1 /*
2 * Copyright © 2019 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27
28 #include "util/u_math.h"
29
30 #include <set>
31 #include <vector>
32
33 namespace aco {
34
35 namespace {
36
37 enum WQMState : uint8_t {
38 Unspecified = 0,
39 Exact = 1 << 0,
40 WQM = 1 << 1, /* with control flow applied */
41 };
42
43 enum mask_type : uint8_t {
44 mask_type_global = 1 << 0,
45 mask_type_exact = 1 << 1,
46 mask_type_wqm = 1 << 2,
47 mask_type_loop = 1 << 3, /* active lanes of a loop */
48 };
49
50 struct wqm_ctx {
51 Program* program;
52 /* state for WQM propagation */
53 std::set<unsigned> worklist;
54 std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
wqm_ctxaco::__anon2b87fe440111::wqm_ctx55 wqm_ctx(Program* program_)
56 : program(program_), branch_wqm(program->blocks.size())
57 {
58 for (unsigned i = 0; i < program->blocks.size(); i++)
59 worklist.insert(i);
60 }
61 };
62
63 struct loop_info {
64 Block* loop_header;
65 uint16_t num_exec_masks;
66 bool has_divergent_break;
67 bool has_divergent_continue;
68 bool has_discard; /* has a discard or demote */
loop_infoaco::__anon2b87fe440111::loop_info69 loop_info(Block* b, uint16_t num, bool breaks, bool cont, bool discard)
70 : loop_header(b), num_exec_masks(num), has_divergent_break(breaks),
71 has_divergent_continue(cont), has_discard(discard)
72 {}
73 };
74
75 struct block_info {
76 std::vector<std::pair<Operand, uint8_t>>
77 exec; /* Vector of exec masks. Either a temporary or const -1. */
78 std::vector<WQMState> instr_needs;
79 uint8_t block_needs;
80 };
81
82 struct exec_ctx {
83 Program* program;
84 std::vector<block_info> info;
85 std::vector<loop_info> loop;
86 bool handle_wqm = false;
exec_ctxaco::__anon2b87fe440111::exec_ctx87 exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {}
88 };
89
90 bool
needs_exact(aco_ptr<Instruction> & instr)91 needs_exact(aco_ptr<Instruction>& instr)
92 {
93 if (instr->isMUBUF()) {
94 return instr->mubuf().disable_wqm;
95 } else if (instr->isMTBUF()) {
96 return instr->mtbuf().disable_wqm;
97 } else if (instr->isMIMG()) {
98 return instr->mimg().disable_wqm;
99 } else if (instr->isFlatLike()) {
100 return instr->flatlike().disable_wqm;
101 } else {
102 /* Require Exact for p_jump_to_epilog because if p_exit_early_if is
103 * emitted inside the same block, the main FS will always jump to the PS
104 * epilog without considering the exec mask.
105 */
106 return instr->isEXP() || instr->opcode == aco_opcode::p_jump_to_epilog;
107 }
108 }
109
110 void
mark_block_wqm(wqm_ctx & ctx,unsigned block_idx)111 mark_block_wqm(wqm_ctx& ctx, unsigned block_idx)
112 {
113 if (ctx.branch_wqm[block_idx])
114 return;
115
116 for (Block& block : ctx.program->blocks) {
117 if (block.index >= block_idx && block.kind & block_kind_top_level)
118 break;
119 ctx.branch_wqm[block.index] = true;
120 ctx.worklist.insert(block.index);
121 }
122 }
123
124 void
get_block_needs(wqm_ctx & ctx,exec_ctx & exec_ctx,Block * block)125 get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block)
126 {
127 block_info& info = exec_ctx.info[block->index];
128
129 std::vector<WQMState> instr_needs(block->instructions.size());
130
131 bool propagate_wqm = ctx.branch_wqm[block->index];
132 for (int i = block->instructions.size() - 1; i >= 0; --i) {
133 aco_ptr<Instruction>& instr = block->instructions[i];
134
135 if (instr->opcode == aco_opcode::p_wqm)
136 propagate_wqm = true;
137
138 bool pred_by_exec = needs_exec_mask(instr.get()) ||
139 instr->opcode == aco_opcode::p_logical_end ||
140 instr->isBranch();
141
142 if (needs_exact(instr))
143 instr_needs[i] = Exact;
144 else if (propagate_wqm && pred_by_exec)
145 instr_needs[i] = WQM;
146 else
147 instr_needs[i] = Unspecified;
148
149 info.block_needs |= instr_needs[i];
150 }
151
152 info.instr_needs = instr_needs;
153
154 /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
155 * <cond> should be computed in WQM */
156 if (info.block_needs & WQM) {
157 mark_block_wqm(ctx, block->index);
158 }
159 }
160
161 void
calculate_wqm_needs(exec_ctx & exec_ctx)162 calculate_wqm_needs(exec_ctx& exec_ctx)
163 {
164 wqm_ctx ctx(exec_ctx.program);
165
166 while (!ctx.worklist.empty()) {
167 unsigned block_index = *std::prev(ctx.worklist.end());
168 ctx.worklist.erase(std::prev(ctx.worklist.end()));
169
170 Block& block = exec_ctx.program->blocks[block_index];
171 get_block_needs(ctx, exec_ctx, &block);
172 }
173
174 exec_ctx.handle_wqm = true;
175 }
176
177 Operand
get_exec_op(Operand t)178 get_exec_op(Operand t)
179 {
180 if (t.isUndefined())
181 return Operand(exec, t.regClass());
182 else
183 return t;
184 }
185
186 void
transition_to_WQM(exec_ctx & ctx,Builder bld,unsigned idx)187 transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
188 {
189 if (ctx.info[idx].exec.back().second & mask_type_wqm)
190 return;
191 if (ctx.info[idx].exec.back().second & mask_type_global) {
192 Operand exec_mask = ctx.info[idx].exec.back().first;
193 if (exec_mask.isUndefined()) {
194 exec_mask = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm));
195 ctx.info[idx].exec.back().first = exec_mask;
196 }
197
198 exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
199 get_exec_op(exec_mask));
200 ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
201 return;
202 }
203 /* otherwise, the WQM mask should be one below the current mask */
204 ctx.info[idx].exec.pop_back();
205 assert(ctx.info[idx].exec.back().second & mask_type_wqm);
206 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
207 assert(ctx.info[idx].exec.back().first.isTemp());
208 ctx.info[idx].exec.back().first =
209 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
210 }
211
212 void
transition_to_Exact(exec_ctx & ctx,Builder bld,unsigned idx)213 transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
214 {
215 if (ctx.info[idx].exec.back().second & mask_type_exact)
216 return;
217 /* We can't remove the loop exec mask, because that can cause exec.size() to
218 * be less than num_exec_masks. The loop exec mask also needs to be kept
219 * around for various uses. */
220 if ((ctx.info[idx].exec.back().second & mask_type_global) &&
221 !(ctx.info[idx].exec.back().second & mask_type_loop)) {
222 ctx.info[idx].exec.pop_back();
223 assert(ctx.info[idx].exec.back().second & mask_type_exact);
224 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
225 assert(ctx.info[idx].exec.back().first.isTemp());
226 ctx.info[idx].exec.back().first =
227 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
228 return;
229 }
230 /* otherwise, we create an exact mask and push to the stack */
231 Operand wqm = ctx.info[idx].exec.back().first;
232 if (wqm.isUndefined()) {
233 wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
234 Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm));
235 } else {
236 bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc),
237 ctx.info[idx].exec[0].first, wqm);
238 }
239 ctx.info[idx].exec.back().first = Operand(wqm);
240 ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact);
241 }
242
243 unsigned
add_coupling_code(exec_ctx & ctx,Block * block,std::vector<aco_ptr<Instruction>> & instructions)244 add_coupling_code(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions)
245 {
246 unsigned idx = block->index;
247 Builder bld(ctx.program, &instructions);
248 std::vector<unsigned>& preds = block->linear_preds;
249
250 /* start block */
251 if (idx == 0) {
252 aco_ptr<Instruction>& startpgm = block->instructions[0];
253 assert(startpgm->opcode == aco_opcode::p_startpgm);
254 bld.insert(std::move(startpgm));
255
256 unsigned count = 1;
257 if (block->instructions[1]->opcode == aco_opcode::p_init_scratch) {
258 bld.insert(std::move(block->instructions[1]));
259 count++;
260 }
261
262 Operand start_exec(bld.lm);
263
264 /* exec seems to need to be manually initialized with combined shaders */
265 if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) {
266 start_exec = Operand::c32_or_c64(-1u, bld.lm == s2);
267 bld.copy(Definition(exec, bld.lm), start_exec);
268 }
269
270 if (ctx.handle_wqm) {
271 ctx.info[0].exec.emplace_back(start_exec, mask_type_global | mask_type_exact);
272 /* if this block needs WQM, initialize already */
273 if (ctx.info[0].block_needs & WQM)
274 transition_to_WQM(ctx, bld, 0);
275 } else {
276 uint8_t mask = mask_type_global;
277 if (ctx.program->needs_wqm) {
278 bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
279 Operand(exec, bld.lm));
280 mask |= mask_type_wqm;
281 } else {
282 mask |= mask_type_exact;
283 }
284 ctx.info[0].exec.emplace_back(start_exec, mask);
285 }
286
287 return count;
288 }
289
290 /* loop entry block */
291 if (block->kind & block_kind_loop_header) {
292 assert(preds[0] == idx - 1);
293 ctx.info[idx].exec = ctx.info[idx - 1].exec;
294 loop_info& info = ctx.loop.back();
295 while (ctx.info[idx].exec.size() > info.num_exec_masks)
296 ctx.info[idx].exec.pop_back();
297
298 /* create ssa names for outer exec masks */
299 if (info.has_discard) {
300 aco_ptr<Pseudo_instruction> phi;
301 for (int i = 0; i < info.num_exec_masks - 1; i++) {
302 phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi,
303 Format::PSEUDO, preds.size(), 1));
304 phi->definitions[0] = bld.def(bld.lm);
305 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first);
306 ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
307 }
308 }
309
310 /* create ssa name for restore mask */
311 if (info.has_divergent_break) {
312 /* this phi might be trivial but ensures a parallelcopy on the loop header */
313 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
314 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
315 phi->definitions[0] = bld.def(bld.lm);
316 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
317 ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
318 }
319
320 /* create ssa name for loop active mask */
321 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
322 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
323 if (info.has_divergent_continue)
324 phi->definitions[0] = bld.def(bld.lm);
325 else
326 phi->definitions[0] = Definition(exec, bld.lm);
327 phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first);
328 Temp loop_active = bld.insert(std::move(phi));
329
330 if (info.has_divergent_break) {
331 uint8_t mask_type =
332 (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
333 ctx.info[idx].exec.emplace_back(loop_active, mask_type);
334 } else {
335 ctx.info[idx].exec.back().first = Operand(loop_active);
336 ctx.info[idx].exec.back().second |= mask_type_loop;
337 }
338
339 /* create a parallelcopy to move the active mask to exec */
340 unsigned i = 0;
341 if (info.has_divergent_continue) {
342 while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
343 bld.insert(std::move(block->instructions[i]));
344 i++;
345 }
346 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
347 assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
348 ctx.info[idx].exec.emplace_back(
349 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first), mask_type);
350 }
351
352 return i;
353 }
354
355 /* loop exit block */
356 if (block->kind & block_kind_loop_exit) {
357 Block* header = ctx.loop.back().loop_header;
358 loop_info& info = ctx.loop.back();
359
360 for (ASSERTED unsigned pred : preds)
361 assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
362
363 /* fill the loop header phis */
364 std::vector<unsigned>& header_preds = header->linear_preds;
365 int instr_idx = 0;
366 if (info.has_discard) {
367 while (instr_idx < info.num_exec_masks - 1) {
368 aco_ptr<Instruction>& phi = header->instructions[instr_idx];
369 assert(phi->opcode == aco_opcode::p_linear_phi);
370 for (unsigned i = 1; i < phi->operands.size(); i++)
371 phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first);
372 instr_idx++;
373 }
374 }
375
376 {
377 aco_ptr<Instruction>& phi = header->instructions[instr_idx++];
378 assert(phi->opcode == aco_opcode::p_linear_phi);
379 for (unsigned i = 1; i < phi->operands.size(); i++)
380 phi->operands[i] =
381 get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
382 }
383
384 if (info.has_divergent_break) {
385 aco_ptr<Instruction>& phi = header->instructions[instr_idx];
386 assert(phi->opcode == aco_opcode::p_linear_phi);
387 for (unsigned i = 1; i < phi->operands.size(); i++)
388 phi->operands[i] =
389 get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
390 }
391
392 assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
393
394 /* create the loop exit phis if not trivial */
395 for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) {
396 Operand same = ctx.info[preds[0]].exec[exec_idx].first;
397 uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second;
398 bool trivial = true;
399
400 for (unsigned i = 1; i < preds.size() && trivial; i++) {
401 if (ctx.info[preds[i]].exec[exec_idx].first != same)
402 trivial = false;
403 }
404
405 if (trivial) {
406 ctx.info[idx].exec.emplace_back(same, type);
407 } else {
408 /* create phi for loop footer */
409 aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
410 aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
411 phi->definitions[0] = bld.def(bld.lm);
412 if (exec_idx == info.num_exec_masks - 1u) {
413 phi->definitions[0] = Definition(exec, bld.lm);
414 }
415 for (unsigned i = 0; i < phi->operands.size(); i++)
416 phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first);
417 ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
418 }
419 }
420
421 assert(ctx.info[idx].exec.size() == info.num_exec_masks);
422 ctx.loop.pop_back();
423
424 } else if (preds.size() == 1) {
425 ctx.info[idx].exec = ctx.info[preds[0]].exec;
426 } else {
427 assert(preds.size() == 2);
428 /* if one of the predecessors ends in exact mask, we pop it from stack */
429 unsigned num_exec_masks =
430 std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size());
431
432 if (block->kind & block_kind_merge)
433 num_exec_masks--;
434 if (block->kind & block_kind_top_level)
435 num_exec_masks = std::min(num_exec_masks, 2u);
436
437 /* create phis for diverged exec masks */
438 for (unsigned i = 0; i < num_exec_masks; i++) {
439 /* skip trivial phis */
440 if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
441 Operand t = ctx.info[preds[0]].exec[i].first;
442 /* discard/demote can change the state of the current exec mask */
443 assert(!t.isTemp() ||
444 ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
445 uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
446 ctx.info[idx].exec.emplace_back(t, mask);
447 continue;
448 }
449
450 Temp phi = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm),
451 get_exec_op(ctx.info[preds[0]].exec[i].first),
452 get_exec_op(ctx.info[preds[1]].exec[i].first));
453 uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
454 ctx.info[idx].exec.emplace_back(phi, mask_type);
455 }
456 }
457
458 unsigned i = 0;
459 while (block->instructions[i]->opcode == aco_opcode::p_phi ||
460 block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
461 bld.insert(std::move(block->instructions[i]));
462 i++;
463 }
464
465 /* try to satisfy the block's needs */
466 if (ctx.handle_wqm) {
467 if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
468 if (ctx.info[idx].block_needs == 0 || ctx.info[idx].block_needs == Exact) {
469 ctx.info[idx].exec.back().second |= mask_type_global;
470 transition_to_Exact(ctx, bld, idx);
471 ctx.handle_wqm = false;
472 }
473 }
474 }
475
476 /* restore exec mask after divergent control flow */
477 if (block->kind & (block_kind_loop_exit | block_kind_merge) &&
478 !ctx.info[idx].exec.back().first.isUndefined()) {
479 Operand restore = ctx.info[idx].exec.back().first;
480 assert(restore.size() == bld.lm.size());
481 bld.copy(Definition(exec, bld.lm), restore);
482 if (!restore.isConstant())
483 ctx.info[idx].exec.back().first = Operand(bld.lm);
484 }
485
486 return i;
487 }
488
489 /* Avoid live-range splits in Exact mode:
490 * Because the data register of atomic VMEM instructions
491 * is shared between src and dst, it might be necessary
492 * to create live-range splits during RA.
493 * Make the live-range splits explicit in WQM mode.
494 */
495 void
handle_atomic_data(exec_ctx & ctx,Builder & bld,unsigned block_idx,aco_ptr<Instruction> & instr)496 handle_atomic_data(exec_ctx& ctx, Builder& bld, unsigned block_idx, aco_ptr<Instruction>& instr)
497 {
498 /* check if this is an atomic VMEM instruction */
499 int idx = -1;
500 if (!instr->isVMEM() || instr->definitions.empty())
501 return;
502 else if (instr->isMIMG())
503 idx = instr->operands[2].isTemp() ? 2 : -1;
504 else if (instr->operands.size() == 4)
505 idx = 3;
506
507 if (idx != -1) {
508 /* insert explicit copy of atomic data in WQM-mode */
509 transition_to_WQM(ctx, bld, block_idx);
510 Temp data = instr->operands[idx].getTemp();
511 data = bld.copy(bld.def(data.regClass()), data);
512 instr->operands[idx].setTemp(data);
513 }
514 }
515
516 void
process_instructions(exec_ctx & ctx,Block * block,std::vector<aco_ptr<Instruction>> & instructions,unsigned idx)517 process_instructions(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions,
518 unsigned idx)
519 {
520 WQMState state;
521 if (ctx.info[block->index].exec.back().second & mask_type_wqm) {
522 state = WQM;
523 } else {
524 assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
525 state = Exact;
526 }
527
528 /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
529 bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) !=
530 (ctx.info[block->index].block_needs & (WQM | Exact))) ||
531 block->kind & block_kind_uses_discard || block->kind & block_kind_needs_lowering;
532 if (!process) {
533 std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
534 instructions.insert(instructions.end(),
535 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
536 std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(
537 block->instructions.end()));
538 return;
539 }
540
541 Builder bld(ctx.program, &instructions);
542
543 for (; idx < block->instructions.size(); idx++) {
544 aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
545
546 WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
547
548 if (needs == WQM && state != WQM) {
549 transition_to_WQM(ctx, bld, block->index);
550 state = WQM;
551 } else if (needs == Exact) {
552 if (ctx.info[block->index].block_needs & WQM)
553 handle_atomic_data(ctx, bld, block->index, instr);
554 transition_to_Exact(ctx, bld, block->index);
555 state = Exact;
556 }
557
558 if (instr->opcode == aco_opcode::p_discard_if) {
559 Operand current_exec = Operand(exec, bld.lm);
560
561 if (ctx.info[block->index].exec.size() >= 2) {
562 if (needs == WQM) {
563 /* Preserve the WQM mask */
564 ctx.info[block->index].exec[1].second &= ~mask_type_global;
565 } else if (block->kind & block_kind_top_level) {
566 /* Transition to Exact without extra instruction. Since needs != WQM, we won't need
567 * WQM again.
568 */
569 ctx.info[block->index].exec.resize(1);
570 assert(ctx.info[block->index].exec[0].second == (mask_type_exact | mask_type_global));
571 current_exec = get_exec_op(ctx.info[block->index].exec.back().first);
572 ctx.info[block->index].exec[0].first = Operand(bld.lm);
573 }
574 }
575
576 Temp cond, exit_cond;
577 if (instr->operands[0].isConstant()) {
578 assert(instr->operands[0].constantValue() == -1u);
579 /* save condition and set exec to zero */
580 exit_cond = bld.tmp(s1);
581 cond =
582 bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
583 Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
584 } else {
585 cond = instr->operands[0].getTemp();
586 /* discard from current exec */
587 exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc),
588 current_exec, cond)
589 .def(1)
590 .getTemp();
591 }
592
593 /* discard from inner to outer exec mask on stack */
594 int num = ctx.info[block->index].exec.size() - 2;
595 for (int i = num; i >= 0; i--) {
596 Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
597 ctx.info[block->index].exec[i].first, cond);
598 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
599 exit_cond = andn2->definitions[1].getTemp();
600 }
601
602 instr->opcode = aco_opcode::p_exit_early_if;
603 instr->operands[0] = bld.scc(exit_cond);
604 assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
605
606 } else if (instr->opcode == aco_opcode::p_is_helper) {
607 Definition dst = instr->definitions[0];
608 assert(dst.size() == bld.lm.size());
609 if (state == Exact) {
610 instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov),
611 Format::SOP1, 1, 1));
612 instr->operands[0] = Operand::zero();
613 instr->definitions[0] = dst;
614 } else {
615 std::pair<Operand, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
616 assert(exact_mask.second & mask_type_exact);
617
618 instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2),
619 Format::SOP2, 2, 2));
620 instr->operands[0] = Operand(exec, bld.lm); /* current exec */
621 instr->operands[1] = Operand(exact_mask.first);
622 instr->definitions[0] = dst;
623 instr->definitions[1] = bld.def(s1, scc);
624 }
625 } else if (instr->opcode == aco_opcode::p_demote_to_helper) {
626 /* turn demote into discard_if with only exact masks */
627 assert((ctx.info[block->index].exec[0].second & mask_type_exact) &&
628 (ctx.info[block->index].exec[0].second & mask_type_global));
629
630 int num;
631 Temp cond, exit_cond;
632 if (instr->operands[0].isConstant()) {
633 assert(instr->operands[0].constantValue() == -1u);
634 /* transition to exact and set exec to zero */
635 exit_cond = bld.tmp(s1);
636 cond =
637 bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
638 Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
639
640 num = ctx.info[block->index].exec.size() - 2;
641 if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) {
642 ctx.info[block->index].exec.back().first = Operand(cond);
643 ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact);
644 }
645 } else {
646 /* demote_if: transition to exact */
647 if (block->kind & block_kind_top_level && ctx.info[block->index].exec.size() == 2 &&
648 ctx.info[block->index].exec.back().second & mask_type_global) {
649 /* We don't need to actually copy anything into exact, since the s_andn2
650 * instructions later will do that.
651 */
652 ctx.info[block->index].exec.pop_back();
653 } else {
654 transition_to_Exact(ctx, bld, block->index);
655 }
656 assert(instr->operands[0].isTemp());
657 cond = instr->operands[0].getTemp();
658 num = ctx.info[block->index].exec.size() - 1;
659 }
660
661 for (int i = num; i >= 0; i--) {
662 if (ctx.info[block->index].exec[i].second & mask_type_exact) {
663 Instruction* andn2 =
664 bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
665 get_exec_op(ctx.info[block->index].exec[i].first), cond);
666 if (i == (int)ctx.info[block->index].exec.size() - 1)
667 andn2->definitions[0] = Definition(exec, bld.lm);
668
669 ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
670 exit_cond = andn2->definitions[1].getTemp();
671 } else {
672 assert(i != 0);
673 }
674 }
675 instr->opcode = aco_opcode::p_exit_early_if;
676 instr->operands[0] = bld.scc(exit_cond);
677 state = Exact;
678
679 } else if (instr->opcode == aco_opcode::p_elect) {
680 bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u);
681 Definition dst = instr->definitions[0];
682
683 if (all_lanes_enabled) {
684 bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2));
685 } else {
686 Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
687 bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc),
688 Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx));
689 }
690 instr.reset();
691 continue;
692 }
693
694 bld.insert(std::move(instr));
695 }
696 }
697
698 void
add_branch_code(exec_ctx & ctx,Block * block)699 add_branch_code(exec_ctx& ctx, Block* block)
700 {
701 unsigned idx = block->index;
702 Builder bld(ctx.program, block);
703
704 if (idx == ctx.program->blocks.size() - 1)
705 return;
706
707 /* try to disable wqm handling */
708 if (ctx.handle_wqm && block->kind & block_kind_top_level) {
709 if (ctx.info[idx].exec.size() == 3) {
710 assert(ctx.info[idx].exec[1].second == mask_type_wqm);
711 ctx.info[idx].exec.pop_back();
712 }
713 assert(ctx.info[idx].exec.size() <= 2);
714
715 if (!(ctx.info[idx].instr_needs.back() & WQM)) {
716 /* transition to Exact if the branch doesn't need WQM */
717 aco_ptr<Instruction> branch = std::move(block->instructions.back());
718 block->instructions.pop_back();
719 ctx.info[idx].exec.back().second |= mask_type_global;
720 transition_to_Exact(ctx, bld, idx);
721 bld.insert(std::move(branch));
722 ctx.handle_wqm = false;
723 }
724 }
725
726 if (block->kind & block_kind_loop_preheader) {
727 /* collect information about the succeeding loop */
728 bool has_divergent_break = false;
729 bool has_divergent_continue = false;
730 bool has_discard = false;
731 unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
732
733 for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
734 Block& loop_block = ctx.program->blocks[i];
735
736 if (loop_block.kind & block_kind_uses_discard)
737 has_discard = true;
738 if (loop_block.loop_nest_depth != loop_nest_depth)
739 continue;
740
741 if (loop_block.kind & block_kind_uniform)
742 continue;
743 else if (loop_block.kind & block_kind_break)
744 has_divergent_break = true;
745 else if (loop_block.kind & block_kind_continue)
746 has_divergent_continue = true;
747 }
748
749 unsigned num_exec_masks = ctx.info[idx].exec.size();
750 if (block->kind & block_kind_top_level)
751 num_exec_masks = std::min(num_exec_masks, 2u);
752
753 ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks,
754 has_divergent_break, has_divergent_continue, has_discard);
755 }
756
757 /* For normal breaks, this is the exec mask. For discard+break, it's the
758 * old exec mask before it was zero'd.
759 */
760 Operand break_cond = Operand(exec, bld.lm);
761
762 if (block->kind & block_kind_continue_or_break) {
763 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind &
764 block_kind_loop_header);
765 assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind &
766 block_kind_loop_exit);
767 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
768 block->instructions.pop_back();
769
770 bool need_parallelcopy = false;
771 while (!(ctx.info[idx].exec.back().second & mask_type_loop)) {
772 ctx.info[idx].exec.pop_back();
773 need_parallelcopy = true;
774 }
775
776 if (need_parallelcopy)
777 ctx.info[idx].exec.back().first =
778 bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
779 bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), Operand(exec, bld.lm),
780 block->linear_succs[1], block->linear_succs[0]);
781 return;
782 }
783
784 if (block->kind & block_kind_uniform) {
785 Pseudo_branch_instruction& branch = block->instructions.back()->branch();
786 if (branch.opcode == aco_opcode::p_branch) {
787 branch.target[0] = block->linear_succs[0];
788 } else {
789 branch.target[0] = block->linear_succs[1];
790 branch.target[1] = block->linear_succs[0];
791 }
792 return;
793 }
794
795 if (block->kind & block_kind_branch) {
796 // orig = s_and_saveexec_b64
797 assert(block->linear_succs.size() == 2);
798 assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
799 Temp cond = block->instructions.back()->operands[0].getTemp();
800 block->instructions.pop_back();
801
802 uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
803 if (ctx.info[idx].exec.back().first.constantEquals(-1u)) {
804 bld.copy(Definition(exec, bld.lm), cond);
805 } else {
806 Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
807 Definition(exec, bld.lm), cond, Operand(exec, bld.lm));
808
809 ctx.info[idx].exec.back().first = Operand(old_exec);
810 }
811
812 /* add next current exec to the stack */
813 ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type);
814
815 bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm),
816 block->linear_succs[1], block->linear_succs[0]);
817 return;
818 }
819
820 if (block->kind & block_kind_invert) {
821 // exec = s_andn2_b64 (original_exec, exec)
822 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
823 block->instructions.pop_back();
824 assert(ctx.info[idx].exec.size() >= 2);
825 Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first;
826 bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec,
827 Operand(exec, bld.lm));
828
829 bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm),
830 block->linear_succs[1], block->linear_succs[0]);
831 return;
832 }
833
834 if (block->kind & block_kind_break) {
835 // loop_mask = s_andn2_b64 (loop_mask, exec)
836 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
837 block->instructions.pop_back();
838
839 Temp cond = Temp();
840 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
841 cond = bld.tmp(s1);
842 Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
843 exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
844 exec_mask, break_cond);
845 ctx.info[idx].exec[exec_idx].first = exec_mask;
846 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
847 break;
848 }
849
850 /* check if the successor is the merge block, otherwise set exec to 0 */
851 // TODO: this could be done better by directly branching to the merge block
852 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
853 Block& succ = ctx.program->blocks[succ_idx];
854 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
855 bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
856 }
857
858 bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1],
859 block->linear_succs[0]);
860 return;
861 }
862
863 if (block->kind & block_kind_continue) {
864 assert(block->instructions.back()->opcode == aco_opcode::p_branch);
865 block->instructions.pop_back();
866
867 Temp cond = Temp();
868 for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
869 if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
870 break;
871 cond = bld.tmp(s1);
872 Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
873 exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
874 exec_mask, Operand(exec, bld.lm));
875 ctx.info[idx].exec[exec_idx].first = exec_mask;
876 }
877 assert(cond != Temp());
878
879 /* check if the successor is the merge block, otherwise set exec to 0 */
880 // TODO: this could be done better by directly branching to the merge block
881 unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
882 Block& succ = ctx.program->blocks[succ_idx];
883 if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
884 bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
885 }
886
887 bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1],
888 block->linear_succs[0]);
889 return;
890 }
891 }
892
893 void
process_block(exec_ctx & ctx,Block * block)894 process_block(exec_ctx& ctx, Block* block)
895 {
896 std::vector<aco_ptr<Instruction>> instructions;
897 instructions.reserve(block->instructions.size());
898
899 unsigned idx = add_coupling_code(ctx, block, instructions);
900
901 assert(block->index != ctx.program->blocks.size() - 1 ||
902 ctx.info[block->index].exec.size() <= 2);
903
904 process_instructions(ctx, block, instructions, idx);
905
906 block->instructions = std::move(instructions);
907
908 add_branch_code(ctx, block);
909 }
910
911 } /* end namespace */
912
913 void
insert_exec_mask(Program * program)914 insert_exec_mask(Program* program)
915 {
916 exec_ctx ctx(program);
917
918 if (program->needs_wqm && program->needs_exact)
919 calculate_wqm_needs(ctx);
920
921 for (Block& block : program->blocks)
922 process_block(ctx, &block);
923 }
924
925 } // namespace aco
926