• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  *  @file
26  *  IMC - Intel Music Coder
27  *  A mdct based codec using a 256 points large transform
28  *  divided into 32 bands with some mix of scale factors.
29  *  Only mono is supported.
30  */
31 
32 #include "config_components.h"
33 
34 #include <math.h>
35 #include <stddef.h>
36 #include <stdio.h>
37 
38 #include "libavutil/channel_layout.h"
39 #include "libavutil/ffmath.h"
40 #include "libavutil/float_dsp.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/mem_internal.h"
43 #include "libavutil/thread.h"
44 
45 #include "avcodec.h"
46 #include "bswapdsp.h"
47 #include "codec_internal.h"
48 #include "get_bits.h"
49 #include "fft.h"
50 #include "internal.h"
51 #include "sinewin.h"
52 
53 #include "imcdata.h"
54 
55 #define IMC_BLOCK_SIZE 64
56 #define IMC_FRAME_ID 0x21
57 #define BANDS 32
58 #define COEFFS 256
59 
60 typedef struct IMCChannel {
61     float old_floor[BANDS];
62     float flcoeffs1[BANDS];
63     float flcoeffs2[BANDS];
64     float flcoeffs3[BANDS];
65     float flcoeffs4[BANDS];
66     float flcoeffs5[BANDS];
67     float flcoeffs6[BANDS];
68     float CWdecoded[COEFFS];
69 
70     int bandWidthT[BANDS];     ///< codewords per band
71     int bitsBandT[BANDS];      ///< how many bits per codeword in band
72     int CWlengthT[COEFFS];     ///< how many bits in each codeword
73     int levlCoeffBuf[BANDS];
74     int bandFlagsBuf[BANDS];   ///< flags for each band
75     int sumLenArr[BANDS];      ///< bits for all coeffs in band
76     int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
77     int skipFlagBits[BANDS];   ///< bits used to code skip flags
78     int skipFlagCount[BANDS];  ///< skipped coefficients per band
79     int skipFlags[COEFFS];     ///< skip coefficient decoding or not
80     int codewords[COEFFS];     ///< raw codewords read from bitstream
81 
82     float last_fft_im[COEFFS];
83 
84     int decoder_reset;
85 } IMCChannel;
86 
87 typedef struct IMCContext {
88     IMCChannel chctx[2];
89 
90     /** MDCT tables */
91     //@{
92     float mdct_sine_window[COEFFS];
93     float post_cos[COEFFS];
94     float post_sin[COEFFS];
95     float pre_coef1[COEFFS];
96     float pre_coef2[COEFFS];
97     //@}
98 
99     float sqrt_tab[30];
100     GetBitContext gb;
101 
102     BswapDSPContext bdsp;
103     void (*butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len);
104     FFTContext fft;
105     DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
106     float *out_samples;
107 
108     int coef0_pos;
109 
110     int8_t cyclTab[32], cyclTab2[32];
111     float  weights1[31], weights2[31];
112 
113     AVCodecContext *avctx;
114 } IMCContext;
115 
116 static VLC huffman_vlc[4][4];
117 
118 #define IMC_VLC_BITS 9
119 #define VLC_TABLES_SIZE 9512
120 
121 static VLCElem vlc_tables[VLC_TABLES_SIZE];
122 
freq2bark(double freq)123 static inline double freq2bark(double freq)
124 {
125     return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
126 }
127 
iac_generate_tabs(IMCContext * q,int sampling_rate)128 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
129 {
130     double freqmin[32], freqmid[32], freqmax[32];
131     double scale = sampling_rate / (256.0 * 2.0 * 2.0);
132     double nyquist_freq = sampling_rate * 0.5;
133     double freq, bark, prev_bark = 0, tf, tb;
134     int i, j;
135 
136     for (i = 0; i < 32; i++) {
137         freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
138         bark = freq2bark(freq);
139 
140         if (i > 0) {
141             tb = bark - prev_bark;
142             q->weights1[i - 1] = ff_exp10(-1.0 * tb);
143             q->weights2[i - 1] = ff_exp10(-2.7 * tb);
144         }
145         prev_bark = bark;
146 
147         freqmid[i] = freq;
148 
149         tf = freq;
150         while (tf < nyquist_freq) {
151             tf += 0.5;
152             tb =  freq2bark(tf);
153             if (tb > bark + 0.5)
154                 break;
155         }
156         freqmax[i] = tf;
157 
158         tf = freq;
159         while (tf > 0.0) {
160             tf -= 0.5;
161             tb =  freq2bark(tf);
162             if (tb <= bark - 0.5)
163                 break;
164         }
165         freqmin[i] = tf;
166     }
167 
168     for (i = 0; i < 32; i++) {
169         freq = freqmax[i];
170         for (j = 31; j > 0 && freq <= freqmid[j]; j--);
171         q->cyclTab[i] = j + 1;
172 
173         freq = freqmin[i];
174         for (j = 0; j < 32 && freq >= freqmid[j]; j++);
175         q->cyclTab2[i] = j - 1;
176     }
177 }
178 
imc_init_static(void)179 static av_cold void imc_init_static(void)
180 {
181     /* initialize the VLC tables */
182     for (int i = 0, offset = 0; i < 4 ; i++) {
183         for (int j = 0; j < 4; j++) {
184             huffman_vlc[i][j].table           = &vlc_tables[offset];
185             huffman_vlc[i][j].table_allocated = VLC_TABLES_SIZE - offset;
186             ff_init_vlc_from_lengths(&huffman_vlc[i][j], IMC_VLC_BITS, imc_huffman_sizes[i],
187                                      imc_huffman_lens[i][j], 1,
188                                      imc_huffman_syms[i][j], 1, 1,
189                                      0, INIT_VLC_STATIC_OVERLONG, NULL);
190             offset += huffman_vlc[i][j].table_size;
191         }
192     }
193 }
194 
imc_decode_init(AVCodecContext * avctx)195 static av_cold int imc_decode_init(AVCodecContext *avctx)
196 {
197     int i, j, ret;
198     IMCContext *q = avctx->priv_data;
199     static AVOnce init_static_once = AV_ONCE_INIT;
200     AVFloatDSPContext *fdsp;
201     double r1, r2;
202 
203     if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
204         av_log(avctx, AV_LOG_ERROR,
205                "Strange sample rate of %i, file likely corrupt or "
206                "needing a new table derivation method.\n",
207                avctx->sample_rate);
208         return AVERROR_PATCHWELCOME;
209     }
210 
211     if (avctx->codec_id == AV_CODEC_ID_IMC) {
212         av_channel_layout_uninit(&avctx->ch_layout);
213         avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
214     }
215 
216     if (avctx->ch_layout.nb_channels > 2) {
217         avpriv_request_sample(avctx, "Number of channels > 2");
218         return AVERROR_PATCHWELCOME;
219     }
220 
221     for (j = 0; j < avctx->ch_layout.nb_channels; j++) {
222         q->chctx[j].decoder_reset = 1;
223 
224         for (i = 0; i < BANDS; i++)
225             q->chctx[j].old_floor[i] = 1.0;
226 
227         for (i = 0; i < COEFFS / 2; i++)
228             q->chctx[j].last_fft_im[i] = 0;
229     }
230 
231     /* Build mdct window, a simple sine window normalized with sqrt(2) */
232     ff_sine_window_init(q->mdct_sine_window, COEFFS);
233     for (i = 0; i < COEFFS; i++)
234         q->mdct_sine_window[i] *= sqrt(2.0);
235     for (i = 0; i < COEFFS / 2; i++) {
236         q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
237         q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
238 
239         r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
240         r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
241 
242         if (i & 0x1) {
243             q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
244             q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
245         } else {
246             q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
247             q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
248         }
249     }
250 
251     /* Generate a square root table */
252 
253     for (i = 0; i < 30; i++)
254         q->sqrt_tab[i] = sqrt(i);
255 
256     if (avctx->codec_id == AV_CODEC_ID_IAC) {
257         iac_generate_tabs(q, avctx->sample_rate);
258     } else {
259         memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
260         memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
261         memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
262         memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
263     }
264 
265     fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
266     if (!fdsp)
267         return AVERROR(ENOMEM);
268     q->butterflies_float = fdsp->butterflies_float;
269     av_free(fdsp);
270     if ((ret = ff_fft_init(&q->fft, 7, 1))) {
271         av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
272         return ret;
273     }
274     ff_bswapdsp_init(&q->bdsp);
275 
276     avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
277 
278     ff_thread_once(&init_static_once, imc_init_static);
279 
280     return 0;
281 }
282 
imc_calculate_coeffs(IMCContext * q,float * flcoeffs1,float * flcoeffs2,int * bandWidthT,float * flcoeffs3,float * flcoeffs5)283 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
284                                  float *flcoeffs2, int *bandWidthT,
285                                  float *flcoeffs3, float *flcoeffs5)
286 {
287     float   workT1[BANDS];
288     float   workT2[BANDS];
289     float   workT3[BANDS];
290     float   snr_limit = 1.e-30;
291     float   accum = 0.0;
292     int i, cnt2;
293 
294     for (i = 0; i < BANDS; i++) {
295         flcoeffs5[i] = workT2[i] = 0.0;
296         if (bandWidthT[i]) {
297             workT1[i] = flcoeffs1[i] * flcoeffs1[i];
298             flcoeffs3[i] = 2.0 * flcoeffs2[i];
299         } else {
300             workT1[i]    = 0.0;
301             flcoeffs3[i] = -30000.0;
302         }
303         workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
304         if (workT3[i] <= snr_limit)
305             workT3[i] = 0.0;
306     }
307 
308     for (i = 0; i < BANDS; i++) {
309         for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
310             flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
311         workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
312     }
313 
314     for (i = 1; i < BANDS; i++) {
315         accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
316         flcoeffs5[i] += accum;
317     }
318 
319     for (i = 0; i < BANDS; i++)
320         workT2[i] = 0.0;
321 
322     for (i = 0; i < BANDS; i++) {
323         for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
324             flcoeffs5[cnt2] += workT3[i];
325         workT2[cnt2+1] += workT3[i];
326     }
327 
328     accum = 0.0;
329 
330     for (i = BANDS-2; i >= 0; i--) {
331         accum = (workT2[i+1] + accum) * q->weights2[i];
332         flcoeffs5[i] += accum;
333         // there is missing code here, but it seems to never be triggered
334     }
335 }
336 
337 
imc_read_level_coeffs(IMCContext * q,int stream_format_code,int * levlCoeffs)338 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
339                                   int *levlCoeffs)
340 {
341     int i;
342     VLC *hufftab[4];
343     int start = 0;
344     const uint8_t *cb_sel;
345     int s;
346 
347     s = stream_format_code >> 1;
348     hufftab[0] = &huffman_vlc[s][0];
349     hufftab[1] = &huffman_vlc[s][1];
350     hufftab[2] = &huffman_vlc[s][2];
351     hufftab[3] = &huffman_vlc[s][3];
352     cb_sel = imc_cb_select[s];
353 
354     if (stream_format_code & 4)
355         start = 1;
356     if (start)
357         levlCoeffs[0] = get_bits(&q->gb, 7);
358     for (i = start; i < BANDS; i++) {
359         levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
360                                  IMC_VLC_BITS, 2);
361         if (levlCoeffs[i] == 17)
362             levlCoeffs[i] += get_bits(&q->gb, 4);
363     }
364 }
365 
imc_read_level_coeffs_raw(IMCContext * q,int stream_format_code,int * levlCoeffs)366 static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
367                                       int *levlCoeffs)
368 {
369     int i;
370 
371     q->coef0_pos  = get_bits(&q->gb, 5);
372     levlCoeffs[0] = get_bits(&q->gb, 7);
373     for (i = 1; i < BANDS; i++)
374         levlCoeffs[i] = get_bits(&q->gb, 4);
375 }
376 
imc_decode_level_coefficients(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)377 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
378                                           float *flcoeffs1, float *flcoeffs2)
379 {
380     int i, level;
381     float tmp, tmp2;
382     // maybe some frequency division thingy
383 
384     flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
385     flcoeffs2[0] = log2f(flcoeffs1[0]);
386     tmp  = flcoeffs1[0];
387     tmp2 = flcoeffs2[0];
388 
389     for (i = 1; i < BANDS; i++) {
390         level = levlCoeffBuf[i];
391         if (level == 16) {
392             flcoeffs1[i] = 1.0;
393             flcoeffs2[i] = 0.0;
394         } else {
395             if (level < 17)
396                 level -= 7;
397             else if (level <= 24)
398                 level -= 32;
399             else
400                 level -= 16;
401 
402             tmp  *= imc_exp_tab[15 + level];
403             tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
404             flcoeffs1[i] = tmp;
405             flcoeffs2[i] = tmp2;
406         }
407     }
408 }
409 
410 
imc_decode_level_coefficients2(IMCContext * q,int * levlCoeffBuf,float * old_floor,float * flcoeffs1,float * flcoeffs2)411 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
412                                            float *old_floor, float *flcoeffs1,
413                                            float *flcoeffs2)
414 {
415     int i;
416     /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
417      *       and flcoeffs2 old scale factors
418      *       might be incomplete due to a missing table that is in the binary code
419      */
420     for (i = 0; i < BANDS; i++) {
421         flcoeffs1[i] = 0;
422         if (levlCoeffBuf[i] < 16) {
423             flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
424             flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
425         } else {
426             flcoeffs1[i] = old_floor[i];
427         }
428     }
429 }
430 
imc_decode_level_coefficients_raw(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)431 static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
432                                               float *flcoeffs1, float *flcoeffs2)
433 {
434     int i, level, pos;
435     float tmp, tmp2;
436 
437     pos = q->coef0_pos;
438     flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
439     flcoeffs2[pos] = log2f(flcoeffs1[pos]);
440     tmp  = flcoeffs1[pos];
441     tmp2 = flcoeffs2[pos];
442 
443     levlCoeffBuf++;
444     for (i = 0; i < BANDS; i++) {
445         if (i == pos)
446             continue;
447         level = *levlCoeffBuf++;
448         flcoeffs1[i] = tmp  * powf(10.0, -level * 0.4375); //todo tab
449         flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
450     }
451 }
452 
453 /**
454  * Perform bit allocation depending on bits available
455  */
bit_allocation(IMCContext * q,IMCChannel * chctx,int stream_format_code,int freebits,int flag)456 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
457                           int stream_format_code, int freebits, int flag)
458 {
459     int i, j;
460     const float limit = -1.e20;
461     float highest = 0.0;
462     int indx;
463     int t1 = 0;
464     int t2 = 1;
465     float summa = 0.0;
466     int iacc = 0;
467     int summer = 0;
468     int rres, cwlen;
469     float lowest = 1.e10;
470     int low_indx = 0;
471     float workT[32];
472     int flg;
473     int found_indx = 0;
474 
475     for (i = 0; i < BANDS; i++)
476         highest = FFMAX(highest, chctx->flcoeffs1[i]);
477 
478     for (i = 0; i < BANDS - 1; i++) {
479         if (chctx->flcoeffs5[i] <= 0) {
480             av_log(q->avctx, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
481             return AVERROR_INVALIDDATA;
482         }
483         chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
484     }
485     chctx->flcoeffs4[BANDS - 1] = limit;
486 
487     highest = highest * 0.25;
488 
489     for (i = 0; i < BANDS; i++) {
490         indx = -1;
491         if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
492             indx = 0;
493 
494         if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
495             indx = 1;
496 
497         if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
498             indx = 2;
499 
500         if (indx == -1)
501             return AVERROR_INVALIDDATA;
502 
503         chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
504     }
505 
506     if (stream_format_code & 0x2) {
507         chctx->flcoeffs4[0] = limit;
508         chctx->flcoeffs4[1] = limit;
509         chctx->flcoeffs4[2] = limit;
510         chctx->flcoeffs4[3] = limit;
511     }
512 
513     for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
514         iacc  += chctx->bandWidthT[i];
515         summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
516     }
517 
518     if (!iacc)
519         return AVERROR_INVALIDDATA;
520 
521     chctx->bandWidthT[BANDS - 1] = 0;
522     summa = (summa * 0.5 - freebits) / iacc;
523 
524 
525     for (i = 0; i < BANDS / 2; i++) {
526         rres = summer - freebits;
527         if ((rres >= -8) && (rres <= 8))
528             break;
529 
530         summer = 0;
531         iacc   = 0;
532 
533         for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
534             cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
535 
536             chctx->bitsBandT[j] = cwlen;
537             summer += chctx->bandWidthT[j] * cwlen;
538 
539             if (cwlen > 0)
540                 iacc += chctx->bandWidthT[j];
541         }
542 
543         flg = t2;
544         t2 = 1;
545         if (freebits < summer)
546             t2 = -1;
547         if (i == 0)
548             flg = t2;
549         if (flg != t2)
550             t1++;
551 
552         summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
553     }
554 
555     for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
556         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
557             chctx->CWlengthT[j] = chctx->bitsBandT[i];
558     }
559 
560     if (freebits > summer) {
561         for (i = 0; i < BANDS; i++) {
562             workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
563                                               : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
564         }
565 
566         highest = 0.0;
567 
568         do {
569             if (highest <= -1.e20)
570                 break;
571 
572             found_indx = 0;
573             highest = -1.e20;
574 
575             for (i = 0; i < BANDS; i++) {
576                 if (workT[i] > highest) {
577                     highest = workT[i];
578                     found_indx = i;
579                 }
580             }
581 
582             if (highest > -1.e20) {
583                 workT[found_indx] -= 2.0;
584                 if (++chctx->bitsBandT[found_indx] == 6)
585                     workT[found_indx] = -1.e20;
586 
587                 for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
588                     chctx->CWlengthT[j]++;
589                     summer++;
590                 }
591             }
592         } while (freebits > summer);
593     }
594     if (freebits < summer) {
595         for (i = 0; i < BANDS; i++) {
596             workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
597                                        : 1.e20;
598         }
599         if (stream_format_code & 0x2) {
600             workT[0] = 1.e20;
601             workT[1] = 1.e20;
602             workT[2] = 1.e20;
603             workT[3] = 1.e20;
604         }
605         while (freebits < summer) {
606             lowest   = 1.e10;
607             low_indx = 0;
608             for (i = 0; i < BANDS; i++) {
609                 if (workT[i] < lowest) {
610                     lowest   = workT[i];
611                     low_indx = i;
612                 }
613             }
614             // if (lowest >= 1.e10)
615             //     break;
616             workT[low_indx] = lowest + 2.0;
617 
618             if (!--chctx->bitsBandT[low_indx])
619                 workT[low_indx] = 1.e20;
620 
621             for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
622                 if (chctx->CWlengthT[j] > 0) {
623                     chctx->CWlengthT[j]--;
624                     summer--;
625                 }
626             }
627         }
628     }
629     return 0;
630 }
631 
imc_get_skip_coeff(IMCContext * q,IMCChannel * chctx)632 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
633 {
634     int i, j;
635 
636     memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
637     memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
638     for (i = 0; i < BANDS; i++) {
639         if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
640             continue;
641 
642         if (!chctx->skipFlagRaw[i]) {
643             chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
644 
645             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
646                 chctx->skipFlags[j] = get_bits1(&q->gb);
647                 if (chctx->skipFlags[j])
648                     chctx->skipFlagCount[i]++;
649             }
650         } else {
651             for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
652                 if (!get_bits1(&q->gb)) { // 0
653                     chctx->skipFlagBits[i]++;
654                     chctx->skipFlags[j]      = 1;
655                     chctx->skipFlags[j + 1]  = 1;
656                     chctx->skipFlagCount[i] += 2;
657                 } else {
658                     if (get_bits1(&q->gb)) { // 11
659                         chctx->skipFlagBits[i] += 2;
660                         chctx->skipFlags[j]     = 0;
661                         chctx->skipFlags[j + 1] = 1;
662                         chctx->skipFlagCount[i]++;
663                     } else {
664                         chctx->skipFlagBits[i] += 3;
665                         chctx->skipFlags[j + 1] = 0;
666                         if (!get_bits1(&q->gb)) { // 100
667                             chctx->skipFlags[j] = 1;
668                             chctx->skipFlagCount[i]++;
669                         } else { // 101
670                             chctx->skipFlags[j] = 0;
671                         }
672                     }
673                 }
674             }
675 
676             if (j < band_tab[i + 1]) {
677                 chctx->skipFlagBits[i]++;
678                 if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
679                     chctx->skipFlagCount[i]++;
680             }
681         }
682     }
683 }
684 
685 /**
686  * Increase highest' band coefficient sizes as some bits won't be used
687  */
imc_adjust_bit_allocation(IMCContext * q,IMCChannel * chctx,int summer)688 static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
689                                       int summer)
690 {
691     float workT[32];
692     int corrected = 0;
693     int i, j;
694     float highest  = 0;
695     int found_indx = 0;
696 
697     for (i = 0; i < BANDS; i++) {
698         workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
699                                           : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
700     }
701 
702     while (corrected < summer) {
703         if (highest <= -1.e20)
704             break;
705 
706         highest = -1.e20;
707 
708         for (i = 0; i < BANDS; i++) {
709             if (workT[i] > highest) {
710                 highest = workT[i];
711                 found_indx = i;
712             }
713         }
714 
715         if (highest > -1.e20) {
716             workT[found_indx] -= 2.0;
717             if (++(chctx->bitsBandT[found_indx]) == 6)
718                 workT[found_indx] = -1.e20;
719 
720             for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
721                 if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
722                     chctx->CWlengthT[j]++;
723                     corrected++;
724                 }
725             }
726         }
727     }
728 }
729 
imc_imdct256(IMCContext * q,IMCChannel * chctx,int channels)730 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
731 {
732     int i;
733     float re, im;
734     float *dst1 = q->out_samples;
735     float *dst2 = q->out_samples + (COEFFS - 1);
736 
737     /* prerotation */
738     for (i = 0; i < COEFFS / 2; i++) {
739         q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
740                             (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
741         q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
742                             (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
743     }
744 
745     /* FFT */
746     q->fft.fft_permute(&q->fft, q->samples);
747     q->fft.fft_calc(&q->fft, q->samples);
748 
749     /* postrotation, window and reorder */
750     for (i = 0; i < COEFFS / 2; i++) {
751         re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
752         im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
753         *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
754                + (q->mdct_sine_window[i * 2] * re);
755         *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
756                - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
757         dst1 += 2;
758         dst2 -= 2;
759         chctx->last_fft_im[i] = im;
760     }
761 }
762 
inverse_quant_coeff(IMCContext * q,IMCChannel * chctx,int stream_format_code)763 static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
764                                int stream_format_code)
765 {
766     int i, j;
767     int middle_value, cw_len, max_size;
768     const float *quantizer;
769 
770     for (i = 0; i < BANDS; i++) {
771         for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
772             chctx->CWdecoded[j] = 0;
773             cw_len = chctx->CWlengthT[j];
774 
775             if (cw_len <= 0 || chctx->skipFlags[j])
776                 continue;
777 
778             max_size     = 1 << cw_len;
779             middle_value = max_size >> 1;
780 
781             if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
782                 return AVERROR_INVALIDDATA;
783 
784             if (cw_len >= 4) {
785                 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
786                 if (chctx->codewords[j] >= middle_value)
787                     chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
788                 else
789                     chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
790             }else{
791                 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
792                 if (chctx->codewords[j] >= middle_value)
793                     chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
794                 else
795                     chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
796             }
797         }
798     }
799     return 0;
800 }
801 
802 
imc_get_coeffs(AVCodecContext * avctx,IMCContext * q,IMCChannel * chctx)803 static void imc_get_coeffs(AVCodecContext *avctx,
804                            IMCContext *q, IMCChannel *chctx)
805 {
806     int i, j, cw_len, cw;
807 
808     for (i = 0; i < BANDS; i++) {
809         if (!chctx->sumLenArr[i])
810             continue;
811         if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
812             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
813                 cw_len = chctx->CWlengthT[j];
814                 cw = 0;
815 
816                 if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
817                     if (get_bits_count(&q->gb) + cw_len > 512) {
818                         av_log(avctx, AV_LOG_WARNING,
819                             "Potential problem on band %i, coefficient %i"
820                             ": cw_len=%i\n", i, j, cw_len);
821                     } else
822                         cw = get_bits(&q->gb, cw_len);
823                 }
824 
825                 chctx->codewords[j] = cw;
826             }
827         }
828     }
829 }
830 
imc_refine_bit_allocation(IMCContext * q,IMCChannel * chctx)831 static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
832 {
833     int i, j;
834     int summer;
835 
836     for (i = 0; i < BANDS; i++) {
837         chctx->sumLenArr[i]   = 0;
838         chctx->skipFlagRaw[i] = 0;
839         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
840             chctx->sumLenArr[i] += chctx->CWlengthT[j];
841         if (chctx->bandFlagsBuf[i])
842             if (((int)((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
843                 chctx->skipFlagRaw[i] = 1;
844     }
845 
846     imc_get_skip_coeff(q, chctx);
847 
848     for (i = 0; i < BANDS; i++) {
849         chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
850         /* band has flag set and at least one coded coefficient */
851         if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
852             chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
853                                    q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
854         }
855     }
856 
857     /* calculate bits left, bits needed and adjust bit allocation */
858     summer = 0;
859 
860     for (i = 0; i < BANDS; i++) {
861         if (chctx->bandFlagsBuf[i]) {
862             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
863                 if (chctx->skipFlags[j]) {
864                     summer += chctx->CWlengthT[j];
865                     chctx->CWlengthT[j] = 0;
866                 }
867             }
868             summer -= chctx->skipFlagBits[i];
869         }
870     }
871     imc_adjust_bit_allocation(q, chctx, summer);
872 }
873 
imc_decode_block(AVCodecContext * avctx,IMCContext * q,int ch)874 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
875 {
876     int stream_format_code;
877     int imc_hdr, i, j, ret;
878     int flag;
879     int bits;
880     int bitscount;
881     IMCChannel *chctx = q->chctx + ch;
882 
883 
884     /* Check the frame header */
885     imc_hdr = get_bits(&q->gb, 9);
886     if (imc_hdr & 0x18) {
887         av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
888         av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
889         return AVERROR_INVALIDDATA;
890     }
891     stream_format_code = get_bits(&q->gb, 3);
892 
893     if (stream_format_code & 0x04)
894         chctx->decoder_reset = 1;
895 
896     if (chctx->decoder_reset) {
897         for (i = 0; i < BANDS; i++)
898             chctx->old_floor[i] = 1.0;
899         for (i = 0; i < COEFFS; i++)
900             chctx->CWdecoded[i] = 0;
901         chctx->decoder_reset = 0;
902     }
903 
904     flag = get_bits1(&q->gb);
905     if (stream_format_code & 0x1)
906         imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
907     else
908         imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
909 
910     if (stream_format_code & 0x1)
911         imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
912                                           chctx->flcoeffs1, chctx->flcoeffs2);
913     else if (stream_format_code & 0x4)
914         imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
915                                       chctx->flcoeffs1, chctx->flcoeffs2);
916     else
917         imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
918                                        chctx->flcoeffs1, chctx->flcoeffs2);
919 
920     for(i=0; i<BANDS; i++) {
921         if(chctx->flcoeffs1[i] > INT_MAX) {
922             av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
923             return AVERROR_INVALIDDATA;
924         }
925     }
926 
927     memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
928 
929     if (stream_format_code & 0x1) {
930         for (i = 0; i < BANDS; i++) {
931             chctx->bandWidthT[i]   = band_tab[i + 1] - band_tab[i];
932             chctx->bandFlagsBuf[i] = 0;
933             chctx->flcoeffs3[i]    = chctx->flcoeffs2[i] * 2;
934             chctx->flcoeffs5[i]    = 1.0;
935         }
936     } else {
937         for (i = 0; i < BANDS; i++) {
938             if (chctx->levlCoeffBuf[i] == 16) {
939                 chctx->bandWidthT[i] = 0;
940             } else
941                 chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
942         }
943 
944         memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
945         for (i = 0; i < BANDS - 1; i++)
946             if (chctx->bandWidthT[i])
947                 chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
948 
949         imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
950                              chctx->bandWidthT, chctx->flcoeffs3,
951                              chctx->flcoeffs5);
952     }
953 
954     bitscount = 0;
955     /* first 4 bands will be assigned 5 bits per coefficient */
956     if (stream_format_code & 0x2) {
957         bitscount += 15;
958 
959         chctx->bitsBandT[0] = 5;
960         chctx->CWlengthT[0] = 5;
961         chctx->CWlengthT[1] = 5;
962         chctx->CWlengthT[2] = 5;
963         for (i = 1; i < 4; i++) {
964             if (stream_format_code & 0x1)
965                 bits = 5;
966             else
967                 bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
968             chctx->bitsBandT[i] = bits;
969             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
970                 chctx->CWlengthT[j] = bits;
971                 bitscount      += bits;
972             }
973         }
974     }
975     if (avctx->codec_id == AV_CODEC_ID_IAC) {
976         bitscount += !!chctx->bandWidthT[BANDS - 1];
977         if (!(stream_format_code & 0x2))
978             bitscount += 16;
979     }
980 
981     if ((ret = bit_allocation(q, chctx, stream_format_code,
982                               512 - bitscount - get_bits_count(&q->gb),
983                               flag)) < 0) {
984         av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
985         chctx->decoder_reset = 1;
986         return ret;
987     }
988 
989     if (stream_format_code & 0x1) {
990         for (i = 0; i < BANDS; i++)
991             chctx->skipFlags[i] = 0;
992     } else {
993         imc_refine_bit_allocation(q, chctx);
994     }
995 
996     for (i = 0; i < BANDS; i++) {
997         chctx->sumLenArr[i] = 0;
998 
999         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
1000             if (!chctx->skipFlags[j])
1001                 chctx->sumLenArr[i] += chctx->CWlengthT[j];
1002     }
1003 
1004     memset(chctx->codewords, 0, sizeof(chctx->codewords));
1005 
1006     imc_get_coeffs(avctx, q, chctx);
1007 
1008     if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1009         av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1010         chctx->decoder_reset = 1;
1011         return AVERROR_INVALIDDATA;
1012     }
1013 
1014     memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1015 
1016     imc_imdct256(q, chctx, avctx->ch_layout.nb_channels);
1017 
1018     return 0;
1019 }
1020 
imc_decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)1021 static int imc_decode_frame(AVCodecContext *avctx, AVFrame *frame,
1022                             int *got_frame_ptr, AVPacket *avpkt)
1023 {
1024     const uint8_t *buf = avpkt->data;
1025     int buf_size = avpkt->size;
1026     int ret, i;
1027 
1028     IMCContext *q = avctx->priv_data;
1029 
1030     LOCAL_ALIGNED_16(uint16_t, buf16, [(IMC_BLOCK_SIZE + AV_INPUT_BUFFER_PADDING_SIZE) / 2]);
1031 
1032     q->avctx = avctx;
1033 
1034     if (buf_size < IMC_BLOCK_SIZE * avctx->ch_layout.nb_channels) {
1035         av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1036         return AVERROR_INVALIDDATA;
1037     }
1038 
1039     /* get output buffer */
1040     frame->nb_samples = COEFFS;
1041     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1042         return ret;
1043 
1044     for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
1045         q->out_samples = (float *)frame->extended_data[i];
1046 
1047         q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1048 
1049         init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1050 
1051         buf += IMC_BLOCK_SIZE;
1052 
1053         if ((ret = imc_decode_block(avctx, q, i)) < 0)
1054             return ret;
1055     }
1056 
1057     if (avctx->ch_layout.nb_channels == 2) {
1058         q->butterflies_float((float *)frame->extended_data[0],
1059                              (float *)frame->extended_data[1], COEFFS);
1060     }
1061 
1062     *got_frame_ptr = 1;
1063 
1064     return IMC_BLOCK_SIZE * avctx->ch_layout.nb_channels;
1065 }
1066 
imc_decode_close(AVCodecContext * avctx)1067 static av_cold int imc_decode_close(AVCodecContext * avctx)
1068 {
1069     IMCContext *q = avctx->priv_data;
1070 
1071     ff_fft_end(&q->fft);
1072 
1073     return 0;
1074 }
1075 
flush(AVCodecContext * avctx)1076 static av_cold void flush(AVCodecContext *avctx)
1077 {
1078     IMCContext *q = avctx->priv_data;
1079 
1080     q->chctx[0].decoder_reset =
1081     q->chctx[1].decoder_reset = 1;
1082 }
1083 
1084 #if CONFIG_IMC_DECODER
1085 const FFCodec ff_imc_decoder = {
1086     .p.name         = "imc",
1087     .p.long_name    = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1088     .p.type         = AVMEDIA_TYPE_AUDIO,
1089     .p.id           = AV_CODEC_ID_IMC,
1090     .priv_data_size = sizeof(IMCContext),
1091     .init           = imc_decode_init,
1092     .close          = imc_decode_close,
1093     FF_CODEC_DECODE_CB(imc_decode_frame),
1094     .flush          = flush,
1095     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1096     .p.sample_fmts  = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1097                                                       AV_SAMPLE_FMT_NONE },
1098     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1099 };
1100 #endif
1101 #if CONFIG_IAC_DECODER
1102 const FFCodec ff_iac_decoder = {
1103     .p.name         = "iac",
1104     .p.long_name    = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1105     .p.type         = AVMEDIA_TYPE_AUDIO,
1106     .p.id           = AV_CODEC_ID_IAC,
1107     .priv_data_size = sizeof(IMCContext),
1108     .init           = imc_decode_init,
1109     .close          = imc_decode_close,
1110     FF_CODEC_DECODE_CB(imc_decode_frame),
1111     .flush          = flush,
1112     .p.capabilities = AV_CODEC_CAP_DR1,
1113     .p.sample_fmts  = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1114                                                       AV_SAMPLE_FMT_NONE },
1115     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1116 };
1117 #endif
1118