1 /*
2 * Copyright (c) 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <math.h>
26
27 #include "util/debug.h"
28 #include "util/macros.h"
29 #include "util/u_math.h"
30 #include "compiler/shader_enums.h"
31
32 #include "intel_l3_config.h"
33
34 /**
35 * The following diagram shows how we partition the URB:
36 *
37 * 16kb or 32kb Rest of the URB space
38 * __________-__________ _________________-_________________
39 * / \ / \
40 * +-------------------------------------------------------------+
41 * | VS/HS/DS/GS/FS Push | VS/HS/DS/GS URB |
42 * | Constants | Entries |
43 * +-------------------------------------------------------------+
44 *
45 * Push constants must be stored at the beginning of the URB space,
46 * while URB entries can be stored anywhere. We choose to lay them
47 * out in pipeline order (VS -> HS -> DS -> GS).
48 */
49
50 /**
51 * Decide how to partition the URB among the various stages.
52 *
53 * \param[in] push_constant_bytes - space allocate for push constants.
54 * \param[in] urb_size_bytes - total size of the URB (from L3 config).
55 * \param[in] tess_present - are tessellation shaders active?
56 * \param[in] gs_present - are geometry shaders active?
57 * \param[in] entry_size - the URB entry size (from the shader compiler)
58 * \param[out] entries - the number of URB entries for each stage
59 * \param[out] start - the starting offset for each stage
60 * \param[out] deref_block_size - deref block size for 3DSTATE_SF
61 * \param[out] constrained - true if we wanted more space than we had
62 */
63 void
intel_get_urb_config(const struct intel_device_info * devinfo,const struct intel_l3_config * l3_cfg,bool tess_present,bool gs_present,const unsigned entry_size[4],unsigned entries[4],unsigned start[4],enum intel_urb_deref_block_size * deref_block_size,bool * constrained)64 intel_get_urb_config(const struct intel_device_info *devinfo,
65 const struct intel_l3_config *l3_cfg,
66 bool tess_present, bool gs_present,
67 const unsigned entry_size[4],
68 unsigned entries[4], unsigned start[4],
69 enum intel_urb_deref_block_size *deref_block_size,
70 bool *constrained)
71 {
72 unsigned urb_size_kB = intel_get_l3_config_urb_size(devinfo, l3_cfg);
73
74 /* RCU_MODE register for Gfx12LP in BSpec says:
75 *
76 * "HW reserves 4KB of URB space per bank for Compute Engine out of the
77 * total storage available in L3. SW must consider that 4KB of storage
78 * per bank will be reduced from what is programmed for the URB space
79 * in L3 for Render Engine executed workloads.
80 *
81 * Example: When URB space programmed is 64KB (per bank) for Render
82 * Engine, the actual URB space available for operation is only 60KB
83 * (per bank). Similarly when URB space programmed is 128KB (per bank)
84 * for render engine, the actual URB space available for operation is
85 * only 124KB (per bank). More detailed description available in "L3
86 * Cache" section of the B-Spec."
87 */
88 if (devinfo->verx10 == 120) {
89 assert(devinfo->num_slices == 1);
90 urb_size_kB -= 4 * devinfo->l3_banks;
91 }
92
93 const unsigned push_constant_kB = devinfo->max_constant_urb_size_kb;
94
95 const bool active[4] = { true, tess_present, tess_present, gs_present };
96
97 /* URB allocations must be done in 8k chunks. */
98 const unsigned chunk_size_kB = 8;
99 const unsigned chunk_size_bytes = chunk_size_kB * 1024;
100
101 const unsigned push_constant_chunks = push_constant_kB / chunk_size_kB;
102 const unsigned urb_chunks = urb_size_kB / chunk_size_kB;
103
104 /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
105 *
106 * VS Number of URB Entries must be divisible by 8 if the VS URB Entry
107 * Allocation Size is less than 9 512-bit URB entries.
108 *
109 * Similar text exists for HS, DS and GS.
110 */
111 unsigned granularity[4];
112 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
113 granularity[i] = (entry_size[i] < 9) ? 8 : 1;
114 }
115
116 unsigned min_entries[4] = {
117 /* VS has a lower limit on the number of URB entries.
118 *
119 * From the Broadwell PRM, 3DSTATE_URB_VS instruction:
120 * "When tessellation is enabled, the VS Number of URB Entries must be
121 * greater than or equal to 192."
122 */
123 [MESA_SHADER_VERTEX] = tess_present && devinfo->ver == 8 ?
124 192 : devinfo->urb.min_entries[MESA_SHADER_VERTEX],
125
126 /* There are two constraints on the minimum amount of URB space we can
127 * allocate:
128 *
129 * (1) We need room for at least 2 URB entries, since we always operate
130 * the GS in DUAL_OBJECT mode.
131 *
132 * (2) We can't allocate less than nr_gs_entries_granularity.
133 */
134 [MESA_SHADER_GEOMETRY] = gs_present ? 2 : 0,
135
136 [MESA_SHADER_TESS_CTRL] = tess_present ? 1 : 0,
137
138 [MESA_SHADER_TESS_EVAL] = tess_present ?
139 devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL] : 0,
140 };
141
142 /* Min VS Entries isn't a multiple of 8 on Cherryview/Broxton; round up.
143 * Round them all up.
144 */
145 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
146 min_entries[i] = ALIGN(min_entries[i], granularity[i]);
147 }
148
149 unsigned entry_size_bytes[4];
150 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
151 entry_size_bytes[i] = 64 * entry_size[i];
152 }
153
154 /* Initially, assign each stage the minimum amount of URB space it needs,
155 * and make a note of how much additional space it "wants" (the amount of
156 * additional space it could actually make use of).
157 */
158 unsigned chunks[4];
159 unsigned wants[4];
160 unsigned total_needs = push_constant_chunks;
161 unsigned total_wants = 0;
162
163 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
164 if (active[i]) {
165 chunks[i] = DIV_ROUND_UP(min_entries[i] * entry_size_bytes[i],
166 chunk_size_bytes);
167
168 wants[i] =
169 DIV_ROUND_UP(devinfo->urb.max_entries[i] * entry_size_bytes[i],
170 chunk_size_bytes) - chunks[i];
171 } else {
172 chunks[i] = 0;
173 wants[i] = 0;
174 }
175
176 total_needs += chunks[i];
177 total_wants += wants[i];
178 }
179
180 assert(total_needs <= urb_chunks);
181
182 *constrained = total_needs + total_wants > urb_chunks;
183
184 /* Mete out remaining space (if any) in proportion to "wants". */
185 unsigned remaining_space = MIN2(urb_chunks - total_needs, total_wants);
186
187 if (remaining_space > 0) {
188 for (int i = MESA_SHADER_VERTEX;
189 total_wants > 0 && i <= MESA_SHADER_TESS_EVAL; i++) {
190 unsigned additional = (unsigned)
191 roundf(wants[i] * (((float) remaining_space) / total_wants));
192 chunks[i] += additional;
193 remaining_space -= additional;
194 total_wants -= wants[i];
195 }
196
197 chunks[MESA_SHADER_GEOMETRY] += remaining_space;
198 }
199
200 /* Sanity check that we haven't over-allocated. */
201 unsigned total_chunks = push_constant_chunks;
202 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
203 total_chunks += chunks[i];
204 }
205 assert(total_chunks <= urb_chunks);
206
207 /* Finally, compute the number of entries that can fit in the space
208 * allocated to each stage.
209 */
210 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
211 entries[i] = chunks[i] * chunk_size_bytes / entry_size_bytes[i];
212
213 /* Since we rounded up when computing wants[], this may be slightly
214 * more than the maximum allowed amount, so correct for that.
215 */
216 entries[i] = MIN2(entries[i], devinfo->urb.max_entries[i]);
217
218 /* Ensure that we program a multiple of the granularity. */
219 entries[i] = ROUND_DOWN_TO(entries[i], granularity[i]);
220
221 /* Finally, sanity check to make sure we have at least the minimum
222 * number of entries needed for each stage.
223 */
224 assert(entries[i] >= min_entries[i]);
225 }
226
227 /* Lay out the URB in pipeline order: push constants, VS, HS, DS, GS. */
228 int first_urb = push_constant_chunks;
229
230 /* From the BDW PRM: for 3DSTATE_URB_*: VS URB Starting Address
231 *
232 * "Value: [4,48] Device [SliceCount] GT 1"
233 *
234 * From the ICL PRMs and above :
235 *
236 * "If CTXT_SR_CTL::POSH_Enable is clear and Push Constants are required
237 * or Device[SliceCount] GT 1, the lower limit is 4."
238 *
239 * "If Push Constants are not required andDevice[SliceCount] == 1, the
240 * lower limit is 0."
241 */
242 if ((devinfo->ver == 8 && devinfo->num_slices == 1) ||
243 (devinfo->ver >= 11 && push_constant_chunks > 0 && devinfo->num_slices == 1))
244 first_urb = MAX2(first_urb, 4);
245
246 int next_urb = first_urb;
247 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
248 if (entries[i]) {
249 start[i] = next_urb;
250 next_urb += chunks[i];
251 } else {
252 /* Put disabled stages at the beginning of the valid range */
253 start[i] = first_urb;
254 }
255 }
256
257 if (deref_block_size) {
258 if (devinfo->ver >= 12) {
259 /* From the Gfx12 BSpec:
260 *
261 * "Deref Block size depends on the last enabled shader and number
262 * of handles programmed for that shader
263 *
264 * 1) For GS last shader enabled cases, the deref block is
265 * always set to a per poly(within hardware)
266 *
267 * If the last enabled shader is VS or DS.
268 *
269 * 1) If DS is last enabled shader then if the number of DS
270 * handles is less than 324, need to set per poly deref.
271 *
272 * 2) If VS is last enabled shader then if the number of VS
273 * handles is less than 192, need to set per poly deref"
274 *
275 * The default is 32 so we assume that's the right choice if we're
276 * not in one of the explicit cases listed above.
277 */
278 if (gs_present) {
279 *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
280 } else if (tess_present) {
281 if (entries[MESA_SHADER_TESS_EVAL] < 324)
282 *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
283 else
284 *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_32;
285 } else {
286 if (entries[MESA_SHADER_VERTEX] < 192)
287 *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
288 else
289 *deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_32;
290 }
291 } else {
292 *deref_block_size = 0;
293 }
294 }
295 }
296
297 struct intel_mesh_urb_allocation
intel_get_mesh_urb_config(const struct intel_device_info * devinfo,const struct intel_l3_config * l3_cfg,unsigned tue_size_dw,unsigned mue_size_dw)298 intel_get_mesh_urb_config(const struct intel_device_info *devinfo,
299 const struct intel_l3_config *l3_cfg,
300 unsigned tue_size_dw, unsigned mue_size_dw)
301 {
302 struct intel_mesh_urb_allocation r = {0};
303
304 /* Allocation Size must be aligned to 64B. */
305 r.task_entry_size_64b = DIV_ROUND_UP(tue_size_dw * 4, 64);
306 r.mesh_entry_size_64b = DIV_ROUND_UP(mue_size_dw * 4, 64);
307
308 assert(r.task_entry_size_64b <= 1024);
309 assert(r.mesh_entry_size_64b <= 1024);
310
311 /* Per-slice URB size. */
312 unsigned total_urb_kb = intel_get_l3_config_urb_size(devinfo, l3_cfg);
313
314 /* Programming Note in bspec requires all the slice to have the same number
315 * of entries, so we need to discount the space for constants for all of
316 * them. See 3DSTATE_URB_ALLOC_MESH and 3DSTATE_URB_ALLOC_TASK.
317 */
318 const unsigned push_constant_kb = devinfo->max_constant_urb_size_kb;
319 total_urb_kb -= push_constant_kb;
320
321 /* TODO(mesh): Take push constant size as parameter instead of considering always
322 * the max? */
323
324 float task_urb_share = 0.0f;
325 if (r.task_entry_size_64b > 0) {
326 /* By default, assign 10% to TASK and 90% to MESH, since we expect MESH
327 * to use larger URB entries since it contains all the vertex and
328 * primitive data. Environment variable allow us to tweak it.
329 *
330 * TODO(mesh): Re-evaluate if this is a good default once there are more
331 * workloads.
332 */
333 static int task_urb_share_percentage = -1;
334 if (task_urb_share_percentage < 0) {
335 task_urb_share_percentage =
336 MIN2(env_var_as_unsigned("INTEL_MESH_TASK_URB_SHARE", 10), 100);
337 }
338 task_urb_share = task_urb_share_percentage / 100.0f;
339 }
340
341 const unsigned one_task_urb_kb = ALIGN(r.task_entry_size_64b * 64, 1024) / 1024;
342
343 const unsigned task_urb_kb = ALIGN(MAX2(total_urb_kb * task_urb_share, one_task_urb_kb), 8);
344
345 const unsigned mesh_urb_kb = total_urb_kb - task_urb_kb;
346
347 /* TODO(mesh): Could we avoid allocating URB for Mesh if rasterization is
348 * disabled? */
349
350 unsigned next_address_8kb = DIV_ROUND_UP(push_constant_kb, 8);
351
352 if (r.task_entry_size_64b > 0) {
353 r.task_entries = MIN2((task_urb_kb * 16) / r.task_entry_size_64b, 1548);
354
355 /* 3DSTATE_URB_ALLOC_TASK_BODY says
356 *
357 * TASK Number of URB Entries must be divisible by 8 if the TASK URB
358 * Entry Allocation Size is less than 9 512-bit URB entries.
359 */
360 if (r.task_entry_size_64b < 9)
361 r.task_entries = ROUND_DOWN_TO(r.task_entries, 8);
362
363 r.task_starting_address_8kb = next_address_8kb;
364
365 assert(task_urb_kb % 8 == 0);
366 next_address_8kb += task_urb_kb / 8;
367 }
368
369 r.mesh_entries = MIN2((mesh_urb_kb * 16) / r.mesh_entry_size_64b, 1548);
370
371 /* Similar restriction to TASK. */
372 if (r.mesh_entry_size_64b < 9)
373 r.mesh_entries = ROUND_DOWN_TO(r.mesh_entries, 8);
374
375 r.mesh_starting_address_8kb = next_address_8kb;
376
377 r.deref_block_size = r.mesh_entries > 32 ?
378 INTEL_URB_DEREF_BLOCK_SIZE_MESH :
379 INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
380
381 return r;
382 }
383