• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
3  * Copyright (c) 2012 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
25  */
26 
27 #include "avcodec.h"
28 #include "bytestream.h"
29 #include "codec_internal.h"
30 #include "internal.h"
31 #include "mathops.h"
32 #include "mss34dsp.h"
33 
34 #define HEADER_SIZE 27
35 
36 #define MODEL2_SCALE       13
37 #define MODEL_SCALE        15
38 #define MODEL256_SEC_SCALE  9
39 
40 typedef struct Model2 {
41     int      upd_val, till_rescale;
42     unsigned zero_freq,  zero_weight;
43     unsigned total_freq, total_weight;
44 } Model2;
45 
46 typedef struct Model {
47     int weights[16], freqs[16];
48     int num_syms;
49     int tot_weight;
50     int upd_val, max_upd_val, till_rescale;
51 } Model;
52 
53 typedef struct Model256 {
54     int weights[256], freqs[256];
55     int tot_weight;
56     int secondary[68];
57     int sec_size;
58     int upd_val, max_upd_val, till_rescale;
59 } Model256;
60 
61 #define RAC_BOTTOM 0x01000000
62 typedef struct RangeCoder {
63     const uint8_t *src, *src_end;
64 
65     uint32_t range, low;
66     int got_error;
67 } RangeCoder;
68 
69 enum BlockType {
70     FILL_BLOCK = 0,
71     IMAGE_BLOCK,
72     DCT_BLOCK,
73     HAAR_BLOCK,
74     SKIP_BLOCK
75 };
76 
77 typedef struct BlockTypeContext {
78     int      last_type;
79     Model    bt_model[5];
80 } BlockTypeContext;
81 
82 typedef struct FillBlockCoder {
83     int      fill_val;
84     Model    coef_model;
85 } FillBlockCoder;
86 
87 typedef struct ImageBlockCoder {
88     Model256 esc_model, vec_entry_model;
89     Model    vec_size_model;
90     Model    vq_model[125];
91 } ImageBlockCoder;
92 
93 typedef struct DCTBlockCoder {
94     int      *prev_dc;
95     ptrdiff_t prev_dc_stride;
96     int      prev_dc_height;
97     int      quality;
98     uint16_t qmat[64];
99     Model    dc_model;
100     Model2   sign_model;
101     Model256 ac_model;
102 } DCTBlockCoder;
103 
104 typedef struct HaarBlockCoder {
105     int      quality, scale;
106     Model256 coef_model;
107     Model    coef_hi_model;
108 } HaarBlockCoder;
109 
110 typedef struct MSS3Context {
111     AVCodecContext   *avctx;
112     AVFrame          *pic;
113 
114     int              got_error;
115     RangeCoder       coder;
116     BlockTypeContext btype[3];
117     FillBlockCoder   fill_coder[3];
118     ImageBlockCoder  image_coder[3];
119     DCTBlockCoder    dct_coder[3];
120     HaarBlockCoder   haar_coder[3];
121 
122     int              dctblock[64];
123     int              hblock[16 * 16];
124 } MSS3Context;
125 
126 
model2_reset(Model2 * m)127 static void model2_reset(Model2 *m)
128 {
129     m->zero_weight  = 1;
130     m->total_weight = 2;
131     m->zero_freq    = 0x1000;
132     m->total_freq   = 0x2000;
133     m->upd_val      = 4;
134     m->till_rescale = 4;
135 }
136 
model2_update(Model2 * m,int bit)137 static void model2_update(Model2 *m, int bit)
138 {
139     unsigned scale;
140 
141     if (!bit)
142         m->zero_weight++;
143     m->till_rescale--;
144     if (m->till_rescale)
145         return;
146 
147     m->total_weight += m->upd_val;
148     if (m->total_weight > 0x2000) {
149         m->total_weight = (m->total_weight + 1) >> 1;
150         m->zero_weight  = (m->zero_weight  + 1) >> 1;
151         if (m->total_weight == m->zero_weight)
152             m->total_weight = m->zero_weight + 1;
153     }
154     m->upd_val = m->upd_val * 5 >> 2;
155     if (m->upd_val > 64)
156         m->upd_val = 64;
157     scale = 0x80000000u / m->total_weight;
158     m->zero_freq    = m->zero_weight  * scale >> 18;
159     m->total_freq   = m->total_weight * scale >> 18;
160     m->till_rescale = m->upd_val;
161 }
162 
model_update(Model * m,int val)163 static void model_update(Model *m, int val)
164 {
165     int i, sum = 0;
166     unsigned scale;
167 
168     m->weights[val]++;
169     m->till_rescale--;
170     if (m->till_rescale)
171         return;
172     m->tot_weight += m->upd_val;
173 
174     if (m->tot_weight > 0x8000) {
175         m->tot_weight = 0;
176         for (i = 0; i < m->num_syms; i++) {
177             m->weights[i]  = (m->weights[i] + 1) >> 1;
178             m->tot_weight +=  m->weights[i];
179         }
180     }
181     scale = 0x80000000u / m->tot_weight;
182     for (i = 0; i < m->num_syms; i++) {
183         m->freqs[i] = sum * scale >> 16;
184         sum += m->weights[i];
185     }
186 
187     m->upd_val = m->upd_val * 5 >> 2;
188     if (m->upd_val > m->max_upd_val)
189         m->upd_val = m->max_upd_val;
190     m->till_rescale = m->upd_val;
191 }
192 
model_reset(Model * m)193 static void model_reset(Model *m)
194 {
195     int i;
196 
197     m->tot_weight   = 0;
198     for (i = 0; i < m->num_syms - 1; i++)
199         m->weights[i] = 1;
200     m->weights[m->num_syms - 1] = 0;
201 
202     m->upd_val      = m->num_syms;
203     m->till_rescale = 1;
204     model_update(m, m->num_syms - 1);
205     m->till_rescale =
206     m->upd_val      = (m->num_syms + 6) >> 1;
207 }
208 
model_init(Model * m,int num_syms)209 static av_cold void model_init(Model *m, int num_syms)
210 {
211     m->num_syms    = num_syms;
212     m->max_upd_val = 8 * num_syms + 48;
213 
214     model_reset(m);
215 }
216 
model256_update(Model256 * m,int val)217 static void model256_update(Model256 *m, int val)
218 {
219     int i, sum = 0;
220     unsigned scale;
221     int send, sidx = 1;
222 
223     m->weights[val]++;
224     m->till_rescale--;
225     if (m->till_rescale)
226         return;
227     m->tot_weight += m->upd_val;
228 
229     if (m->tot_weight > 0x8000) {
230         m->tot_weight = 0;
231         for (i = 0; i < 256; i++) {
232             m->weights[i]  = (m->weights[i] + 1) >> 1;
233             m->tot_weight +=  m->weights[i];
234         }
235     }
236     scale = 0x80000000u / m->tot_weight;
237     m->secondary[0] = 0;
238     for (i = 0; i < 256; i++) {
239         m->freqs[i] = sum * scale >> 16;
240         sum += m->weights[i];
241         send = m->freqs[i] >> MODEL256_SEC_SCALE;
242         while (sidx <= send)
243             m->secondary[sidx++] = i - 1;
244     }
245     while (sidx < m->sec_size)
246         m->secondary[sidx++] = 255;
247 
248     m->upd_val = m->upd_val * 5 >> 2;
249     if (m->upd_val > m->max_upd_val)
250         m->upd_val = m->max_upd_val;
251     m->till_rescale = m->upd_val;
252 }
253 
model256_reset(Model256 * m)254 static void model256_reset(Model256 *m)
255 {
256     int i;
257 
258     for (i = 0; i < 255; i++)
259         m->weights[i] = 1;
260     m->weights[255] = 0;
261 
262     m->tot_weight   = 0;
263     m->upd_val      = 256;
264     m->till_rescale = 1;
265     model256_update(m, 255);
266     m->till_rescale =
267     m->upd_val      = (256 + 6) >> 1;
268 }
269 
model256_init(Model256 * m)270 static av_cold void model256_init(Model256 *m)
271 {
272     m->max_upd_val = 8 * 256 + 48;
273     m->sec_size    = (1 << 6) + 2;
274 
275     model256_reset(m);
276 }
277 
rac_init(RangeCoder * c,const uint8_t * src,int size)278 static void rac_init(RangeCoder *c, const uint8_t *src, int size)
279 {
280     int i;
281 
282     c->src       = src;
283     c->src_end   = src + size;
284     c->low       = 0;
285     for (i = 0; i < FFMIN(size, 4); i++)
286         c->low = (c->low << 8) | *c->src++;
287     c->range     = 0xFFFFFFFF;
288     c->got_error = 0;
289 }
290 
rac_normalise(RangeCoder * c)291 static void rac_normalise(RangeCoder *c)
292 {
293     for (;;) {
294         c->range <<= 8;
295         c->low   <<= 8;
296         if (c->src < c->src_end) {
297             c->low |= *c->src++;
298         } else if (!c->low) {
299             c->got_error = 1;
300             c->low = 1;
301         }
302         if (c->low > c->range) {
303             c->got_error = 1;
304             c->low = 1;
305         }
306         if (c->range >= RAC_BOTTOM)
307             return;
308     }
309 }
310 
rac_get_bit(RangeCoder * c)311 static int rac_get_bit(RangeCoder *c)
312 {
313     int bit;
314 
315     c->range >>= 1;
316 
317     bit = (c->range <= c->low);
318     if (bit)
319         c->low -= c->range;
320 
321     if (c->range < RAC_BOTTOM)
322         rac_normalise(c);
323 
324     return bit;
325 }
326 
rac_get_bits(RangeCoder * c,int nbits)327 static int rac_get_bits(RangeCoder *c, int nbits)
328 {
329     int val;
330 
331     c->range >>= nbits;
332     val = c->low / c->range;
333     c->low -= c->range * val;
334 
335     if (c->range < RAC_BOTTOM)
336         rac_normalise(c);
337 
338     return val;
339 }
340 
rac_get_model2_sym(RangeCoder * c,Model2 * m)341 static int rac_get_model2_sym(RangeCoder *c, Model2 *m)
342 {
343     int bit, helper;
344 
345     helper = m->zero_freq * (c->range >> MODEL2_SCALE);
346     bit    = (c->low >= helper);
347     if (bit) {
348         c->low   -= helper;
349         c->range -= helper;
350     } else {
351         c->range  = helper;
352     }
353 
354     if (c->range < RAC_BOTTOM)
355         rac_normalise(c);
356 
357     model2_update(m, bit);
358 
359     return bit;
360 }
361 
rac_get_model_sym(RangeCoder * c,Model * m)362 static int rac_get_model_sym(RangeCoder *c, Model *m)
363 {
364     int val;
365     int end, end2;
366     unsigned prob, prob2, helper;
367 
368     prob       = 0;
369     prob2      = c->range;
370     c->range >>= MODEL_SCALE;
371     val        = 0;
372     end        = m->num_syms >> 1;
373     end2       = m->num_syms;
374     do {
375         helper = m->freqs[end] * c->range;
376         if (helper <= c->low) {
377             val   = end;
378             prob  = helper;
379         } else {
380             end2  = end;
381             prob2 = helper;
382         }
383         end = (end2 + val) >> 1;
384     } while (end != val);
385     c->low  -= prob;
386     c->range = prob2 - prob;
387     if (c->range < RAC_BOTTOM)
388         rac_normalise(c);
389 
390     model_update(m, val);
391 
392     return val;
393 }
394 
rac_get_model256_sym(RangeCoder * c,Model256 * m)395 static int rac_get_model256_sym(RangeCoder *c, Model256 *m)
396 {
397     int val;
398     int start, end;
399     int ssym;
400     unsigned prob, prob2, helper;
401 
402     prob2      = c->range;
403     c->range >>= MODEL_SCALE;
404 
405     helper     = c->low / c->range;
406     ssym       = helper >> MODEL256_SEC_SCALE;
407     val        = m->secondary[ssym];
408 
409     end = start = m->secondary[ssym + 1] + 1;
410     while (end > val + 1) {
411         ssym = (end + val) >> 1;
412         if (m->freqs[ssym] <= helper) {
413             end = start;
414             val = ssym;
415         } else {
416             end   = (end + val) >> 1;
417             start = ssym;
418         }
419     }
420     prob = m->freqs[val] * c->range;
421     if (val != 255)
422         prob2 = m->freqs[val + 1] * c->range;
423 
424     c->low  -= prob;
425     c->range = prob2 - prob;
426     if (c->range < RAC_BOTTOM)
427         rac_normalise(c);
428 
429     model256_update(m, val);
430 
431     return val;
432 }
433 
decode_block_type(RangeCoder * c,BlockTypeContext * bt)434 static int decode_block_type(RangeCoder *c, BlockTypeContext *bt)
435 {
436     bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]);
437 
438     return bt->last_type;
439 }
440 
decode_coeff(RangeCoder * c,Model * m)441 static int decode_coeff(RangeCoder *c, Model *m)
442 {
443     int val, sign;
444 
445     val = rac_get_model_sym(c, m);
446     if (val) {
447         sign = rac_get_bit(c);
448         if (val > 1) {
449             val--;
450             val = (1 << val) + rac_get_bits(c, val);
451         }
452         if (!sign)
453             val = -val;
454     }
455 
456     return val;
457 }
458 
decode_fill_block(RangeCoder * c,FillBlockCoder * fc,uint8_t * dst,ptrdiff_t stride,int block_size)459 static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc,
460                               uint8_t *dst, ptrdiff_t stride, int block_size)
461 {
462     int i;
463 
464     fc->fill_val += decode_coeff(c, &fc->coef_model);
465 
466     for (i = 0; i < block_size; i++, dst += stride)
467         memset(dst, fc->fill_val, block_size);
468 }
469 
decode_image_block(RangeCoder * c,ImageBlockCoder * ic,uint8_t * dst,ptrdiff_t stride,int block_size)470 static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic,
471                                uint8_t *dst, ptrdiff_t stride, int block_size)
472 {
473     int i, j;
474     int vec_size;
475     int vec[4];
476     int prev_line[16];
477     int A, B, C;
478 
479     vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2;
480     for (i = 0; i < vec_size; i++)
481         vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model);
482     for (; i < 4; i++)
483         vec[i] = 0;
484     memset(prev_line, 0, sizeof(prev_line));
485 
486     for (j = 0; j < block_size; j++) {
487         A = 0;
488         B = 0;
489         for (i = 0; i < block_size; i++) {
490             C = B;
491             B = prev_line[i];
492             A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]);
493 
494             prev_line[i] = A;
495             if (A < 4)
496                dst[i] = vec[A];
497             else
498                dst[i] = rac_get_model256_sym(c, &ic->esc_model);
499         }
500         dst += stride;
501     }
502 }
503 
decode_dct(RangeCoder * c,DCTBlockCoder * bc,int * block,int bx,int by)504 static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block,
505                       int bx, int by)
506 {
507     int skip, val, sign, pos = 1, zz_pos, dc;
508     int blk_pos = bx + by * bc->prev_dc_stride;
509 
510     memset(block, 0, sizeof(*block) * 64);
511 
512     dc = decode_coeff(c, &bc->dc_model);
513     if (by) {
514         if (bx) {
515             int l, tl, t;
516 
517             l  = bc->prev_dc[blk_pos - 1];
518             tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride];
519             t  = bc->prev_dc[blk_pos     - bc->prev_dc_stride];
520 
521             if (FFABS(t - tl) <= FFABS(l - tl))
522                 dc += l;
523             else
524                 dc += t;
525         } else {
526             dc += bc->prev_dc[blk_pos - bc->prev_dc_stride];
527         }
528     } else if (bx) {
529         dc += bc->prev_dc[bx - 1];
530     }
531     bc->prev_dc[blk_pos] = dc;
532     block[0]             = dc * bc->qmat[0];
533 
534     while (pos < 64) {
535         val = rac_get_model256_sym(c, &bc->ac_model);
536         if (!val)
537             return 0;
538         if (val == 0xF0) {
539             pos += 16;
540             continue;
541         }
542         skip = val >> 4;
543         val  = val & 0xF;
544         if (!val)
545             return -1;
546         pos += skip;
547         if (pos >= 64)
548             return -1;
549 
550         sign = rac_get_model2_sym(c, &bc->sign_model);
551         if (val > 1) {
552             val--;
553             val = (1 << val) + rac_get_bits(c, val);
554         }
555         if (!sign)
556             val = -val;
557 
558         zz_pos = ff_zigzag_direct[pos];
559         block[zz_pos] = val * bc->qmat[zz_pos];
560         pos++;
561     }
562 
563     return pos == 64 ? 0 : -1;
564 }
565 
decode_dct_block(RangeCoder * c,DCTBlockCoder * bc,uint8_t * dst,ptrdiff_t stride,int block_size,int * block,int mb_x,int mb_y)566 static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc,
567                              uint8_t *dst, ptrdiff_t stride, int block_size,
568                              int *block, int mb_x, int mb_y)
569 {
570     int i, j;
571     int bx, by;
572     int nblocks = block_size >> 3;
573 
574     bx = mb_x * nblocks;
575     by = mb_y * nblocks;
576 
577     for (j = 0; j < nblocks; j++) {
578         for (i = 0; i < nblocks; i++) {
579             if (decode_dct(c, bc, block, bx + i, by + j)) {
580                 c->got_error = 1;
581                 return;
582             }
583             ff_mss34_dct_put(dst + i * 8, stride, block);
584         }
585         dst += 8 * stride;
586     }
587 }
588 
decode_haar_block(RangeCoder * c,HaarBlockCoder * hc,uint8_t * dst,ptrdiff_t stride,int block_size,int * block)589 static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc,
590                               uint8_t *dst, ptrdiff_t stride,
591                               int block_size, int *block)
592 {
593     const int hsize = block_size >> 1;
594     int A, B, C, D, t1, t2, t3, t4;
595     int i, j;
596 
597     for (j = 0; j < block_size; j++) {
598         for (i = 0; i < block_size; i++) {
599             if (i < hsize && j < hsize)
600                 block[i] = rac_get_model256_sym(c, &hc->coef_model);
601             else
602                 block[i] = decode_coeff(c, &hc->coef_hi_model);
603             block[i] *= hc->scale;
604         }
605         block += block_size;
606     }
607     block -= block_size * block_size;
608 
609     for (j = 0; j < hsize; j++) {
610         for (i = 0; i < hsize; i++) {
611             A = block[i];
612             B = block[i + hsize];
613             C = block[i + hsize * block_size];
614             D = block[i + hsize * block_size + hsize];
615 
616             t1 = A - B;
617             t2 = C - D;
618             t3 = A + B;
619             t4 = C + D;
620             dst[i * 2]              = av_clip_uint8(t1 - t2);
621             dst[i * 2 + stride]     = av_clip_uint8(t1 + t2);
622             dst[i * 2 + 1]          = av_clip_uint8(t3 - t4);
623             dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4);
624         }
625         block += block_size;
626         dst   += stride * 2;
627     }
628 }
629 
reset_coders(MSS3Context * ctx,int quality)630 static void reset_coders(MSS3Context *ctx, int quality)
631 {
632     int i, j;
633 
634     for (i = 0; i < 3; i++) {
635         ctx->btype[i].last_type = SKIP_BLOCK;
636         for (j = 0; j < 5; j++)
637             model_reset(&ctx->btype[i].bt_model[j]);
638         ctx->fill_coder[i].fill_val = 0;
639         model_reset(&ctx->fill_coder[i].coef_model);
640         model256_reset(&ctx->image_coder[i].esc_model);
641         model256_reset(&ctx->image_coder[i].vec_entry_model);
642         model_reset(&ctx->image_coder[i].vec_size_model);
643         for (j = 0; j < 125; j++)
644             model_reset(&ctx->image_coder[i].vq_model[j]);
645         if (ctx->dct_coder[i].quality != quality) {
646             ctx->dct_coder[i].quality = quality;
647             ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i);
648         }
649         memset(ctx->dct_coder[i].prev_dc, 0,
650                sizeof(*ctx->dct_coder[i].prev_dc) *
651                ctx->dct_coder[i].prev_dc_stride *
652                ctx->dct_coder[i].prev_dc_height);
653         model_reset(&ctx->dct_coder[i].dc_model);
654         model2_reset(&ctx->dct_coder[i].sign_model);
655         model256_reset(&ctx->dct_coder[i].ac_model);
656         if (ctx->haar_coder[i].quality != quality) {
657             ctx->haar_coder[i].quality = quality;
658             ctx->haar_coder[i].scale   = 17 - 7 * quality / 50;
659         }
660         model_reset(&ctx->haar_coder[i].coef_hi_model);
661         model256_reset(&ctx->haar_coder[i].coef_model);
662     }
663 }
664 
init_coders(MSS3Context * ctx)665 static av_cold void init_coders(MSS3Context *ctx)
666 {
667     int i, j;
668 
669     for (i = 0; i < 3; i++) {
670         for (j = 0; j < 5; j++)
671             model_init(&ctx->btype[i].bt_model[j], 5);
672         model_init(&ctx->fill_coder[i].coef_model, 12);
673         model256_init(&ctx->image_coder[i].esc_model);
674         model256_init(&ctx->image_coder[i].vec_entry_model);
675         model_init(&ctx->image_coder[i].vec_size_model, 3);
676         for (j = 0; j < 125; j++)
677             model_init(&ctx->image_coder[i].vq_model[j], 5);
678         model_init(&ctx->dct_coder[i].dc_model, 12);
679         model256_init(&ctx->dct_coder[i].ac_model);
680         model_init(&ctx->haar_coder[i].coef_hi_model, 12);
681         model256_init(&ctx->haar_coder[i].coef_model);
682     }
683 }
684 
mss3_decode_frame(AVCodecContext * avctx,AVFrame * rframe,int * got_frame,AVPacket * avpkt)685 static int mss3_decode_frame(AVCodecContext *avctx, AVFrame *rframe,
686                              int *got_frame, AVPacket *avpkt)
687 {
688     const uint8_t *buf = avpkt->data;
689     int buf_size = avpkt->size;
690     MSS3Context *c = avctx->priv_data;
691     RangeCoder *acoder = &c->coder;
692     GetByteContext gb;
693     uint8_t *dst[3];
694     int dec_width, dec_height, dec_x, dec_y, quality, keyframe;
695     int x, y, i, mb_width, mb_height, blk_size, btype;
696     int ret;
697 
698     if (buf_size < HEADER_SIZE) {
699         av_log(avctx, AV_LOG_ERROR,
700                "Frame should have at least %d bytes, got %d instead\n",
701                HEADER_SIZE, buf_size);
702         return AVERROR_INVALIDDATA;
703     }
704 
705     bytestream2_init(&gb, buf, buf_size);
706     keyframe   = bytestream2_get_be32(&gb);
707     if (keyframe & ~0x301) {
708         av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe);
709         return AVERROR_INVALIDDATA;
710     }
711     keyframe   = !(keyframe & 1);
712     bytestream2_skip(&gb, 6);
713     dec_x      = bytestream2_get_be16(&gb);
714     dec_y      = bytestream2_get_be16(&gb);
715     dec_width  = bytestream2_get_be16(&gb);
716     dec_height = bytestream2_get_be16(&gb);
717 
718     if (dec_x + dec_width > avctx->width ||
719         dec_y + dec_height > avctx->height ||
720         (dec_width | dec_height) & 0xF) {
721         av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n",
722                dec_width, dec_height, dec_x, dec_y);
723         return AVERROR_INVALIDDATA;
724     }
725     bytestream2_skip(&gb, 4);
726     quality    = bytestream2_get_byte(&gb);
727     if (quality < 1 || quality > 100) {
728         av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
729         return AVERROR_INVALIDDATA;
730     }
731     bytestream2_skip(&gb, 4);
732 
733     if (keyframe && !bytestream2_get_bytes_left(&gb)) {
734         av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n");
735         return AVERROR_INVALIDDATA;
736     }
737     if (!keyframe && c->got_error)
738         return buf_size;
739     c->got_error = 0;
740 
741     if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0)
742         return ret;
743     c->pic->key_frame = keyframe;
744     c->pic->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
745     if (!bytestream2_get_bytes_left(&gb)) {
746         if ((ret = av_frame_ref(rframe, c->pic)) < 0)
747             return ret;
748         *got_frame      = 1;
749 
750         return buf_size;
751     }
752 
753     reset_coders(c, quality);
754 
755     rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE);
756 
757     mb_width  = dec_width  >> 4;
758     mb_height = dec_height >> 4;
759     dst[0] = c->pic->data[0] + dec_x     +  dec_y      * c->pic->linesize[0];
760     dst[1] = c->pic->data[1] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[1];
761     dst[2] = c->pic->data[2] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[2];
762     for (y = 0; y < mb_height; y++) {
763         for (x = 0; x < mb_width; x++) {
764             for (i = 0; i < 3; i++) {
765                 blk_size = 8 << !i;
766 
767                 btype = decode_block_type(acoder, c->btype + i);
768                 switch (btype) {
769                 case FILL_BLOCK:
770                     decode_fill_block(acoder, c->fill_coder + i,
771                                       dst[i] + x * blk_size,
772                                       c->pic->linesize[i], blk_size);
773                     break;
774                 case IMAGE_BLOCK:
775                     decode_image_block(acoder, c->image_coder + i,
776                                        dst[i] + x * blk_size,
777                                        c->pic->linesize[i], blk_size);
778                     break;
779                 case DCT_BLOCK:
780                     decode_dct_block(acoder, c->dct_coder + i,
781                                      dst[i] + x * blk_size,
782                                      c->pic->linesize[i], blk_size,
783                                      c->dctblock, x, y);
784                     break;
785                 case HAAR_BLOCK:
786                     decode_haar_block(acoder, c->haar_coder + i,
787                                       dst[i] + x * blk_size,
788                                       c->pic->linesize[i], blk_size,
789                                       c->hblock);
790                     break;
791                 }
792                 if (c->got_error || acoder->got_error) {
793                     av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n",
794                            x, y);
795                     c->got_error = 1;
796                     return AVERROR_INVALIDDATA;
797                 }
798             }
799         }
800         dst[0] += c->pic->linesize[0] * 16;
801         dst[1] += c->pic->linesize[1] * 8;
802         dst[2] += c->pic->linesize[2] * 8;
803     }
804 
805     if ((ret = av_frame_ref(rframe, c->pic)) < 0)
806         return ret;
807 
808     *got_frame      = 1;
809 
810     return buf_size;
811 }
812 
mss3_decode_end(AVCodecContext * avctx)813 static av_cold int mss3_decode_end(AVCodecContext *avctx)
814 {
815     MSS3Context * const c = avctx->priv_data;
816     int i;
817 
818     av_frame_free(&c->pic);
819     for (i = 0; i < 3; i++)
820         av_freep(&c->dct_coder[i].prev_dc);
821 
822     return 0;
823 }
824 
mss3_decode_init(AVCodecContext * avctx)825 static av_cold int mss3_decode_init(AVCodecContext *avctx)
826 {
827     MSS3Context * const c = avctx->priv_data;
828     int i;
829 
830     c->avctx = avctx;
831 
832     if ((avctx->width & 0xF) || (avctx->height & 0xF)) {
833         av_log(avctx, AV_LOG_ERROR,
834                "Image dimensions should be a multiple of 16.\n");
835         return AVERROR_INVALIDDATA;
836     }
837 
838     c->got_error = 0;
839     for (i = 0; i < 3; i++) {
840         int b_width  = avctx->width  >> (2 + !!i);
841         int b_height = avctx->height >> (2 + !!i);
842         c->dct_coder[i].prev_dc_stride = b_width;
843         c->dct_coder[i].prev_dc_height = b_height;
844         c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) *
845                                             b_width * b_height);
846         if (!c->dct_coder[i].prev_dc) {
847             av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
848             return AVERROR(ENOMEM);
849         }
850     }
851 
852     c->pic = av_frame_alloc();
853     if (!c->pic)
854         return AVERROR(ENOMEM);
855 
856     avctx->pix_fmt     = AV_PIX_FMT_YUV420P;
857 
858     init_coders(c);
859 
860     return 0;
861 }
862 
863 const FFCodec ff_msa1_decoder = {
864     .p.name         = "msa1",
865     .p.long_name    = NULL_IF_CONFIG_SMALL("MS ATC Screen"),
866     .p.type         = AVMEDIA_TYPE_VIDEO,
867     .p.id           = AV_CODEC_ID_MSA1,
868     .priv_data_size = sizeof(MSS3Context),
869     .init           = mss3_decode_init,
870     .close          = mss3_decode_end,
871     FF_CODEC_DECODE_CB(mss3_decode_frame),
872     .p.capabilities = AV_CODEC_CAP_DR1,
873     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
874 };
875