• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include <algorithm>
29 #include <bitset>
30 #include <stack>
31 #include <vector>
32 
33 namespace aco {
34 namespace {
35 
36 struct State {
37    Program* program;
38    Block* block;
39    std::vector<aco_ptr<Instruction>> old_instructions;
40 };
41 
42 struct NOP_ctx_gfx6 {
joinaco::__anona977b2740111::NOP_ctx_gfx643    void join(const NOP_ctx_gfx6& other)
44    {
45       set_vskip_mode_then_vector =
46          MAX2(set_vskip_mode_then_vector, other.set_vskip_mode_then_vector);
47       valu_wr_vcc_then_vccz = MAX2(valu_wr_vcc_then_vccz, other.valu_wr_vcc_then_vccz);
48       valu_wr_exec_then_execz = MAX2(valu_wr_exec_then_execz, other.valu_wr_exec_then_execz);
49       valu_wr_vcc_then_div_fmas = MAX2(valu_wr_vcc_then_div_fmas, other.valu_wr_vcc_then_div_fmas);
50       salu_wr_m0_then_gds_msg_ttrace =
51          MAX2(salu_wr_m0_then_gds_msg_ttrace, other.salu_wr_m0_then_gds_msg_ttrace);
52       valu_wr_exec_then_dpp = MAX2(valu_wr_exec_then_dpp, other.valu_wr_exec_then_dpp);
53       salu_wr_m0_then_lds = MAX2(salu_wr_m0_then_lds, other.salu_wr_m0_then_lds);
54       salu_wr_m0_then_moverel = MAX2(salu_wr_m0_then_moverel, other.salu_wr_m0_then_moverel);
55       setreg_then_getsetreg = MAX2(setreg_then_getsetreg, other.setreg_then_getsetreg);
56       vmem_store_then_wr_data |= other.vmem_store_then_wr_data;
57       smem_clause |= other.smem_clause;
58       smem_write |= other.smem_write;
59       for (unsigned i = 0; i < BITSET_WORDS(128); i++) {
60          smem_clause_read_write[i] |= other.smem_clause_read_write[i];
61          smem_clause_write[i] |= other.smem_clause_write[i];
62       }
63    }
64 
operator ==aco::__anona977b2740111::NOP_ctx_gfx665    bool operator==(const NOP_ctx_gfx6& other)
66    {
67       return set_vskip_mode_then_vector == other.set_vskip_mode_then_vector &&
68              valu_wr_vcc_then_vccz == other.valu_wr_vcc_then_vccz &&
69              valu_wr_exec_then_execz == other.valu_wr_exec_then_execz &&
70              valu_wr_vcc_then_div_fmas == other.valu_wr_vcc_then_div_fmas &&
71              vmem_store_then_wr_data == other.vmem_store_then_wr_data &&
72              salu_wr_m0_then_gds_msg_ttrace == other.salu_wr_m0_then_gds_msg_ttrace &&
73              valu_wr_exec_then_dpp == other.valu_wr_exec_then_dpp &&
74              salu_wr_m0_then_lds == other.salu_wr_m0_then_lds &&
75              salu_wr_m0_then_moverel == other.salu_wr_m0_then_moverel &&
76              setreg_then_getsetreg == other.setreg_then_getsetreg &&
77              smem_clause == other.smem_clause && smem_write == other.smem_write &&
78              BITSET_EQUAL(smem_clause_read_write, other.smem_clause_read_write) &&
79              BITSET_EQUAL(smem_clause_write, other.smem_clause_write);
80    }
81 
add_wait_statesaco::__anona977b2740111::NOP_ctx_gfx682    void add_wait_states(unsigned amount)
83    {
84       if ((set_vskip_mode_then_vector -= amount) < 0)
85          set_vskip_mode_then_vector = 0;
86 
87       if ((valu_wr_vcc_then_vccz -= amount) < 0)
88          valu_wr_vcc_then_vccz = 0;
89 
90       if ((valu_wr_exec_then_execz -= amount) < 0)
91          valu_wr_exec_then_execz = 0;
92 
93       if ((valu_wr_vcc_then_div_fmas -= amount) < 0)
94          valu_wr_vcc_then_div_fmas = 0;
95 
96       if ((salu_wr_m0_then_gds_msg_ttrace -= amount) < 0)
97          salu_wr_m0_then_gds_msg_ttrace = 0;
98 
99       if ((valu_wr_exec_then_dpp -= amount) < 0)
100          valu_wr_exec_then_dpp = 0;
101 
102       if ((salu_wr_m0_then_lds -= amount) < 0)
103          salu_wr_m0_then_lds = 0;
104 
105       if ((salu_wr_m0_then_moverel -= amount) < 0)
106          salu_wr_m0_then_moverel = 0;
107 
108       if ((setreg_then_getsetreg -= amount) < 0)
109          setreg_then_getsetreg = 0;
110 
111       vmem_store_then_wr_data.reset();
112    }
113 
114    /* setting MODE.vskip and then any vector op requires 2 wait states */
115    int8_t set_vskip_mode_then_vector = 0;
116 
117    /* VALU writing VCC/EXEC and then a VALU reading VCCZ/EXECZ requires 5 wait states */
118    int8_t valu_wr_vcc_then_vccz = 0;
119    int8_t valu_wr_exec_then_execz = 0;
120 
121    /* VALU writing VCC followed by v_div_fmas require 4 wait states */
122    int8_t valu_wr_vcc_then_div_fmas = 0;
123 
124    /* SALU writing M0 followed by GDS, s_sendmsg or s_ttrace_data requires 1 wait state */
125    int8_t salu_wr_m0_then_gds_msg_ttrace = 0;
126 
127    /* VALU writing EXEC followed by DPP requires 5 wait states */
128    int8_t valu_wr_exec_then_dpp = 0;
129 
130    /* SALU writing M0 followed by some LDS instructions requires 1 wait state on GFX10 */
131    int8_t salu_wr_m0_then_lds = 0;
132 
133    /* SALU writing M0 followed by s_moverel requires 1 wait state on GFX9 */
134    int8_t salu_wr_m0_then_moverel = 0;
135 
136    /* s_setreg followed by a s_getreg/s_setreg of the same register needs 2 wait states
137     * currently we don't look at the actual register */
138    int8_t setreg_then_getsetreg = 0;
139 
140    /* some memory instructions writing >64bit followed by a instructions
141     * writing the VGPRs holding the writedata requires 1 wait state */
142    std::bitset<256> vmem_store_then_wr_data;
143 
144    /* we break up SMEM clauses that contain stores or overwrite an
145     * operand/definition of another instruction in the clause */
146    bool smem_clause = false;
147    bool smem_write = false;
148    BITSET_DECLARE(smem_clause_read_write, 128) = {0};
149    BITSET_DECLARE(smem_clause_write, 128) = {0};
150 };
151 
152 struct NOP_ctx_gfx10 {
153    bool has_VOPC = false;
154    bool has_nonVALU_exec_read = false;
155    bool has_VMEM = false;
156    bool has_branch_after_VMEM = false;
157    bool has_DS = false;
158    bool has_branch_after_DS = false;
159    bool has_NSA_MIMG = false;
160    bool has_writelane = false;
161    std::bitset<128> sgprs_read_by_VMEM;
162    std::bitset<128> sgprs_read_by_VMEM_store;
163    std::bitset<128> sgprs_read_by_DS;
164    std::bitset<128> sgprs_read_by_SMEM;
165 
joinaco::__anona977b2740111::NOP_ctx_gfx10166    void join(const NOP_ctx_gfx10& other)
167    {
168       has_VOPC |= other.has_VOPC;
169       has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
170       has_VMEM |= other.has_VMEM;
171       has_branch_after_VMEM |= other.has_branch_after_VMEM;
172       has_DS |= other.has_DS;
173       has_branch_after_DS |= other.has_branch_after_DS;
174       has_NSA_MIMG |= other.has_NSA_MIMG;
175       has_writelane |= other.has_writelane;
176       sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
177       sgprs_read_by_DS |= other.sgprs_read_by_DS;
178       sgprs_read_by_VMEM_store |= other.sgprs_read_by_VMEM_store;
179       sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
180    }
181 
operator ==aco::__anona977b2740111::NOP_ctx_gfx10182    bool operator==(const NOP_ctx_gfx10& other)
183    {
184       return has_VOPC == other.has_VOPC && has_nonVALU_exec_read == other.has_nonVALU_exec_read &&
185              has_VMEM == other.has_VMEM && has_branch_after_VMEM == other.has_branch_after_VMEM &&
186              has_DS == other.has_DS && has_branch_after_DS == other.has_branch_after_DS &&
187              has_NSA_MIMG == other.has_NSA_MIMG && has_writelane == other.has_writelane &&
188              sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
189              sgprs_read_by_DS == other.sgprs_read_by_DS &&
190              sgprs_read_by_VMEM_store == other.sgprs_read_by_VMEM_store &&
191              sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
192    }
193 };
194 
195 int
get_wait_states(aco_ptr<Instruction> & instr)196 get_wait_states(aco_ptr<Instruction>& instr)
197 {
198    if (instr->opcode == aco_opcode::s_nop)
199       return instr->sopp().imm + 1;
200    else if (instr->opcode == aco_opcode::p_constaddr)
201       return 3; /* lowered to 3 instructions in the assembler */
202    else
203       return 1;
204 }
205 
206 bool
regs_intersect(PhysReg a_reg,unsigned a_size,PhysReg b_reg,unsigned b_size)207 regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
208 {
209    return a_reg > b_reg ? (a_reg - b_reg < b_size) : (b_reg - a_reg < a_size);
210 }
211 
212 template <bool Valu, bool Vintrp, bool Salu>
213 bool
handle_raw_hazard_instr(aco_ptr<Instruction> & pred,PhysReg reg,int * nops_needed,uint32_t * mask)214 handle_raw_hazard_instr(aco_ptr<Instruction>& pred, PhysReg reg, int* nops_needed, uint32_t* mask)
215 {
216    unsigned mask_size = util_last_bit(*mask);
217 
218    uint32_t writemask = 0;
219    for (Definition& def : pred->definitions) {
220       if (regs_intersect(reg, mask_size, def.physReg(), def.size())) {
221          unsigned start = def.physReg() > reg ? def.physReg() - reg : 0;
222          unsigned end = MIN2(mask_size, start + def.size());
223          writemask |= u_bit_consecutive(start, end - start);
224       }
225    }
226 
227    bool is_hazard = writemask != 0 && ((pred->isVALU() && Valu) || (pred->isVINTRP() && Vintrp) ||
228                                        (pred->isSALU() && Salu));
229    if (is_hazard)
230       return true;
231 
232    *mask &= ~writemask;
233    *nops_needed = MAX2(*nops_needed - get_wait_states(pred), 0);
234 
235    if (*mask == 0)
236       *nops_needed = 0;
237 
238    return *nops_needed == 0;
239 }
240 
241 template <bool Valu, bool Vintrp, bool Salu>
242 int
handle_raw_hazard_internal(State & state,Block * block,int nops_needed,PhysReg reg,uint32_t mask,bool start_at_end)243 handle_raw_hazard_internal(State& state, Block* block, int nops_needed, PhysReg reg, uint32_t mask,
244                            bool start_at_end)
245 {
246    if (block == state.block && start_at_end) {
247       /* If it's the current block, block->instructions is incomplete. */
248       for (int pred_idx = state.old_instructions.size() - 1; pred_idx >= 0; pred_idx--) {
249          aco_ptr<Instruction>& instr = state.old_instructions[pred_idx];
250          if (!instr)
251             break; /* Instruction has been moved to block->instructions. */
252          if (handle_raw_hazard_instr<Valu, Vintrp, Salu>(instr, reg, &nops_needed, &mask))
253             return nops_needed;
254       }
255    }
256    for (int pred_idx = block->instructions.size() - 1; pred_idx >= 0; pred_idx--) {
257       if (handle_raw_hazard_instr<Valu, Vintrp, Salu>(block->instructions[pred_idx], reg,
258                                                       &nops_needed, &mask))
259          return nops_needed;
260    }
261 
262    int res = 0;
263 
264    /* Loops require branch instructions, which count towards the wait
265     * states. So even with loops this should finish unless nops_needed is some
266     * huge value. */
267    for (unsigned lin_pred : block->linear_preds) {
268       res =
269          std::max(res, handle_raw_hazard_internal<Valu, Vintrp, Salu>(
270                           state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true));
271    }
272    return res;
273 }
274 
275 template <bool Valu, bool Vintrp, bool Salu>
276 void
handle_raw_hazard(State & state,int * NOPs,int min_states,Operand op)277 handle_raw_hazard(State& state, int* NOPs, int min_states, Operand op)
278 {
279    if (*NOPs >= min_states)
280       return;
281    int res = handle_raw_hazard_internal<Valu, Vintrp, Salu>(
282       state, state.block, min_states, op.physReg(), u_bit_consecutive(0, op.size()), false);
283    *NOPs = MAX2(*NOPs, res);
284 }
285 
286 static auto handle_valu_then_read_hazard = handle_raw_hazard<true, true, false>;
287 static auto handle_vintrp_then_read_hazard = handle_raw_hazard<false, true, false>;
288 static auto handle_valu_salu_then_read_hazard = handle_raw_hazard<true, true, true>;
289 
290 void
set_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)291 set_bitset_range(BITSET_WORD* words, unsigned start, unsigned size)
292 {
293    unsigned end = start + size - 1;
294    unsigned start_mod = start % BITSET_WORDBITS;
295    if (start_mod + size <= BITSET_WORDBITS) {
296       BITSET_SET_RANGE_INSIDE_WORD(words, start, end);
297    } else {
298       unsigned first_size = BITSET_WORDBITS - start_mod;
299       set_bitset_range(words, start, BITSET_WORDBITS - start_mod);
300       set_bitset_range(words, start + first_size, size - first_size);
301    }
302 }
303 
304 bool
test_bitset_range(BITSET_WORD * words,unsigned start,unsigned size)305 test_bitset_range(BITSET_WORD* words, unsigned start, unsigned size)
306 {
307    unsigned end = start + size - 1;
308    unsigned start_mod = start % BITSET_WORDBITS;
309    if (start_mod + size <= BITSET_WORDBITS) {
310       return BITSET_TEST_RANGE(words, start, end);
311    } else {
312       unsigned first_size = BITSET_WORDBITS - start_mod;
313       return test_bitset_range(words, start, BITSET_WORDBITS - start_mod) ||
314              test_bitset_range(words, start + first_size, size - first_size);
315    }
316 }
317 
318 /* A SMEM clause is any group of consecutive SMEM instructions. The
319  * instructions in this group may return out of order and/or may be replayed.
320  *
321  * To fix this potential hazard correctly, we have to make sure that when a
322  * clause has more than one instruction, no instruction in the clause writes
323  * to a register that is read by another instruction in the clause (including
324  * itself). In this case, we have to break the SMEM clause by inserting non
325  * SMEM instructions.
326  *
327  * SMEM clauses are only present on GFX8+, and only matter when XNACK is set.
328  */
329 void
handle_smem_clause_hazards(Program * program,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,int * NOPs)330 handle_smem_clause_hazards(Program* program, NOP_ctx_gfx6& ctx, aco_ptr<Instruction>& instr,
331                            int* NOPs)
332 {
333    /* break off from previous SMEM clause if needed */
334    if (!*NOPs & (ctx.smem_clause || ctx.smem_write)) {
335       /* Don't allow clauses with store instructions since the clause's
336        * instructions may use the same address. */
337       if (ctx.smem_write || instr->definitions.empty() ||
338           instr_info.is_atomic[(unsigned)instr->opcode]) {
339          *NOPs = 1;
340       } else if (program->dev.xnack_enabled) {
341          for (Operand op : instr->operands) {
342             if (!op.isConstant() &&
343                 test_bitset_range(ctx.smem_clause_write, op.physReg(), op.size())) {
344                *NOPs = 1;
345                break;
346             }
347          }
348 
349          Definition def = instr->definitions[0];
350          if (!*NOPs && test_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size()))
351             *NOPs = 1;
352       }
353    }
354 }
355 
356 /* TODO: we don't handle accessing VCC using the actual SGPR instead of using the alias */
357 void
handle_instruction_gfx6(State & state,NOP_ctx_gfx6 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)358 handle_instruction_gfx6(State& state, NOP_ctx_gfx6& ctx, aco_ptr<Instruction>& instr,
359                         std::vector<aco_ptr<Instruction>>& new_instructions)
360 {
361    /* check hazards */
362    int NOPs = 0;
363 
364    if (instr->isSMEM()) {
365       if (state.program->gfx_level == GFX6) {
366          /* A read of an SGPR by SMRD instruction requires 4 wait states
367           * when the SGPR was written by a VALU instruction. According to LLVM,
368           * there is also an undocumented hardware behavior when the buffer
369           * descriptor is written by a SALU instruction */
370          for (unsigned i = 0; i < instr->operands.size(); i++) {
371             Operand op = instr->operands[i];
372             if (op.isConstant())
373                continue;
374 
375             bool is_buffer_desc = i == 0 && op.size() > 2;
376             if (is_buffer_desc)
377                handle_valu_salu_then_read_hazard(state, &NOPs, 4, op);
378             else
379                handle_valu_then_read_hazard(state, &NOPs, 4, op);
380          }
381       }
382 
383       handle_smem_clause_hazards(state.program, ctx, instr, &NOPs);
384    } else if (instr->isSALU()) {
385       if (instr->opcode == aco_opcode::s_setreg_b32 ||
386           instr->opcode == aco_opcode::s_setreg_imm32_b32 ||
387           instr->opcode == aco_opcode::s_getreg_b32) {
388          NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg);
389       }
390 
391       if (state.program->gfx_level == GFX9) {
392          if (instr->opcode == aco_opcode::s_movrels_b32 ||
393              instr->opcode == aco_opcode::s_movrels_b64 ||
394              instr->opcode == aco_opcode::s_movreld_b32 ||
395              instr->opcode == aco_opcode::s_movreld_b64) {
396             NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel);
397          }
398       }
399 
400       if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_ttracedata)
401          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
402    } else if (instr->isDS() && instr->ds().gds) {
403       NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace);
404    } else if (instr->isVALU() || instr->isVINTRP()) {
405       for (Operand op : instr->operands) {
406          if (op.physReg() == vccz)
407             NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_vccz);
408          if (op.physReg() == execz)
409             NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_execz);
410       }
411 
412       if (instr->isDPP()) {
413          NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp);
414          handle_valu_then_read_hazard(state, &NOPs, 2, instr->operands[0]);
415       }
416 
417       for (Definition def : instr->definitions) {
418          if (def.regClass().type() != RegType::sgpr) {
419             for (unsigned i = 0; i < def.size(); i++)
420                NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data[(def.physReg() & 0xff) + i]);
421          }
422       }
423 
424       if ((instr->opcode == aco_opcode::v_readlane_b32 ||
425            instr->opcode == aco_opcode::v_readlane_b32_e64 ||
426            instr->opcode == aco_opcode::v_writelane_b32 ||
427            instr->opcode == aco_opcode::v_writelane_b32_e64) &&
428           !instr->operands[1].isConstant()) {
429          handle_valu_then_read_hazard(state, &NOPs, 4, instr->operands[1]);
430       }
431 
432       /* It's required to insert 1 wait state if the dst VGPR of any v_interp_*
433        * is followed by a read with v_readfirstlane or v_readlane to fix GPU
434        * hangs on GFX6. Note that v_writelane_* is apparently not affected.
435        * This hazard isn't documented anywhere but AMD confirmed that hazard.
436        */
437       if (state.program->gfx_level == GFX6 &&
438           (instr->opcode == aco_opcode::v_readlane_b32 || /* GFX6 doesn't have v_readlane_b32_e64 */
439            instr->opcode == aco_opcode::v_readfirstlane_b32)) {
440          handle_vintrp_then_read_hazard(state, &NOPs, 1, instr->operands[0]);
441       }
442 
443       if (instr->opcode == aco_opcode::v_div_fmas_f32 ||
444           instr->opcode == aco_opcode::v_div_fmas_f64)
445          NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas);
446    } else if (instr->isVMEM() || instr->isFlatLike()) {
447       /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
448       for (Operand op : instr->operands) {
449          if (!op.isConstant() && !op.isUndefined() && op.regClass().type() == RegType::sgpr)
450             handle_valu_then_read_hazard(state, &NOPs, 5, op);
451       }
452    }
453 
454    if (!instr->isSALU() && instr->format != Format::SMEM)
455       NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector);
456 
457    if (state.program->gfx_level == GFX9) {
458       bool lds_scratch_global = (instr->isScratch() || instr->isGlobal()) && instr->flatlike().lds;
459       if (instr->isVINTRP() || lds_scratch_global ||
460           instr->opcode == aco_opcode::ds_read_addtid_b32 ||
461           instr->opcode == aco_opcode::ds_write_addtid_b32 ||
462           instr->opcode == aco_opcode::buffer_store_lds_dword) {
463          NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds);
464       }
465    }
466 
467    ctx.add_wait_states(NOPs + get_wait_states(instr));
468 
469    // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles
470    if (NOPs) {
471       /* create NOP */
472       aco_ptr<SOPP_instruction> nop{
473          create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
474       nop->imm = NOPs - 1;
475       nop->block = -1;
476       new_instructions.emplace_back(std::move(nop));
477    }
478 
479    /* update information to check for later hazards */
480    if ((ctx.smem_clause || ctx.smem_write) && (NOPs || instr->format != Format::SMEM)) {
481       ctx.smem_clause = false;
482       ctx.smem_write = false;
483 
484       if (state.program->dev.xnack_enabled) {
485          BITSET_ZERO(ctx.smem_clause_read_write);
486          BITSET_ZERO(ctx.smem_clause_write);
487       }
488    }
489 
490    if (instr->isSMEM()) {
491       if (instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) {
492          ctx.smem_write = true;
493       } else {
494          ctx.smem_clause = true;
495 
496          if (state.program->dev.xnack_enabled) {
497             for (Operand op : instr->operands) {
498                if (!op.isConstant()) {
499                   set_bitset_range(ctx.smem_clause_read_write, op.physReg(), op.size());
500                }
501             }
502 
503             Definition def = instr->definitions[0];
504             set_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size());
505             set_bitset_range(ctx.smem_clause_write, def.physReg(), def.size());
506          }
507       }
508    } else if (instr->isVALU()) {
509       for (Definition def : instr->definitions) {
510          if (def.regClass().type() == RegType::sgpr) {
511             if (def.physReg() == vcc || def.physReg() == vcc_hi) {
512                ctx.valu_wr_vcc_then_vccz = 5;
513                ctx.valu_wr_vcc_then_div_fmas = 4;
514             }
515             if (def.physReg() == exec || def.physReg() == exec_hi) {
516                ctx.valu_wr_exec_then_execz = 5;
517                ctx.valu_wr_exec_then_dpp = 5;
518             }
519          }
520       }
521    } else if (instr->isSALU() && !instr->definitions.empty()) {
522       if (!instr->definitions.empty()) {
523          /* all other definitions should be SCC */
524          Definition def = instr->definitions[0];
525          if (def.physReg() == m0) {
526             ctx.salu_wr_m0_then_gds_msg_ttrace = 1;
527             ctx.salu_wr_m0_then_lds = 1;
528             ctx.salu_wr_m0_then_moverel = 1;
529          }
530       } else if (instr->opcode == aco_opcode::s_setreg_b32 ||
531                  instr->opcode == aco_opcode::s_setreg_imm32_b32) {
532          SOPK_instruction& sopk = instr->sopk();
533          unsigned offset = (sopk.imm >> 6) & 0x1f;
534          unsigned size = ((sopk.imm >> 11) & 0x1f) + 1;
535          unsigned reg = sopk.imm & 0x3f;
536          ctx.setreg_then_getsetreg = 2;
537 
538          if (reg == 1 && offset >= 28 && size > (28 - offset))
539             ctx.set_vskip_mode_then_vector = 2;
540       }
541    } else if (instr->isVMEM() || instr->isFlatLike()) {
542       /* >64-bit MUBUF/MTBUF store with a constant in SOFFSET */
543       bool consider_buf = (instr->isMUBUF() || instr->isMTBUF()) && instr->operands.size() == 4 &&
544                           instr->operands[3].size() > 2 && instr->operands[2].physReg() >= 128;
545       /* MIMG store with a 128-bit T# with more than two bits set in dmask (making it a >64-bit
546        * store) */
547       bool consider_mimg = instr->isMIMG() &&
548                            instr->operands[1].regClass().type() == RegType::vgpr &&
549                            instr->operands[1].size() > 2 && instr->operands[0].size() == 4;
550       /* FLAT/GLOBAL/SCRATCH store with >64-bit data */
551       bool consider_flat =
552          instr->isFlatLike() && instr->operands.size() == 3 && instr->operands[2].size() > 2;
553       if (consider_buf || consider_mimg || consider_flat) {
554          PhysReg wrdata = instr->operands[consider_flat ? 2 : 3].physReg();
555          unsigned size = instr->operands[consider_flat ? 2 : 3].size();
556          for (unsigned i = 0; i < size; i++)
557             ctx.vmem_store_then_wr_data[(wrdata & 0xff) + i] = 1;
558       }
559    }
560 }
561 
562 template <std::size_t N>
563 bool
check_written_regs(const aco_ptr<Instruction> & instr,const std::bitset<N> & check_regs)564 check_written_regs(const aco_ptr<Instruction>& instr, const std::bitset<N>& check_regs)
565 {
566    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
567                       [&check_regs](const Definition& def) -> bool
568                       {
569                          bool writes_any = false;
570                          for (unsigned i = 0; i < def.size(); i++) {
571                             unsigned def_reg = def.physReg() + i;
572                             writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
573                          }
574                          return writes_any;
575                       });
576 }
577 
578 template <std::size_t N>
579 void
mark_read_regs(const aco_ptr<Instruction> & instr,std::bitset<N> & reg_reads)580 mark_read_regs(const aco_ptr<Instruction>& instr, std::bitset<N>& reg_reads)
581 {
582    for (const Operand& op : instr->operands) {
583       for (unsigned i = 0; i < op.size(); i++) {
584          unsigned reg = op.physReg() + i;
585          if (reg < reg_reads.size())
586             reg_reads.set(reg);
587       }
588    }
589 }
590 
591 template <std::size_t N>
592 void
mark_read_regs_exec(State & state,const aco_ptr<Instruction> & instr,std::bitset<N> & reg_reads)593 mark_read_regs_exec(State& state, const aco_ptr<Instruction>& instr, std::bitset<N>& reg_reads)
594 {
595    mark_read_regs(instr, reg_reads);
596    reg_reads.set(exec);
597    if (state.program->wave_size == 64)
598       reg_reads.set(exec_hi);
599 }
600 
601 bool
VALU_writes_sgpr(aco_ptr<Instruction> & instr)602 VALU_writes_sgpr(aco_ptr<Instruction>& instr)
603 {
604    if (instr->isVOPC())
605       return true;
606    if (instr->isVOP3() && instr->definitions.size() == 2)
607       return true;
608    if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
609        instr->opcode == aco_opcode::v_readlane_b32 ||
610        instr->opcode == aco_opcode::v_readlane_b32_e64)
611       return true;
612    return false;
613 }
614 
615 bool
instr_writes_exec(const aco_ptr<Instruction> & instr)616 instr_writes_exec(const aco_ptr<Instruction>& instr)
617 {
618    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
619                       [](const Definition& def) -> bool
620                       { return def.physReg() == exec_lo || def.physReg() == exec_hi; });
621 }
622 
623 bool
instr_writes_sgpr(const aco_ptr<Instruction> & instr)624 instr_writes_sgpr(const aco_ptr<Instruction>& instr)
625 {
626    return std::any_of(instr->definitions.begin(), instr->definitions.end(),
627                       [](const Definition& def) -> bool
628                       { return def.getTemp().type() == RegType::sgpr; });
629 }
630 
631 inline bool
instr_is_branch(const aco_ptr<Instruction> & instr)632 instr_is_branch(const aco_ptr<Instruction>& instr)
633 {
634    return instr->opcode == aco_opcode::s_branch || instr->opcode == aco_opcode::s_cbranch_scc0 ||
635           instr->opcode == aco_opcode::s_cbranch_scc1 ||
636           instr->opcode == aco_opcode::s_cbranch_vccz ||
637           instr->opcode == aco_opcode::s_cbranch_vccnz ||
638           instr->opcode == aco_opcode::s_cbranch_execz ||
639           instr->opcode == aco_opcode::s_cbranch_execnz ||
640           instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
641           instr->opcode == aco_opcode::s_cbranch_cdbguser ||
642           instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
643           instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
644           instr->opcode == aco_opcode::s_subvector_loop_begin ||
645           instr->opcode == aco_opcode::s_subvector_loop_end ||
646           instr->opcode == aco_opcode::s_setpc_b64 || instr->opcode == aco_opcode::s_swappc_b64 ||
647           instr->opcode == aco_opcode::s_getpc_b64 || instr->opcode == aco_opcode::s_call_b64;
648 }
649 
650 void
handle_instruction_gfx10(State & state,NOP_ctx_gfx10 & ctx,aco_ptr<Instruction> & instr,std::vector<aco_ptr<Instruction>> & new_instructions)651 handle_instruction_gfx10(State& state, NOP_ctx_gfx10& ctx, aco_ptr<Instruction>& instr,
652                          std::vector<aco_ptr<Instruction>>& new_instructions)
653 {
654    // TODO: s_dcache_inv needs to be in it's own group on GFX10
655 
656    /* VMEMtoScalarWriteHazard
657     * Handle EXEC/M0/SGPR write following a VMEM/DS instruction without a VALU or "waitcnt vmcnt(0)"
658     * in-between.
659     */
660    if (instr->isVMEM() || instr->isFlatLike() || instr->isDS()) {
661       /* Remember all SGPRs that are read by the VMEM/DS instruction */
662       if (instr->isVMEM() || instr->isFlatLike())
663          mark_read_regs_exec(
664             state, instr,
665             instr->definitions.empty() ? ctx.sgprs_read_by_VMEM_store : ctx.sgprs_read_by_VMEM);
666       if (instr->isFlat() || instr->isDS())
667          mark_read_regs_exec(state, instr, ctx.sgprs_read_by_DS);
668    } else if (instr->isSALU() || instr->isSMEM()) {
669       if (instr->opcode == aco_opcode::s_waitcnt) {
670          wait_imm imm(state.program->gfx_level, instr->sopp().imm);
671          if (imm.vm == 0)
672             ctx.sgprs_read_by_VMEM.reset();
673       } else if (instr->opcode == aco_opcode::s_waitcnt_depctr && instr->sopp().imm == 0xffe3) {
674          /* Hazard is mitigated by a s_waitcnt_depctr with a magic imm */
675          ctx.sgprs_read_by_VMEM.reset();
676          ctx.sgprs_read_by_DS.reset();
677          ctx.sgprs_read_by_VMEM_store.reset();
678       }
679 
680       /* Check if SALU writes an SGPR that was previously read by the VALU */
681       if (check_written_regs(instr, ctx.sgprs_read_by_VMEM) ||
682           check_written_regs(instr, ctx.sgprs_read_by_DS) ||
683           check_written_regs(instr, ctx.sgprs_read_by_VMEM_store)) {
684          ctx.sgprs_read_by_VMEM.reset();
685          ctx.sgprs_read_by_DS.reset();
686          ctx.sgprs_read_by_VMEM_store.reset();
687 
688          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
689          aco_ptr<SOPP_instruction> depctr{
690             create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
691          depctr->imm = 0xffe3;
692          depctr->block = -1;
693          new_instructions.emplace_back(std::move(depctr));
694       }
695    } else if (instr->isVALU()) {
696       /* Hazard is mitigated by any VALU instruction */
697       ctx.sgprs_read_by_VMEM.reset();
698       ctx.sgprs_read_by_DS.reset();
699       ctx.sgprs_read_by_VMEM_store.reset();
700    }
701 
702    /* VcmpxPermlaneHazard
703     * Handle any permlane following a VOPC instruction, insert v_mov between them.
704     */
705    if (instr->isVOPC()) {
706       ctx.has_VOPC = true;
707    } else if (ctx.has_VOPC && (instr->opcode == aco_opcode::v_permlane16_b32 ||
708                                instr->opcode == aco_opcode::v_permlanex16_b32)) {
709       ctx.has_VOPC = false;
710 
711       /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
712       aco_ptr<VOP1_instruction> v_mov{
713          create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
714       v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
715       v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
716       new_instructions.emplace_back(std::move(v_mov));
717    } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
718       ctx.has_VOPC = false;
719    }
720 
721    /* VcmpxExecWARHazard
722     * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
723     */
724    if (!instr->isVALU() && instr->reads_exec()) {
725       ctx.has_nonVALU_exec_read = true;
726    } else if (instr->isVALU()) {
727       if (instr_writes_exec(instr)) {
728          ctx.has_nonVALU_exec_read = false;
729 
730          /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
731          aco_ptr<SOPP_instruction> depctr{
732             create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)};
733          depctr->imm = 0xfffe;
734          depctr->block = -1;
735          new_instructions.emplace_back(std::move(depctr));
736       } else if (instr_writes_sgpr(instr)) {
737          /* Any VALU instruction that writes an SGPR mitigates the problem */
738          ctx.has_nonVALU_exec_read = false;
739       }
740    } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
741       /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
742       if ((instr->sopp().imm & 0xfffe) == 0xfffe)
743          ctx.has_nonVALU_exec_read = false;
744    }
745 
746    /* SMEMtoVectorWriteHazard
747     * Handle any VALU instruction writing an SGPR after an SMEM reads it.
748     */
749    if (instr->isSMEM()) {
750       /* Remember all SGPRs that are read by the SMEM instruction */
751       mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
752    } else if (VALU_writes_sgpr(instr)) {
753       /* Check if VALU writes an SGPR that was previously read by SMEM */
754       if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
755          ctx.sgprs_read_by_SMEM.reset();
756 
757          /* Insert s_mov to mitigate the problem */
758          aco_ptr<SOP1_instruction> s_mov{
759             create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
760          s_mov->definitions[0] = Definition(sgpr_null, s1);
761          s_mov->operands[0] = Operand::zero();
762          new_instructions.emplace_back(std::move(s_mov));
763       }
764    } else if (instr->isSALU()) {
765       if (instr->format != Format::SOPP) {
766          /* SALU can mitigate the hazard */
767          ctx.sgprs_read_by_SMEM.reset();
768       } else {
769          /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
770          const SOPP_instruction& sopp = instr->sopp();
771          if (sopp.opcode == aco_opcode::s_waitcnt_lgkmcnt) {
772             if (sopp.imm == 0 && sopp.definitions[0].physReg() == sgpr_null)
773                ctx.sgprs_read_by_SMEM.reset();
774          } else if (sopp.opcode == aco_opcode::s_waitcnt) {
775             unsigned lgkm = (sopp.imm >> 8) & 0x3f;
776             if (lgkm == 0)
777                ctx.sgprs_read_by_SMEM.reset();
778          }
779       }
780    }
781 
782    /* LdsBranchVmemWARHazard
783     * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
784     */
785    if (instr->isVMEM() || instr->isGlobal() || instr->isScratch()) {
786       ctx.has_VMEM = true;
787       ctx.has_branch_after_VMEM = false;
788       /* Mitigation for DS is needed only if there was already a branch after */
789       ctx.has_DS = ctx.has_branch_after_DS;
790    } else if (instr->isDS()) {
791       ctx.has_DS = true;
792       ctx.has_branch_after_DS = false;
793       /* Mitigation for VMEM is needed only if there was already a branch after */
794       ctx.has_VMEM = ctx.has_branch_after_VMEM;
795    } else if (instr_is_branch(instr)) {
796       ctx.has_branch_after_VMEM = ctx.has_VMEM;
797       ctx.has_branch_after_DS = ctx.has_DS;
798    } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
799       /* Only s_waitcnt_vscnt can mitigate the hazard */
800       const SOPK_instruction& sopk = instr->sopk();
801       if (sopk.definitions[0].physReg() == sgpr_null && sopk.imm == 0)
802          ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
803    }
804    if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) {
805       ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
806 
807       /* Insert s_waitcnt_vscnt to mitigate the problem */
808       aco_ptr<SOPK_instruction> wait{
809          create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)};
810       wait->definitions[0] = Definition(sgpr_null, s1);
811       wait->imm = 0;
812       new_instructions.emplace_back(std::move(wait));
813 
814       ctx.has_VMEM = instr->isVMEM() || instr->isGlobal() || instr->isScratch();
815       ctx.has_DS = instr->isDS();
816    }
817 
818    /* NSAToVMEMBug
819     * Handles NSA MIMG (4 or more dwords) immediately followed by MUBUF/MTBUF (with offset[2:1] !=
820     * 0).
821     */
822    if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 1) {
823       ctx.has_NSA_MIMG = true;
824    } else if (ctx.has_NSA_MIMG) {
825       ctx.has_NSA_MIMG = false;
826 
827       if (instr->isMUBUF() || instr->isMTBUF()) {
828          uint32_t offset = instr->isMUBUF() ? instr->mubuf().offset : instr->mtbuf().offset;
829          if (offset & 6)
830             Builder(state.program, &new_instructions).sopp(aco_opcode::s_nop, -1, 0);
831       }
832    }
833 
834    /* waNsaCannotFollowWritelane
835     * Handles NSA MIMG immediately following a v_writelane_b32.
836     */
837    if (instr->opcode == aco_opcode::v_writelane_b32_e64) {
838       ctx.has_writelane = true;
839    } else if (ctx.has_writelane) {
840       ctx.has_writelane = false;
841       if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 0)
842          Builder(state.program, &new_instructions).sopp(aco_opcode::s_nop, -1, 0);
843    }
844 }
845 
846 template <typename Ctx>
847 using HandleInstr = void (*)(State& state, Ctx&, aco_ptr<Instruction>&,
848                              std::vector<aco_ptr<Instruction>>&);
849 
850 template <typename Ctx, HandleInstr<Ctx> Handle>
851 void
handle_block(Program * program,Ctx & ctx,Block & block)852 handle_block(Program* program, Ctx& ctx, Block& block)
853 {
854    if (block.instructions.empty())
855       return;
856 
857    State state;
858    state.program = program;
859    state.block = &block;
860    state.old_instructions = std::move(block.instructions);
861 
862    block.instructions.clear(); // Silence clang-analyzer-cplusplus.Move warning
863    block.instructions.reserve(state.old_instructions.size());
864 
865    for (aco_ptr<Instruction>& instr : state.old_instructions) {
866       Handle(state, ctx, instr, block.instructions);
867       block.instructions.emplace_back(std::move(instr));
868    }
869 }
870 
871 template <typename Ctx, HandleInstr<Ctx> Handle>
872 void
mitigate_hazards(Program * program)873 mitigate_hazards(Program* program)
874 {
875    std::vector<Ctx> all_ctx(program->blocks.size());
876    std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
877 
878    for (unsigned i = 0; i < program->blocks.size(); i++) {
879       Block& block = program->blocks[i];
880       Ctx& ctx = all_ctx[i];
881 
882       if (block.kind & block_kind_loop_header) {
883          loop_header_indices.push(i);
884       } else if (block.kind & block_kind_loop_exit) {
885          /* Go through the whole loop again */
886          for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
887             Ctx loop_block_ctx;
888             for (unsigned b : program->blocks[idx].linear_preds)
889                loop_block_ctx.join(all_ctx[b]);
890 
891             handle_block<Ctx, Handle>(program, loop_block_ctx, program->blocks[idx]);
892 
893             /* We only need to continue if the loop header context changed */
894             if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
895                break;
896 
897             all_ctx[idx] = loop_block_ctx;
898          }
899 
900          loop_header_indices.pop();
901       }
902 
903       for (unsigned b : block.linear_preds)
904          ctx.join(all_ctx[b]);
905 
906       handle_block<Ctx, Handle>(program, ctx, block);
907    }
908 }
909 
910 } /* end namespace */
911 
912 void
insert_NOPs(Program * program)913 insert_NOPs(Program* program)
914 {
915    if (program->gfx_level >= GFX10_3)
916       ; /* no hazards/bugs to mitigate */
917    else if (program->gfx_level >= GFX10)
918       mitigate_hazards<NOP_ctx_gfx10, handle_instruction_gfx10>(program);
919    else
920       mitigate_hazards<NOP_ctx_gfx6, handle_instruction_gfx6>(program);
921 }
922 
923 } // namespace aco
924