• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (C) 2018 Google, Inc.
3 //
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions
8 // are met:
9 //
10 //    Redistributions of source code must retain the above copyright
11 //    notice, this list of conditions and the following disclaimer.
12 //
13 //    Redistributions in binary form must reproduce the above
14 //    copyright notice, this list of conditions and the following
15 //    disclaimer in the documentation and/or other materials provided
16 //    with the distribution.
17 //
18 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
19 //    contributors may be used to endorse or promote products derived
20 //    from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 // POSSIBILITY OF SUCH DAMAGE.
34 
35 //
36 // Post-processing for SPIR-V IR, in internal form, not standard binary form.
37 //
38 
39 #include <cassert>
40 #include <cstdlib>
41 
42 #include <unordered_map>
43 #include <unordered_set>
44 #include <algorithm>
45 
46 #include "SpvBuilder.h"
47 #include "spirv.hpp"
48 
49 namespace spv {
50     #include "GLSL.std.450.h"
51     #include "GLSL.ext.KHR.h"
52     #include "GLSL.ext.EXT.h"
53     #include "GLSL.ext.AMD.h"
54     #include "GLSL.ext.NV.h"
55     #include "GLSL.ext.ARM.h"
56     #include "GLSL.ext.QCOM.h"
57 }
58 
59 namespace spv {
60 
61 // Hook to visit each operand type and result type of an instruction.
62 // Will be called multiple times for one instruction, once for each typed
63 // operand and the result.
postProcessType(const Instruction & inst,Id typeId)64 void Builder::postProcessType(const Instruction& inst, Id typeId)
65 {
66     // Characterize the type being questioned
67     Id basicTypeOp = getMostBasicTypeClass(typeId);
68     int width = 0;
69     if (basicTypeOp == OpTypeFloat || basicTypeOp == OpTypeInt)
70         width = getScalarTypeWidth(typeId);
71 
72     // Do opcode-specific checks
73     switch (inst.getOpCode()) {
74     case OpLoad:
75     case OpStore:
76         if (basicTypeOp == OpTypeStruct) {
77             if (containsType(typeId, OpTypeInt, 8))
78                 addCapability(CapabilityInt8);
79             if (containsType(typeId, OpTypeInt, 16))
80                 addCapability(CapabilityInt16);
81             if (containsType(typeId, OpTypeFloat, 16))
82                 addCapability(CapabilityFloat16);
83         } else {
84             StorageClass storageClass = getStorageClass(inst.getIdOperand(0));
85             if (width == 8) {
86                 switch (storageClass) {
87                 case StorageClassPhysicalStorageBufferEXT:
88                 case StorageClassUniform:
89                 case StorageClassStorageBuffer:
90                 case StorageClassPushConstant:
91                     break;
92                 default:
93                     addCapability(CapabilityInt8);
94                     break;
95                 }
96             } else if (width == 16) {
97                 switch (storageClass) {
98                 case StorageClassPhysicalStorageBufferEXT:
99                 case StorageClassUniform:
100                 case StorageClassStorageBuffer:
101                 case StorageClassPushConstant:
102                 case StorageClassInput:
103                 case StorageClassOutput:
104                     break;
105                 default:
106                     if (basicTypeOp == OpTypeInt)
107                         addCapability(CapabilityInt16);
108                     if (basicTypeOp == OpTypeFloat)
109                         addCapability(CapabilityFloat16);
110                     break;
111                 }
112             }
113         }
114         break;
115     case OpCopyObject:
116         break;
117     case OpFConvert:
118     case OpSConvert:
119     case OpUConvert:
120         // Look for any 8/16-bit storage capabilities. If there are none, assume that
121         // the convert instruction requires the Float16/Int8/16 capability.
122         if (containsType(typeId, OpTypeFloat, 16) || containsType(typeId, OpTypeInt, 16)) {
123             bool foundStorage = false;
124             for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
125                 spv::Capability cap = *it;
126                 if (cap == spv::CapabilityStorageInputOutput16 ||
127                     cap == spv::CapabilityStoragePushConstant16 ||
128                     cap == spv::CapabilityStorageUniformBufferBlock16 ||
129                     cap == spv::CapabilityStorageUniform16) {
130                     foundStorage = true;
131                     break;
132                 }
133             }
134             if (!foundStorage) {
135                 if (containsType(typeId, OpTypeFloat, 16))
136                     addCapability(CapabilityFloat16);
137                 if (containsType(typeId, OpTypeInt, 16))
138                     addCapability(CapabilityInt16);
139             }
140         }
141         if (containsType(typeId, OpTypeInt, 8)) {
142             bool foundStorage = false;
143             for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
144                 spv::Capability cap = *it;
145                 if (cap == spv::CapabilityStoragePushConstant8 ||
146                     cap == spv::CapabilityUniformAndStorageBuffer8BitAccess ||
147                     cap == spv::CapabilityStorageBuffer8BitAccess) {
148                     foundStorage = true;
149                     break;
150                 }
151             }
152             if (!foundStorage) {
153                 addCapability(CapabilityInt8);
154             }
155         }
156         break;
157     case OpExtInst:
158         switch (inst.getImmediateOperand(1)) {
159         case GLSLstd450Frexp:
160         case GLSLstd450FrexpStruct:
161             if (getSpvVersion() < spv::Spv_1_3 && containsType(typeId, OpTypeInt, 16))
162                 addExtension(spv::E_SPV_AMD_gpu_shader_int16);
163             break;
164         case GLSLstd450InterpolateAtCentroid:
165         case GLSLstd450InterpolateAtSample:
166         case GLSLstd450InterpolateAtOffset:
167             if (getSpvVersion() < spv::Spv_1_3 && containsType(typeId, OpTypeFloat, 16))
168                 addExtension(spv::E_SPV_AMD_gpu_shader_half_float);
169             break;
170         default:
171             break;
172         }
173         break;
174     case OpAccessChain:
175     case OpPtrAccessChain:
176         if (isPointerType(typeId))
177             break;
178         if (basicTypeOp == OpTypeInt) {
179             if (width == 16)
180                 addCapability(CapabilityInt16);
181             else if (width == 8)
182                 addCapability(CapabilityInt8);
183         }
184     default:
185         if (basicTypeOp == OpTypeInt) {
186             if (width == 16)
187                 addCapability(CapabilityInt16);
188             else if (width == 8)
189                 addCapability(CapabilityInt8);
190             else if (width == 64)
191                 addCapability(CapabilityInt64);
192         } else if (basicTypeOp == OpTypeFloat) {
193             if (width == 16)
194                 addCapability(CapabilityFloat16);
195             else if (width == 64)
196                 addCapability(CapabilityFloat64);
197         }
198         break;
199     }
200 }
201 
202 // Called for each instruction that resides in a block.
postProcess(Instruction & inst)203 void Builder::postProcess(Instruction& inst)
204 {
205     // Add capabilities based simply on the opcode.
206     switch (inst.getOpCode()) {
207     case OpExtInst:
208         switch (inst.getImmediateOperand(1)) {
209         case GLSLstd450InterpolateAtCentroid:
210         case GLSLstd450InterpolateAtSample:
211         case GLSLstd450InterpolateAtOffset:
212             addCapability(CapabilityInterpolationFunction);
213             break;
214         default:
215             break;
216         }
217         break;
218     case OpDPdxFine:
219     case OpDPdyFine:
220     case OpFwidthFine:
221     case OpDPdxCoarse:
222     case OpDPdyCoarse:
223     case OpFwidthCoarse:
224         addCapability(CapabilityDerivativeControl);
225         break;
226 
227     case OpImageQueryLod:
228     case OpImageQuerySize:
229     case OpImageQuerySizeLod:
230     case OpImageQuerySamples:
231     case OpImageQueryLevels:
232         addCapability(CapabilityImageQuery);
233         break;
234 
235     case OpGroupNonUniformPartitionNV:
236         addExtension(E_SPV_NV_shader_subgroup_partitioned);
237         addCapability(CapabilityGroupNonUniformPartitionedNV);
238         break;
239 
240     case OpLoad:
241     case OpStore:
242         {
243             // For any load/store to a PhysicalStorageBufferEXT, walk the accesschain
244             // index list to compute the misalignment. The pre-existing alignment value
245             // (set via Builder::AccessChain::alignment) only accounts for the base of
246             // the reference type and any scalar component selection in the accesschain,
247             // and this function computes the rest from the SPIR-V Offset decorations.
248             Instruction *accessChain = module.getInstruction(inst.getIdOperand(0));
249             if (accessChain->getOpCode() == OpAccessChain) {
250                 Instruction *base = module.getInstruction(accessChain->getIdOperand(0));
251                 // Get the type of the base of the access chain. It must be a pointer type.
252                 Id typeId = base->getTypeId();
253                 Instruction *type = module.getInstruction(typeId);
254                 assert(type->getOpCode() == OpTypePointer);
255                 if (type->getImmediateOperand(0) != StorageClassPhysicalStorageBufferEXT) {
256                     break;
257                 }
258                 // Get the pointee type.
259                 typeId = type->getIdOperand(1);
260                 type = module.getInstruction(typeId);
261                 // Walk the index list for the access chain. For each index, find any
262                 // misalignment that can apply when accessing the member/element via
263                 // Offset/ArrayStride/MatrixStride decorations, and bitwise OR them all
264                 // together.
265                 int alignment = 0;
266                 for (int i = 1; i < accessChain->getNumOperands(); ++i) {
267                     Instruction *idx = module.getInstruction(accessChain->getIdOperand(i));
268                     if (type->getOpCode() == OpTypeStruct) {
269                         assert(idx->getOpCode() == OpConstant);
270                         unsigned int c = idx->getImmediateOperand(0);
271 
272                         const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
273                             if (decoration.get()->getOpCode() == OpMemberDecorate &&
274                                 decoration.get()->getIdOperand(0) == typeId &&
275                                 decoration.get()->getImmediateOperand(1) == c &&
276                                 (decoration.get()->getImmediateOperand(2) == DecorationOffset ||
277                                  decoration.get()->getImmediateOperand(2) == DecorationMatrixStride)) {
278                                 alignment |= decoration.get()->getImmediateOperand(3);
279                             }
280                         };
281                         std::for_each(decorations.begin(), decorations.end(), function);
282                         // get the next member type
283                         typeId = type->getIdOperand(c);
284                         type = module.getInstruction(typeId);
285                     } else if (type->getOpCode() == OpTypeArray ||
286                                type->getOpCode() == OpTypeRuntimeArray) {
287                         const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
288                             if (decoration.get()->getOpCode() == OpDecorate &&
289                                 decoration.get()->getIdOperand(0) == typeId &&
290                                 decoration.get()->getImmediateOperand(1) == DecorationArrayStride) {
291                                 alignment |= decoration.get()->getImmediateOperand(2);
292                             }
293                         };
294                         std::for_each(decorations.begin(), decorations.end(), function);
295                         // Get the element type
296                         typeId = type->getIdOperand(0);
297                         type = module.getInstruction(typeId);
298                     } else {
299                         // Once we get to any non-aggregate type, we're done.
300                         break;
301                     }
302                 }
303                 assert(inst.getNumOperands() >= 3);
304                 unsigned int memoryAccess = inst.getImmediateOperand((inst.getOpCode() == OpStore) ? 2 : 1);
305                 assert(memoryAccess & MemoryAccessAlignedMask);
306                 static_cast<void>(memoryAccess);
307                 // Compute the index of the alignment operand.
308                 int alignmentIdx = 2;
309                 if (inst.getOpCode() == OpStore)
310                     alignmentIdx++;
311                 // Merge new and old (mis)alignment
312                 alignment |= inst.getImmediateOperand(alignmentIdx);
313                 // Pick the LSB
314                 alignment = alignment & ~(alignment & (alignment-1));
315                 // update the Aligned operand
316                 inst.setImmediateOperand(alignmentIdx, alignment);
317             }
318             break;
319         }
320 
321     default:
322         break;
323     }
324 
325     // Checks based on type
326     if (inst.getTypeId() != NoType)
327         postProcessType(inst, inst.getTypeId());
328     for (int op = 0; op < inst.getNumOperands(); ++op) {
329         if (inst.isIdOperand(op)) {
330             // In blocks, these are always result ids, but we are relying on
331             // getTypeId() to return NoType for things like OpLabel.
332             if (getTypeId(inst.getIdOperand(op)) != NoType)
333                 postProcessType(inst, getTypeId(inst.getIdOperand(op)));
334         }
335     }
336 }
337 
338 // comment in header
postProcessCFG()339 void Builder::postProcessCFG()
340 {
341     // reachableBlocks is the set of blockss reached via control flow, or which are
342     // unreachable continue targert or unreachable merge.
343     std::unordered_set<const Block*> reachableBlocks;
344     std::unordered_map<Block*, Block*> headerForUnreachableContinue;
345     std::unordered_set<Block*> unreachableMerges;
346     std::unordered_set<Id> unreachableDefinitions;
347     // Collect IDs defined in unreachable blocks. For each function, label the
348     // reachable blocks first. Then for each unreachable block, collect the
349     // result IDs of the instructions in it.
350     for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
351         Function* f = *fi;
352         Block* entry = f->getEntryBlock();
353         inReadableOrder(entry,
354             [&reachableBlocks, &unreachableMerges, &headerForUnreachableContinue]
355             (Block* b, ReachReason why, Block* header) {
356                reachableBlocks.insert(b);
357                if (why == ReachDeadContinue) headerForUnreachableContinue[b] = header;
358                if (why == ReachDeadMerge) unreachableMerges.insert(b);
359             });
360         for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
361             Block* b = *bi;
362             if (unreachableMerges.count(b) != 0 || headerForUnreachableContinue.count(b) != 0) {
363                 auto ii = b->getInstructions().cbegin();
364                 ++ii; // Keep potential decorations on the label.
365                 for (; ii != b->getInstructions().cend(); ++ii)
366                     unreachableDefinitions.insert(ii->get()->getResultId());
367             } else if (reachableBlocks.count(b) == 0) {
368                 // The normal case for unreachable code.  All definitions are considered dead.
369                 for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ++ii)
370                     unreachableDefinitions.insert(ii->get()->getResultId());
371             }
372         }
373     }
374 
375     // Modify unreachable merge blocks and unreachable continue targets.
376     // Delete their contents.
377     for (auto mergeIter = unreachableMerges.begin(); mergeIter != unreachableMerges.end(); ++mergeIter) {
378         (*mergeIter)->rewriteAsCanonicalUnreachableMerge();
379     }
380     for (auto continueIter = headerForUnreachableContinue.begin();
381          continueIter != headerForUnreachableContinue.end();
382          ++continueIter) {
383         Block* continue_target = continueIter->first;
384         Block* header = continueIter->second;
385         continue_target->rewriteAsCanonicalUnreachableContinue(header);
386     }
387 
388     // Remove unneeded decorations, for unreachable instructions
389     decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
390         [&unreachableDefinitions](std::unique_ptr<Instruction>& I) -> bool {
391             Id decoration_id = I.get()->getIdOperand(0);
392             return unreachableDefinitions.count(decoration_id) != 0;
393         }),
394         decorations.end());
395 }
396 
397 // comment in header
postProcessFeatures()398 void Builder::postProcessFeatures() {
399     // Add per-instruction capabilities, extensions, etc.,
400 
401     // Look for any 8/16 bit type in physical storage buffer class, and set the
402     // appropriate capability. This happens in createSpvVariable for other storage
403     // classes, but there isn't always a variable for physical storage buffer.
404     for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
405         Instruction* type = groupedTypes[OpTypePointer][t];
406         if (type->getImmediateOperand(0) == (unsigned)StorageClassPhysicalStorageBufferEXT) {
407             if (containsType(type->getIdOperand(1), OpTypeInt, 8)) {
408                 addIncorporatedExtension(spv::E_SPV_KHR_8bit_storage, spv::Spv_1_5);
409                 addCapability(spv::CapabilityStorageBuffer8BitAccess);
410             }
411             if (containsType(type->getIdOperand(1), OpTypeInt, 16) ||
412                 containsType(type->getIdOperand(1), OpTypeFloat, 16)) {
413                 addIncorporatedExtension(spv::E_SPV_KHR_16bit_storage, spv::Spv_1_3);
414                 addCapability(spv::CapabilityStorageBuffer16BitAccess);
415             }
416         }
417     }
418 
419     // process all block-contained instructions
420     for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
421         Function* f = *fi;
422         for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
423             Block* b = *bi;
424             for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ii++)
425                 postProcess(*ii->get());
426 
427             // For all local variables that contain pointers to PhysicalStorageBufferEXT, check whether
428             // there is an existing restrict/aliased decoration. If we don't find one, add Aliased as the
429             // default.
430             for (auto vi = b->getLocalVariables().cbegin(); vi != b->getLocalVariables().cend(); vi++) {
431                 const Instruction& inst = *vi->get();
432                 Id resultId = inst.getResultId();
433                 if (containsPhysicalStorageBufferOrArray(getDerefTypeId(resultId))) {
434                     bool foundDecoration = false;
435                     const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
436                         if (decoration.get()->getIdOperand(0) == resultId &&
437                             decoration.get()->getOpCode() == OpDecorate &&
438                             (decoration.get()->getImmediateOperand(1) == spv::DecorationAliasedPointerEXT ||
439                              decoration.get()->getImmediateOperand(1) == spv::DecorationRestrictPointerEXT)) {
440                             foundDecoration = true;
441                         }
442                     };
443                     std::for_each(decorations.begin(), decorations.end(), function);
444                     if (!foundDecoration) {
445                         addDecoration(resultId, spv::DecorationAliasedPointerEXT);
446                     }
447                 }
448             }
449         }
450     }
451 
452     // If any Vulkan memory model-specific functionality is used, update the
453     // OpMemoryModel to match.
454     if (capabilities.find(spv::CapabilityVulkanMemoryModelKHR) != capabilities.end()) {
455         memoryModel = spv::MemoryModelVulkanKHR;
456         addIncorporatedExtension(spv::E_SPV_KHR_vulkan_memory_model, spv::Spv_1_5);
457     }
458 
459     // Add Aliased decoration if there's more than one Workgroup Block variable.
460     if (capabilities.find(spv::CapabilityWorkgroupMemoryExplicitLayoutKHR) != capabilities.end()) {
461         assert(entryPoints.size() == 1);
462         auto &ep = entryPoints[0];
463 
464         std::vector<Id> workgroup_variables;
465         for (int i = 0; i < (int)ep->getNumOperands(); i++) {
466             if (!ep->isIdOperand(i))
467                 continue;
468 
469             const Id id = ep->getIdOperand(i);
470             const Instruction *instr = module.getInstruction(id);
471             if (instr->getOpCode() != spv::OpVariable)
472                 continue;
473 
474             if (instr->getImmediateOperand(0) == spv::StorageClassWorkgroup)
475                 workgroup_variables.push_back(id);
476         }
477 
478         if (workgroup_variables.size() > 1) {
479             for (size_t i = 0; i < workgroup_variables.size(); i++)
480                 addDecoration(workgroup_variables[i], spv::DecorationAliased);
481         }
482     }
483 }
484 
485 // comment in header
postProcess(bool compileOnly)486 void Builder::postProcess(bool compileOnly)
487 {
488     // postProcessCFG needs an entrypoint to determine what is reachable, but if we are not creating an "executable" shader, we don't have an entrypoint
489     if (!compileOnly)
490         postProcessCFG();
491 
492     postProcessFeatures();
493 }
494 
495 }; // end spv namespace
496