• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * MDCT/IMDCT transforms
3  * Copyright (c) 2002 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdlib.h>
23 #include <string.h>
24 #include "libavutil/common.h"
25 #include "libavutil/libm.h"
26 #include "libavutil/mathematics.h"
27 #include "fft.h"
28 #include "fft-internal.h"
29 
30 /**
31  * @file
32  * MDCT/IMDCT transforms.
33  */
34 
35 #if FFT_FLOAT
36 #   define RSCALE(x, y) ((x) + (y))
37 #else
38 #   define RSCALE(x, y) ((int)((x) + (unsigned)(y) + 32) >> 6)
39 #endif
40 
41 /**
42  * init MDCT or IMDCT computation.
43  */
ff_mdct_init(FFTContext * s,int nbits,int inverse,double scale)44 av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
45 {
46     int n, n4, i;
47     double alpha, theta;
48     int tstep;
49 
50     memset(s, 0, sizeof(*s));
51     n = 1 << nbits;
52     s->mdct_bits = nbits;
53     s->mdct_size = n;
54     n4 = n >> 2;
55     s->mdct_permutation = FF_MDCT_PERM_NONE;
56 
57     if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
58         goto fail;
59 
60     s->tcos = av_malloc_array(n/2, sizeof(FFTSample));
61     if (!s->tcos)
62         goto fail;
63 
64     switch (s->mdct_permutation) {
65     case FF_MDCT_PERM_NONE:
66         s->tsin = s->tcos + n4;
67         tstep = 1;
68         break;
69     case FF_MDCT_PERM_INTERLEAVE:
70         s->tsin = s->tcos + 1;
71         tstep = 2;
72         break;
73     default:
74         goto fail;
75     }
76 
77     theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
78     scale = sqrt(fabs(scale));
79     for(i=0;i<n4;i++) {
80         alpha = 2 * M_PI * (i + theta) / n;
81 #if !FFT_FLOAT
82         s->tcos[i*tstep] = lrint(-cos(alpha) * 2147483648.0);
83         s->tsin[i*tstep] = lrint(-sin(alpha) * 2147483648.0);
84 #else
85         s->tcos[i*tstep] = FIX15(-cos(alpha) * scale);
86         s->tsin[i*tstep] = FIX15(-sin(alpha) * scale);
87 #endif
88     }
89     return 0;
90  fail:
91     ff_mdct_end(s);
92     return -1;
93 }
94 
95 /**
96  * Compute the middle half of the inverse MDCT of size N = 2^nbits,
97  * thus excluding the parts that can be derived by symmetry
98  * @param output N/2 samples
99  * @param input N/2 samples
100  */
ff_imdct_half_c(FFTContext * s,FFTSample * output,const FFTSample * input)101 void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
102 {
103     int k, n8, n4, n2, n, j;
104     const uint16_t *revtab = s->revtab;
105     const FFTSample *tcos = s->tcos;
106     const FFTSample *tsin = s->tsin;
107     const FFTSample *in1, *in2;
108     FFTComplex *z = (FFTComplex *)output;
109 
110     n = 1 << s->mdct_bits;
111     n2 = n >> 1;
112     n4 = n >> 2;
113     n8 = n >> 3;
114 
115     /* pre rotation */
116     in1 = input;
117     in2 = input + n2 - 1;
118     for(k = 0; k < n4; k++) {
119         j=revtab[k];
120         CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
121         in1 += 2;
122         in2 -= 2;
123     }
124     s->fft_calc(s, z);
125 
126     /* post rotation + reordering */
127     for(k = 0; k < n8; k++) {
128         FFTSample r0, i0, r1, i1;
129         CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
130         CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
131         z[n8-k-1].re = r0;
132         z[n8-k-1].im = i0;
133         z[n8+k  ].re = r1;
134         z[n8+k  ].im = i1;
135     }
136 }
137 
138 /**
139  * Compute inverse MDCT of size N = 2^nbits
140  * @param output N samples
141  * @param input N/2 samples
142  */
ff_imdct_calc_c(FFTContext * s,FFTSample * output,const FFTSample * input)143 void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
144 {
145     int k;
146     int n = 1 << s->mdct_bits;
147     int n2 = n >> 1;
148     int n4 = n >> 2;
149 
150     ff_imdct_half_c(s, output+n4, input);
151 
152     for(k = 0; k < n4; k++) {
153         output[k] = -output[n2-k-1];
154         output[n-k-1] = output[n2+k];
155     }
156 }
157 
158 /**
159  * Compute MDCT of size N = 2^nbits
160  * @param input N samples
161  * @param out N/2 samples
162  */
ff_mdct_calc_c(FFTContext * s,FFTSample * out,const FFTSample * input)163 void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
164 {
165     int i, j, n, n8, n4, n2, n3;
166     FFTDouble re, im;
167     const uint16_t *revtab = s->revtab;
168     const FFTSample *tcos = s->tcos;
169     const FFTSample *tsin = s->tsin;
170     FFTComplex *x = (FFTComplex *)out;
171 
172     n = 1 << s->mdct_bits;
173     n2 = n >> 1;
174     n4 = n >> 2;
175     n8 = n >> 3;
176     n3 = 3 * n4;
177 
178     /* pre rotation */
179     for(i=0;i<n8;i++) {
180         re = RSCALE(-input[2*i+n3], - input[n3-1-2*i]);
181         im = RSCALE(-input[n4+2*i], + input[n4-1-2*i]);
182         j = revtab[i];
183         CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
184 
185         re = RSCALE( input[2*i]   , - input[n2-1-2*i]);
186         im = RSCALE(-input[n2+2*i], - input[ n-1-2*i]);
187         j = revtab[n8 + i];
188         CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
189     }
190 
191     s->fft_calc(s, x);
192 
193     /* post rotation */
194     for(i=0;i<n8;i++) {
195         FFTSample r0, i0, r1, i1;
196         CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
197         CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
198         x[n8-i-1].re = r0;
199         x[n8-i-1].im = i0;
200         x[n8+i  ].re = r1;
201         x[n8+i  ].im = i1;
202     }
203 }
204 
ff_mdct_end(FFTContext * s)205 av_cold void ff_mdct_end(FFTContext *s)
206 {
207     av_freep(&s->tcos);
208     ff_fft_end(s);
209 }
210