• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * (I)RDFT transforms
3  * Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 #include <stdlib.h>
22 #include <math.h>
23 #include "libavutil/error.h"
24 #include "libavutil/mathematics.h"
25 #include "rdft.h"
26 
27 /**
28  * @file
29  * (Inverse) Real Discrete Fourier Transforms.
30  */
31 
32 /** Map one real FFT into two parallel real even and odd FFTs. Then interleave
33  * the two real FFTs into one complex FFT. Unmangle the results.
34  * ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
35  */
rdft_calc_c(RDFTContext * s,FFTSample * data)36 static void rdft_calc_c(RDFTContext *s, FFTSample *data)
37 {
38     int i, i1, i2;
39     FFTComplex ev, od, odsum;
40     const int n = 1 << s->nbits;
41     const float k1 = 0.5;
42     const float k2 = 0.5 - s->inverse;
43     const FFTSample *tcos = s->tcos;
44     const FFTSample *tsin = s->tsin;
45 
46     if (!s->inverse) {
47         s->fft.fft_permute(&s->fft, (FFTComplex*)data);
48         s->fft.fft_calc(&s->fft, (FFTComplex*)data);
49     }
50     /* i=0 is a special case because of packing, the DC term is real, so we
51        are going to throw the N/2 term (also real) in with it. */
52     ev.re = data[0];
53     data[0] = ev.re+data[1];
54     data[1] = ev.re-data[1];
55 
56 #define RDFT_UNMANGLE(sign0, sign1)                                         \
57     for (i = 1; i < (n>>2); i++) {                                          \
58         i1 = 2*i;                                                           \
59         i2 = n-i1;                                                          \
60         /* Separate even and odd FFTs */                                    \
61         ev.re =  k1*(data[i1  ]+data[i2  ]);                                \
62         od.im =  k2*(data[i2  ]-data[i1  ]);                                \
63         ev.im =  k1*(data[i1+1]-data[i2+1]);                                \
64         od.re =  k2*(data[i1+1]+data[i2+1]);                                \
65         /* Apply twiddle factors to the odd FFT and add to the even FFT */  \
66         odsum.re = od.re*tcos[i] sign0 od.im*tsin[i];                       \
67         odsum.im = od.im*tcos[i] sign1 od.re*tsin[i];                       \
68         data[i1  ] =  ev.re + odsum.re;                                     \
69         data[i1+1] =  ev.im + odsum.im;                                     \
70         data[i2  ] =  ev.re - odsum.re;                                     \
71         data[i2+1] =  odsum.im - ev.im;                                     \
72     }
73 
74     if (s->negative_sin) {
75         RDFT_UNMANGLE(+,-)
76     } else {
77         RDFT_UNMANGLE(-,+)
78     }
79 
80     data[2*i+1]=s->sign_convention*data[2*i+1];
81     if (s->inverse) {
82         data[0] *= k1;
83         data[1] *= k1;
84         s->fft.fft_permute(&s->fft, (FFTComplex*)data);
85         s->fft.fft_calc(&s->fft, (FFTComplex*)data);
86     }
87 }
88 
ff_rdft_init(RDFTContext * s,int nbits,enum RDFTransformType trans)89 av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
90 {
91     int n = 1 << nbits;
92     int ret;
93 
94     s->nbits           = nbits;
95     s->inverse         = trans == IDFT_C2R || trans == DFT_C2R;
96     s->sign_convention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;
97     s->negative_sin    = trans == DFT_C2R || trans == DFT_R2C;
98 
99     if (nbits < 4 || nbits > 16)
100         return AVERROR(EINVAL);
101 
102     if ((ret = ff_fft_init(&s->fft, nbits-1, trans == IDFT_C2R || trans == IDFT_R2C)) < 0)
103         return ret;
104 
105     ff_init_ff_cos_tabs(nbits);
106     s->tcos = ff_cos_tabs[nbits];
107     s->tsin = ff_cos_tabs[nbits] + (n >> 2);
108     s->rdft_calc   = rdft_calc_c;
109 
110 #if ARCH_ARM
111     ff_rdft_init_arm(s);
112 #endif
113 
114     return 0;
115 }
116 
ff_rdft_end(RDFTContext * s)117 av_cold void ff_rdft_end(RDFTContext *s)
118 {
119     ff_fft_end(&s->fft);
120 }
121