• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2012-2013 Oka Motofumi (chikuzen.mo at gmail dot com)
3  * Copyright (c) 2015 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "config_components.h"
23 
24 #include "libavutil/avstring.h"
25 #include "libavutil/imgutils.h"
26 #include "libavutil/intreadwrite.h"
27 #include "libavutil/mem_internal.h"
28 #include "libavutil/opt.h"
29 #include "libavutil/pixdesc.h"
30 #include "avfilter.h"
31 #include "convolution.h"
32 #include "formats.h"
33 #include "internal.h"
34 #include "video.h"
35 
36 #define OFFSET(x) offsetof(ConvolutionContext, x)
37 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
38 
39 static const AVOption convolution_options[] = {
40     { "0m", "set matrix for 1st plane", OFFSET(matrix_str[0]), AV_OPT_TYPE_STRING, {.str="0 0 0 0 1 0 0 0 0"}, 0, 0, FLAGS },
41     { "1m", "set matrix for 2nd plane", OFFSET(matrix_str[1]), AV_OPT_TYPE_STRING, {.str="0 0 0 0 1 0 0 0 0"}, 0, 0, FLAGS },
42     { "2m", "set matrix for 3rd plane", OFFSET(matrix_str[2]), AV_OPT_TYPE_STRING, {.str="0 0 0 0 1 0 0 0 0"}, 0, 0, FLAGS },
43     { "3m", "set matrix for 4th plane", OFFSET(matrix_str[3]), AV_OPT_TYPE_STRING, {.str="0 0 0 0 1 0 0 0 0"}, 0, 0, FLAGS },
44     { "0rdiv", "set rdiv for 1st plane", OFFSET(rdiv[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
45     { "1rdiv", "set rdiv for 2nd plane", OFFSET(rdiv[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
46     { "2rdiv", "set rdiv for 3rd plane", OFFSET(rdiv[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
47     { "3rdiv", "set rdiv for 4th plane", OFFSET(rdiv[3]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
48     { "0bias", "set bias for 1st plane", OFFSET(bias[0]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
49     { "1bias", "set bias for 2nd plane", OFFSET(bias[1]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
50     { "2bias", "set bias for 3rd plane", OFFSET(bias[2]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
51     { "3bias", "set bias for 4th plane", OFFSET(bias[3]), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, INT_MAX, FLAGS},
52     { "0mode", "set matrix mode for 1st plane", OFFSET(mode[0]), AV_OPT_TYPE_INT, {.i64=MATRIX_SQUARE}, 0, MATRIX_NBMODES-1, FLAGS, "mode" },
53     { "1mode", "set matrix mode for 2nd plane", OFFSET(mode[1]), AV_OPT_TYPE_INT, {.i64=MATRIX_SQUARE}, 0, MATRIX_NBMODES-1, FLAGS, "mode" },
54     { "2mode", "set matrix mode for 3rd plane", OFFSET(mode[2]), AV_OPT_TYPE_INT, {.i64=MATRIX_SQUARE}, 0, MATRIX_NBMODES-1, FLAGS, "mode" },
55     { "3mode", "set matrix mode for 4th plane", OFFSET(mode[3]), AV_OPT_TYPE_INT, {.i64=MATRIX_SQUARE}, 0, MATRIX_NBMODES-1, FLAGS, "mode" },
56     { "square", "square matrix",     0, AV_OPT_TYPE_CONST, {.i64=MATRIX_SQUARE}, 0, 0, FLAGS, "mode" },
57     { "row",    "single row matrix", 0, AV_OPT_TYPE_CONST, {.i64=MATRIX_ROW}   , 0, 0, FLAGS, "mode" },
58     { "column", "single column matrix", 0, AV_OPT_TYPE_CONST, {.i64=MATRIX_COLUMN}, 0, 0, FLAGS, "mode" },
59     { NULL }
60 };
61 
62 AVFILTER_DEFINE_CLASS(convolution);
63 
64 static const int same3x3[9] = {0, 0, 0,
65                                0, 1, 0,
66                                0, 0, 0};
67 
68 static const int same5x5[25] = {0, 0, 0, 0, 0,
69                                 0, 0, 0, 0, 0,
70                                 0, 0, 1, 0, 0,
71                                 0, 0, 0, 0, 0,
72                                 0, 0, 0, 0, 0};
73 
74 static const int same7x7[49] = {0, 0, 0, 0, 0, 0, 0,
75                                 0, 0, 0, 0, 0, 0, 0,
76                                 0, 0, 0, 0, 0, 0, 0,
77                                 0, 0, 0, 1, 0, 0, 0,
78                                 0, 0, 0, 0, 0, 0, 0,
79                                 0, 0, 0, 0, 0, 0, 0,
80                                 0, 0, 0, 0, 0, 0, 0};
81 
82 static const enum AVPixelFormat pix_fmts[] = {
83     AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
84     AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
85     AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
86     AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
87     AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
88     AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
89     AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
90     AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
91     AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
92     AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
93     AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
94     AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
95     AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA444P12,
96     AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
97     AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
98     AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
99     AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
100     AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
101     AV_PIX_FMT_NONE
102 };
103 
104 typedef struct ThreadData {
105     AVFrame *in, *out;
106 } ThreadData;
107 
filter16_prewitt(uint8_t * dstp,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)108 static void filter16_prewitt(uint8_t *dstp, int width,
109                              float scale, float delta, const int *const matrix,
110                              const uint8_t *c[], int peak, int radius,
111                              int dstride, int stride, int size)
112 {
113     uint16_t *dst = (uint16_t *)dstp;
114     int x;
115 
116     for (x = 0; x < width; x++) {
117         float suma = AV_RN16A(&c[0][2 * x]) * -1 + AV_RN16A(&c[1][2 * x]) * -1 + AV_RN16A(&c[2][2 * x]) * -1 +
118                      AV_RN16A(&c[6][2 * x]) *  1 + AV_RN16A(&c[7][2 * x]) *  1 + AV_RN16A(&c[8][2 * x]) *  1;
119         float sumb = AV_RN16A(&c[0][2 * x]) * -1 + AV_RN16A(&c[2][2 * x]) *  1 + AV_RN16A(&c[3][2 * x]) * -1 +
120                      AV_RN16A(&c[5][2 * x]) *  1 + AV_RN16A(&c[6][2 * x]) * -1 + AV_RN16A(&c[8][2 * x]) *  1;
121 
122         dst[x] = av_clip(sqrtf(suma*suma + sumb*sumb) * scale + delta, 0, peak);
123     }
124 }
125 
filter16_roberts(uint8_t * dstp,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)126 static void filter16_roberts(uint8_t *dstp, int width,
127                              float scale, float delta, const int *const matrix,
128                              const uint8_t *c[], int peak, int radius,
129                              int dstride, int stride, int size)
130 {
131     uint16_t *dst = (uint16_t *)dstp;
132     int x;
133 
134     for (x = 0; x < width; x++) {
135         float suma = AV_RN16A(&c[0][2 * x]) *  1 + AV_RN16A(&c[1][2 * x]) * -1;
136         float sumb = AV_RN16A(&c[4][2 * x]) *  1 + AV_RN16A(&c[3][2 * x]) * -1;
137 
138         dst[x] = av_clip(sqrtf(suma*suma + sumb*sumb) * scale + delta, 0, peak);
139     }
140 }
141 
filter16_sobel(uint8_t * dstp,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)142 static void filter16_sobel(uint8_t *dstp, int width,
143                            float scale, float delta, const int *const matrix,
144                            const uint8_t *c[], int peak, int radius,
145                            int dstride, int stride, int size)
146 {
147     uint16_t *dst = (uint16_t *)dstp;
148     int x;
149 
150     for (x = 0; x < width; x++) {
151         float suma = AV_RN16A(&c[0][2 * x]) * -1 + AV_RN16A(&c[1][2 * x]) * -2 + AV_RN16A(&c[2][2 * x]) * -1 +
152                      AV_RN16A(&c[6][2 * x]) *  1 + AV_RN16A(&c[7][2 * x]) *  2 + AV_RN16A(&c[8][2 * x]) *  1;
153         float sumb = AV_RN16A(&c[0][2 * x]) * -1 + AV_RN16A(&c[2][2 * x]) *  1 + AV_RN16A(&c[3][2 * x]) * -2 +
154                      AV_RN16A(&c[5][2 * x]) *  2 + AV_RN16A(&c[6][2 * x]) * -1 + AV_RN16A(&c[8][2 * x]) *  1;
155 
156         dst[x] = av_clip(sqrtf(suma*suma + sumb*sumb) * scale + delta, 0, peak);
157     }
158 }
159 
filter16_scharr(uint8_t * dstp,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)160 static void filter16_scharr(uint8_t *dstp, int width,
161                             float scale, float delta, const int *const matrix,
162                             const uint8_t *c[], int peak, int radius,
163                             int dstride, int stride, int size)
164 {
165     uint16_t *dst = (uint16_t *)dstp;
166     int x;
167 
168     for (x = 0; x < width; x++) {
169         float suma = AV_RN16A(&c[0][2 * x]) * -47 + AV_RN16A(&c[1][2 * x]) * -162 + AV_RN16A(&c[2][2 * x]) *  -47 +
170                      AV_RN16A(&c[6][2 * x]) *  47 + AV_RN16A(&c[7][2 * x]) *  162 + AV_RN16A(&c[8][2 * x]) *   47;
171         float sumb = AV_RN16A(&c[0][2 * x]) * -47 + AV_RN16A(&c[2][2 * x]) *   47 + AV_RN16A(&c[3][2 * x]) * -162 +
172                      AV_RN16A(&c[5][2 * x]) * 162 + AV_RN16A(&c[6][2 * x]) *  -47 + AV_RN16A(&c[8][2 * x]) *   47;
173 
174         suma /= 256.f;
175         sumb /= 256.f;
176         dst[x] = av_clip(sqrtf(suma*suma + sumb*sumb) * scale + delta, 0, peak);
177     }
178 }
179 
filter16_kirsch(uint8_t * dstp,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)180 static void filter16_kirsch(uint8_t *dstp, int width,
181                             float scale, float delta, const int *const matrix,
182                             const uint8_t *c[], int peak, int radius,
183                             int dstride, int stride, int size)
184 {
185     uint16_t *dst = (uint16_t *)dstp;
186     const uint16_t *c0 = (const uint16_t *)c[0], *c1 = (const uint16_t *)c[1], *c2 = (const uint16_t *)c[2];
187     const uint16_t *c3 = (const uint16_t *)c[3], *c5 = (const uint16_t *)c[5];
188     const uint16_t *c6 = (const uint16_t *)c[6], *c7 = (const uint16_t *)c[7], *c8 = (const uint16_t *)c[8];
189     int x;
190 
191     for (x = 0; x < width; x++) {
192         int sum0 = c0[x] *  5 + c1[x] *  5 + c2[x] *  5 +
193                    c3[x] * -3 + c5[x] * -3 +
194                    c6[x] * -3 + c7[x] * -3 + c8[x] * -3;
195         int sum1 = c0[x] * -3 + c1[x] *  5 + c2[x] *  5 +
196                    c3[x] *  5 + c5[x] * -3 +
197                    c6[x] * -3 + c7[x] * -3 + c8[x] * -3;
198         int sum2 = c0[x] * -3 + c1[x] * -3 + c2[x] *  5 +
199                    c3[x] *  5 + c5[x] *  5 +
200                    c6[x] * -3 + c7[x] * -3 + c8[x] * -3;
201         int sum3 = c0[x] * -3 + c1[x] * -3 + c2[x] * -3 +
202                    c3[x] *  5 + c5[x] *  5 +
203                    c6[x] *  5 + c7[x] * -3 + c8[x] * -3;
204         int sum4 = c0[x] * -3 + c1[x] * -3 + c2[x] * -3 +
205                    c3[x] * -3 + c5[x] *  5 +
206                    c6[x] *  5 + c7[x] *  5 + c8[x] * -3;
207         int sum5 = c0[x] * -3 + c1[x] * -3 + c2[x] * -3 +
208                    c3[x] * -3 + c5[x] * -3 +
209                    c6[x] *  5 + c7[x] *  5 + c8[x] *  5;
210         int sum6 = c0[x] *  5 + c1[x] * -3 + c2[x] * -3 +
211                    c3[x] * -3 + c5[x] * -3 +
212                    c6[x] * -3 + c7[x] *  5 + c8[x] *  5;
213         int sum7 = c0[x] *  5 + c1[x] *  5 + c2[x] * -3 +
214                    c3[x] * -3 + c5[x] * -3 +
215                    c6[x] * -3 + c7[x] * -3 + c8[x] *  5;
216 
217         sum0 = FFMAX(sum0, sum1);
218         sum2 = FFMAX(sum2, sum3);
219         sum4 = FFMAX(sum4, sum5);
220         sum6 = FFMAX(sum6, sum7);
221         sum0 = FFMAX(sum0, sum2);
222         sum4 = FFMAX(sum4, sum6);
223         sum0 = FFMAX(sum0, sum4);
224 
225         dst[x] = av_clip(FFABS(sum0) * scale + delta, 0, peak);
226     }
227 }
228 
filter_prewitt(uint8_t * dst,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)229 static void filter_prewitt(uint8_t *dst, int width,
230                            float scale, float delta, const int *const matrix,
231                            const uint8_t *c[], int peak, int radius,
232                            int dstride, int stride, int size)
233 {
234     const uint8_t *c0 = c[0], *c1 = c[1], *c2 = c[2];
235     const uint8_t *c3 = c[3], *c5 = c[5];
236     const uint8_t *c6 = c[6], *c7 = c[7], *c8 = c[8];
237     int x;
238 
239     for (x = 0; x < width; x++) {
240         float suma = c0[x] * -1 + c1[x] * -1 + c2[x] * -1 +
241                      c6[x] *  1 + c7[x] *  1 + c8[x] *  1;
242         float sumb = c0[x] * -1 + c2[x] *  1 + c3[x] * -1 +
243                      c5[x] *  1 + c6[x] * -1 + c8[x] *  1;
244 
245         dst[x] = av_clip_uint8(sqrtf(suma*suma + sumb*sumb) * scale + delta);
246     }
247 }
248 
filter_roberts(uint8_t * dst,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)249 static void filter_roberts(uint8_t *dst, int width,
250                            float scale, float delta, const int *const matrix,
251                            const uint8_t *c[], int peak, int radius,
252                            int dstride, int stride, int size)
253 {
254     int x;
255 
256     for (x = 0; x < width; x++) {
257         float suma = c[0][x] *  1 + c[1][x] * -1;
258         float sumb = c[4][x] *  1 + c[3][x] * -1;
259 
260         dst[x] = av_clip_uint8(sqrtf(suma*suma + sumb*sumb) * scale + delta);
261     }
262 }
263 
filter_sobel(uint8_t * dst,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)264 static void filter_sobel(uint8_t *dst, int width,
265                          float scale, float delta, const int *const matrix,
266                          const uint8_t *c[], int peak, int radius,
267                          int dstride, int stride, int size)
268 {
269     const uint8_t *c0 = c[0], *c1 = c[1], *c2 = c[2];
270     const uint8_t *c3 = c[3], *c5 = c[5];
271     const uint8_t *c6 = c[6], *c7 = c[7], *c8 = c[8];
272     int x;
273 
274     for (x = 0; x < width; x++) {
275         float suma = c0[x] * -1 + c1[x] * -2 + c2[x] * -1 +
276                      c6[x] *  1 + c7[x] *  2 + c8[x] *  1;
277         float sumb = c0[x] * -1 + c2[x] *  1 + c3[x] * -2 +
278                      c5[x] *  2 + c6[x] * -1 + c8[x] *  1;
279 
280         dst[x] = av_clip_uint8(sqrtf(suma*suma + sumb*sumb) * scale + delta);
281     }
282 }
283 
filter_scharr(uint8_t * dst,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)284 static void filter_scharr(uint8_t *dst, int width,
285                           float scale, float delta, const int *const matrix,
286                           const uint8_t *c[], int peak, int radius,
287                           int dstride, int stride, int size)
288 {
289     const uint8_t *c0 = c[0], *c1 = c[1], *c2 = c[2];
290     const uint8_t *c3 = c[3], *c5 = c[5];
291     const uint8_t *c6 = c[6], *c7 = c[7], *c8 = c[8];
292     int x;
293 
294     for (x = 0; x < width; x++) {
295         float suma = c0[x] * -47 + c1[x] * -162 + c2[x] *  -47 +
296                      c6[x] *  47 + c7[x] *  162 + c8[x] *   47;
297         float sumb = c0[x] * -47 + c2[x] *   47 + c3[x] * -162 +
298                      c5[x] * 162 + c6[x] *  -47 + c8[x] *   47;
299 
300         suma /= 256.f;
301         sumb /= 256.f;
302         dst[x] = av_clip_uint8(sqrtf(suma*suma + sumb*sumb) * scale + delta);
303     }
304 }
305 
filter_kirsch(uint8_t * dst,int width,float scale,float delta,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)306 static void filter_kirsch(uint8_t *dst, int width,
307                           float scale, float delta, const int *const matrix,
308                           const uint8_t *c[], int peak, int radius,
309                           int dstride, int stride, int size)
310 {
311     const uint8_t *c0 = c[0], *c1 = c[1], *c2 = c[2];
312     const uint8_t *c3 = c[3], *c5 = c[5];
313     const uint8_t *c6 = c[6], *c7 = c[7], *c8 = c[8];
314     int x;
315 
316     for (x = 0; x < width; x++) {
317         int sum0 = c0[x] *  5 + c1[x] *  5 + c2[x] *  5 +
318                    c3[x] * -3 + c5[x] * -3 +
319                    c6[x] * -3 + c7[x] * -3 + c8[x] * -3;
320         int sum1 = c0[x] * -3 + c1[x] *  5 + c2[x] *  5 +
321                    c3[x] *  5 + c5[x] * -3 +
322                    c6[x] * -3 + c7[x] * -3 + c8[x] * -3;
323         int sum2 = c0[x] * -3 + c1[x] * -3 + c2[x] *  5 +
324                    c3[x] *  5 + c5[x] *  5 +
325                    c6[x] * -3 + c7[x] * -3 + c8[x] * -3;
326         int sum3 = c0[x] * -3 + c1[x] * -3 + c2[x] * -3 +
327                    c3[x] *  5 + c5[x] *  5 +
328                    c6[x] *  5 + c7[x] * -3 + c8[x] * -3;
329         int sum4 = c0[x] * -3 + c1[x] * -3 + c2[x] * -3 +
330                    c3[x] * -3 + c5[x] *  5 +
331                    c6[x] *  5 + c7[x] *  5 + c8[x] * -3;
332         int sum5 = c0[x] * -3 + c1[x] * -3 + c2[x] * -3 +
333                    c3[x] * -3 + c5[x] * -3 +
334                    c6[x] *  5 + c7[x] *  5 + c8[x] *  5;
335         int sum6 = c0[x] *  5 + c1[x] * -3 + c2[x] * -3 +
336                    c3[x] * -3 + c5[x] * -3 +
337                    c6[x] * -3 + c7[x] *  5 + c8[x] *  5;
338         int sum7 = c0[x] *  5 + c1[x] *  5 + c2[x] * -3 +
339                    c3[x] * -3 + c5[x] * -3 +
340                    c6[x] * -3 + c7[x] * -3 + c8[x] *  5;
341 
342         sum0 = FFMAX(sum0, sum1);
343         sum2 = FFMAX(sum2, sum3);
344         sum4 = FFMAX(sum4, sum5);
345         sum6 = FFMAX(sum6, sum7);
346         sum0 = FFMAX(sum0, sum2);
347         sum4 = FFMAX(sum4, sum6);
348         sum0 = FFMAX(sum0, sum4);
349 
350         dst[x] = av_clip_uint8(FFABS(sum0) * scale + delta);
351     }
352 }
353 
filter16_3x3(uint8_t * dstp,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)354 static void filter16_3x3(uint8_t *dstp, int width,
355                          float rdiv, float bias, const int *const matrix,
356                          const uint8_t *c[], int peak, int radius,
357                          int dstride, int stride, int size)
358 {
359     uint16_t *dst = (uint16_t *)dstp;
360     int x;
361 
362     for (x = 0; x < width; x++) {
363         int sum = AV_RN16A(&c[0][2 * x]) * matrix[0] +
364                   AV_RN16A(&c[1][2 * x]) * matrix[1] +
365                   AV_RN16A(&c[2][2 * x]) * matrix[2] +
366                   AV_RN16A(&c[3][2 * x]) * matrix[3] +
367                   AV_RN16A(&c[4][2 * x]) * matrix[4] +
368                   AV_RN16A(&c[5][2 * x]) * matrix[5] +
369                   AV_RN16A(&c[6][2 * x]) * matrix[6] +
370                   AV_RN16A(&c[7][2 * x]) * matrix[7] +
371                   AV_RN16A(&c[8][2 * x]) * matrix[8];
372         sum = (int)(sum * rdiv + bias + 0.5f);
373         dst[x] = av_clip(sum, 0, peak);
374     }
375 }
376 
filter16_5x5(uint8_t * dstp,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)377 static void filter16_5x5(uint8_t *dstp, int width,
378                          float rdiv, float bias, const int *const matrix,
379                          const uint8_t *c[], int peak, int radius,
380                          int dstride, int stride, int size)
381 {
382     uint16_t *dst = (uint16_t *)dstp;
383     int x;
384 
385     for (x = 0; x < width; x++) {
386         int i, sum = 0;
387 
388         for (i = 0; i < 25; i++)
389             sum += AV_RN16A(&c[i][2 * x]) * matrix[i];
390 
391         sum = (int)(sum * rdiv + bias + 0.5f);
392         dst[x] = av_clip(sum, 0, peak);
393     }
394 }
395 
filter16_7x7(uint8_t * dstp,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)396 static void filter16_7x7(uint8_t *dstp, int width,
397                          float rdiv, float bias, const int *const matrix,
398                          const uint8_t *c[], int peak, int radius,
399                          int dstride, int stride, int size)
400 {
401     uint16_t *dst = (uint16_t *)dstp;
402     int x;
403 
404     for (x = 0; x < width; x++) {
405         int i, sum = 0;
406 
407         for (i = 0; i < 49; i++)
408             sum += AV_RN16A(&c[i][2 * x]) * matrix[i];
409 
410         sum = (int)(sum * rdiv + bias + 0.5f);
411         dst[x] = av_clip(sum, 0, peak);
412     }
413 }
414 
filter16_row(uint8_t * dstp,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)415 static void filter16_row(uint8_t *dstp, int width,
416                          float rdiv, float bias, const int *const matrix,
417                          const uint8_t *c[], int peak, int radius,
418                          int dstride, int stride, int size)
419 {
420     uint16_t *dst = (uint16_t *)dstp;
421     int x;
422 
423     for (x = 0; x < width; x++) {
424         int i, sum = 0;
425 
426         for (i = 0; i < 2 * radius + 1; i++)
427             sum += AV_RN16A(&c[i][2 * x]) * matrix[i];
428 
429         sum = (int)(sum * rdiv + bias + 0.5f);
430         dst[x] = av_clip(sum, 0, peak);
431     }
432 }
433 
filter16_column(uint8_t * dstp,int height,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)434 static void filter16_column(uint8_t *dstp, int height,
435                             float rdiv, float bias, const int *const matrix,
436                             const uint8_t *c[], int peak, int radius,
437                             int dstride, int stride, int size)
438 {
439     DECLARE_ALIGNED(64, int, sum)[16];
440     uint16_t *dst = (uint16_t *)dstp;
441     const int width = FFMIN(16, size);
442 
443     for (int y = 0; y < height; y++) {
444 
445         memset(sum, 0, sizeof(sum));
446         for (int i = 0; i < 2 * radius + 1; i++) {
447             for (int off16 = 0; off16 < width; off16++)
448                 sum[off16] += AV_RN16A(&c[i][0 + y * stride + off16 * 2]) * matrix[i];
449         }
450 
451         for (int off16 = 0; off16 < width; off16++) {
452             sum[off16] = (int)(sum[off16] * rdiv + bias + 0.5f);
453             dst[off16] = av_clip(sum[off16], 0, peak);
454         }
455         dst += dstride / 2;
456     }
457 }
458 
filter_7x7(uint8_t * dst,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)459 static void filter_7x7(uint8_t *dst, int width,
460                        float rdiv, float bias, const int *const matrix,
461                        const uint8_t *c[], int peak, int radius,
462                        int dstride, int stride, int size)
463 {
464     int x;
465 
466     for (x = 0; x < width; x++) {
467         int i, sum = 0;
468 
469         for (i = 0; i < 49; i++)
470             sum += c[i][x] * matrix[i];
471 
472         sum = (int)(sum * rdiv + bias + 0.5f);
473         dst[x] = av_clip_uint8(sum);
474     }
475 }
476 
filter_5x5(uint8_t * dst,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)477 static void filter_5x5(uint8_t *dst, int width,
478                        float rdiv, float bias, const int *const matrix,
479                        const uint8_t *c[], int peak, int radius,
480                        int dstride, int stride, int size)
481 {
482     int x;
483 
484     for (x = 0; x < width; x++) {
485         int i, sum = 0;
486 
487         for (i = 0; i < 25; i++)
488             sum += c[i][x] * matrix[i];
489 
490         sum = (int)(sum * rdiv + bias + 0.5f);
491         dst[x] = av_clip_uint8(sum);
492     }
493 }
494 
filter_3x3(uint8_t * dst,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)495 static void filter_3x3(uint8_t *dst, int width,
496                        float rdiv, float bias, const int *const matrix,
497                        const uint8_t *c[], int peak, int radius,
498                        int dstride, int stride, int size)
499 {
500     const uint8_t *c0 = c[0], *c1 = c[1], *c2 = c[2];
501     const uint8_t *c3 = c[3], *c4 = c[4], *c5 = c[5];
502     const uint8_t *c6 = c[6], *c7 = c[7], *c8 = c[8];
503     int x;
504 
505     for (x = 0; x < width; x++) {
506         int sum = c0[x] * matrix[0] + c1[x] * matrix[1] + c2[x] * matrix[2] +
507                   c3[x] * matrix[3] + c4[x] * matrix[4] + c5[x] * matrix[5] +
508                   c6[x] * matrix[6] + c7[x] * matrix[7] + c8[x] * matrix[8];
509         sum = (int)(sum * rdiv + bias + 0.5f);
510         dst[x] = av_clip_uint8(sum);
511     }
512 }
513 
filter_row(uint8_t * dst,int width,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)514 static void filter_row(uint8_t *dst, int width,
515                        float rdiv, float bias, const int *const matrix,
516                        const uint8_t *c[], int peak, int radius,
517                        int dstride, int stride, int size)
518 {
519     int x;
520 
521     for (x = 0; x < width; x++) {
522         int i, sum = 0;
523 
524         for (i = 0; i < 2 * radius + 1; i++)
525             sum += c[i][x] * matrix[i];
526 
527         sum = (int)(sum * rdiv + bias + 0.5f);
528         dst[x] = av_clip_uint8(sum);
529     }
530 }
531 
filter_column(uint8_t * dst,int height,float rdiv,float bias,const int * const matrix,const uint8_t * c[],int peak,int radius,int dstride,int stride,int size)532 static void filter_column(uint8_t *dst, int height,
533                           float rdiv, float bias, const int *const matrix,
534                           const uint8_t *c[], int peak, int radius,
535                           int dstride, int stride, int size)
536 {
537     DECLARE_ALIGNED(64, int, sum)[16];
538 
539     for (int y = 0; y < height; y++) {
540         memset(sum, 0, sizeof(sum));
541 
542         for (int i = 0; i < 2 * radius + 1; i++) {
543             for (int off16 = 0; off16 < 16; off16++)
544                 sum[off16] += c[i][0 + y * stride + off16] * matrix[i];
545         }
546 
547         for (int off16 = 0; off16 < 16; off16++) {
548             sum[off16] = (int)(sum[off16] * rdiv + bias + 0.5f);
549             dst[off16] = av_clip_uint8(sum[off16]);
550         }
551         dst += dstride;
552     }
553 }
554 
setup_3x3(int radius,const uint8_t * c[],const uint8_t * src,int stride,int x,int w,int y,int h,int bpc)555 static void setup_3x3(int radius, const uint8_t *c[], const uint8_t *src, int stride,
556                       int x, int w, int y, int h, int bpc)
557 {
558     int i;
559 
560     for (i = 0; i < 9; i++) {
561         int xoff = FFABS(x + ((i % 3) - 1));
562         int yoff = FFABS(y + (i / 3) - 1);
563 
564         xoff = xoff >= w ? 2 * w - 1 - xoff : xoff;
565         yoff = yoff >= h ? 2 * h - 1 - yoff : yoff;
566 
567         c[i] = src + xoff * bpc + yoff * stride;
568     }
569 }
570 
setup_5x5(int radius,const uint8_t * c[],const uint8_t * src,int stride,int x,int w,int y,int h,int bpc)571 static void setup_5x5(int radius, const uint8_t *c[], const uint8_t *src, int stride,
572                       int x, int w, int y, int h, int bpc)
573 {
574     int i;
575 
576     for (i = 0; i < 25; i++) {
577         int xoff = FFABS(x + ((i % 5) - 2));
578         int yoff = FFABS(y + (i / 5) - 2);
579 
580         xoff = xoff >= w ? 2 * w - 1 - xoff : xoff;
581         yoff = yoff >= h ? 2 * h - 1 - yoff : yoff;
582 
583         c[i] = src + xoff * bpc + yoff * stride;
584     }
585 }
586 
setup_7x7(int radius,const uint8_t * c[],const uint8_t * src,int stride,int x,int w,int y,int h,int bpc)587 static void setup_7x7(int radius, const uint8_t *c[], const uint8_t *src, int stride,
588                       int x, int w, int y, int h, int bpc)
589 {
590     int i;
591 
592     for (i = 0; i < 49; i++) {
593         int xoff = FFABS(x + ((i % 7) - 3));
594         int yoff = FFABS(y + (i / 7) - 3);
595 
596         xoff = xoff >= w ? 2 * w - 1 - xoff : xoff;
597         yoff = yoff >= h ? 2 * h - 1 - yoff : yoff;
598 
599         c[i] = src + xoff * bpc + yoff * stride;
600     }
601 }
602 
setup_row(int radius,const uint8_t * c[],const uint8_t * src,int stride,int x,int w,int y,int h,int bpc)603 static void setup_row(int radius, const uint8_t *c[], const uint8_t *src, int stride,
604                       int x, int w, int y, int h, int bpc)
605 {
606     int i;
607 
608     for (i = 0; i < radius * 2 + 1; i++) {
609         int xoff = FFABS(x + i - radius);
610 
611         xoff = xoff >= w ? 2 * w - 1 - xoff : xoff;
612 
613         c[i] = src + xoff * bpc + y * stride;
614     }
615 }
616 
setup_column(int radius,const uint8_t * c[],const uint8_t * src,int stride,int x,int w,int y,int h,int bpc)617 static void setup_column(int radius, const uint8_t *c[], const uint8_t *src, int stride,
618                          int x, int w, int y, int h, int bpc)
619 {
620     int i;
621 
622     for (i = 0; i < radius * 2 + 1; i++) {
623         int xoff = FFABS(x + i - radius);
624 
625         xoff = xoff >= h ? 2 * h - 1 - xoff : xoff;
626 
627         c[i] = src + y * bpc + xoff * stride;
628     }
629 }
630 
filter_slice(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)631 static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
632 {
633     ConvolutionContext *s = ctx->priv;
634     ThreadData *td = arg;
635     AVFrame *in = td->in;
636     AVFrame *out = td->out;
637     int plane;
638 
639     for (plane = 0; plane < s->nb_planes; plane++) {
640         const int mode = s->mode[plane];
641         const int bpc = s->bpc;
642         const int radius = s->size[plane] / 2;
643         const int height = s->planeheight[plane];
644         const int width  = s->planewidth[plane];
645         const int stride = in->linesize[plane];
646         const int dstride = out->linesize[plane];
647         const int sizeh = mode == MATRIX_COLUMN ? width : height;
648         const int sizew = mode == MATRIX_COLUMN ? height : width;
649         const int slice_start = (sizeh * jobnr) / nb_jobs;
650         const int slice_end = (sizeh * (jobnr+1)) / nb_jobs;
651         const float rdiv = s->rdiv[plane];
652         const float bias = s->bias[plane];
653         const uint8_t *src = in->data[plane];
654         const int dst_pos = slice_start * (mode == MATRIX_COLUMN ? bpc : dstride);
655         uint8_t *dst = out->data[plane] + dst_pos;
656         const int *matrix = s->matrix[plane];
657         const int step = mode == MATRIX_COLUMN ? 16 : 1;
658         const uint8_t *c[49];
659         int y, x;
660 
661         if (s->copy[plane]) {
662             if (mode == MATRIX_COLUMN)
663                 av_image_copy_plane(dst, dstride, src + slice_start * bpc, stride,
664                                     (slice_end - slice_start) * bpc, height);
665             else
666                 av_image_copy_plane(dst, dstride, src + slice_start * stride, stride,
667                                     width * bpc, slice_end - slice_start);
668             continue;
669         }
670         for (y = slice_start; y < slice_end; y += step) {
671             const int xoff = mode == MATRIX_COLUMN ? (y - slice_start) * bpc : radius * bpc;
672             const int yoff = mode == MATRIX_COLUMN ? radius * dstride : 0;
673 
674             for (x = 0; x < radius; x++) {
675                 const int xoff = mode == MATRIX_COLUMN ? (y - slice_start) * bpc : x * bpc;
676                 const int yoff = mode == MATRIX_COLUMN ? x * dstride : 0;
677 
678                 s->setup[plane](radius, c, src, stride, x, width, y, height, bpc);
679                 s->filter[plane](dst + yoff + xoff, 1, rdiv,
680                                  bias, matrix, c, s->max, radius,
681                                  dstride, stride, slice_end - step);
682             }
683             s->setup[plane](radius, c, src, stride, radius, width, y, height, bpc);
684             s->filter[plane](dst + yoff + xoff, sizew - 2 * radius,
685                              rdiv, bias, matrix, c, s->max, radius,
686                              dstride, stride, slice_end - step);
687             for (x = sizew - radius; x < sizew; x++) {
688                 const int xoff = mode == MATRIX_COLUMN ? (y - slice_start) * bpc : x * bpc;
689                 const int yoff = mode == MATRIX_COLUMN ? x * dstride : 0;
690 
691                 s->setup[plane](radius, c, src, stride, x, width, y, height, bpc);
692                 s->filter[plane](dst + yoff + xoff, 1, rdiv,
693                                  bias, matrix, c, s->max, radius,
694                                  dstride, stride, slice_end - step);
695             }
696             if (mode != MATRIX_COLUMN)
697                 dst += dstride;
698         }
699     }
700 
701     return 0;
702 }
703 
param_init(AVFilterContext * ctx)704 static int param_init(AVFilterContext *ctx)
705 {
706     ConvolutionContext *s = ctx->priv;
707     AVFilterLink *inlink = ctx->inputs[0];
708     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
709     int p, i;
710 
711     if (!strcmp(ctx->filter->name, "convolution")) {
712         for (i = 0; i < 4; i++) {
713             int *matrix = (int *)s->matrix[i];
714             char *orig, *p, *arg, *saveptr = NULL;
715             float sum = 1.f;
716 
717             p = orig = av_strdup(s->matrix_str[i]);
718             if (p) {
719                 s->matrix_length[i] = 0;
720                 s->rdiv[i] = 0.f;
721                 sum = 0.f;
722 
723                 while (s->matrix_length[i] < 49) {
724                     if (!(arg = av_strtok(p, " |", &saveptr)))
725                         break;
726 
727                     p = NULL;
728                     sscanf(arg, "%d", &matrix[s->matrix_length[i]]);
729                     sum += matrix[s->matrix_length[i]];
730                     s->matrix_length[i]++;
731                 }
732 
733                 av_freep(&orig);
734                 if (!(s->matrix_length[i] & 1)) {
735                     av_log(ctx, AV_LOG_ERROR, "number of matrix elements must be odd\n");
736                     return AVERROR(EINVAL);
737                 }
738             }
739 
740             if (s->mode[i] == MATRIX_ROW) {
741                 s->filter[i] = filter_row;
742                 s->setup[i] = setup_row;
743                 s->size[i] = s->matrix_length[i];
744             } else if (s->mode[i] == MATRIX_COLUMN) {
745                 s->filter[i] = filter_column;
746                 s->setup[i] = setup_column;
747                 s->size[i] = s->matrix_length[i];
748             } else if (s->matrix_length[i] == 9) {
749                 s->size[i] = 3;
750 
751                 if (!memcmp(matrix, same3x3, sizeof(same3x3))) {
752                     s->copy[i] = 1;
753                 } else {
754                     s->filter[i] = filter_3x3;
755                     s->copy[i] = 0;
756                 }
757                 s->setup[i] = setup_3x3;
758             } else if (s->matrix_length[i] == 25) {
759                 s->size[i] = 5;
760                 if (!memcmp(matrix, same5x5, sizeof(same5x5))) {
761                     s->copy[i] = 1;
762                 } else {
763                     s->filter[i] = filter_5x5;
764                     s->copy[i] = 0;
765                 }
766                 s->setup[i] = setup_5x5;
767             } else if (s->matrix_length[i] == 49) {
768                 s->size[i] = 7;
769                 if (!memcmp(matrix, same7x7, sizeof(same7x7))) {
770                     s->copy[i] = 1;
771                 } else {
772                     s->filter[i] = filter_7x7;
773                     s->copy[i] = 0;
774                 }
775                 s->setup[i] = setup_7x7;
776             } else {
777                 return AVERROR(EINVAL);
778             }
779 
780             if (sum == 0)
781                 sum = 1;
782             if (s->rdiv[i] == 0)
783                 s->rdiv[i] = 1. / sum;
784 
785             if (s->copy[i] && (s->rdiv[i] != 1. || s->bias[i] != 0.))
786                 s->copy[i] = 0;
787         }
788     } else if (!strcmp(ctx->filter->name, "prewitt")) {
789         for (i = 0; i < 4; i++) {
790             s->filter[i] = filter_prewitt;
791             s->copy[i] = !((1 << i) & s->planes);
792             s->size[i] = 3;
793             s->setup[i] = setup_3x3;
794             s->rdiv[i] = s->scale;
795             s->bias[i] = s->delta;
796         }
797     } else if (!strcmp(ctx->filter->name, "roberts")) {
798         for (i = 0; i < 4; i++) {
799             s->filter[i] = filter_roberts;
800             s->copy[i] = !((1 << i) & s->planes);
801             s->size[i] = 3;
802             s->setup[i] = setup_3x3;
803             s->rdiv[i] = s->scale;
804             s->bias[i] = s->delta;
805         }
806     } else if (!strcmp(ctx->filter->name, "sobel")) {
807         for (i = 0; i < 4; i++) {
808             s->filter[i] = filter_sobel;
809             s->copy[i] = !((1 << i) & s->planes);
810             s->size[i] = 3;
811             s->setup[i] = setup_3x3;
812             s->rdiv[i] = s->scale;
813             s->bias[i] = s->delta;
814         }
815     } else if (!strcmp(ctx->filter->name, "kirsch")) {
816         for (i = 0; i < 4; i++) {
817             s->filter[i] = filter_kirsch;
818             s->copy[i] = !((1 << i) & s->planes);
819             s->size[i] = 3;
820             s->setup[i] = setup_3x3;
821             s->rdiv[i] = s->scale;
822             s->bias[i] = s->delta;
823         }
824     } else if (!strcmp(ctx->filter->name, "scharr")) {
825         for (i = 0; i < 4; i++) {
826             s->filter[i] = filter_scharr;
827             s->copy[i] = !((1 << i) & s->planes);
828             s->size[i] = 3;
829             s->setup[i] = setup_3x3;
830             s->rdiv[i] = s->scale;
831             s->bias[i] = s->delta;
832         }
833     }
834 
835     s->depth = desc->comp[0].depth;
836     s->max = (1 << s->depth) - 1;
837 
838     s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
839     s->planewidth[0] = s->planewidth[3] = inlink->w;
840     s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
841     s->planeheight[0] = s->planeheight[3] = inlink->h;
842 
843     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
844     s->nb_threads = ff_filter_get_nb_threads(ctx);
845     s->bpc = (s->depth + 7) / 8;
846 
847     if (!strcmp(ctx->filter->name, "convolution")) {
848         if (s->depth > 8) {
849             for (p = 0; p < s->nb_planes; p++) {
850                 if (s->mode[p] == MATRIX_ROW)
851                     s->filter[p] = filter16_row;
852                 else if (s->mode[p] == MATRIX_COLUMN)
853                     s->filter[p] = filter16_column;
854                 else if (s->size[p] == 3)
855                     s->filter[p] = filter16_3x3;
856                 else if (s->size[p] == 5)
857                     s->filter[p] = filter16_5x5;
858                 else if (s->size[p] == 7)
859                     s->filter[p] = filter16_7x7;
860             }
861         }
862 #if CONFIG_CONVOLUTION_FILTER && ARCH_X86_64
863         ff_convolution_init_x86(s);
864 #endif
865     } else if (!strcmp(ctx->filter->name, "prewitt")) {
866         if (s->depth > 8)
867             for (p = 0; p < s->nb_planes; p++)
868                 s->filter[p] = filter16_prewitt;
869     } else if (!strcmp(ctx->filter->name, "roberts")) {
870         if (s->depth > 8)
871             for (p = 0; p < s->nb_planes; p++)
872                 s->filter[p] = filter16_roberts;
873     } else if (!strcmp(ctx->filter->name, "sobel")) {
874         if (s->depth > 8)
875             for (p = 0; p < s->nb_planes; p++)
876                 s->filter[p] = filter16_sobel;
877     } else if (!strcmp(ctx->filter->name, "kirsch")) {
878         if (s->depth > 8)
879             for (p = 0; p < s->nb_planes; p++)
880                 s->filter[p] = filter16_kirsch;
881     } else if (!strcmp(ctx->filter->name, "scharr")) {
882         if (s->depth > 8)
883             for (p = 0; p < s->nb_planes; p++)
884                 s->filter[p] = filter16_scharr;
885     }
886 
887     return 0;
888 }
889 
config_input(AVFilterLink * inlink)890 static int config_input(AVFilterLink *inlink)
891 {
892     AVFilterContext *ctx = inlink->dst;
893     return param_init(ctx);
894 }
895 
filter_frame(AVFilterLink * inlink,AVFrame * in)896 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
897 {
898     AVFilterContext *ctx = inlink->dst;
899     ConvolutionContext *s = ctx->priv;
900     AVFilterLink *outlink = ctx->outputs[0];
901     AVFrame *out;
902     ThreadData td;
903 
904     out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
905     if (!out) {
906         av_frame_free(&in);
907         return AVERROR(ENOMEM);
908     }
909     av_frame_copy_props(out, in);
910 
911     td.in = in;
912     td.out = out;
913     ff_filter_execute(ctx, filter_slice, &td, NULL,
914                       FFMIN3(s->planeheight[1], s->planewidth[1], s->nb_threads));
915 
916     av_frame_free(&in);
917     return ff_filter_frame(outlink, out);
918 }
919 
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)920 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
921                            char *res, int res_len, int flags)
922 {
923     int ret;
924 
925     ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
926     if (ret < 0)
927         return ret;
928 
929     return param_init(ctx);
930 }
931 
932 static const AVFilterPad convolution_inputs[] = {
933     {
934         .name         = "default",
935         .type         = AVMEDIA_TYPE_VIDEO,
936         .config_props = config_input,
937         .filter_frame = filter_frame,
938     },
939 };
940 
941 static const AVFilterPad convolution_outputs[] = {
942     {
943         .name = "default",
944         .type = AVMEDIA_TYPE_VIDEO,
945     },
946 };
947 
948 #if CONFIG_CONVOLUTION_FILTER
949 
950 const AVFilter ff_vf_convolution = {
951     .name          = "convolution",
952     .description   = NULL_IF_CONFIG_SMALL("Apply convolution filter."),
953     .priv_size     = sizeof(ConvolutionContext),
954     .priv_class    = &convolution_class,
955     FILTER_INPUTS(convolution_inputs),
956     FILTER_OUTPUTS(convolution_outputs),
957     FILTER_PIXFMTS_ARRAY(pix_fmts),
958     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
959     .process_command = process_command,
960 };
961 
962 #endif /* CONFIG_CONVOLUTION_FILTER */
963 
964 static const AVOption common_options[] = {
965     { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT,  {.i64=15}, 0, 15, FLAGS},
966     { "scale",  "set scale",            OFFSET(scale), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0,  65535, FLAGS},
967     { "delta",  "set delta",            OFFSET(delta), AV_OPT_TYPE_FLOAT, {.dbl=0}, -65535, 65535, FLAGS},
968     { NULL }
969 };
970 
971 AVFILTER_DEFINE_CLASS_EXT(common, "kirsch/prewitt/roberts/scharr/sobel",
972                           common_options);
973 
974 #if CONFIG_PREWITT_FILTER
975 
976 const AVFilter ff_vf_prewitt = {
977     .name          = "prewitt",
978     .description   = NULL_IF_CONFIG_SMALL("Apply prewitt operator."),
979     .priv_size     = sizeof(ConvolutionContext),
980     .priv_class    = &common_class,
981     FILTER_INPUTS(convolution_inputs),
982     FILTER_OUTPUTS(convolution_outputs),
983     FILTER_PIXFMTS_ARRAY(pix_fmts),
984     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
985     .process_command = process_command,
986 };
987 
988 #endif /* CONFIG_PREWITT_FILTER */
989 
990 #if CONFIG_SOBEL_FILTER
991 
992 const AVFilter ff_vf_sobel = {
993     .name          = "sobel",
994     .description   = NULL_IF_CONFIG_SMALL("Apply sobel operator."),
995     .priv_size     = sizeof(ConvolutionContext),
996     .priv_class    = &common_class,
997     FILTER_INPUTS(convolution_inputs),
998     FILTER_OUTPUTS(convolution_outputs),
999     FILTER_PIXFMTS_ARRAY(pix_fmts),
1000     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
1001     .process_command = process_command,
1002 };
1003 
1004 #endif /* CONFIG_SOBEL_FILTER */
1005 
1006 #if CONFIG_ROBERTS_FILTER
1007 
1008 const AVFilter ff_vf_roberts = {
1009     .name          = "roberts",
1010     .description   = NULL_IF_CONFIG_SMALL("Apply roberts cross operator."),
1011     .priv_size     = sizeof(ConvolutionContext),
1012     .priv_class    = &common_class,
1013     FILTER_INPUTS(convolution_inputs),
1014     FILTER_OUTPUTS(convolution_outputs),
1015     FILTER_PIXFMTS_ARRAY(pix_fmts),
1016     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
1017     .process_command = process_command,
1018 };
1019 
1020 #endif /* CONFIG_ROBERTS_FILTER */
1021 
1022 #if CONFIG_KIRSCH_FILTER
1023 
1024 const AVFilter ff_vf_kirsch = {
1025     .name          = "kirsch",
1026     .description   = NULL_IF_CONFIG_SMALL("Apply kirsch operator."),
1027     .priv_size     = sizeof(ConvolutionContext),
1028     .priv_class    = &common_class,
1029     FILTER_INPUTS(convolution_inputs),
1030     FILTER_OUTPUTS(convolution_outputs),
1031     FILTER_PIXFMTS_ARRAY(pix_fmts),
1032     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
1033     .process_command = process_command,
1034 };
1035 
1036 #endif /* CONFIG_KIRSCH_FILTER */
1037 
1038 #if CONFIG_SCHARR_FILTER
1039 
1040 const AVFilter ff_vf_scharr = {
1041     .name          = "scharr",
1042     .description   = NULL_IF_CONFIG_SMALL("Apply scharr operator."),
1043     .priv_size     = sizeof(ConvolutionContext),
1044     .priv_class    = &common_class,
1045     FILTER_INPUTS(convolution_inputs),
1046     FILTER_OUTPUTS(convolution_outputs),
1047     FILTER_PIXFMTS_ARRAY(pix_fmts),
1048     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
1049     .process_command = process_command,
1050 };
1051 
1052 #endif /* CONFIG_SCHARR_FILTER */
1053