• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017 Paul B Mahol
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "avfilter.h"
22 #include "formats.h"
23 #include "internal.h"
24 #include "audio.h"
25 
26 #undef ctype
27 #undef ftype
28 #undef SQRT
29 #undef SAMPLE_FORMAT
30 #if DEPTH == 32
31 #define SAMPLE_FORMAT float
32 #define SQRT sqrtf
33 #define ctype AVComplexFloat
34 #define ftype float
35 #else
36 #define SAMPLE_FORMAT double
37 #define SQRT sqrt
38 #define ctype AVComplexDouble
39 #define ftype double
40 #endif
41 
42 #define fn3(a,b)   a##_##b
43 #define fn2(a,b)   fn3(a,b)
44 #define fn(a)      fn2(a, SAMPLE_FORMAT)
45 
fn(draw_response)46 static void fn(draw_response)(AVFilterContext *ctx, AVFrame *out)
47 {
48     AudioFIRContext *s = ctx->priv;
49     ftype *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
50     ftype min_delay = FLT_MAX, max_delay = FLT_MIN;
51     int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
52     char text[32];
53     int channel, i, x;
54 
55     memset(out->data[0], 0, s->h * out->linesize[0]);
56 
57     phase = av_malloc_array(s->w, sizeof(*phase));
58     mag = av_malloc_array(s->w, sizeof(*mag));
59     delay = av_malloc_array(s->w, sizeof(*delay));
60     if (!mag || !phase || !delay)
61         goto end;
62 
63     channel = av_clip(s->ir_channel, 0, s->ir[s->selir]->ch_layout.nb_channels - 1);
64     for (i = 0; i < s->w; i++) {
65         const ftype *src = (const ftype *)s->ir[s->selir]->extended_data[channel];
66         double w = i * M_PI / (s->w - 1);
67         double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
68 
69         for (x = 0; x < s->nb_taps; x++) {
70             real += cos(-x * w) * src[x];
71             imag += sin(-x * w) * src[x];
72             real_num += cos(-x * w) * src[x] * x;
73             imag_num += sin(-x * w) * src[x] * x;
74         }
75 
76         mag[i] = hypot(real, imag);
77         phase[i] = atan2(imag, real);
78         div = real * real + imag * imag;
79         delay[i] = (real_num * real + imag_num * imag) / div;
80         min = fminf(min, mag[i]);
81         max = fmaxf(max, mag[i]);
82         min_delay = fminf(min_delay, delay[i]);
83         max_delay = fmaxf(max_delay, delay[i]);
84     }
85 
86     for (i = 0; i < s->w; i++) {
87         int ymag = mag[i] / max * (s->h - 1);
88         int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
89         int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
90 
91         ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
92         yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
93         ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
94 
95         if (prev_ymag < 0)
96             prev_ymag = ymag;
97         if (prev_yphase < 0)
98             prev_yphase = yphase;
99         if (prev_ydelay < 0)
100             prev_ydelay = ydelay;
101 
102         draw_line(out, i,   ymag, FFMAX(i - 1, 0),   prev_ymag, 0xFFFF00FF);
103         draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
104         draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
105 
106         prev_ymag   = ymag;
107         prev_yphase = yphase;
108         prev_ydelay = ydelay;
109     }
110 
111     if (s->w > 400 && s->h > 100) {
112         drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
113         snprintf(text, sizeof(text), "%.2f", max);
114         drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
115 
116         drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
117         snprintf(text, sizeof(text), "%.2f", min);
118         drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
119 
120         drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
121         snprintf(text, sizeof(text), "%.2f", max_delay);
122         drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
123 
124         drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
125         snprintf(text, sizeof(text), "%.2f", min_delay);
126         drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
127     }
128 
129 end:
130     av_free(delay);
131     av_free(phase);
132     av_free(mag);
133 }
134 
fn(convert_channels)135 static void fn(convert_channels)(AVFilterContext *ctx, AudioFIRContext *s)
136 {
137     for (int ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
138         ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
139         int toffset = 0;
140 
141         for (int i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
142             time[i] = 0;
143 
144         av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
145 
146         for (int segment = 0; segment < s->nb_segments; segment++) {
147             AudioFIRSegment *seg = &s->seg[segment];
148             ftype *blockin = (ftype *)seg->blockin->extended_data[ch];
149             ftype *blockout = (ftype *)seg->blockout->extended_data[ch];
150             ctype *coeff = (ctype *)seg->coeff->extended_data[ch];
151 
152             av_log(ctx, AV_LOG_DEBUG, "segment: %d\n", segment);
153 
154             for (int i = 0; i < seg->nb_partitions; i++) {
155                 const int coffset = i * seg->coeff_size;
156                 const int remaining = s->nb_taps - toffset;
157                 const int size = remaining >= seg->part_size ? seg->part_size : remaining;
158 
159                 if (size < 8) {
160                     for (int n = 0; n < size; n++)
161                         coeff[coffset + n].re = time[toffset + n];
162 
163                     toffset += size;
164                     continue;
165                 }
166 
167                 memset(blockin, 0, sizeof(*blockin) * seg->fft_length);
168                 memcpy(blockin, time + toffset, size * sizeof(*blockin));
169 
170                 seg->tx_fn(seg->tx[0], blockout, blockin, sizeof(ftype));
171 
172                 for (int n = 0; n < seg->part_size + 1; n++) {
173                     coeff[coffset + n].re = blockout[2 * n];
174                     coeff[coffset + n].im = blockout[2 * n + 1];
175                 }
176 
177                 toffset += size;
178             }
179 
180             av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
181             av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
182             av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
183             av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
184             av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
185             av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
186             av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
187         }
188     }
189 }
190 
fn(get_power)191 static int fn(get_power)(AVFilterContext *ctx, AudioFIRContext *s, int cur_nb_taps)
192 {
193     ftype power = 0;
194     int ch;
195 
196     switch (s->gtype) {
197     case -1:
198         /* nothing to do */
199         break;
200     case 0:
201         for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
202             ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
203 
204             for (int i = 0; i < cur_nb_taps; i++)
205                 power += FFABS(time[i]);
206         }
207         s->gain = ctx->inputs[1 + s->selir]->ch_layout.nb_channels / power;
208         break;
209     case 1:
210         for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
211             ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
212 
213             for (int i = 0; i < cur_nb_taps; i++)
214                 power += time[i];
215         }
216         s->gain = ctx->inputs[1 + s->selir]->ch_layout.nb_channels / power;
217         break;
218     case 2:
219         for (ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
220             ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
221 
222             for (int i = 0; i < cur_nb_taps; i++)
223                 power += time[i] * time[i];
224         }
225         s->gain = SQRT(ch / power);
226         break;
227     default:
228         return AVERROR_BUG;
229     }
230 
231     s->gain = FFMIN(s->gain * s->ir_gain, 1.);
232 
233     av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
234 
235     for (int ch = 0; ch < ctx->inputs[1 + s->selir]->ch_layout.nb_channels; ch++) {
236         ftype *time = (ftype *)s->ir[s->selir]->extended_data[!s->one2many * ch];
237 
238 #if DEPTH == 32
239         s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 4));
240 #else
241         s->fdsp->vector_dmul_scalar(time, time, s->gain, FFALIGN(cur_nb_taps, 8));
242 #endif
243     }
244 
245     return 0;
246 }
247 
fn(direct)248 static void fn(direct)(const ftype *in, const ctype *ir, int len, ftype *out)
249 {
250     for (int n = 0; n < len; n++)
251         for (int m = 0; m <= n; m++)
252             out[n] += ir[m].re * in[n - m];
253 }
254 
fn(fir_fadd)255 static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples)
256 {
257     if ((nb_samples & 15) == 0 && nb_samples >= 16) {
258 #if DEPTH == 32
259         s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
260 #else
261         s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples);
262 #endif
263     } else {
264         for (int n = 0; n < nb_samples; n++)
265             dst[n] += src[n];
266     }
267 }
268 
fn(fir_quantum)269 static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
270 {
271     AudioFIRContext *s = ctx->priv;
272     const ftype *in = (const ftype *)s->in->extended_data[ch] + offset;
273     ftype *blockin, *blockout, *buf, *ptr = (ftype *)out->extended_data[ch] + offset;
274     const int nb_samples = FFMIN(s->min_part_size, out->nb_samples - offset);
275     int n, i, j;
276 
277     for (int segment = 0; segment < s->nb_segments; segment++) {
278         AudioFIRSegment *seg = &s->seg[segment];
279         ftype *src = (ftype *)seg->input->extended_data[ch];
280         ftype *dst = (ftype *)seg->output->extended_data[ch];
281         ftype *sumin = (ftype *)seg->sumin->extended_data[ch];
282         ftype *sumout = (ftype *)seg->sumout->extended_data[ch];
283 
284         if (s->min_part_size >= 8) {
285 #if DEPTH == 32
286             s->fdsp->vector_fmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 4));
287 #else
288             s->fdsp->vector_dmul_scalar(src + seg->input_offset, in, s->dry_gain, FFALIGN(nb_samples, 8));
289 #endif
290             emms_c();
291         } else {
292             for (n = 0; n < nb_samples; n++)
293                 src[seg->input_offset + n] = in[n] * s->dry_gain;
294         }
295 
296         seg->output_offset[ch] += s->min_part_size;
297         if (seg->output_offset[ch] == seg->part_size) {
298             seg->output_offset[ch] = 0;
299         } else {
300             memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
301 
302             dst += seg->output_offset[ch];
303             fn(fir_fadd)(s, ptr, dst, nb_samples);
304             continue;
305         }
306 
307         if (seg->part_size < 8) {
308             memset(dst, 0, sizeof(*dst) * seg->part_size * seg->nb_partitions);
309 
310             j = seg->part_index[ch];
311 
312             for (i = 0; i < seg->nb_partitions; i++) {
313                 const int coffset = j * seg->coeff_size;
314                 const ctype *coeff = (const ctype *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
315 
316                 fn(direct)(src, coeff, nb_samples, dst);
317 
318                 if (j == 0)
319                     j = seg->nb_partitions;
320                 j--;
321             }
322 
323             seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
324 
325             memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
326 
327             for (n = 0; n < nb_samples; n++) {
328                 ptr[n] += dst[n];
329             }
330             continue;
331         }
332 
333         memset(sumin, 0, sizeof(*sumin) * seg->fft_length);
334         blockin = (ftype *)seg->blockin->extended_data[ch] + seg->part_index[ch] * seg->block_size;
335         blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size;
336         memset(blockin + seg->part_size, 0, sizeof(*blockin) * (seg->fft_length - seg->part_size));
337 
338         memcpy(blockin, src, sizeof(*src) * seg->part_size);
339 
340         seg->tx_fn(seg->tx[ch], blockout, blockin, sizeof(ftype));
341 
342         j = seg->part_index[ch];
343 
344         for (i = 0; i < seg->nb_partitions; i++) {
345             const int coffset = j * seg->coeff_size;
346             const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + i * seg->block_size;
347             const ctype *coeff = (const ctype *)seg->coeff->extended_data[ch * !s->one2many] + coffset;
348 
349 #if DEPTH == 32
350             s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, seg->part_size);
351 #else
352             s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, seg->part_size);
353 #endif
354 
355             if (j == 0)
356                 j = seg->nb_partitions;
357             j--;
358         }
359 
360         seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ftype));
361 
362         buf = (ftype *)seg->buffer->extended_data[ch];
363         fn(fir_fadd)(s, buf, sumout, seg->part_size);
364 
365         memcpy(dst, buf, seg->part_size * sizeof(*dst));
366 
367         buf = (ftype *)seg->buffer->extended_data[ch];
368         memcpy(buf, sumout + seg->part_size, seg->part_size * sizeof(*buf));
369 
370         seg->part_index[ch] = (seg->part_index[ch] + 1) % seg->nb_partitions;
371 
372         memmove(src, src + s->min_part_size, (seg->input_size - s->min_part_size) * sizeof(*src));
373 
374         fn(fir_fadd)(s, ptr, dst, nb_samples);
375     }
376 
377     if (s->min_part_size >= 8) {
378 #if DEPTH == 32
379         s->fdsp->vector_fmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 4));
380 #else
381         s->fdsp->vector_dmul_scalar(ptr, ptr, s->wet_gain, FFALIGN(nb_samples, 8));
382 #endif
383         emms_c();
384     } else {
385         for (n = 0; n < nb_samples; n++)
386             ptr[n] *= s->wet_gain;
387     }
388 
389     return 0;
390 }
391 
392 
393