• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2012 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
38 #define DOUBLE_CONVERSION_DOUBLE_H_
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 
42 #include "double-conversion-diy-fp.h"
43 
44 // ICU PATCH: Wrap in ICU namespace
45 U_NAMESPACE_BEGIN
46 
47 namespace double_conversion {
48 
49 // We assume that doubles and uint64_t have the same endianness.
double_to_uint64(double d)50 static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
uint64_to_double(uint64_t d64)51 static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
float_to_uint32(float f)52 static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
uint32_to_float(uint32_t d32)53 static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }
54 
55 // Helper functions for doubles.
56 class Double {
57  public:
58   static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000);
59   static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
60   static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
61   static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000);
62   static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000);
63   static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
64   static const int kSignificandSize = 53;
65   static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
66   static const int kMaxExponent = 0x7FF - kExponentBias;
67 
Double()68   Double() : d64_(0) {}
Double(double d)69   explicit Double(double d) : d64_(double_to_uint64(d)) {}
Double(uint64_t d64)70   explicit Double(uint64_t d64) : d64_(d64) {}
Double(DiyFp diy_fp)71   explicit Double(DiyFp diy_fp)
72     : d64_(DiyFpToUint64(diy_fp)) {}
73 
74   // The value encoded by this Double must be greater or equal to +0.0.
75   // It must not be special (infinity, or NaN).
AsDiyFp()76   DiyFp AsDiyFp() const {
77     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
78     DOUBLE_CONVERSION_ASSERT(!IsSpecial());
79     return DiyFp(Significand(), Exponent());
80   }
81 
82   // The value encoded by this Double must be strictly greater than 0.
AsNormalizedDiyFp()83   DiyFp AsNormalizedDiyFp() const {
84     DOUBLE_CONVERSION_ASSERT(value() > 0.0);
85     uint64_t f = Significand();
86     int e = Exponent();
87 
88     // The current double could be a denormal.
89     while ((f & kHiddenBit) == 0) {
90       f <<= 1;
91       e--;
92     }
93     // Do the final shifts in one go.
94     f <<= DiyFp::kSignificandSize - kSignificandSize;
95     e -= DiyFp::kSignificandSize - kSignificandSize;
96     return DiyFp(f, e);
97   }
98 
99   // Returns the double's bit as uint64.
AsUint64()100   uint64_t AsUint64() const {
101     return d64_;
102   }
103 
104   // Returns the next greater double. Returns +infinity on input +infinity.
NextDouble()105   double NextDouble() const {
106     if (d64_ == kInfinity) return Double(kInfinity).value();
107     if (Sign() < 0 && Significand() == 0) {
108       // -0.0
109       return 0.0;
110     }
111     if (Sign() < 0) {
112       return Double(d64_ - 1).value();
113     } else {
114       return Double(d64_ + 1).value();
115     }
116   }
117 
PreviousDouble()118   double PreviousDouble() const {
119     if (d64_ == (kInfinity | kSignMask)) return -Infinity();
120     if (Sign() < 0) {
121       return Double(d64_ + 1).value();
122     } else {
123       if (Significand() == 0) return -0.0;
124       return Double(d64_ - 1).value();
125     }
126   }
127 
Exponent()128   int Exponent() const {
129     if (IsDenormal()) return kDenormalExponent;
130 
131     uint64_t d64 = AsUint64();
132     int biased_e =
133         static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
134     return biased_e - kExponentBias;
135   }
136 
Significand()137   uint64_t Significand() const {
138     uint64_t d64 = AsUint64();
139     uint64_t significand = d64 & kSignificandMask;
140     if (!IsDenormal()) {
141       return significand + kHiddenBit;
142     } else {
143       return significand;
144     }
145   }
146 
147   // Returns true if the double is a denormal.
IsDenormal()148   bool IsDenormal() const {
149     uint64_t d64 = AsUint64();
150     return (d64 & kExponentMask) == 0;
151   }
152 
153   // We consider denormals not to be special.
154   // Hence only Infinity and NaN are special.
IsSpecial()155   bool IsSpecial() const {
156     uint64_t d64 = AsUint64();
157     return (d64 & kExponentMask) == kExponentMask;
158   }
159 
IsNan()160   bool IsNan() const {
161     uint64_t d64 = AsUint64();
162     return ((d64 & kExponentMask) == kExponentMask) &&
163         ((d64 & kSignificandMask) != 0);
164   }
165 
IsQuietNan()166   bool IsQuietNan() const {
167 #if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
168     return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
169 #else
170     return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
171 #endif
172   }
173 
IsSignalingNan()174   bool IsSignalingNan() const {
175 #if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
176     return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
177 #else
178     return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
179 #endif
180   }
181 
182 
IsInfinite()183   bool IsInfinite() const {
184     uint64_t d64 = AsUint64();
185     return ((d64 & kExponentMask) == kExponentMask) &&
186         ((d64 & kSignificandMask) == 0);
187   }
188 
Sign()189   int Sign() const {
190     uint64_t d64 = AsUint64();
191     return (d64 & kSignMask) == 0? 1: -1;
192   }
193 
194   // Precondition: the value encoded by this Double must be greater or equal
195   // than +0.0.
UpperBoundary()196   DiyFp UpperBoundary() const {
197     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
198     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
199   }
200 
201   // Computes the two boundaries of this.
202   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
203   // exponent as m_plus.
204   // Precondition: the value encoded by this Double must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)205   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
206     DOUBLE_CONVERSION_ASSERT(value() > 0.0);
207     DiyFp v = this->AsDiyFp();
208     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
209     DiyFp m_minus;
210     if (LowerBoundaryIsCloser()) {
211       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
212     } else {
213       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
214     }
215     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
216     m_minus.set_e(m_plus.e());
217     *out_m_plus = m_plus;
218     *out_m_minus = m_minus;
219   }
220 
LowerBoundaryIsCloser()221   bool LowerBoundaryIsCloser() const {
222     // The boundary is closer if the significand is of the form f == 2^p-1 then
223     // the lower boundary is closer.
224     // Think of v = 1000e10 and v- = 9999e9.
225     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
226     // at a distance of 1e8.
227     // The only exception is for the smallest normal: the largest denormal is
228     // at the same distance as its successor.
229     // Note: denormals have the same exponent as the smallest normals.
230     bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
231     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
232   }
233 
value()234   double value() const { return uint64_to_double(d64_); }
235 
236   // Returns the significand size for a given order of magnitude.
237   // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
238   // This function returns the number of significant binary digits v will have
239   // once it's encoded into a double. In almost all cases this is equal to
240   // kSignificandSize. The only exceptions are denormals. They start with
241   // leading zeroes and their effective significand-size is hence smaller.
SignificandSizeForOrderOfMagnitude(int order)242   static int SignificandSizeForOrderOfMagnitude(int order) {
243     if (order >= (kDenormalExponent + kSignificandSize)) {
244       return kSignificandSize;
245     }
246     if (order <= kDenormalExponent) return 0;
247     return order - kDenormalExponent;
248   }
249 
Infinity()250   static double Infinity() {
251     return Double(kInfinity).value();
252   }
253 
NaN()254   static double NaN() {
255     return Double(kNaN).value();
256   }
257 
258  private:
259   static const int kDenormalExponent = -kExponentBias + 1;
260   static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
261 #if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
262   static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF7FFFF, FFFFFFFF);
263 #else
264   static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000);
265 #endif
266 
267 
268   const uint64_t d64_;
269 
DiyFpToUint64(DiyFp diy_fp)270   static uint64_t DiyFpToUint64(DiyFp diy_fp) {
271     uint64_t significand = diy_fp.f();
272     int exponent = diy_fp.e();
273     while (significand > kHiddenBit + kSignificandMask) {
274       significand >>= 1;
275       exponent++;
276     }
277     if (exponent >= kMaxExponent) {
278       return kInfinity;
279     }
280     if (exponent < kDenormalExponent) {
281       return 0;
282     }
283     while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
284       significand <<= 1;
285       exponent--;
286     }
287     uint64_t biased_exponent;
288     if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
289       biased_exponent = 0;
290     } else {
291       biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
292     }
293     return (significand & kSignificandMask) |
294         (biased_exponent << kPhysicalSignificandSize);
295   }
296 
297   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double);
298 };
299 
300 class Single {
301  public:
302   static const uint32_t kSignMask = 0x80000000;
303   static const uint32_t kExponentMask = 0x7F800000;
304   static const uint32_t kSignificandMask = 0x007FFFFF;
305   static const uint32_t kHiddenBit = 0x00800000;
306   static const uint32_t kQuietNanBit = 0x00400000;
307   static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit.
308   static const int kSignificandSize = 24;
309 
Single()310   Single() : d32_(0) {}
Single(float f)311   explicit Single(float f) : d32_(float_to_uint32(f)) {}
Single(uint32_t d32)312   explicit Single(uint32_t d32) : d32_(d32) {}
313 
314   // The value encoded by this Single must be greater or equal to +0.0.
315   // It must not be special (infinity, or NaN).
AsDiyFp()316   DiyFp AsDiyFp() const {
317     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
318     DOUBLE_CONVERSION_ASSERT(!IsSpecial());
319     return DiyFp(Significand(), Exponent());
320   }
321 
322   // Returns the single's bit as uint64.
AsUint32()323   uint32_t AsUint32() const {
324     return d32_;
325   }
326 
Exponent()327   int Exponent() const {
328     if (IsDenormal()) return kDenormalExponent;
329 
330     uint32_t d32 = AsUint32();
331     int biased_e =
332         static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
333     return biased_e - kExponentBias;
334   }
335 
Significand()336   uint32_t Significand() const {
337     uint32_t d32 = AsUint32();
338     uint32_t significand = d32 & kSignificandMask;
339     if (!IsDenormal()) {
340       return significand + kHiddenBit;
341     } else {
342       return significand;
343     }
344   }
345 
346   // Returns true if the single is a denormal.
IsDenormal()347   bool IsDenormal() const {
348     uint32_t d32 = AsUint32();
349     return (d32 & kExponentMask) == 0;
350   }
351 
352   // We consider denormals not to be special.
353   // Hence only Infinity and NaN are special.
IsSpecial()354   bool IsSpecial() const {
355     uint32_t d32 = AsUint32();
356     return (d32 & kExponentMask) == kExponentMask;
357   }
358 
IsNan()359   bool IsNan() const {
360     uint32_t d32 = AsUint32();
361     return ((d32 & kExponentMask) == kExponentMask) &&
362         ((d32 & kSignificandMask) != 0);
363   }
364 
IsQuietNan()365   bool IsQuietNan() const {
366 #if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
367     return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
368 #else
369     return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
370 #endif
371   }
372 
IsSignalingNan()373   bool IsSignalingNan() const {
374 #if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
375     return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
376 #else
377     return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
378 #endif
379   }
380 
381 
IsInfinite()382   bool IsInfinite() const {
383     uint32_t d32 = AsUint32();
384     return ((d32 & kExponentMask) == kExponentMask) &&
385         ((d32 & kSignificandMask) == 0);
386   }
387 
Sign()388   int Sign() const {
389     uint32_t d32 = AsUint32();
390     return (d32 & kSignMask) == 0? 1: -1;
391   }
392 
393   // Computes the two boundaries of this.
394   // The bigger boundary (m_plus) is normalized. The lower boundary has the same
395   // exponent as m_plus.
396   // Precondition: the value encoded by this Single must be greater than 0.
NormalizedBoundaries(DiyFp * out_m_minus,DiyFp * out_m_plus)397   void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
398     DOUBLE_CONVERSION_ASSERT(value() > 0.0);
399     DiyFp v = this->AsDiyFp();
400     DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
401     DiyFp m_minus;
402     if (LowerBoundaryIsCloser()) {
403       m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
404     } else {
405       m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
406     }
407     m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
408     m_minus.set_e(m_plus.e());
409     *out_m_plus = m_plus;
410     *out_m_minus = m_minus;
411   }
412 
413   // Precondition: the value encoded by this Single must be greater or equal
414   // than +0.0.
UpperBoundary()415   DiyFp UpperBoundary() const {
416     DOUBLE_CONVERSION_ASSERT(Sign() > 0);
417     return DiyFp(Significand() * 2 + 1, Exponent() - 1);
418   }
419 
LowerBoundaryIsCloser()420   bool LowerBoundaryIsCloser() const {
421     // The boundary is closer if the significand is of the form f == 2^p-1 then
422     // the lower boundary is closer.
423     // Think of v = 1000e10 and v- = 9999e9.
424     // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
425     // at a distance of 1e8.
426     // The only exception is for the smallest normal: the largest denormal is
427     // at the same distance as its successor.
428     // Note: denormals have the same exponent as the smallest normals.
429     bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
430     return physical_significand_is_zero && (Exponent() != kDenormalExponent);
431   }
432 
value()433   float value() const { return uint32_to_float(d32_); }
434 
Infinity()435   static float Infinity() {
436     return Single(kInfinity).value();
437   }
438 
NaN()439   static float NaN() {
440     return Single(kNaN).value();
441   }
442 
443  private:
444   static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
445   static const int kDenormalExponent = -kExponentBias + 1;
446   static const int kMaxExponent = 0xFF - kExponentBias;
447   static const uint32_t kInfinity = 0x7F800000;
448 #if (defined(__mips__) && !defined(__mips_nan2008)) || defined(__hppa__)
449   static const uint32_t kNaN = 0x7FBFFFFF;
450 #else
451   static const uint32_t kNaN = 0x7FC00000;
452 #endif
453 
454   const uint32_t d32_;
455 
456   DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single);
457 };
458 
459 }  // namespace double_conversion
460 
461 // ICU PATCH: Close ICU namespace
462 U_NAMESPACE_END
463 
464 #endif  // DOUBLE_CONVERSION_DOUBLE_H_
465 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
466