1 /*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_jumps.cpp
26 *
27 * This pass lowers jumps (break, continue, and return) to if/else structures.
28 *
29 * It can be asked to:
30 * 1. Pull jumps out of ifs where possible
31 * 2. Remove all "continue"s, replacing them with an "execute flag"
32 * 3. Replace all "break" with a single conditional one at the end of the loop
33 * 4. Replace all "return"s with a single return at the end of the function,
34 * for the main function and/or other functions
35 *
36 * Applying this pass gives several benefits:
37 * 1. All functions can be inlined.
38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40 * supported
41 *
42 * Continues are lowered by adding a per-loop "execute flag", initialized to
43 * true, that when cleared inhibits all execution until the end of the loop.
44 *
45 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46 * at the end of the loop, and trigger the unique "break".
47 *
48 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49 * causes loops to break again out of their enclosing loops until all the
50 * loops are exited: then the "execute flag" logic will ignore everything
51 * until the end of the function.
52 *
53 * Note that "continue" and "return" can also be implemented by adding
54 * a dummy loop and using break.
55 * However, this is bad for hardware with limited nesting depth, and
56 * prevents further optimization, and thus is not currently performed.
57 */
58
59 #include "compiler/glsl_types.h"
60 #include <string.h>
61 #include "ir.h"
62
63 /**
64 * Enum recording the result of analyzing how control flow might exit
65 * an IR node.
66 *
67 * Each possible value of jump_strength indicates a strictly stronger
68 * guarantee on control flow than the previous value.
69 *
70 * The ordering of strengths roughly reflects the way jumps are
71 * lowered: jumps with higher strength tend to be lowered to jumps of
72 * lower strength. Accordingly, strength is used as a heuristic to
73 * determine which lowering to perform first.
74 *
75 * This enum is also used by get_jump_strength() to categorize
76 * instructions as either break, continue, return, or other. When
77 * used in this fashion, strength_always_clears_execute_flag is not
78 * used.
79 *
80 * The control flow analysis made by this optimization pass makes two
81 * simplifying assumptions:
82 *
83 * - It ignores discard instructions, since they are lowered by a
84 * separate pass (lower_discard.cpp).
85 *
86 * - It assumes it is always possible for control to flow from a loop
87 * to the instruction immediately following it. Technically, this
88 * is not true (since all execution paths through the loop might
89 * jump back to the top, or return from the function).
90 *
91 * Both of these simplifying assumtions are safe, since they can never
92 * cause reachable code to be incorrectly classified as unreachable;
93 * they can only do the opposite.
94 */
95 enum jump_strength
96 {
97 /**
98 * Analysis has produced no guarantee on how control flow might
99 * exit this IR node. It might fall out the bottom (with or
100 * without clearing the execute flag, if present), or it might
101 * continue to the top of the innermost enclosing loop, break out
102 * of it, or return from the function.
103 */
104 strength_none,
105
106 /**
107 * The only way control can fall out the bottom of this node is
108 * through a code path that clears the execute flag. It might also
109 * continue to the top of the innermost enclosing loop, break out
110 * of it, or return from the function.
111 */
112 strength_always_clears_execute_flag,
113
114 /**
115 * Control cannot fall out the bottom of this node. It might
116 * continue to the top of the innermost enclosing loop, break out
117 * of it, or return from the function.
118 */
119 strength_continue,
120
121 /**
122 * Control cannot fall out the bottom of this node, or continue the
123 * top of the innermost enclosing loop. It can only break out of
124 * it or return from the function.
125 */
126 strength_break,
127
128 /**
129 * Control cannot fall out the bottom of this node, continue to the
130 * top of the innermost enclosing loop, or break out of it. It can
131 * only return from the function.
132 */
133 strength_return
134 };
135
136 namespace {
137
138 struct block_record
139 {
140 /* minimum jump strength (of lowered IR, not pre-lowering IR)
141 *
142 * If the block ends with a jump, must be the strength of the jump.
143 * Otherwise, the jump would be dead and have been deleted before)
144 *
145 * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146 * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147 * Note that identical jumps are usually unified though.
148 */
149 jump_strength min_strength;
150
151 /* can anything clear the execute flag? */
152 bool may_clear_execute_flag;
153
block_record__anon1c7f7ce50111::block_record154 block_record()
155 {
156 this->min_strength = strength_none;
157 this->may_clear_execute_flag = false;
158 }
159 };
160
161 struct loop_record
162 {
163 ir_function_signature* signature;
164 ir_loop* loop;
165
166 /* used to avoid lowering the break used to represent lowered breaks */
167 unsigned nesting_depth;
168 bool in_if_at_the_end_of_the_loop;
169
170 bool may_set_return_flag;
171
172 ir_variable* execute_flag; /* cleared to emulate continue */
173
loop_record__anon1c7f7ce50111::loop_record174 loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
175 {
176 this->signature = p_signature;
177 this->loop = p_loop;
178 this->nesting_depth = 0;
179 this->in_if_at_the_end_of_the_loop = false;
180 this->may_set_return_flag = false;
181 this->execute_flag = 0;
182 }
183
get_execute_flag__anon1c7f7ce50111::loop_record184 ir_variable* get_execute_flag()
185 {
186 /* also supported for the "function loop" */
187 if(!this->execute_flag) {
188 exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
189 this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
190 list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true)));
191 list.push_head(this->execute_flag);
192 }
193 return this->execute_flag;
194 }
195 };
196
197 struct function_record
198 {
199 ir_function_signature* signature;
200 ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
201 ir_variable* return_value;
202 bool lower_return;
203 unsigned nesting_depth;
204
function_record__anon1c7f7ce50111::function_record205 function_record(ir_function_signature* p_signature = 0,
206 bool lower_return = false)
207 {
208 this->signature = p_signature;
209 this->return_flag = 0;
210 this->return_value = 0;
211 this->nesting_depth = 0;
212 this->lower_return = lower_return;
213 }
214
get_return_flag__anon1c7f7ce50111::function_record215 ir_variable* get_return_flag()
216 {
217 if(!this->return_flag) {
218 this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
219 this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false)));
220 this->signature->body.push_head(this->return_flag);
221 }
222 return this->return_flag;
223 }
224
get_return_value__anon1c7f7ce50111::function_record225 ir_variable* get_return_value()
226 {
227 if(!this->return_value) {
228 assert(!this->signature->return_type->is_void());
229 return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
230 this->signature->body.push_head(this->return_value);
231 }
232 return this->return_value;
233 }
234 };
235
236 struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
237 /* Postconditions: on exit of any visit() function:
238 *
239 * ANALYSIS: this->block.min_strength,
240 * this->block.may_clear_execute_flag, and
241 * this->loop.may_set_return_flag are updated to reflect the
242 * characteristics of the visited statement.
243 *
244 * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
245 * strength_none, the visited node is at the end of its exec_list.
246 * In other words, any unreachable statements that follow the
247 * visited statement in its exec_list have been removed.
248 *
249 * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
250 * statements, then should_lower_jump() is false for all of the
251 * return, break, or continue statements it contains.
252 *
253 * Note that visiting a jump does not lower it. That is the
254 * responsibility of the statement (or function signature) that
255 * contains the jump.
256 */
257
258 using ir_control_flow_visitor::visit;
259
260 bool progress;
261
262 struct function_record function;
263 struct loop_record loop;
264 struct block_record block;
265
266 bool pull_out_jumps;
267 bool lower_continue;
268 bool lower_sub_return;
269 bool lower_main_return;
270
ir_lower_jumps_visitor__anon1c7f7ce50111::ir_lower_jumps_visitor271 ir_lower_jumps_visitor()
272 : progress(false),
273 pull_out_jumps(false),
274 lower_continue(false),
275 lower_sub_return(false),
276 lower_main_return(false)
277 {
278 }
279
truncate_after_instruction__anon1c7f7ce50111::ir_lower_jumps_visitor280 void truncate_after_instruction(exec_node *ir)
281 {
282 if (!ir)
283 return;
284
285 while (!ir->get_next()->is_tail_sentinel()) {
286 ((ir_instruction *)ir->get_next())->remove();
287 this->progress = true;
288 }
289 }
290
move_outer_block_inside__anon1c7f7ce50111::ir_lower_jumps_visitor291 void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
292 {
293 while (!ir->get_next()->is_tail_sentinel()) {
294 ir_instruction *move_ir = (ir_instruction *)ir->get_next();
295
296 move_ir->remove();
297 inner_block->push_tail(move_ir);
298 }
299 }
300
301 /**
302 * Insert the instructions necessary to lower a return statement,
303 * before the given return instruction.
304 */
insert_lowered_return__anon1c7f7ce50111::ir_lower_jumps_visitor305 void insert_lowered_return(ir_return *ir)
306 {
307 ir_variable* return_flag = this->function.get_return_flag();
308 if(!this->function.signature->return_type->is_void()) {
309 ir_variable* return_value = this->function.get_return_value();
310 ir->insert_before(
311 new(ir) ir_assignment(
312 new (ir) ir_dereference_variable(return_value),
313 ir->value));
314 }
315 ir->insert_before(
316 new(ir) ir_assignment(
317 new (ir) ir_dereference_variable(return_flag),
318 new (ir) ir_constant(true)));
319 this->loop.may_set_return_flag = true;
320 }
321
322 /**
323 * If the given instruction is a return, lower it to instructions
324 * that store the return value (if there is one), set the return
325 * flag, and then break.
326 *
327 * It is safe to pass NULL to this function.
328 */
lower_return_unconditionally__anon1c7f7ce50111::ir_lower_jumps_visitor329 void lower_return_unconditionally(ir_instruction *ir)
330 {
331 if (get_jump_strength(ir) != strength_return) {
332 return;
333 }
334 insert_lowered_return((ir_return*)ir);
335 ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
336 }
337
visit__anon1c7f7ce50111::ir_lower_jumps_visitor338 virtual void visit(class ir_loop_jump * ir)
339 {
340 /* Eliminate all instructions after each one, since they are
341 * unreachable. This satisfies the DEAD_CODE_ELIMINATION
342 * postcondition.
343 */
344 truncate_after_instruction(ir);
345
346 /* Set this->block.min_strength based on this instruction. This
347 * satisfies the ANALYSIS postcondition. It is not necessary to
348 * update this->block.may_clear_execute_flag or
349 * this->loop.may_set_return_flag, because an unlowered jump
350 * instruction can't change any flags.
351 */
352 this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
353
354 /* The CONTAINED_JUMPS_LOWERED postcondition is already
355 * satisfied, because jump statements can't contain other
356 * statements.
357 */
358 }
359
visit__anon1c7f7ce50111::ir_lower_jumps_visitor360 virtual void visit(class ir_return * ir)
361 {
362 /* Eliminate all instructions after each one, since they are
363 * unreachable. This satisfies the DEAD_CODE_ELIMINATION
364 * postcondition.
365 */
366 truncate_after_instruction(ir);
367
368 /* Set this->block.min_strength based on this instruction. This
369 * satisfies the ANALYSIS postcondition. It is not necessary to
370 * update this->block.may_clear_execute_flag or
371 * this->loop.may_set_return_flag, because an unlowered return
372 * instruction can't change any flags.
373 */
374 this->block.min_strength = strength_return;
375
376 /* The CONTAINED_JUMPS_LOWERED postcondition is already
377 * satisfied, because jump statements can't contain other
378 * statements.
379 */
380 }
381
visit__anon1c7f7ce50111::ir_lower_jumps_visitor382 virtual void visit(class ir_discard * ir)
383 {
384 /* Nothing needs to be done. The ANALYSIS and
385 * DEAD_CODE_ELIMINATION postconditions are already satisfied,
386 * because discard statements are ignored by this optimization
387 * pass. The CONTAINED_JUMPS_LOWERED postcondition is already
388 * satisfied, because discard statements can't contain other
389 * statements.
390 */
391 (void) ir;
392 }
393
get_jump_strength__anon1c7f7ce50111::ir_lower_jumps_visitor394 enum jump_strength get_jump_strength(ir_instruction* ir)
395 {
396 if(!ir)
397 return strength_none;
398 else if(ir->ir_type == ir_type_loop_jump) {
399 if(((ir_loop_jump*)ir)->is_break())
400 return strength_break;
401 else
402 return strength_continue;
403 } else if(ir->ir_type == ir_type_return)
404 return strength_return;
405 else
406 return strength_none;
407 }
408
should_lower_jump__anon1c7f7ce50111::ir_lower_jumps_visitor409 bool should_lower_jump(ir_jump* ir)
410 {
411 unsigned strength = get_jump_strength(ir);
412 bool lower;
413 switch(strength)
414 {
415 case strength_none:
416 lower = false; /* don't change this, code relies on it */
417 break;
418 case strength_continue:
419 lower = lower_continue;
420 break;
421 case strength_break:
422 lower = false;
423 break;
424 case strength_return:
425 /* never lower return at the end of a this->function */
426 if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
427 lower = false;
428 else
429 lower = this->function.lower_return;
430 break;
431 }
432 return lower;
433 }
434
visit_block__anon1c7f7ce50111::ir_lower_jumps_visitor435 block_record visit_block(exec_list* list)
436 {
437 /* Note: since visiting a node may change that node's next
438 * pointer, we can't use visit_exec_list(), because
439 * visit_exec_list() caches the node's next pointer before
440 * visiting it. So we use foreach_in_list() instead.
441 *
442 * foreach_in_list() isn't safe if the node being visited gets
443 * removed, but fortunately this visitor doesn't do that.
444 */
445
446 block_record saved_block = this->block;
447 this->block = block_record();
448 foreach_in_list(ir_instruction, node, list) {
449 node->accept(this);
450 }
451 block_record ret = this->block;
452 this->block = saved_block;
453 return ret;
454 }
455
visit__anon1c7f7ce50111::ir_lower_jumps_visitor456 virtual void visit(ir_if *ir)
457 {
458 if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
459 this->loop.in_if_at_the_end_of_the_loop = true;
460
461 ++this->function.nesting_depth;
462 ++this->loop.nesting_depth;
463
464 block_record block_records[2];
465 ir_jump* jumps[2];
466
467 /* Recursively lower nested jumps. This satisfies the
468 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
469 * unconditional jumps at the end of ir->then_instructions and
470 * ir->else_instructions, which are handled below.
471 */
472 block_records[0] = visit_block(&ir->then_instructions);
473 block_records[1] = visit_block(&ir->else_instructions);
474
475 retry: /* we get here if we put code after the if inside a branch */
476
477 /* Determine which of ir->then_instructions and
478 * ir->else_instructions end with an unconditional jump.
479 */
480 for(unsigned i = 0; i < 2; ++i) {
481 exec_list& list = i ? ir->else_instructions : ir->then_instructions;
482 jumps[i] = 0;
483 if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
484 jumps[i] = (ir_jump*)list.get_tail();
485 }
486
487 /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
488 * postcondition by lowering jumps in both then_instructions and
489 * else_instructions.
490 */
491 for(;;) {
492 /* Determine the types of the jumps that terminate
493 * ir->then_instructions and ir->else_instructions.
494 */
495 jump_strength jump_strengths[2];
496
497 for(unsigned i = 0; i < 2; ++i) {
498 if(jumps[i]) {
499 jump_strengths[i] = block_records[i].min_strength;
500 assert(jump_strengths[i] == get_jump_strength(jumps[i]));
501 } else
502 jump_strengths[i] = strength_none;
503 }
504
505 /* If both code paths end in a jump, and the jumps are the
506 * same, and we are pulling out jumps, replace them with a
507 * single jump that comes after the if instruction. The new
508 * jump will be visited next, and it will be lowered if
509 * necessary by the loop or conditional that encloses it.
510 */
511 if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
512 bool unify = true;
513 if(jump_strengths[0] == strength_continue)
514 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
515 else if(jump_strengths[0] == strength_break)
516 ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
517 /* FINISHME: unify returns with identical expressions */
518 else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
519 ir->insert_after(new(ir) ir_return(NULL));
520 else
521 unify = false;
522
523 if(unify) {
524 jumps[0]->remove();
525 jumps[1]->remove();
526 this->progress = true;
527
528 /* Update jumps[] to reflect the fact that the jumps
529 * are gone, and update block_records[] to reflect the
530 * fact that control can now flow to the next
531 * instruction.
532 */
533 jumps[0] = 0;
534 jumps[1] = 0;
535 block_records[0].min_strength = strength_none;
536 block_records[1].min_strength = strength_none;
537
538 /* The CONTAINED_JUMPS_LOWERED postcondition is now
539 * satisfied, so we can break out of the loop.
540 */
541 break;
542 }
543 }
544
545 /* lower a jump: if both need to lowered, start with the strongest one, so that
546 * we might later unify the lowered version with the other one
547 */
548 bool should_lower[2];
549 for(unsigned i = 0; i < 2; ++i)
550 should_lower[i] = should_lower_jump(jumps[i]);
551
552 int lower;
553 if(should_lower[1] && should_lower[0])
554 lower = jump_strengths[1] > jump_strengths[0];
555 else if(should_lower[0])
556 lower = 0;
557 else if(should_lower[1])
558 lower = 1;
559 else
560 /* Neither code path ends in a jump that needs to be
561 * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
562 * is satisfied and we can break out of the loop.
563 */
564 break;
565
566 if(jump_strengths[lower] == strength_return) {
567 /* To lower a return, we create a return flag (if the
568 * function doesn't have one already) and add instructions
569 * that: 1. store the return value (if this function has a
570 * non-void return) and 2. set the return flag
571 */
572 insert_lowered_return((ir_return*)jumps[lower]);
573 if(this->loop.loop) {
574 /* If we are in a loop, replace the return instruction
575 * with a break instruction, and then loop so that the
576 * break instruction can be lowered if necessary.
577 */
578 ir_loop_jump* lowered = 0;
579 lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
580 /* Note: we must update block_records and jumps to
581 * reflect the fact that the control path has been
582 * altered from a return to a break.
583 */
584 block_records[lower].min_strength = strength_break;
585 jumps[lower]->replace_with(lowered);
586 jumps[lower] = lowered;
587 } else {
588 /* If we are not in a loop, we then proceed as we would
589 * for a continue statement (set the execute flag to
590 * false to prevent the rest of the function from
591 * executing).
592 */
593 goto lower_continue;
594 }
595 this->progress = true;
596 } else if(jump_strengths[lower] == strength_break) {
597 unreachable("no lowering of breaks any more");
598 } else if(jump_strengths[lower] == strength_continue) {
599 lower_continue:
600 /* To lower a continue, we create an execute flag (if the
601 * loop doesn't have one already) and replace the continue
602 * with an instruction that clears it.
603 *
604 * Note that this code path gets exercised when lowering
605 * return statements that are not inside a loop, so
606 * this->loop must be initialized even outside of loops.
607 */
608 ir_variable* execute_flag = this->loop.get_execute_flag();
609 jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false)));
610 /* Note: we must update block_records and jumps to reflect
611 * the fact that the control path has been altered to an
612 * instruction that clears the execute flag.
613 */
614 jumps[lower] = 0;
615 block_records[lower].min_strength = strength_always_clears_execute_flag;
616 block_records[lower].may_clear_execute_flag = true;
617 this->progress = true;
618
619 /* Let the loop run again, in case the other branch of the
620 * if needs to be lowered too.
621 */
622 }
623 }
624
625 /* move out a jump out if possible */
626 if(pull_out_jumps) {
627 /* If one of the branches ends in a jump, and control cannot
628 * fall out the bottom of the other branch, then we can move
629 * the jump after the if.
630 *
631 * Set move_out to the branch we are moving a jump out of.
632 */
633 int move_out = -1;
634 if(jumps[0] && block_records[1].min_strength >= strength_continue)
635 move_out = 0;
636 else if(jumps[1] && block_records[0].min_strength >= strength_continue)
637 move_out = 1;
638
639 if(move_out >= 0)
640 {
641 jumps[move_out]->remove();
642 ir->insert_after(jumps[move_out]);
643 /* Note: we must update block_records and jumps to reflect
644 * the fact that the jump has been moved out of the if.
645 */
646 jumps[move_out] = 0;
647 block_records[move_out].min_strength = strength_none;
648 this->progress = true;
649 }
650 }
651
652 /* Now satisfy the ANALYSIS postcondition by setting
653 * this->block.min_strength and
654 * this->block.may_clear_execute_flag based on the
655 * characteristics of the two branches.
656 */
657 if(block_records[0].min_strength < block_records[1].min_strength)
658 this->block.min_strength = block_records[0].min_strength;
659 else
660 this->block.min_strength = block_records[1].min_strength;
661 this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
662
663 /* Now we need to clean up the instructions that follow the
664 * if.
665 *
666 * If those instructions are unreachable, then satisfy the
667 * DEAD_CODE_ELIMINATION postcondition by eliminating them.
668 * Otherwise that postcondition is already satisfied.
669 */
670 if(this->block.min_strength)
671 truncate_after_instruction(ir);
672 else if(this->block.may_clear_execute_flag)
673 {
674 /* If the "if" instruction might clear the execute flag, then
675 * we need to guard any instructions that follow so that they
676 * are only executed if the execute flag is set.
677 *
678 * If one of the branches of the "if" always clears the
679 * execute flag, and the other branch never clears it, then
680 * this is easy: just move all the instructions following the
681 * "if" into the branch that never clears it.
682 */
683 int move_into = -1;
684 if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
685 move_into = 1;
686 else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
687 move_into = 0;
688
689 if(move_into >= 0) {
690 assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
691
692 exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
693 exec_node* next = ir->get_next();
694 if(!next->is_tail_sentinel()) {
695 move_outer_block_inside(ir, list);
696
697 /* If any instructions moved, then we need to visit
698 * them (since they are now inside the "if"). Since
699 * block_records[move_into] is in its default state
700 * (see assertion above), we can safely replace
701 * block_records[move_into] with the result of this
702 * analysis.
703 */
704 exec_list list;
705 list.head_sentinel.next = next;
706 block_records[move_into] = visit_block(&list);
707
708 /*
709 * Then we need to re-start our jump lowering, since one
710 * of the instructions we moved might be a jump that
711 * needs to be lowered.
712 */
713 this->progress = true;
714 goto retry;
715 }
716 } else {
717 /* If we get here, then the simple case didn't apply; we
718 * need to actually guard the instructions that follow.
719 *
720 * To avoid creating unnecessarily-deep nesting, first
721 * look through the instructions that follow and unwrap
722 * any instructions that that are already wrapped in the
723 * appropriate guard.
724 */
725 ir_instruction* ir_after;
726 for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
727 {
728 ir_if* ir_if = ir_after->as_if();
729 if(ir_if && ir_if->else_instructions.is_empty()) {
730 ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
731 if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
732 ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
733 ir_after->insert_before(&ir_if->then_instructions);
734 ir_after->remove();
735 ir_after = ir_next;
736 continue;
737 }
738 }
739 ir_after = (ir_instruction*)ir_after->get_next();
740
741 /* only set this if we find any unprotected instruction */
742 this->progress = true;
743 }
744
745 /* Then, wrap all the instructions that follow in a single
746 * guard.
747 */
748 if(!ir->get_next()->is_tail_sentinel()) {
749 assert(this->loop.execute_flag);
750 ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
751 move_outer_block_inside(ir, &if_execute->then_instructions);
752 ir->insert_after(if_execute);
753 }
754 }
755 }
756 --this->loop.nesting_depth;
757 --this->function.nesting_depth;
758 }
759
visit__anon1c7f7ce50111::ir_lower_jumps_visitor760 virtual void visit(ir_loop *ir)
761 {
762 /* Visit the body of the loop, with a fresh data structure in
763 * this->loop so that the analysis we do here won't bleed into
764 * enclosing loops.
765 *
766 * We assume that all code after a loop is reachable from the
767 * loop (see comments on enum jump_strength), so the
768 * DEAD_CODE_ELIMINATION postcondition is automatically
769 * satisfied, as is the block.min_strength portion of the
770 * ANALYSIS postcondition.
771 *
772 * The block.may_clear_execute_flag portion of the ANALYSIS
773 * postcondition is automatically satisfied because execute
774 * flags do not propagate outside of loops.
775 *
776 * The loop.may_set_return_flag portion of the ANALYSIS
777 * postcondition is handled below.
778 */
779 ++this->function.nesting_depth;
780 loop_record saved_loop = this->loop;
781 this->loop = loop_record(this->function.signature, ir);
782
783 /* Recursively lower nested jumps. This satisfies the
784 * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
785 * an unconditional continue or return at the bottom of the
786 * loop, which are handled below.
787 */
788 block_record body = visit_block(&ir->body_instructions);
789
790 /* If the loop ends in an unconditional continue, eliminate it
791 * because it is redundant.
792 */
793 ir_instruction *ir_last
794 = (ir_instruction *) ir->body_instructions.get_tail();
795 if (get_jump_strength(ir_last) == strength_continue) {
796 ir_last->remove();
797 }
798
799 /* If the loop ends in an unconditional return, and we are
800 * lowering returns, lower it.
801 */
802 if (this->function.lower_return)
803 lower_return_unconditionally(ir_last);
804
805 if(body.min_strength >= strength_break) {
806 /* FINISHME: If the min_strength of the loop body is
807 * strength_break or strength_return, that means that it
808 * isn't a loop at all, since control flow always leaves the
809 * body of the loop via break or return. In principle the
810 * loop could be eliminated in this case. This optimization
811 * is not implemented yet.
812 */
813 }
814
815
816 /* If the body of the loop may set the return flag, then at
817 * least one return was lowered to a break, so we need to ensure
818 * that the return flag is checked after the body of the loop is
819 * executed.
820 */
821 if(this->loop.may_set_return_flag) {
822 assert(this->function.return_flag);
823 /* Generate the if statement to check the return flag */
824 ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
825 /* Note: we also need to propagate the knowledge that the
826 * return flag may get set to the outer context. This
827 * satisfies the loop.may_set_return_flag part of the
828 * ANALYSIS postcondition.
829 */
830 saved_loop.may_set_return_flag = true;
831 if(saved_loop.loop)
832 /* If this loop is nested inside another one, then the if
833 * statement that we generated should break out of that
834 * loop if the return flag is set. Caller will lower that
835 * break statement if necessary.
836 */
837 return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
838 else {
839 /* Otherwise, ensure that the instructions that follow are only
840 * executed if the return flag is clear. We can do that by moving
841 * those instructions into the else clause of the generated if
842 * statement.
843 */
844 move_outer_block_inside(ir, &return_if->else_instructions);
845
846 /* In case the loop is embedded inside an if add a new return to
847 * the return flag then branch and let a future pass tidy it up.
848 */
849 if (this->function.signature->return_type->is_void())
850 return_if->then_instructions.push_tail(new(ir) ir_return(NULL));
851 else {
852 assert(this->function.return_value);
853 ir_variable* return_value = this->function.return_value;
854 return_if->then_instructions.push_tail(
855 new(ir) ir_return(new(ir) ir_dereference_variable(return_value)));
856 }
857 }
858
859 ir->insert_after(return_if);
860 }
861
862 this->loop = saved_loop;
863 --this->function.nesting_depth;
864 }
865
visit__anon1c7f7ce50111::ir_lower_jumps_visitor866 virtual void visit(ir_function_signature *ir)
867 {
868 /* these are not strictly necessary */
869 assert(!this->function.signature);
870 assert(!this->loop.loop);
871
872 bool lower_return;
873 if (strcmp(ir->function_name(), "main") == 0)
874 lower_return = lower_main_return;
875 else
876 lower_return = lower_sub_return;
877
878 function_record saved_function = this->function;
879 loop_record saved_loop = this->loop;
880 this->function = function_record(ir, lower_return);
881 this->loop = loop_record(ir);
882
883 assert(!this->loop.loop);
884
885 /* Visit the body of the function to lower any jumps that occur
886 * in it, except possibly an unconditional return statement at
887 * the end of it.
888 */
889 visit_block(&ir->body);
890
891 /* If the body ended in an unconditional return of non-void,
892 * then we don't need to lower it because it's the one canonical
893 * return.
894 *
895 * If the body ended in a return of void, eliminate it because
896 * it is redundant.
897 */
898 if (ir->return_type->is_void() &&
899 get_jump_strength((ir_instruction *) ir->body.get_tail())) {
900 ir_jump *jump = (ir_jump *) ir->body.get_tail();
901 assert (jump->ir_type == ir_type_return);
902 jump->remove();
903 }
904
905 if(this->function.return_value)
906 ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
907
908 this->loop = saved_loop;
909 this->function = saved_function;
910 }
911
visit__anon1c7f7ce50111::ir_lower_jumps_visitor912 virtual void visit(class ir_function * ir)
913 {
914 visit_block(&ir->signatures);
915 }
916 };
917
918 } /* anonymous namespace */
919
920 bool
do_lower_jumps(exec_list * instructions,bool pull_out_jumps,bool lower_sub_return,bool lower_main_return,bool lower_continue)921 do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue)
922 {
923 ir_lower_jumps_visitor v;
924 v.pull_out_jumps = pull_out_jumps;
925 v.lower_continue = lower_continue;
926 v.lower_sub_return = lower_sub_return;
927 v.lower_main_return = lower_main_return;
928
929 bool progress_ever = false;
930 do {
931 v.progress = false;
932 visit_exec_list(instructions, &v);
933 progress_ever = v.progress || progress_ever;
934 } while (v.progress);
935
936 return progress_ever;
937 }
938