_clip_int16(gain + gain_prev);
615 speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
616 }
617 return gain_prev;
618 }
619