• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Luca Barbieri
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_jumps.cpp
26  *
27  * This pass lowers jumps (break, continue, and return) to if/else structures.
28  *
29  * It can be asked to:
30  * 1. Pull jumps out of ifs where possible
31  * 2. Remove all "continue"s, replacing them with an "execute flag"
32  * 3. Replace all "break" with a single conditional one at the end of the loop
33  * 4. Replace all "return"s with a single return at the end of the function,
34  *    for the main function and/or other functions
35  *
36  * Applying this pass gives several benefits:
37  * 1. All functions can be inlined.
38  * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39  * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40  *    supported
41  *
42  * Continues are lowered by adding a per-loop "execute flag", initialized to
43  * true, that when cleared inhibits all execution until the end of the loop.
44  *
45  * Breaks are lowered to continues, plus setting a "break flag" that is checked
46  * at the end of the loop, and trigger the unique "break".
47  *
48  * Returns are lowered to breaks/continues, plus adding a "return flag" that
49  * causes loops to break again out of their enclosing loops until all the
50  * loops are exited: then the "execute flag" logic will ignore everything
51  * until the end of the function.
52  *
53  * Note that "continue" and "return" can also be implemented by adding
54  * a dummy loop and using break.
55  * However, this is bad for hardware with limited nesting depth, and
56  * prevents further optimization, and thus is not currently performed.
57  */
58 
59 #include "compiler/glsl_types.h"
60 #include <string.h>
61 #include "ir.h"
62 
63 /**
64  * Enum recording the result of analyzing how control flow might exit
65  * an IR node.
66  *
67  * Each possible value of jump_strength indicates a strictly stronger
68  * guarantee on control flow than the previous value.
69  *
70  * The ordering of strengths roughly reflects the way jumps are
71  * lowered: jumps with higher strength tend to be lowered to jumps of
72  * lower strength.  Accordingly, strength is used as a heuristic to
73  * determine which lowering to perform first.
74  *
75  * This enum is also used by get_jump_strength() to categorize
76  * instructions as either break, continue, return, or other.  When
77  * used in this fashion, strength_always_clears_execute_flag is not
78  * used.
79  *
80  * The control flow analysis made by this optimization pass makes two
81  * simplifying assumptions:
82  *
83  * - It ignores discard instructions, since they are lowered by a
84  *   separate pass (lower_discard.cpp).
85  *
86  * - It assumes it is always possible for control to flow from a loop
87  *   to the instruction immediately following it.  Technically, this
88  *   is not true (since all execution paths through the loop might
89  *   jump back to the top, or return from the function).
90  *
91  * Both of these simplifying assumtions are safe, since they can never
92  * cause reachable code to be incorrectly classified as unreachable;
93  * they can only do the opposite.
94  */
95 enum jump_strength
96 {
97    /**
98     * Analysis has produced no guarantee on how control flow might
99     * exit this IR node.  It might fall out the bottom (with or
100     * without clearing the execute flag, if present), or it might
101     * continue to the top of the innermost enclosing loop, break out
102     * of it, or return from the function.
103     */
104    strength_none,
105 
106    /**
107     * The only way control can fall out the bottom of this node is
108     * through a code path that clears the execute flag.  It might also
109     * continue to the top of the innermost enclosing loop, break out
110     * of it, or return from the function.
111     */
112    strength_always_clears_execute_flag,
113 
114    /**
115     * Control cannot fall out the bottom of this node.  It might
116     * continue to the top of the innermost enclosing loop, break out
117     * of it, or return from the function.
118     */
119    strength_continue,
120 
121    /**
122     * Control cannot fall out the bottom of this node, or continue the
123     * top of the innermost enclosing loop.  It can only break out of
124     * it or return from the function.
125     */
126    strength_break,
127 
128    /**
129     * Control cannot fall out the bottom of this node, continue to the
130     * top of the innermost enclosing loop, or break out of it.  It can
131     * only return from the function.
132     */
133    strength_return
134 };
135 
136 namespace {
137 
138 struct block_record
139 {
140    /* minimum jump strength (of lowered IR, not pre-lowering IR)
141     *
142     * If the block ends with a jump, must be the strength of the jump.
143     * Otherwise, the jump would be dead and have been deleted before)
144     *
145     * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146     * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147     * Note that identical jumps are usually unified though.
148     */
149    jump_strength min_strength;
150 
151    /* can anything clear the execute flag? */
152    bool may_clear_execute_flag;
153 
block_record__anon1c7f7ce50111::block_record154    block_record()
155    {
156       this->min_strength = strength_none;
157       this->may_clear_execute_flag = false;
158    }
159 };
160 
161 struct loop_record
162 {
163    ir_function_signature* signature;
164    ir_loop* loop;
165 
166    /* used to avoid lowering the break used to represent lowered breaks */
167    unsigned nesting_depth;
168    bool in_if_at_the_end_of_the_loop;
169 
170    bool may_set_return_flag;
171 
172    ir_variable* execute_flag; /* cleared to emulate continue */
173 
loop_record__anon1c7f7ce50111::loop_record174    loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
175    {
176       this->signature = p_signature;
177       this->loop = p_loop;
178       this->nesting_depth = 0;
179       this->in_if_at_the_end_of_the_loop = false;
180       this->may_set_return_flag = false;
181       this->execute_flag = 0;
182    }
183 
get_execute_flag__anon1c7f7ce50111::loop_record184    ir_variable* get_execute_flag()
185    {
186       /* also supported for the "function loop" */
187       if(!this->execute_flag) {
188          exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189          this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
190          list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true)));
191          list.push_head(this->execute_flag);
192       }
193       return this->execute_flag;
194    }
195 };
196 
197 struct function_record
198 {
199    ir_function_signature* signature;
200    ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
201    ir_variable* return_value;
202    bool lower_return;
203    unsigned nesting_depth;
204 
function_record__anon1c7f7ce50111::function_record205    function_record(ir_function_signature* p_signature = 0,
206                    bool lower_return = false)
207    {
208       this->signature = p_signature;
209       this->return_flag = 0;
210       this->return_value = 0;
211       this->nesting_depth = 0;
212       this->lower_return = lower_return;
213    }
214 
get_return_flag__anon1c7f7ce50111::function_record215    ir_variable* get_return_flag()
216    {
217       if(!this->return_flag) {
218          this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
219          this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false)));
220          this->signature->body.push_head(this->return_flag);
221       }
222       return this->return_flag;
223    }
224 
get_return_value__anon1c7f7ce50111::function_record225    ir_variable* get_return_value()
226    {
227       if(!this->return_value) {
228          assert(!this->signature->return_type->is_void());
229          return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
230          this->signature->body.push_head(this->return_value);
231       }
232       return this->return_value;
233    }
234 };
235 
236 struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
237    /* Postconditions: on exit of any visit() function:
238     *
239     * ANALYSIS: this->block.min_strength,
240     * this->block.may_clear_execute_flag, and
241     * this->loop.may_set_return_flag are updated to reflect the
242     * characteristics of the visited statement.
243     *
244     * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
245     * strength_none, the visited node is at the end of its exec_list.
246     * In other words, any unreachable statements that follow the
247     * visited statement in its exec_list have been removed.
248     *
249     * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
250     * statements, then should_lower_jump() is false for all of the
251     * return, break, or continue statements it contains.
252     *
253     * Note that visiting a jump does not lower it.  That is the
254     * responsibility of the statement (or function signature) that
255     * contains the jump.
256     */
257 
258    using ir_control_flow_visitor::visit;
259 
260    bool progress;
261 
262    struct function_record function;
263    struct loop_record loop;
264    struct block_record block;
265 
266    bool pull_out_jumps;
267    bool lower_continue;
268    bool lower_sub_return;
269    bool lower_main_return;
270 
ir_lower_jumps_visitor__anon1c7f7ce50111::ir_lower_jumps_visitor271    ir_lower_jumps_visitor()
272       : progress(false),
273         pull_out_jumps(false),
274         lower_continue(false),
275         lower_sub_return(false),
276         lower_main_return(false)
277    {
278    }
279 
truncate_after_instruction__anon1c7f7ce50111::ir_lower_jumps_visitor280    void truncate_after_instruction(exec_node *ir)
281    {
282       if (!ir)
283          return;
284 
285       while (!ir->get_next()->is_tail_sentinel()) {
286          ((ir_instruction *)ir->get_next())->remove();
287          this->progress = true;
288       }
289    }
290 
move_outer_block_inside__anon1c7f7ce50111::ir_lower_jumps_visitor291    void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
292    {
293       while (!ir->get_next()->is_tail_sentinel()) {
294          ir_instruction *move_ir = (ir_instruction *)ir->get_next();
295 
296          move_ir->remove();
297          inner_block->push_tail(move_ir);
298       }
299    }
300 
301    /**
302     * Insert the instructions necessary to lower a return statement,
303     * before the given return instruction.
304     */
insert_lowered_return__anon1c7f7ce50111::ir_lower_jumps_visitor305    void insert_lowered_return(ir_return *ir)
306    {
307       ir_variable* return_flag = this->function.get_return_flag();
308       if(!this->function.signature->return_type->is_void()) {
309          ir_variable* return_value = this->function.get_return_value();
310          ir->insert_before(
311             new(ir) ir_assignment(
312                new (ir) ir_dereference_variable(return_value),
313                ir->value));
314       }
315       ir->insert_before(
316          new(ir) ir_assignment(
317             new (ir) ir_dereference_variable(return_flag),
318             new (ir) ir_constant(true)));
319       this->loop.may_set_return_flag = true;
320    }
321 
322    /**
323     * If the given instruction is a return, lower it to instructions
324     * that store the return value (if there is one), set the return
325     * flag, and then break.
326     *
327     * It is safe to pass NULL to this function.
328     */
lower_return_unconditionally__anon1c7f7ce50111::ir_lower_jumps_visitor329    void lower_return_unconditionally(ir_instruction *ir)
330    {
331       if (get_jump_strength(ir) != strength_return) {
332          return;
333       }
334       insert_lowered_return((ir_return*)ir);
335       ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
336    }
337 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor338    virtual void visit(class ir_loop_jump * ir)
339    {
340       /* Eliminate all instructions after each one, since they are
341        * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
342        * postcondition.
343        */
344       truncate_after_instruction(ir);
345 
346       /* Set this->block.min_strength based on this instruction.  This
347        * satisfies the ANALYSIS postcondition.  It is not necessary to
348        * update this->block.may_clear_execute_flag or
349        * this->loop.may_set_return_flag, because an unlowered jump
350        * instruction can't change any flags.
351        */
352       this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
353 
354       /* The CONTAINED_JUMPS_LOWERED postcondition is already
355        * satisfied, because jump statements can't contain other
356        * statements.
357        */
358    }
359 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor360    virtual void visit(class ir_return * ir)
361    {
362       /* Eliminate all instructions after each one, since they are
363        * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
364        * postcondition.
365        */
366       truncate_after_instruction(ir);
367 
368       /* Set this->block.min_strength based on this instruction.  This
369        * satisfies the ANALYSIS postcondition.  It is not necessary to
370        * update this->block.may_clear_execute_flag or
371        * this->loop.may_set_return_flag, because an unlowered return
372        * instruction can't change any flags.
373        */
374       this->block.min_strength = strength_return;
375 
376       /* The CONTAINED_JUMPS_LOWERED postcondition is already
377        * satisfied, because jump statements can't contain other
378        * statements.
379        */
380    }
381 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor382    virtual void visit(class ir_discard * ir)
383    {
384       /* Nothing needs to be done.  The ANALYSIS and
385        * DEAD_CODE_ELIMINATION postconditions are already satisfied,
386        * because discard statements are ignored by this optimization
387        * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
388        * satisfied, because discard statements can't contain other
389        * statements.
390        */
391       (void) ir;
392    }
393 
get_jump_strength__anon1c7f7ce50111::ir_lower_jumps_visitor394    enum jump_strength get_jump_strength(ir_instruction* ir)
395    {
396       if(!ir)
397          return strength_none;
398       else if(ir->ir_type == ir_type_loop_jump) {
399          if(((ir_loop_jump*)ir)->is_break())
400             return strength_break;
401          else
402             return strength_continue;
403       } else if(ir->ir_type == ir_type_return)
404          return strength_return;
405       else
406          return strength_none;
407    }
408 
should_lower_jump__anon1c7f7ce50111::ir_lower_jumps_visitor409    bool should_lower_jump(ir_jump* ir)
410    {
411       unsigned strength = get_jump_strength(ir);
412       bool lower;
413       switch(strength)
414       {
415       case strength_none:
416          lower = false; /* don't change this, code relies on it */
417          break;
418       case strength_continue:
419          lower = lower_continue;
420          break;
421       case strength_break:
422          lower = false;
423          break;
424       case strength_return:
425          /* never lower return at the end of a this->function */
426          if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
427             lower = false;
428          else
429             lower = this->function.lower_return;
430          break;
431       }
432       return lower;
433    }
434 
visit_block__anon1c7f7ce50111::ir_lower_jumps_visitor435    block_record visit_block(exec_list* list)
436    {
437       /* Note: since visiting a node may change that node's next
438        * pointer, we can't use visit_exec_list(), because
439        * visit_exec_list() caches the node's next pointer before
440        * visiting it.  So we use foreach_in_list() instead.
441        *
442        * foreach_in_list() isn't safe if the node being visited gets
443        * removed, but fortunately this visitor doesn't do that.
444        */
445 
446       block_record saved_block = this->block;
447       this->block = block_record();
448       foreach_in_list(ir_instruction, node, list) {
449          node->accept(this);
450       }
451       block_record ret = this->block;
452       this->block = saved_block;
453       return ret;
454    }
455 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor456    virtual void visit(ir_if *ir)
457    {
458       if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
459          this->loop.in_if_at_the_end_of_the_loop = true;
460 
461       ++this->function.nesting_depth;
462       ++this->loop.nesting_depth;
463 
464       block_record block_records[2];
465       ir_jump* jumps[2];
466 
467       /* Recursively lower nested jumps.  This satisfies the
468        * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
469        * unconditional jumps at the end of ir->then_instructions and
470        * ir->else_instructions, which are handled below.
471        */
472       block_records[0] = visit_block(&ir->then_instructions);
473       block_records[1] = visit_block(&ir->else_instructions);
474 
475 retry: /* we get here if we put code after the if inside a branch */
476 
477       /* Determine which of ir->then_instructions and
478        * ir->else_instructions end with an unconditional jump.
479        */
480       for(unsigned i = 0; i < 2; ++i) {
481          exec_list& list = i ? ir->else_instructions : ir->then_instructions;
482          jumps[i] = 0;
483          if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
484             jumps[i] = (ir_jump*)list.get_tail();
485       }
486 
487       /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
488        * postcondition by lowering jumps in both then_instructions and
489        * else_instructions.
490        */
491       for(;;) {
492          /* Determine the types of the jumps that terminate
493           * ir->then_instructions and ir->else_instructions.
494           */
495          jump_strength jump_strengths[2];
496 
497          for(unsigned i = 0; i < 2; ++i) {
498             if(jumps[i]) {
499                jump_strengths[i] = block_records[i].min_strength;
500                assert(jump_strengths[i] == get_jump_strength(jumps[i]));
501             } else
502                jump_strengths[i] = strength_none;
503          }
504 
505          /* If both code paths end in a jump, and the jumps are the
506           * same, and we are pulling out jumps, replace them with a
507           * single jump that comes after the if instruction.  The new
508           * jump will be visited next, and it will be lowered if
509           * necessary by the loop or conditional that encloses it.
510           */
511          if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
512             bool unify = true;
513             if(jump_strengths[0] == strength_continue)
514                ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
515             else if(jump_strengths[0] == strength_break)
516                ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
517             /* FINISHME: unify returns with identical expressions */
518             else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
519                ir->insert_after(new(ir) ir_return(NULL));
520 	    else
521 	       unify = false;
522 
523             if(unify) {
524                jumps[0]->remove();
525                jumps[1]->remove();
526                this->progress = true;
527 
528                /* Update jumps[] to reflect the fact that the jumps
529                 * are gone, and update block_records[] to reflect the
530                 * fact that control can now flow to the next
531                 * instruction.
532                 */
533                jumps[0] = 0;
534                jumps[1] = 0;
535                block_records[0].min_strength = strength_none;
536                block_records[1].min_strength = strength_none;
537 
538                /* The CONTAINED_JUMPS_LOWERED postcondition is now
539                 * satisfied, so we can break out of the loop.
540                 */
541                break;
542             }
543          }
544 
545          /* lower a jump: if both need to lowered, start with the strongest one, so that
546           * we might later unify the lowered version with the other one
547           */
548          bool should_lower[2];
549          for(unsigned i = 0; i < 2; ++i)
550             should_lower[i] = should_lower_jump(jumps[i]);
551 
552          int lower;
553          if(should_lower[1] && should_lower[0])
554             lower = jump_strengths[1] > jump_strengths[0];
555          else if(should_lower[0])
556             lower = 0;
557          else if(should_lower[1])
558             lower = 1;
559          else
560             /* Neither code path ends in a jump that needs to be
561              * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
562              * is satisfied and we can break out of the loop.
563              */
564             break;
565 
566          if(jump_strengths[lower] == strength_return) {
567             /* To lower a return, we create a return flag (if the
568              * function doesn't have one already) and add instructions
569              * that: 1. store the return value (if this function has a
570              * non-void return) and 2. set the return flag
571              */
572             insert_lowered_return((ir_return*)jumps[lower]);
573             if(this->loop.loop) {
574                /* If we are in a loop, replace the return instruction
575                 * with a break instruction, and then loop so that the
576                 * break instruction can be lowered if necessary.
577                 */
578                ir_loop_jump* lowered = 0;
579                lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
580                /* Note: we must update block_records and jumps to
581                 * reflect the fact that the control path has been
582                 * altered from a return to a break.
583                 */
584                block_records[lower].min_strength = strength_break;
585                jumps[lower]->replace_with(lowered);
586                jumps[lower] = lowered;
587             } else {
588                /* If we are not in a loop, we then proceed as we would
589                 * for a continue statement (set the execute flag to
590                 * false to prevent the rest of the function from
591                 * executing).
592                 */
593                goto lower_continue;
594             }
595             this->progress = true;
596          } else if(jump_strengths[lower] == strength_break) {
597             unreachable("no lowering of breaks any more");
598          } else if(jump_strengths[lower] == strength_continue) {
599 lower_continue:
600             /* To lower a continue, we create an execute flag (if the
601              * loop doesn't have one already) and replace the continue
602              * with an instruction that clears it.
603              *
604              * Note that this code path gets exercised when lowering
605              * return statements that are not inside a loop, so
606              * this->loop must be initialized even outside of loops.
607              */
608             ir_variable* execute_flag = this->loop.get_execute_flag();
609             jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false)));
610             /* Note: we must update block_records and jumps to reflect
611              * the fact that the control path has been altered to an
612              * instruction that clears the execute flag.
613              */
614             jumps[lower] = 0;
615             block_records[lower].min_strength = strength_always_clears_execute_flag;
616             block_records[lower].may_clear_execute_flag = true;
617             this->progress = true;
618 
619             /* Let the loop run again, in case the other branch of the
620              * if needs to be lowered too.
621              */
622          }
623       }
624 
625       /* move out a jump out if possible */
626       if(pull_out_jumps) {
627          /* If one of the branches ends in a jump, and control cannot
628           * fall out the bottom of the other branch, then we can move
629           * the jump after the if.
630           *
631           * Set move_out to the branch we are moving a jump out of.
632           */
633          int move_out = -1;
634          if(jumps[0] && block_records[1].min_strength >= strength_continue)
635             move_out = 0;
636          else if(jumps[1] && block_records[0].min_strength >= strength_continue)
637             move_out = 1;
638 
639          if(move_out >= 0)
640          {
641             jumps[move_out]->remove();
642             ir->insert_after(jumps[move_out]);
643             /* Note: we must update block_records and jumps to reflect
644              * the fact that the jump has been moved out of the if.
645              */
646             jumps[move_out] = 0;
647             block_records[move_out].min_strength = strength_none;
648             this->progress = true;
649          }
650       }
651 
652       /* Now satisfy the ANALYSIS postcondition by setting
653        * this->block.min_strength and
654        * this->block.may_clear_execute_flag based on the
655        * characteristics of the two branches.
656        */
657       if(block_records[0].min_strength < block_records[1].min_strength)
658          this->block.min_strength = block_records[0].min_strength;
659       else
660          this->block.min_strength = block_records[1].min_strength;
661       this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
662 
663       /* Now we need to clean up the instructions that follow the
664        * if.
665        *
666        * If those instructions are unreachable, then satisfy the
667        * DEAD_CODE_ELIMINATION postcondition by eliminating them.
668        * Otherwise that postcondition is already satisfied.
669        */
670       if(this->block.min_strength)
671          truncate_after_instruction(ir);
672       else if(this->block.may_clear_execute_flag)
673       {
674          /* If the "if" instruction might clear the execute flag, then
675           * we need to guard any instructions that follow so that they
676           * are only executed if the execute flag is set.
677           *
678           * If one of the branches of the "if" always clears the
679           * execute flag, and the other branch never clears it, then
680           * this is easy: just move all the instructions following the
681           * "if" into the branch that never clears it.
682           */
683          int move_into = -1;
684          if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
685             move_into = 1;
686          else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
687             move_into = 0;
688 
689          if(move_into >= 0) {
690             assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
691 
692             exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
693             exec_node* next = ir->get_next();
694             if(!next->is_tail_sentinel()) {
695                move_outer_block_inside(ir, list);
696 
697                /* If any instructions moved, then we need to visit
698                 * them (since they are now inside the "if").  Since
699                 * block_records[move_into] is in its default state
700                 * (see assertion above), we can safely replace
701                 * block_records[move_into] with the result of this
702                 * analysis.
703                 */
704                exec_list list;
705                list.head_sentinel.next = next;
706                block_records[move_into] = visit_block(&list);
707 
708                /*
709                 * Then we need to re-start our jump lowering, since one
710                 * of the instructions we moved might be a jump that
711                 * needs to be lowered.
712                 */
713                this->progress = true;
714                goto retry;
715             }
716          } else {
717             /* If we get here, then the simple case didn't apply; we
718              * need to actually guard the instructions that follow.
719              *
720              * To avoid creating unnecessarily-deep nesting, first
721              * look through the instructions that follow and unwrap
722              * any instructions that that are already wrapped in the
723              * appropriate guard.
724              */
725             ir_instruction* ir_after;
726             for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
727             {
728                ir_if* ir_if = ir_after->as_if();
729                if(ir_if && ir_if->else_instructions.is_empty()) {
730                   ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
731                   if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
732                      ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
733                      ir_after->insert_before(&ir_if->then_instructions);
734                      ir_after->remove();
735                      ir_after = ir_next;
736                      continue;
737                   }
738                }
739                ir_after = (ir_instruction*)ir_after->get_next();
740 
741                /* only set this if we find any unprotected instruction */
742                this->progress = true;
743             }
744 
745             /* Then, wrap all the instructions that follow in a single
746              * guard.
747              */
748             if(!ir->get_next()->is_tail_sentinel()) {
749                assert(this->loop.execute_flag);
750                ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
751                move_outer_block_inside(ir, &if_execute->then_instructions);
752                ir->insert_after(if_execute);
753             }
754          }
755       }
756       --this->loop.nesting_depth;
757       --this->function.nesting_depth;
758    }
759 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor760    virtual void visit(ir_loop *ir)
761    {
762       /* Visit the body of the loop, with a fresh data structure in
763        * this->loop so that the analysis we do here won't bleed into
764        * enclosing loops.
765        *
766        * We assume that all code after a loop is reachable from the
767        * loop (see comments on enum jump_strength), so the
768        * DEAD_CODE_ELIMINATION postcondition is automatically
769        * satisfied, as is the block.min_strength portion of the
770        * ANALYSIS postcondition.
771        *
772        * The block.may_clear_execute_flag portion of the ANALYSIS
773        * postcondition is automatically satisfied because execute
774        * flags do not propagate outside of loops.
775        *
776        * The loop.may_set_return_flag portion of the ANALYSIS
777        * postcondition is handled below.
778        */
779       ++this->function.nesting_depth;
780       loop_record saved_loop = this->loop;
781       this->loop = loop_record(this->function.signature, ir);
782 
783       /* Recursively lower nested jumps.  This satisfies the
784        * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
785        * an unconditional continue or return at the bottom of the
786        * loop, which are handled below.
787        */
788       block_record body = visit_block(&ir->body_instructions);
789 
790       /* If the loop ends in an unconditional continue, eliminate it
791        * because it is redundant.
792        */
793       ir_instruction *ir_last
794          = (ir_instruction *) ir->body_instructions.get_tail();
795       if (get_jump_strength(ir_last) == strength_continue) {
796          ir_last->remove();
797       }
798 
799       /* If the loop ends in an unconditional return, and we are
800        * lowering returns, lower it.
801        */
802       if (this->function.lower_return)
803          lower_return_unconditionally(ir_last);
804 
805       if(body.min_strength >= strength_break) {
806          /* FINISHME: If the min_strength of the loop body is
807           * strength_break or strength_return, that means that it
808           * isn't a loop at all, since control flow always leaves the
809           * body of the loop via break or return.  In principle the
810           * loop could be eliminated in this case.  This optimization
811           * is not implemented yet.
812           */
813       }
814 
815 
816       /* If the body of the loop may set the return flag, then at
817        * least one return was lowered to a break, so we need to ensure
818        * that the return flag is checked after the body of the loop is
819        * executed.
820        */
821       if(this->loop.may_set_return_flag) {
822          assert(this->function.return_flag);
823          /* Generate the if statement to check the return flag */
824          ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
825          /* Note: we also need to propagate the knowledge that the
826           * return flag may get set to the outer context.  This
827           * satisfies the loop.may_set_return_flag part of the
828           * ANALYSIS postcondition.
829           */
830          saved_loop.may_set_return_flag = true;
831          if(saved_loop.loop)
832             /* If this loop is nested inside another one, then the if
833              * statement that we generated should break out of that
834              * loop if the return flag is set.  Caller will lower that
835              * break statement if necessary.
836              */
837             return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
838          else {
839             /* Otherwise, ensure that the instructions that follow are only
840              * executed if the return flag is clear.  We can do that by moving
841              * those instructions into the else clause of the generated if
842              * statement.
843              */
844             move_outer_block_inside(ir, &return_if->else_instructions);
845 
846             /* In case the loop is embedded inside an if add a new return to
847              * the return flag then branch and let a future pass tidy it up.
848              */
849             if (this->function.signature->return_type->is_void())
850                return_if->then_instructions.push_tail(new(ir) ir_return(NULL));
851             else {
852                assert(this->function.return_value);
853                ir_variable* return_value = this->function.return_value;
854                return_if->then_instructions.push_tail(
855                   new(ir) ir_return(new(ir) ir_dereference_variable(return_value)));
856             }
857          }
858 
859          ir->insert_after(return_if);
860       }
861 
862       this->loop = saved_loop;
863       --this->function.nesting_depth;
864    }
865 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor866    virtual void visit(ir_function_signature *ir)
867    {
868       /* these are not strictly necessary */
869       assert(!this->function.signature);
870       assert(!this->loop.loop);
871 
872       bool lower_return;
873       if (strcmp(ir->function_name(), "main") == 0)
874          lower_return = lower_main_return;
875       else
876          lower_return = lower_sub_return;
877 
878       function_record saved_function = this->function;
879       loop_record saved_loop = this->loop;
880       this->function = function_record(ir, lower_return);
881       this->loop = loop_record(ir);
882 
883       assert(!this->loop.loop);
884 
885       /* Visit the body of the function to lower any jumps that occur
886        * in it, except possibly an unconditional return statement at
887        * the end of it.
888        */
889       visit_block(&ir->body);
890 
891       /* If the body ended in an unconditional return of non-void,
892        * then we don't need to lower it because it's the one canonical
893        * return.
894        *
895        * If the body ended in a return of void, eliminate it because
896        * it is redundant.
897        */
898       if (ir->return_type->is_void() &&
899           get_jump_strength((ir_instruction *) ir->body.get_tail())) {
900          ir_jump *jump = (ir_jump *) ir->body.get_tail();
901          assert (jump->ir_type == ir_type_return);
902          jump->remove();
903       }
904 
905       if(this->function.return_value)
906          ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
907 
908       this->loop = saved_loop;
909       this->function = saved_function;
910    }
911 
visit__anon1c7f7ce50111::ir_lower_jumps_visitor912    virtual void visit(class ir_function * ir)
913    {
914       visit_block(&ir->signatures);
915    }
916 };
917 
918 } /* anonymous namespace */
919 
920 bool
do_lower_jumps(exec_list * instructions,bool pull_out_jumps,bool lower_sub_return,bool lower_main_return,bool lower_continue)921 do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue)
922 {
923    ir_lower_jumps_visitor v;
924    v.pull_out_jumps = pull_out_jumps;
925    v.lower_continue = lower_continue;
926    v.lower_sub_return = lower_sub_return;
927    v.lower_main_return = lower_main_return;
928 
929    bool progress_ever = false;
930    do {
931       v.progress = false;
932       visit_exec_list(instructions, &v);
933       progress_ever = v.progress || progress_ever;
934    } while (v.progress);
935 
936    return progress_ever;
937 }
938