• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include "util/u_math.h"
29 
30 #include <set>
31 #include <vector>
32 
33 namespace aco {
34 
35 namespace {
36 
37 enum WQMState : uint8_t {
38    Unspecified = 0,
39    Exact = 1 << 0,
40    WQM = 1 << 1, /* with control flow applied */
41 };
42 
43 enum mask_type : uint8_t {
44    mask_type_global = 1 << 0,
45    mask_type_exact = 1 << 1,
46    mask_type_wqm = 1 << 2,
47    mask_type_loop = 1 << 3, /* active lanes of a loop */
48 };
49 
50 struct wqm_ctx {
51    Program* program;
52    /* state for WQM propagation */
53    std::set<unsigned> worklist;
54    std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
wqm_ctxaco::__anon2b87fe440111::wqm_ctx55    wqm_ctx(Program* program_)
56        : program(program_), branch_wqm(program->blocks.size())
57    {
58       for (unsigned i = 0; i < program->blocks.size(); i++)
59          worklist.insert(i);
60    }
61 };
62 
63 struct loop_info {
64    Block* loop_header;
65    uint16_t num_exec_masks;
66    bool has_divergent_break;
67    bool has_divergent_continue;
68    bool has_discard; /* has a discard or demote */
loop_infoaco::__anon2b87fe440111::loop_info69    loop_info(Block* b, uint16_t num, bool breaks, bool cont, bool discard)
70        : loop_header(b), num_exec_masks(num), has_divergent_break(breaks),
71          has_divergent_continue(cont), has_discard(discard)
72    {}
73 };
74 
75 struct block_info {
76    std::vector<std::pair<Operand, uint8_t>>
77       exec; /* Vector of exec masks. Either a temporary or const -1. */
78    std::vector<WQMState> instr_needs;
79    uint8_t block_needs;
80 };
81 
82 struct exec_ctx {
83    Program* program;
84    std::vector<block_info> info;
85    std::vector<loop_info> loop;
86    bool handle_wqm = false;
exec_ctxaco::__anon2b87fe440111::exec_ctx87    exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {}
88 };
89 
90 bool
needs_exact(aco_ptr<Instruction> & instr)91 needs_exact(aco_ptr<Instruction>& instr)
92 {
93    if (instr->isMUBUF()) {
94       return instr->mubuf().disable_wqm;
95    } else if (instr->isMTBUF()) {
96       return instr->mtbuf().disable_wqm;
97    } else if (instr->isMIMG()) {
98       return instr->mimg().disable_wqm;
99    } else if (instr->isFlatLike()) {
100       return instr->flatlike().disable_wqm;
101    } else {
102       /* Require Exact for p_jump_to_epilog because if p_exit_early_if is
103        * emitted inside the same block, the main FS will always jump to the PS
104        * epilog without considering the exec mask.
105        */
106       return instr->isEXP() || instr->opcode == aco_opcode::p_jump_to_epilog;
107    }
108 }
109 
110 void
mark_block_wqm(wqm_ctx & ctx,unsigned block_idx)111 mark_block_wqm(wqm_ctx& ctx, unsigned block_idx)
112 {
113    if (ctx.branch_wqm[block_idx])
114       return;
115 
116    for (Block& block : ctx.program->blocks) {
117       if (block.index >= block_idx && block.kind & block_kind_top_level)
118          break;
119       ctx.branch_wqm[block.index] = true;
120       ctx.worklist.insert(block.index);
121    }
122 }
123 
124 void
get_block_needs(wqm_ctx & ctx,exec_ctx & exec_ctx,Block * block)125 get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block)
126 {
127    block_info& info = exec_ctx.info[block->index];
128 
129    std::vector<WQMState> instr_needs(block->instructions.size());
130 
131    bool propagate_wqm = ctx.branch_wqm[block->index];
132    for (int i = block->instructions.size() - 1; i >= 0; --i) {
133       aco_ptr<Instruction>& instr = block->instructions[i];
134 
135       if (instr->opcode == aco_opcode::p_wqm)
136          propagate_wqm = true;
137 
138       bool pred_by_exec = needs_exec_mask(instr.get()) ||
139                           instr->opcode == aco_opcode::p_logical_end ||
140                           instr->isBranch();
141 
142       if (needs_exact(instr))
143          instr_needs[i] = Exact;
144       else if (propagate_wqm && pred_by_exec)
145          instr_needs[i] = WQM;
146       else
147          instr_needs[i] = Unspecified;
148 
149       info.block_needs |= instr_needs[i];
150    }
151 
152    info.instr_needs = instr_needs;
153 
154    /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
155     * <cond> should be computed in WQM */
156    if (info.block_needs & WQM) {
157       mark_block_wqm(ctx, block->index);
158    }
159 }
160 
161 void
calculate_wqm_needs(exec_ctx & exec_ctx)162 calculate_wqm_needs(exec_ctx& exec_ctx)
163 {
164    wqm_ctx ctx(exec_ctx.program);
165 
166    while (!ctx.worklist.empty()) {
167       unsigned block_index = *std::prev(ctx.worklist.end());
168       ctx.worklist.erase(std::prev(ctx.worklist.end()));
169 
170       Block& block = exec_ctx.program->blocks[block_index];
171       get_block_needs(ctx, exec_ctx, &block);
172    }
173 
174    exec_ctx.handle_wqm = true;
175 }
176 
177 Operand
get_exec_op(Operand t)178 get_exec_op(Operand t)
179 {
180    if (t.isUndefined())
181       return Operand(exec, t.regClass());
182    else
183       return t;
184 }
185 
186 void
transition_to_WQM(exec_ctx & ctx,Builder bld,unsigned idx)187 transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
188 {
189    if (ctx.info[idx].exec.back().second & mask_type_wqm)
190       return;
191    if (ctx.info[idx].exec.back().second & mask_type_global) {
192       Operand exec_mask = ctx.info[idx].exec.back().first;
193       if (exec_mask.isUndefined()) {
194          exec_mask = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm));
195          ctx.info[idx].exec.back().first = exec_mask;
196       }
197 
198       exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
199                            get_exec_op(exec_mask));
200       ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
201       return;
202    }
203    /* otherwise, the WQM mask should be one below the current mask */
204    ctx.info[idx].exec.pop_back();
205    assert(ctx.info[idx].exec.back().second & mask_type_wqm);
206    assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
207    assert(ctx.info[idx].exec.back().first.isTemp());
208    ctx.info[idx].exec.back().first =
209       bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
210 }
211 
212 void
transition_to_Exact(exec_ctx & ctx,Builder bld,unsigned idx)213 transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
214 {
215    if (ctx.info[idx].exec.back().second & mask_type_exact)
216       return;
217    /* We can't remove the loop exec mask, because that can cause exec.size() to
218     * be less than num_exec_masks. The loop exec mask also needs to be kept
219     * around for various uses. */
220    if ((ctx.info[idx].exec.back().second & mask_type_global) &&
221        !(ctx.info[idx].exec.back().second & mask_type_loop)) {
222       ctx.info[idx].exec.pop_back();
223       assert(ctx.info[idx].exec.back().second & mask_type_exact);
224       assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
225       assert(ctx.info[idx].exec.back().first.isTemp());
226       ctx.info[idx].exec.back().first =
227          bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
228       return;
229    }
230    /* otherwise, we create an exact mask and push to the stack */
231    Operand wqm = ctx.info[idx].exec.back().first;
232    if (wqm.isUndefined()) {
233       wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
234                      Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm));
235    } else {
236       bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc),
237                ctx.info[idx].exec[0].first, wqm);
238    }
239    ctx.info[idx].exec.back().first = Operand(wqm);
240    ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact);
241 }
242 
243 unsigned
add_coupling_code(exec_ctx & ctx,Block * block,std::vector<aco_ptr<Instruction>> & instructions)244 add_coupling_code(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions)
245 {
246    unsigned idx = block->index;
247    Builder bld(ctx.program, &instructions);
248    std::vector<unsigned>& preds = block->linear_preds;
249 
250    /* start block */
251    if (idx == 0) {
252       aco_ptr<Instruction>& startpgm = block->instructions[0];
253       assert(startpgm->opcode == aco_opcode::p_startpgm);
254       bld.insert(std::move(startpgm));
255 
256       unsigned count = 1;
257       if (block->instructions[1]->opcode == aco_opcode::p_init_scratch) {
258          bld.insert(std::move(block->instructions[1]));
259          count++;
260       }
261 
262       Operand start_exec(bld.lm);
263 
264       /* exec seems to need to be manually initialized with combined shaders */
265       if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) {
266          start_exec = Operand::c32_or_c64(-1u, bld.lm == s2);
267          bld.copy(Definition(exec, bld.lm), start_exec);
268       }
269 
270       if (ctx.handle_wqm) {
271          ctx.info[0].exec.emplace_back(start_exec, mask_type_global | mask_type_exact);
272          /* if this block needs WQM, initialize already */
273          if (ctx.info[0].block_needs & WQM)
274             transition_to_WQM(ctx, bld, 0);
275       } else {
276          uint8_t mask = mask_type_global;
277          if (ctx.program->needs_wqm) {
278             bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
279                      Operand(exec, bld.lm));
280             mask |= mask_type_wqm;
281          } else {
282             mask |= mask_type_exact;
283          }
284          ctx.info[0].exec.emplace_back(start_exec, mask);
285       }
286 
287       return count;
288    }
289 
290    /* loop entry block */
291    if (block->kind & block_kind_loop_header) {
292       assert(preds[0] == idx - 1);
293       ctx.info[idx].exec = ctx.info[idx - 1].exec;
294       loop_info& info = ctx.loop.back();
295       while (ctx.info[idx].exec.size() > info.num_exec_masks)
296          ctx.info[idx].exec.pop_back();
297 
298       /* create ssa names for outer exec masks */
299       if (info.has_discard) {
300          aco_ptr<Pseudo_instruction> phi;
301          for (int i = 0; i < info.num_exec_masks - 1; i++) {
302             phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi,
303                                                              Format::PSEUDO, preds.size(), 1));
304             phi->definitions[0] = bld.def(bld.lm);
305             phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first);
306             ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
307          }
308       }
309 
310       /* create ssa name for restore mask */
311       if (info.has_divergent_break) {
312          /* this phi might be trivial but ensures a parallelcopy on the loop header */
313          aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
314             aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
315          phi->definitions[0] = bld.def(bld.lm);
316          phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
317          ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
318       }
319 
320       /* create ssa name for loop active mask */
321       aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
322          aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
323       if (info.has_divergent_continue)
324          phi->definitions[0] = bld.def(bld.lm);
325       else
326          phi->definitions[0] = Definition(exec, bld.lm);
327       phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first);
328       Temp loop_active = bld.insert(std::move(phi));
329 
330       if (info.has_divergent_break) {
331          uint8_t mask_type =
332             (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
333          ctx.info[idx].exec.emplace_back(loop_active, mask_type);
334       } else {
335          ctx.info[idx].exec.back().first = Operand(loop_active);
336          ctx.info[idx].exec.back().second |= mask_type_loop;
337       }
338 
339       /* create a parallelcopy to move the active mask to exec */
340       unsigned i = 0;
341       if (info.has_divergent_continue) {
342          while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
343             bld.insert(std::move(block->instructions[i]));
344             i++;
345          }
346          uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
347          assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
348          ctx.info[idx].exec.emplace_back(
349             bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first), mask_type);
350       }
351 
352       return i;
353    }
354 
355    /* loop exit block */
356    if (block->kind & block_kind_loop_exit) {
357       Block* header = ctx.loop.back().loop_header;
358       loop_info& info = ctx.loop.back();
359 
360       for (ASSERTED unsigned pred : preds)
361          assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
362 
363       /* fill the loop header phis */
364       std::vector<unsigned>& header_preds = header->linear_preds;
365       int instr_idx = 0;
366       if (info.has_discard) {
367          while (instr_idx < info.num_exec_masks - 1) {
368             aco_ptr<Instruction>& phi = header->instructions[instr_idx];
369             assert(phi->opcode == aco_opcode::p_linear_phi);
370             for (unsigned i = 1; i < phi->operands.size(); i++)
371                phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first);
372             instr_idx++;
373          }
374       }
375 
376       {
377          aco_ptr<Instruction>& phi = header->instructions[instr_idx++];
378          assert(phi->opcode == aco_opcode::p_linear_phi);
379          for (unsigned i = 1; i < phi->operands.size(); i++)
380             phi->operands[i] =
381                get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
382       }
383 
384       if (info.has_divergent_break) {
385          aco_ptr<Instruction>& phi = header->instructions[instr_idx];
386          assert(phi->opcode == aco_opcode::p_linear_phi);
387          for (unsigned i = 1; i < phi->operands.size(); i++)
388             phi->operands[i] =
389                get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
390       }
391 
392       assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
393 
394       /* create the loop exit phis if not trivial */
395       for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) {
396          Operand same = ctx.info[preds[0]].exec[exec_idx].first;
397          uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second;
398          bool trivial = true;
399 
400          for (unsigned i = 1; i < preds.size() && trivial; i++) {
401             if (ctx.info[preds[i]].exec[exec_idx].first != same)
402                trivial = false;
403          }
404 
405          if (trivial) {
406             ctx.info[idx].exec.emplace_back(same, type);
407          } else {
408             /* create phi for loop footer */
409             aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
410                aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
411             phi->definitions[0] = bld.def(bld.lm);
412             if (exec_idx == info.num_exec_masks - 1u) {
413                phi->definitions[0] = Definition(exec, bld.lm);
414             }
415             for (unsigned i = 0; i < phi->operands.size(); i++)
416                phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first);
417             ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
418          }
419       }
420 
421       assert(ctx.info[idx].exec.size() == info.num_exec_masks);
422       ctx.loop.pop_back();
423 
424    } else if (preds.size() == 1) {
425       ctx.info[idx].exec = ctx.info[preds[0]].exec;
426    } else {
427       assert(preds.size() == 2);
428       /* if one of the predecessors ends in exact mask, we pop it from stack */
429       unsigned num_exec_masks =
430          std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size());
431 
432       if (block->kind & block_kind_merge)
433          num_exec_masks--;
434       if (block->kind & block_kind_top_level)
435          num_exec_masks = std::min(num_exec_masks, 2u);
436 
437       /* create phis for diverged exec masks */
438       for (unsigned i = 0; i < num_exec_masks; i++) {
439          /* skip trivial phis */
440          if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
441             Operand t = ctx.info[preds[0]].exec[i].first;
442             /* discard/demote can change the state of the current exec mask */
443             assert(!t.isTemp() ||
444                    ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
445             uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
446             ctx.info[idx].exec.emplace_back(t, mask);
447             continue;
448          }
449 
450          Temp phi = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm),
451                                get_exec_op(ctx.info[preds[0]].exec[i].first),
452                                get_exec_op(ctx.info[preds[1]].exec[i].first));
453          uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
454          ctx.info[idx].exec.emplace_back(phi, mask_type);
455       }
456    }
457 
458    unsigned i = 0;
459    while (block->instructions[i]->opcode == aco_opcode::p_phi ||
460           block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
461       bld.insert(std::move(block->instructions[i]));
462       i++;
463    }
464 
465    /* try to satisfy the block's needs */
466    if (ctx.handle_wqm) {
467       if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
468          if (ctx.info[idx].block_needs == 0 || ctx.info[idx].block_needs == Exact) {
469             ctx.info[idx].exec.back().second |= mask_type_global;
470             transition_to_Exact(ctx, bld, idx);
471             ctx.handle_wqm = false;
472          }
473       }
474    }
475 
476    /* restore exec mask after divergent control flow */
477    if (block->kind & (block_kind_loop_exit | block_kind_merge) &&
478        !ctx.info[idx].exec.back().first.isUndefined()) {
479       Operand restore = ctx.info[idx].exec.back().first;
480       assert(restore.size() == bld.lm.size());
481       bld.copy(Definition(exec, bld.lm), restore);
482       if (!restore.isConstant())
483          ctx.info[idx].exec.back().first = Operand(bld.lm);
484    }
485 
486    return i;
487 }
488 
489 /* Avoid live-range splits in Exact mode:
490  * Because the data register of atomic VMEM instructions
491  * is shared between src and dst, it might be necessary
492  * to create live-range splits during RA.
493  * Make the live-range splits explicit in WQM mode.
494  */
495 void
handle_atomic_data(exec_ctx & ctx,Builder & bld,unsigned block_idx,aco_ptr<Instruction> & instr)496 handle_atomic_data(exec_ctx& ctx, Builder& bld, unsigned block_idx, aco_ptr<Instruction>& instr)
497 {
498    /* check if this is an atomic VMEM instruction */
499    int idx = -1;
500    if (!instr->isVMEM() || instr->definitions.empty())
501       return;
502    else if (instr->isMIMG())
503       idx = instr->operands[2].isTemp() ? 2 : -1;
504    else if (instr->operands.size() == 4)
505       idx = 3;
506 
507    if (idx != -1) {
508       /* insert explicit copy of atomic data in WQM-mode */
509       transition_to_WQM(ctx, bld, block_idx);
510       Temp data = instr->operands[idx].getTemp();
511       data = bld.copy(bld.def(data.regClass()), data);
512       instr->operands[idx].setTemp(data);
513    }
514 }
515 
516 void
process_instructions(exec_ctx & ctx,Block * block,std::vector<aco_ptr<Instruction>> & instructions,unsigned idx)517 process_instructions(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions,
518                      unsigned idx)
519 {
520    WQMState state;
521    if (ctx.info[block->index].exec.back().second & mask_type_wqm) {
522       state = WQM;
523    } else {
524       assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
525       state = Exact;
526    }
527 
528    /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
529    bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) !=
530                                         (ctx.info[block->index].block_needs & (WQM | Exact))) ||
531                   block->kind & block_kind_uses_discard || block->kind & block_kind_needs_lowering;
532    if (!process) {
533       std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
534       instructions.insert(instructions.end(),
535                           std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
536                           std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(
537                              block->instructions.end()));
538       return;
539    }
540 
541    Builder bld(ctx.program, &instructions);
542 
543    for (; idx < block->instructions.size(); idx++) {
544       aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
545 
546       WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
547 
548       if (needs == WQM && state != WQM) {
549          transition_to_WQM(ctx, bld, block->index);
550          state = WQM;
551       } else if (needs == Exact) {
552          if (ctx.info[block->index].block_needs & WQM)
553             handle_atomic_data(ctx, bld, block->index, instr);
554          transition_to_Exact(ctx, bld, block->index);
555          state = Exact;
556       }
557 
558       if (instr->opcode == aco_opcode::p_discard_if) {
559          Operand current_exec = Operand(exec, bld.lm);
560 
561          if (ctx.info[block->index].exec.size() >= 2) {
562             if (needs == WQM) {
563                /* Preserve the WQM mask */
564                ctx.info[block->index].exec[1].second &= ~mask_type_global;
565             } else if (block->kind & block_kind_top_level) {
566                /* Transition to Exact without extra instruction. Since needs != WQM, we won't need
567                 * WQM again.
568                 */
569                ctx.info[block->index].exec.resize(1);
570                assert(ctx.info[block->index].exec[0].second == (mask_type_exact | mask_type_global));
571                current_exec = get_exec_op(ctx.info[block->index].exec.back().first);
572                ctx.info[block->index].exec[0].first = Operand(bld.lm);
573             }
574          }
575 
576          Temp cond, exit_cond;
577          if (instr->operands[0].isConstant()) {
578             assert(instr->operands[0].constantValue() == -1u);
579             /* save condition and set exec to zero */
580             exit_cond = bld.tmp(s1);
581             cond =
582                bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
583                         Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
584          } else {
585             cond = instr->operands[0].getTemp();
586             /* discard from current exec */
587             exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc),
588                                  current_exec, cond)
589                            .def(1)
590                            .getTemp();
591          }
592 
593          /* discard from inner to outer exec mask on stack */
594          int num = ctx.info[block->index].exec.size() - 2;
595          for (int i = num; i >= 0; i--) {
596             Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
597                                           ctx.info[block->index].exec[i].first, cond);
598             ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
599             exit_cond = andn2->definitions[1].getTemp();
600          }
601 
602          instr->opcode = aco_opcode::p_exit_early_if;
603          instr->operands[0] = bld.scc(exit_cond);
604          assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
605 
606       } else if (instr->opcode == aco_opcode::p_is_helper) {
607          Definition dst = instr->definitions[0];
608          assert(dst.size() == bld.lm.size());
609          if (state == Exact) {
610             instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov),
611                                                              Format::SOP1, 1, 1));
612             instr->operands[0] = Operand::zero();
613             instr->definitions[0] = dst;
614          } else {
615             std::pair<Operand, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
616             assert(exact_mask.second & mask_type_exact);
617 
618             instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2),
619                                                              Format::SOP2, 2, 2));
620             instr->operands[0] = Operand(exec, bld.lm); /* current exec */
621             instr->operands[1] = Operand(exact_mask.first);
622             instr->definitions[0] = dst;
623             instr->definitions[1] = bld.def(s1, scc);
624          }
625       } else if (instr->opcode == aco_opcode::p_demote_to_helper) {
626          /* turn demote into discard_if with only exact masks */
627          assert((ctx.info[block->index].exec[0].second & mask_type_exact) &&
628                 (ctx.info[block->index].exec[0].second & mask_type_global));
629 
630          int num;
631          Temp cond, exit_cond;
632          if (instr->operands[0].isConstant()) {
633             assert(instr->operands[0].constantValue() == -1u);
634             /* transition to exact and set exec to zero */
635             exit_cond = bld.tmp(s1);
636             cond =
637                bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
638                         Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
639 
640             num = ctx.info[block->index].exec.size() - 2;
641             if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) {
642                ctx.info[block->index].exec.back().first = Operand(cond);
643                ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact);
644             }
645          } else {
646             /* demote_if: transition to exact */
647             if (block->kind & block_kind_top_level && ctx.info[block->index].exec.size() == 2 &&
648                 ctx.info[block->index].exec.back().second & mask_type_global) {
649                /* We don't need to actually copy anything into exact, since the s_andn2
650                 * instructions later will do that.
651                 */
652                ctx.info[block->index].exec.pop_back();
653             } else {
654                transition_to_Exact(ctx, bld, block->index);
655             }
656             assert(instr->operands[0].isTemp());
657             cond = instr->operands[0].getTemp();
658             num = ctx.info[block->index].exec.size() - 1;
659          }
660 
661          for (int i = num; i >= 0; i--) {
662             if (ctx.info[block->index].exec[i].second & mask_type_exact) {
663                Instruction* andn2 =
664                   bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
665                            get_exec_op(ctx.info[block->index].exec[i].first), cond);
666                if (i == (int)ctx.info[block->index].exec.size() - 1)
667                   andn2->definitions[0] = Definition(exec, bld.lm);
668 
669                ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
670                exit_cond = andn2->definitions[1].getTemp();
671             } else {
672                assert(i != 0);
673             }
674          }
675          instr->opcode = aco_opcode::p_exit_early_if;
676          instr->operands[0] = bld.scc(exit_cond);
677          state = Exact;
678 
679       } else if (instr->opcode == aco_opcode::p_elect) {
680          bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u);
681          Definition dst = instr->definitions[0];
682 
683          if (all_lanes_enabled) {
684             bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2));
685          } else {
686             Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
687             bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc),
688                      Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx));
689          }
690          instr.reset();
691          continue;
692       }
693 
694       bld.insert(std::move(instr));
695    }
696 }
697 
698 void
add_branch_code(exec_ctx & ctx,Block * block)699 add_branch_code(exec_ctx& ctx, Block* block)
700 {
701    unsigned idx = block->index;
702    Builder bld(ctx.program, block);
703 
704    if (idx == ctx.program->blocks.size() - 1)
705       return;
706 
707    /* try to disable wqm handling */
708    if (ctx.handle_wqm && block->kind & block_kind_top_level) {
709       if (ctx.info[idx].exec.size() == 3) {
710          assert(ctx.info[idx].exec[1].second == mask_type_wqm);
711          ctx.info[idx].exec.pop_back();
712       }
713       assert(ctx.info[idx].exec.size() <= 2);
714 
715       if (!(ctx.info[idx].instr_needs.back() & WQM)) {
716          /* transition to Exact if the branch doesn't need WQM */
717          aco_ptr<Instruction> branch = std::move(block->instructions.back());
718          block->instructions.pop_back();
719          ctx.info[idx].exec.back().second |= mask_type_global;
720          transition_to_Exact(ctx, bld, idx);
721          bld.insert(std::move(branch));
722          ctx.handle_wqm = false;
723       }
724    }
725 
726    if (block->kind & block_kind_loop_preheader) {
727       /* collect information about the succeeding loop */
728       bool has_divergent_break = false;
729       bool has_divergent_continue = false;
730       bool has_discard = false;
731       unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
732 
733       for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
734          Block& loop_block = ctx.program->blocks[i];
735 
736          if (loop_block.kind & block_kind_uses_discard)
737             has_discard = true;
738          if (loop_block.loop_nest_depth != loop_nest_depth)
739             continue;
740 
741          if (loop_block.kind & block_kind_uniform)
742             continue;
743          else if (loop_block.kind & block_kind_break)
744             has_divergent_break = true;
745          else if (loop_block.kind & block_kind_continue)
746             has_divergent_continue = true;
747       }
748 
749       unsigned num_exec_masks = ctx.info[idx].exec.size();
750       if (block->kind & block_kind_top_level)
751          num_exec_masks = std::min(num_exec_masks, 2u);
752 
753       ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks,
754                             has_divergent_break, has_divergent_continue, has_discard);
755    }
756 
757    /* For normal breaks, this is the exec mask. For discard+break, it's the
758     * old exec mask before it was zero'd.
759     */
760    Operand break_cond = Operand(exec, bld.lm);
761 
762    if (block->kind & block_kind_continue_or_break) {
763       assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind &
764              block_kind_loop_header);
765       assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind &
766              block_kind_loop_exit);
767       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
768       block->instructions.pop_back();
769 
770       bool need_parallelcopy = false;
771       while (!(ctx.info[idx].exec.back().second & mask_type_loop)) {
772          ctx.info[idx].exec.pop_back();
773          need_parallelcopy = true;
774       }
775 
776       if (need_parallelcopy)
777          ctx.info[idx].exec.back().first =
778             bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
779       bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), Operand(exec, bld.lm),
780                  block->linear_succs[1], block->linear_succs[0]);
781       return;
782    }
783 
784    if (block->kind & block_kind_uniform) {
785       Pseudo_branch_instruction& branch = block->instructions.back()->branch();
786       if (branch.opcode == aco_opcode::p_branch) {
787          branch.target[0] = block->linear_succs[0];
788       } else {
789          branch.target[0] = block->linear_succs[1];
790          branch.target[1] = block->linear_succs[0];
791       }
792       return;
793    }
794 
795    if (block->kind & block_kind_branch) {
796       // orig = s_and_saveexec_b64
797       assert(block->linear_succs.size() == 2);
798       assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
799       Temp cond = block->instructions.back()->operands[0].getTemp();
800       block->instructions.pop_back();
801 
802       uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
803       if (ctx.info[idx].exec.back().first.constantEquals(-1u)) {
804          bld.copy(Definition(exec, bld.lm), cond);
805       } else {
806          Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
807                                   Definition(exec, bld.lm), cond, Operand(exec, bld.lm));
808 
809          ctx.info[idx].exec.back().first = Operand(old_exec);
810       }
811 
812       /* add next current exec to the stack */
813       ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type);
814 
815       bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm),
816                  block->linear_succs[1], block->linear_succs[0]);
817       return;
818    }
819 
820    if (block->kind & block_kind_invert) {
821       // exec = s_andn2_b64 (original_exec, exec)
822       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
823       block->instructions.pop_back();
824       assert(ctx.info[idx].exec.size() >= 2);
825       Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first;
826       bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec,
827                Operand(exec, bld.lm));
828 
829       bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm),
830                  block->linear_succs[1], block->linear_succs[0]);
831       return;
832    }
833 
834    if (block->kind & block_kind_break) {
835       // loop_mask = s_andn2_b64 (loop_mask, exec)
836       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
837       block->instructions.pop_back();
838 
839       Temp cond = Temp();
840       for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
841          cond = bld.tmp(s1);
842          Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
843          exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
844                               exec_mask, break_cond);
845          ctx.info[idx].exec[exec_idx].first = exec_mask;
846          if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
847             break;
848       }
849 
850       /* check if the successor is the merge block, otherwise set exec to 0 */
851       // TODO: this could be done better by directly branching to the merge block
852       unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
853       Block& succ = ctx.program->blocks[succ_idx];
854       if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
855          bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
856       }
857 
858       bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1],
859                  block->linear_succs[0]);
860       return;
861    }
862 
863    if (block->kind & block_kind_continue) {
864       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
865       block->instructions.pop_back();
866 
867       Temp cond = Temp();
868       for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
869          if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
870             break;
871          cond = bld.tmp(s1);
872          Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
873          exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
874                               exec_mask, Operand(exec, bld.lm));
875          ctx.info[idx].exec[exec_idx].first = exec_mask;
876       }
877       assert(cond != Temp());
878 
879       /* check if the successor is the merge block, otherwise set exec to 0 */
880       // TODO: this could be done better by directly branching to the merge block
881       unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
882       Block& succ = ctx.program->blocks[succ_idx];
883       if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
884          bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
885       }
886 
887       bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1],
888                  block->linear_succs[0]);
889       return;
890    }
891 }
892 
893 void
process_block(exec_ctx & ctx,Block * block)894 process_block(exec_ctx& ctx, Block* block)
895 {
896    std::vector<aco_ptr<Instruction>> instructions;
897    instructions.reserve(block->instructions.size());
898 
899    unsigned idx = add_coupling_code(ctx, block, instructions);
900 
901    assert(block->index != ctx.program->blocks.size() - 1 ||
902           ctx.info[block->index].exec.size() <= 2);
903 
904    process_instructions(ctx, block, instructions, idx);
905 
906    block->instructions = std::move(instructions);
907 
908    add_branch_code(ctx, block);
909 }
910 
911 } /* end namespace */
912 
913 void
insert_exec_mask(Program * program)914 insert_exec_mask(Program* program)
915 {
916    exec_ctx ctx(program);
917 
918    if (program->needs_wqm && program->needs_exact)
919       calculate_wqm_needs(ctx);
920 
921    for (Block& block : program->blocks)
922       process_block(ctx, &block);
923 }
924 
925 } // namespace aco
926