1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sub license, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
15 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
16 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
17 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
18 * USE OR OTHER DEALINGS IN THE SOFTWARE.
19 *
20 * The above copyright notice and this permission notice (including the
21 * next paragraph) shall be included in all copies or substantial portions
22 * of the Software.
23 *
24 */
25
26 #include "ac_llvm_cull.h"
27
28 #include <llvm-c/Core.h>
29
30 struct ac_position_w_info {
31 /* If a primitive intersects the W=0 plane, it causes a reflection
32 * of the determinant used for face culling. Every vertex behind
33 * the W=0 plane negates the determinant, so having 2 vertices behind
34 * the plane has no effect. This is i1 true if the determinant should be
35 * negated.
36 */
37 LLVMValueRef w_reflection;
38
39 /* If we simplify the "-w <= p <= w" view culling equation, we get
40 * "-w <= w", which can't be satisfied when w is negative.
41 * In perspective projection, a negative W means that the primitive
42 * is behind the viewer, but the equation is independent of the type
43 * of projection.
44 *
45 * w_accepted is false when all W are negative and therefore
46 * the primitive is invisible.
47 */
48 LLVMValueRef w_accepted;
49
50 /* The bounding box culling doesn't work and should be skipped when this is true. */
51 LLVMValueRef any_w_negative;
52 };
53
ac_analyze_position_w(struct ac_llvm_context * ctx,LLVMValueRef pos[3][4],struct ac_position_w_info * w,unsigned num_vertices)54 static void ac_analyze_position_w(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
55 struct ac_position_w_info *w, unsigned num_vertices)
56 {
57 LLVMBuilderRef builder = ctx->builder;
58 LLVMValueRef all_w_negative = ctx->i1true;
59
60 w->w_reflection = ctx->i1false;
61 w->any_w_negative = ctx->i1false;
62
63 for (unsigned i = 0; i < num_vertices; i++) {
64 LLVMValueRef neg_w;
65
66 neg_w = LLVMBuildFCmp(builder, LLVMRealOLT, pos[i][3], ctx->f32_0, "");
67 /* If neg_w is true, negate w_reflection. */
68 w->w_reflection = LLVMBuildXor(builder, w->w_reflection, neg_w, "");
69 w->any_w_negative = LLVMBuildOr(builder, w->any_w_negative, neg_w, "");
70 all_w_negative = LLVMBuildAnd(builder, all_w_negative, neg_w, "");
71 }
72 w->w_accepted = LLVMBuildNot(builder, all_w_negative, "");
73 }
74
75 /* Perform front/back face culling and return true if the primitive is accepted. */
ac_cull_face(struct ac_llvm_context * ctx,LLVMValueRef pos[3][4],struct ac_position_w_info * w,bool cull_front,bool cull_back,bool cull_zero_area)76 static LLVMValueRef ac_cull_face(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
77 struct ac_position_w_info *w, bool cull_front, bool cull_back,
78 bool cull_zero_area)
79 {
80 LLVMBuilderRef builder = ctx->builder;
81
82 if (cull_front && cull_back)
83 return ctx->i1false;
84
85 if (!cull_front && !cull_back && !cull_zero_area)
86 return ctx->i1true;
87
88 /* Front/back face culling. Also if the determinant == 0, the triangle
89 * area is 0.
90 */
91 LLVMValueRef det_t0 = LLVMBuildFSub(builder, pos[2][0], pos[0][0], "");
92 LLVMValueRef det_t1 = LLVMBuildFSub(builder, pos[1][1], pos[0][1], "");
93 LLVMValueRef det_t2 = LLVMBuildFSub(builder, pos[0][0], pos[1][0], "");
94 LLVMValueRef det_t3 = LLVMBuildFSub(builder, pos[0][1], pos[2][1], "");
95 /* t0 * t1 - t2 * t3 = t2 * -t3 + t0 * t1 = fma(t2, -t3, t0 * t1) */
96 LLVMValueRef det = ac_build_fmad(ctx, det_t2, LLVMBuildFNeg(builder, det_t3, ""),
97 LLVMBuildFMul(builder, det_t0, det_t1, ""));
98
99 /* Negative W negates the determinant. */
100 det = LLVMBuildSelect(builder, w->w_reflection, LLVMBuildFNeg(builder, det, ""), det, "");
101
102 LLVMValueRef accepted = NULL;
103 if (cull_front) {
104 LLVMRealPredicate cond = cull_zero_area ? LLVMRealOGT : LLVMRealOGE;
105 accepted = LLVMBuildFCmp(builder, cond, det, ctx->f32_0, "");
106 } else if (cull_back) {
107 LLVMRealPredicate cond = cull_zero_area ? LLVMRealOLT : LLVMRealOLE;
108 accepted = LLVMBuildFCmp(builder, cond, det, ctx->f32_0, "");
109 } else if (cull_zero_area) {
110 accepted = LLVMBuildFCmp(builder, LLVMRealONE, det, ctx->f32_0, "");
111 }
112
113 if (accepted) {
114 /* Don't reject NaN and +/-infinity, these are tricky.
115 * Just trust fixed-function HW to handle these cases correctly.
116 */
117 accepted = LLVMBuildOr(builder, accepted, ac_build_is_inf_or_nan(ctx, det), "");
118 }
119
120 return accepted;
121 }
122
rotate_45degrees(struct ac_llvm_context * ctx,LLVMValueRef v[2])123 static void rotate_45degrees(struct ac_llvm_context *ctx, LLVMValueRef v[2])
124 {
125 /* sin(45) == cos(45) */
126 LLVMValueRef sincos45 = LLVMConstReal(ctx->f32, 0.707106781);
127
128 /* x2 = x*cos45 - y*sin45 = x*sincos45 - y*sincos45
129 * y2 = x*sin45 + y*cos45 = x*sincos45 + y*sincos45
130 */
131 LLVMValueRef first = LLVMBuildFMul(ctx->builder, v[0], sincos45, "");
132
133 /* Doing 2x ffma while duplicating the multiplication is 33% faster than fmul+fadd+fadd. */
134 LLVMValueRef result[2] = {
135 ac_build_fmad(ctx, LLVMBuildFNeg(ctx->builder, v[1], ""), sincos45, first),
136 ac_build_fmad(ctx, v[1], sincos45, first),
137 };
138
139 memcpy(v, result, sizeof(result));
140 }
141
142 /* Perform view culling and small primitive elimination and return true
143 * if the primitive is accepted and initially_accepted == true. */
cull_bbox(struct ac_llvm_context * ctx,LLVMValueRef pos[3][4],LLVMValueRef initially_accepted,struct ac_position_w_info * w,LLVMValueRef vp_scale[2],LLVMValueRef vp_translate[2],LLVMValueRef small_prim_precision,LLVMValueRef clip_half_line_width[2],struct ac_cull_options * options,ac_cull_accept_func accept_func,void * userdata)144 static void cull_bbox(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
145 LLVMValueRef initially_accepted, struct ac_position_w_info *w,
146 LLVMValueRef vp_scale[2], LLVMValueRef vp_translate[2],
147 LLVMValueRef small_prim_precision,
148 LLVMValueRef clip_half_line_width[2],
149 struct ac_cull_options *options,
150 ac_cull_accept_func accept_func, void *userdata)
151 {
152 LLVMBuilderRef builder = ctx->builder;
153
154 if (!options->cull_view_xy && !options->cull_view_near_z && !options->cull_view_far_z &&
155 !options->cull_small_prims) {
156 if (accept_func)
157 accept_func(ctx, initially_accepted, userdata);
158 return;
159 }
160
161 ac_build_ifcc(ctx, initially_accepted, 10000000);
162 {
163 LLVMValueRef bbox_min[3], bbox_max[3];
164 LLVMValueRef accepted = ctx->i1true;
165
166 /* Compute the primitive bounding box for easy culling. */
167 for (unsigned chan = 0; chan < (options->cull_view_near_z ||
168 options->cull_view_far_z ? 3 : 2); chan++) {
169 assert(options->num_vertices >= 2);
170 bbox_min[chan] = ac_build_fmin(ctx, pos[0][chan], pos[1][chan]);
171 bbox_max[chan] = ac_build_fmax(ctx, pos[0][chan], pos[1][chan]);
172
173 if (options->num_vertices == 3) {
174 bbox_min[chan] = ac_build_fmin(ctx, bbox_min[chan], pos[2][chan]);
175 bbox_max[chan] = ac_build_fmax(ctx, bbox_max[chan], pos[2][chan]);
176 }
177
178 if (clip_half_line_width[chan]) {
179 bbox_min[chan] = LLVMBuildFSub(builder, bbox_min[chan], clip_half_line_width[chan], "");
180 bbox_max[chan] = LLVMBuildFAdd(builder, bbox_max[chan], clip_half_line_width[chan], "");
181 }
182 }
183
184 /* View culling. */
185 if (options->cull_view_xy || options->cull_view_near_z || options->cull_view_far_z) {
186 for (unsigned chan = 0; chan < 3; chan++) {
187 LLVMValueRef visible;
188
189 if ((options->cull_view_xy && chan <= 1) || (options->cull_view_near_z && chan == 2)) {
190 float t = chan == 2 && options->use_halfz_clip_space ? 0 : -1;
191 visible = LLVMBuildFCmp(builder, LLVMRealOGE, bbox_max[chan],
192 LLVMConstReal(ctx->f32, t), "");
193 accepted = LLVMBuildAnd(builder, accepted, visible, "");
194 }
195
196 if ((options->cull_view_xy && chan <= 1) || (options->cull_view_far_z && chan == 2)) {
197 visible = LLVMBuildFCmp(builder, LLVMRealOLE, bbox_min[chan], ctx->f32_1, "");
198 accepted = LLVMBuildAnd(builder, accepted, visible, "");
199 }
200 }
201 }
202
203 /* Small primitive culling - triangles. */
204 if (options->cull_small_prims && options->num_vertices == 3) {
205 /* Assuming a sample position at (0.5, 0.5), if we round
206 * the bounding box min/max extents and the results of
207 * the rounding are equal in either the X or Y direction,
208 * the bounding box does not intersect the sample.
209 *
210 * See these GDC slides for pictures:
211 * https://frostbite-wp-prd.s3.amazonaws.com/wp-content/uploads/2016/03/29204330/GDC_2016_Compute.pdf
212 */
213 LLVMValueRef min, max, not_equal[2], visible;
214
215 for (unsigned chan = 0; chan < 2; chan++) {
216 /* Convert the position to screen-space coordinates. */
217 min = ac_build_fmad(ctx, bbox_min[chan], vp_scale[chan], vp_translate[chan]);
218 max = ac_build_fmad(ctx, bbox_max[chan], vp_scale[chan], vp_translate[chan]);
219 /* Scale the bounding box according to the precision of
220 * the rasterizer and the number of MSAA samples. */
221 min = LLVMBuildFSub(builder, min, small_prim_precision, "");
222 max = LLVMBuildFAdd(builder, max, small_prim_precision, "");
223
224 /* Determine if the bbox intersects the sample point.
225 * It also works for MSAA, but vp_scale, vp_translate,
226 * and small_prim_precision are computed differently.
227 */
228 min = ac_build_round(ctx, min);
229 max = ac_build_round(ctx, max);
230 not_equal[chan] = LLVMBuildFCmp(builder, LLVMRealONE, min, max, "");
231 }
232 visible = LLVMBuildAnd(builder, not_equal[0], not_equal[1], "");
233 accepted = LLVMBuildAnd(builder, accepted, visible, "");
234 }
235
236 /* Small primitive culling - lines. */
237 if (options->cull_small_prims && options->num_vertices == 2) {
238 /* This only works with lines without perpendicular end caps (lines with perpendicular
239 * end caps are rasterized as quads and thus can't be culled as small prims in 99% of
240 * cases because line_width >= 1).
241 *
242 * This takes advantage of the diamont exit rule, which says that every pixel
243 * has a diamond inside it touching the pixel boundary and only if a line exits
244 * the diamond, that pixel is filled. If a line enters the diamond or stays
245 * outside the diamond, the pixel isn't filled.
246 *
247 * This algorithm is a little simpler than that. The space outside all diamonds also
248 * has the same diamond shape, which we'll call corner diamonds.
249 *
250 * The idea is to cull all lines that are entirely inside a diamond, including
251 * corner diamonds. If a line is entirely inside a diamond, it can be culled because
252 * it doesn't exit it. If a line is entirely inside a corner diamond, it can be culled
253 * because it doesn't enter any diamond and thus can't exit any diamond.
254 *
255 * The viewport is rotated by 45 degress to turn diamonds into squares, and a bounding
256 * box test is used to determine whether a line is entirely inside any square (diamond).
257 *
258 * The line width doesn't matter. Wide lines only duplicate filled pixels in either X or
259 * Y direction from the filled pixels. MSAA also doesn't matter. MSAA should ideally use
260 * perpendicular end caps that enable quad rasterization for lines. Thus, this should
261 * always use non-MSAA viewport transformation and non-MSAA small prim precision.
262 *
263 * A good test is piglit/lineloop because it draws 10k subpixel lines in a circle.
264 * It should contain no holes if this matches hw behavior.
265 */
266 LLVMValueRef v0[2], v1[2];
267
268 /* Get vertex positions in pixels. */
269 for (unsigned chan = 0; chan < 2; chan++) {
270 v0[chan] = ac_build_fmad(ctx, pos[0][chan], vp_scale[chan], vp_translate[chan]);
271 v1[chan] = ac_build_fmad(ctx, pos[1][chan], vp_scale[chan], vp_translate[chan]);
272 }
273
274 /* Rotate the viewport by 45 degress, so that diamonds become squares. */
275 rotate_45degrees(ctx, v0);
276 rotate_45degrees(ctx, v1);
277
278 LLVMValueRef not_equal[2];
279
280 for (unsigned chan = 0; chan < 2; chan++) {
281 /* The width of each square is sqrt(0.5), so scale it to 1 because we want
282 * round() to give us the position of the closest center of a square (diamond).
283 */
284 v0[chan] = LLVMBuildFMul(builder, v0[chan], LLVMConstReal(ctx->f32, 1.414213562), "");
285 v1[chan] = LLVMBuildFMul(builder, v1[chan], LLVMConstReal(ctx->f32, 1.414213562), "");
286
287 /* Compute the bounding box around both vertices. We do this because we must
288 * enlarge the line area by the precision of the rasterizer.
289 */
290 LLVMValueRef min = ac_build_fmin(ctx, v0[chan], v1[chan]);
291 LLVMValueRef max = ac_build_fmax(ctx, v0[chan], v1[chan]);
292
293 /* Enlarge the bounding box by the precision of the rasterizer. */
294 min = LLVMBuildFSub(builder, min, small_prim_precision, "");
295 max = LLVMBuildFAdd(builder, max, small_prim_precision, "");
296
297 /* Round the bounding box corners. If both rounded corners are equal,
298 * the bounding box is entirely inside a square (diamond).
299 */
300 min = ac_build_round(ctx, min);
301 max = ac_build_round(ctx, max);
302 not_equal[chan] = LLVMBuildFCmp(builder, LLVMRealONE, min, max, "");
303 }
304
305 accepted = LLVMBuildAnd(builder, accepted,
306 LLVMBuildOr(builder, not_equal[0], not_equal[1], ""), "");
307 }
308
309 /* Disregard the bounding box culling if any W is negative because the code
310 * doesn't work with that.
311 */
312 accepted = LLVMBuildOr(builder, accepted, w->any_w_negative, "");
313
314 if (accept_func)
315 accept_func(ctx, accepted, userdata);
316 }
317 ac_build_endif(ctx, 10000000);
318 }
319
320 /**
321 * Return i1 true if the primitive is accepted (not culled).
322 *
323 * \param pos Vertex positions 3x vec4
324 * \param initially_accepted AND'ed with the result. Some computations can be
325 * skipped if this is false.
326 * \param vp_scale Viewport scale XY.
327 * For MSAA, multiply them by the number of samples.
328 * \param vp_translate Viewport translation XY.
329 * For MSAA, multiply them by the number of samples.
330 * \param small_prim_precision Precision of small primitive culling. This should
331 * be the same as or greater than the precision of
332 * the rasterizer. Set to num_samples / 2^subpixel_bits.
333 * subpixel_bits are defined by the quantization mode.
334 * \param options See ac_cull_options.
335 * \param accept_func Callback invoked in the inner-most branch where the primitive is accepted.
336 */
ac_cull_primitive(struct ac_llvm_context * ctx,LLVMValueRef pos[3][4],LLVMValueRef initially_accepted,LLVMValueRef vp_scale[2],LLVMValueRef vp_translate[2],LLVMValueRef small_prim_precision,LLVMValueRef clip_half_line_width[2],struct ac_cull_options * options,ac_cull_accept_func accept_func,void * userdata)337 void ac_cull_primitive(struct ac_llvm_context *ctx, LLVMValueRef pos[3][4],
338 LLVMValueRef initially_accepted, LLVMValueRef vp_scale[2],
339 LLVMValueRef vp_translate[2], LLVMValueRef small_prim_precision,
340 LLVMValueRef clip_half_line_width[2], struct ac_cull_options *options,
341 ac_cull_accept_func accept_func, void *userdata)
342 {
343 struct ac_position_w_info w;
344 ac_analyze_position_w(ctx, pos, &w, options->num_vertices);
345
346 /* W culling. */
347 LLVMValueRef accepted = options->cull_w ? w.w_accepted : ctx->i1true;
348 accepted = LLVMBuildAnd(ctx->builder, accepted, initially_accepted, "");
349
350 /* Face culling. */
351 accepted = LLVMBuildAnd(
352 ctx->builder, accepted,
353 ac_cull_face(ctx, pos, &w, options->cull_front, options->cull_back, options->cull_zero_area),
354 "");
355
356 /* View culling and small primitive elimination. */
357 cull_bbox(ctx, pos, accepted, &w, vp_scale, vp_translate, small_prim_precision,
358 clip_half_line_width, options, accept_func, userdata);
359 }
360