1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * This code is based on original work by Ilia Mirkin.
24 */
25
26 /**
27 * \file gfx6_gs_visitor.cpp
28 *
29 * Gfx6 geometry shader implementation
30 */
31
32 #include "gfx6_gs_visitor.h"
33 #include "brw_eu.h"
34 #include "brw_prim.h"
35
36 namespace brw {
37
38 void
emit_prolog()39 gfx6_gs_visitor::emit_prolog()
40 {
41 vec4_gs_visitor::emit_prolog();
42
43 /* Gfx6 geometry shaders require to allocate an initial VUE handle via
44 * FF_SYNC message, however the documentation remarks that only one thread
45 * can write to the URB simultaneously and the FF_SYNC message provides the
46 * synchronization mechanism for this, so using this message effectively
47 * stalls the thread until it is its turn to write to the URB. Because of
48 * this, the best way to implement geometry shader algorithms in gfx6 is to
49 * execute the algorithm before the FF_SYNC message to maximize parallelism.
50 *
51 * To achieve this we buffer the geometry shader outputs for each emitted
52 * vertex in vertex_output during operation. Then, when we have processed
53 * the last vertex (that is, at thread end time), we send the FF_SYNC
54 * message to allocate the initial VUE handle and write all buffered vertex
55 * data to the URB in one go.
56 *
57 * For each emitted vertex, vertex_output will hold vue_map.num_slots
58 * data items plus one additional item to hold required flags
59 * (PrimType, PrimStart, PrimEnd, as expected by the URB_WRITE message)
60 * which come right after the data items for that vertex. Vertex data and
61 * flags for the next vertex come right after the data items and flags for
62 * the previous vertex.
63 */
64 this->current_annotation = "gfx6 prolog";
65 this->vertex_output = src_reg(this,
66 glsl_type::uint_type,
67 (prog_data->vue_map.num_slots + 1) *
68 nir->info.gs.vertices_out);
69 this->vertex_output_offset = src_reg(this, glsl_type::uint_type);
70 emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_ud(0u)));
71
72 /* MRF 1 will be the header for all messages (FF_SYNC and URB_WRITES),
73 * so initialize it once to R0.
74 */
75 vec4_instruction *inst = emit(MOV(dst_reg(MRF, 1),
76 retype(brw_vec8_grf(0, 0),
77 BRW_REGISTER_TYPE_UD)));
78 inst->force_writemask_all = true;
79
80 /* This will be used as a temporary to store writeback data of FF_SYNC
81 * and URB_WRITE messages.
82 */
83 this->temp = src_reg(this, glsl_type::uint_type);
84
85 /* This will be used to know when we are processing the first vertex of
86 * a primitive. We will set this to URB_WRITE_PRIM_START only when we know
87 * that we are processing the first vertex in the primitive and to zero
88 * otherwise. This way we can use its value directly in the URB write
89 * headers.
90 */
91 this->first_vertex = src_reg(this, glsl_type::uint_type);
92 emit(MOV(dst_reg(this->first_vertex), brw_imm_ud(URB_WRITE_PRIM_START)));
93
94 /* The FF_SYNC message requires to know the number of primitives generated,
95 * so keep a counter for this.
96 */
97 this->prim_count = src_reg(this, glsl_type::uint_type);
98 emit(MOV(dst_reg(this->prim_count), brw_imm_ud(0u)));
99
100 if (gs_prog_data->num_transform_feedback_bindings) {
101 /* Create a virtual register to hold destination indices in SOL */
102 this->destination_indices = src_reg(this, glsl_type::uvec4_type);
103 /* Create a virtual register to hold number of written primitives */
104 this->sol_prim_written = src_reg(this, glsl_type::uint_type);
105 /* Create a virtual register to hold Streamed Vertex Buffer Indices */
106 this->svbi = src_reg(this, glsl_type::uvec4_type);
107 /* Create a virtual register to hold max values of SVBI */
108 this->max_svbi = src_reg(this, glsl_type::uvec4_type);
109 emit(MOV(dst_reg(this->max_svbi),
110 src_reg(retype(brw_vec1_grf(1, 4), BRW_REGISTER_TYPE_UD))));
111 }
112
113 /* PrimitveID is delivered in r0.1 of the thread payload. If the program
114 * needs it we have to move it to a separate register where we can map
115 * the attribute.
116 *
117 * Notice that we cannot use a virtual register for this, because we need to
118 * map all input attributes to hardware registers in setup_payload(),
119 * which happens before virtual registers are mapped to hardware registers.
120 * We could work around that issue if we were able to compute the first
121 * non-payload register here and move the PrimitiveID information to that
122 * register, but we can't because at this point we don't know the final
123 * number uniforms that will be included in the payload.
124 *
125 * So, what we do is to place PrimitiveID information in r1, which is always
126 * delivered as part of the payload, but its only populated with data
127 * relevant for transform feedback when we set GFX6_GS_SVBI_PAYLOAD_ENABLE
128 * in the 3DSTATE_GS state packet. That information can be obtained by other
129 * means though, so we can safely use r1 for this purpose.
130 */
131 if (gs_prog_data->include_primitive_id) {
132 this->primitive_id =
133 src_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
134 emit(GS_OPCODE_SET_PRIMITIVE_ID, dst_reg(this->primitive_id));
135 }
136 }
137
138 void
gs_emit_vertex(int stream_id)139 gfx6_gs_visitor::gs_emit_vertex(int stream_id)
140 {
141 this->current_annotation = "gfx6 emit vertex";
142
143 /* Buffer all output slots for this vertex in vertex_output */
144 for (int slot = 0; slot < prog_data->vue_map.num_slots; ++slot) {
145 int varying = prog_data->vue_map.slot_to_varying[slot];
146 if (varying != VARYING_SLOT_PSIZ) {
147 dst_reg dst(this->vertex_output);
148 dst.reladdr = ralloc(mem_ctx, src_reg);
149 memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
150 emit_urb_slot(dst, varying);
151 } else {
152 /* The PSIZ slot can pack multiple varyings in different channels
153 * and emit_urb_slot() will produce a MOV instruction for each of
154 * them. Since we are writing to an array, that will translate to
155 * possibly multiple MOV instructions with an array destination and
156 * each will generate a scratch write with the same offset into
157 * scratch space (thus, each one overwriting the previous). This is
158 * not what we want. What we will do instead is emit PSIZ to a
159 * a regular temporary register, then move that register into the
160 * array. This way we only have one instruction with an array
161 * destination and we only produce a single scratch write.
162 */
163 dst_reg tmp = dst_reg(src_reg(this, glsl_type::uvec4_type));
164 emit_urb_slot(tmp, varying);
165 dst_reg dst(this->vertex_output);
166 dst.reladdr = ralloc(mem_ctx, src_reg);
167 memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
168 vec4_instruction *inst = emit(MOV(dst, src_reg(tmp)));
169 inst->force_writemask_all = true;
170 }
171
172 emit(ADD(dst_reg(this->vertex_output_offset),
173 this->vertex_output_offset, brw_imm_ud(1u)));
174 }
175
176 /* Now buffer flags for this vertex */
177 dst_reg dst(this->vertex_output);
178 dst.reladdr = ralloc(mem_ctx, src_reg);
179 memcpy(dst.reladdr, &this->vertex_output_offset, sizeof(src_reg));
180 if (nir->info.gs.output_primitive == GL_POINTS) {
181 /* If we are outputting points, then every vertex has PrimStart and
182 * PrimEnd set.
183 */
184 emit(MOV(dst, brw_imm_d((_3DPRIM_POINTLIST << URB_WRITE_PRIM_TYPE_SHIFT) |
185 URB_WRITE_PRIM_START | URB_WRITE_PRIM_END)));
186 emit(ADD(dst_reg(this->prim_count), this->prim_count, brw_imm_ud(1u)));
187 } else {
188 /* Otherwise, we can only set the PrimStart flag, which we have stored
189 * in the first_vertex register. We will have to wait until we execute
190 * EndPrimitive() or we end the thread to set the PrimEnd flag on a
191 * vertex.
192 */
193 emit(OR(dst, this->first_vertex,
194 brw_imm_ud(gs_prog_data->output_topology <<
195 URB_WRITE_PRIM_TYPE_SHIFT)));
196 emit(MOV(dst_reg(this->first_vertex), brw_imm_ud(0u)));
197 }
198 emit(ADD(dst_reg(this->vertex_output_offset),
199 this->vertex_output_offset, brw_imm_ud(1u)));
200 }
201
202 void
gs_end_primitive()203 gfx6_gs_visitor::gs_end_primitive()
204 {
205 this->current_annotation = "gfx6 end primitive";
206 /* Calling EndPrimitive() is optional for point output. In this case we set
207 * the PrimEnd flag when we process EmitVertex().
208 */
209 if (nir->info.gs.output_primitive == GL_POINTS)
210 return;
211
212 /* Otherwise we know that the last vertex we have processed was the last
213 * vertex in the primitive and we need to set its PrimEnd flag, so do this
214 * unless we haven't emitted that vertex at all (vertex_count != 0).
215 *
216 * Notice that we have already incremented vertex_count when we processed
217 * the last emit_vertex, so we need to take that into account in the
218 * comparison below (hence the num_output_vertices + 1 in the comparison
219 * below).
220 */
221 unsigned num_output_vertices = nir->info.gs.vertices_out;
222 emit(CMP(dst_null_ud(), this->vertex_count,
223 brw_imm_ud(num_output_vertices + 1), BRW_CONDITIONAL_L));
224 vec4_instruction *inst = emit(CMP(dst_null_ud(),
225 this->vertex_count, brw_imm_ud(0u),
226 BRW_CONDITIONAL_NEQ));
227 inst->predicate = BRW_PREDICATE_NORMAL;
228 emit(IF(BRW_PREDICATE_NORMAL));
229 {
230 /* vertex_output_offset is already pointing at the first entry of the
231 * next vertex. So subtract 1 to modify the flags for the previous
232 * vertex.
233 */
234 src_reg offset(this, glsl_type::uint_type);
235 emit(ADD(dst_reg(offset), this->vertex_output_offset, brw_imm_d(-1)));
236
237 src_reg dst(this->vertex_output);
238 dst.reladdr = ralloc(mem_ctx, src_reg);
239 memcpy(dst.reladdr, &offset, sizeof(src_reg));
240
241 emit(OR(dst_reg(dst), dst, brw_imm_d(URB_WRITE_PRIM_END)));
242 emit(ADD(dst_reg(this->prim_count), this->prim_count, brw_imm_ud(1u)));
243
244 /* Set the first vertex flag to indicate that the next vertex will start
245 * a primitive.
246 */
247 emit(MOV(dst_reg(this->first_vertex), brw_imm_d(URB_WRITE_PRIM_START)));
248 }
249 emit(BRW_OPCODE_ENDIF);
250 }
251
252 void
emit_urb_write_header(int mrf)253 gfx6_gs_visitor::emit_urb_write_header(int mrf)
254 {
255 this->current_annotation = "gfx6 urb header";
256 /* Compute offset of the flags for the current vertex in vertex_output and
257 * write them in dw2 of the message header.
258 *
259 * Notice that by the time that emit_thread_end() calls here
260 * vertex_output_offset should point to the first data item of the current
261 * vertex in vertex_output, thus we only need to add the number of output
262 * slots per vertex to that offset to obtain the flags data offset.
263 */
264 src_reg flags_offset(this, glsl_type::uint_type);
265 emit(ADD(dst_reg(flags_offset),
266 this->vertex_output_offset,
267 brw_imm_d(prog_data->vue_map.num_slots)));
268
269 src_reg flags_data(this->vertex_output);
270 flags_data.reladdr = ralloc(mem_ctx, src_reg);
271 memcpy(flags_data.reladdr, &flags_offset, sizeof(src_reg));
272
273 emit(GS_OPCODE_SET_DWORD_2, dst_reg(MRF, mrf), flags_data);
274 }
275
276 static unsigned
align_interleaved_urb_mlen(unsigned mlen)277 align_interleaved_urb_mlen(unsigned mlen)
278 {
279 /* URB data written (does not include the message header reg) must
280 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
281 * section 5.4.3.2.2: URB_INTERLEAVED.
282 */
283 if ((mlen % 2) != 1)
284 mlen++;
285 return mlen;
286 }
287
288 void
emit_snb_gs_urb_write_opcode(bool complete,int base_mrf,int last_mrf,int urb_offset)289 gfx6_gs_visitor::emit_snb_gs_urb_write_opcode(bool complete, int base_mrf,
290 int last_mrf, int urb_offset)
291 {
292 vec4_instruction *inst = NULL;
293
294 if (!complete) {
295 /* If the vertex is not complete we don't have to do anything special */
296 inst = emit(VEC4_GS_OPCODE_URB_WRITE);
297 inst->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
298 } else {
299 /* Otherwise we always request to allocate a new VUE handle. If this is
300 * the last write before the EOT message and the new handle never gets
301 * used it will be dereferenced when we send the EOT message. This is
302 * necessary to avoid different setups for the EOT message (one for the
303 * case when there is no output and another for the case when there is)
304 * which would require to end the program with an IF/ELSE/ENDIF block,
305 * something we do not want.
306 */
307 inst = emit(VEC4_GS_OPCODE_URB_WRITE_ALLOCATE);
308 inst->urb_write_flags = BRW_URB_WRITE_COMPLETE;
309 inst->dst = dst_reg(MRF, base_mrf);
310 inst->src[0] = this->temp;
311 }
312
313 inst->base_mrf = base_mrf;
314 inst->mlen = align_interleaved_urb_mlen(last_mrf - base_mrf);
315 inst->offset = urb_offset;
316 }
317
318 void
emit_thread_end()319 gfx6_gs_visitor::emit_thread_end()
320 {
321 /* Make sure the current primitive is ended: we know it is not ended when
322 * first_vertex is not zero. This is only relevant for outputs other than
323 * points because in the point case we set PrimEnd on all vertices.
324 */
325 if (nir->info.gs.output_primitive != GL_POINTS) {
326 emit(CMP(dst_null_ud(), this->first_vertex, brw_imm_ud(0u), BRW_CONDITIONAL_Z));
327 emit(IF(BRW_PREDICATE_NORMAL));
328 gs_end_primitive();
329 emit(BRW_OPCODE_ENDIF);
330 }
331
332 /* Here we have to:
333 * 1) Emit an FF_SYNC message to obtain an initial VUE handle.
334 * 2) Loop over all buffered vertex data and write it to corresponding
335 * URB entries.
336 * 3) Allocate new VUE handles for all vertices other than the first.
337 * 4) Send a final EOT message.
338 */
339
340 /* MRF 0 is reserved for the debugger, so start with message header
341 * in MRF 1.
342 */
343 int base_mrf = 1;
344
345 /* In the process of generating our URB write message contents, we
346 * may need to unspill a register or load from an array. Those
347 * reads would use MRFs 21..23
348 */
349 int max_usable_mrf = FIRST_SPILL_MRF(devinfo->ver);
350
351 /* Issue the FF_SYNC message and obtain the initial VUE handle. */
352 this->current_annotation = "gfx6 thread end: ff_sync";
353
354 vec4_instruction *inst = NULL;
355 if (gs_prog_data->num_transform_feedback_bindings) {
356 src_reg sol_temp(this, glsl_type::uvec4_type);
357 emit(GS_OPCODE_FF_SYNC_SET_PRIMITIVES,
358 dst_reg(this->svbi),
359 this->vertex_count,
360 this->prim_count,
361 sol_temp);
362 inst = emit(GS_OPCODE_FF_SYNC,
363 dst_reg(this->temp), this->prim_count, this->svbi);
364 } else {
365 inst = emit(GS_OPCODE_FF_SYNC,
366 dst_reg(this->temp), this->prim_count, brw_imm_ud(0u));
367 }
368 inst->base_mrf = base_mrf;
369
370 emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u), BRW_CONDITIONAL_G));
371 emit(IF(BRW_PREDICATE_NORMAL));
372 {
373 /* Loop over all buffered vertices and emit URB write messages */
374 this->current_annotation = "gfx6 thread end: urb writes init";
375 src_reg vertex(this, glsl_type::uint_type);
376 emit(MOV(dst_reg(vertex), brw_imm_ud(0u)));
377 emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_ud(0u)));
378
379 this->current_annotation = "gfx6 thread end: urb writes";
380 emit(BRW_OPCODE_DO);
381 {
382 emit(CMP(dst_null_d(), vertex, this->vertex_count, BRW_CONDITIONAL_GE));
383 inst = emit(BRW_OPCODE_BREAK);
384 inst->predicate = BRW_PREDICATE_NORMAL;
385
386 /* First we prepare the message header */
387 emit_urb_write_header(base_mrf);
388
389 /* Then add vertex data to the message in interleaved fashion */
390 int slot = 0;
391 bool complete = false;
392 do {
393 int mrf = base_mrf + 1;
394
395 /* URB offset is in URB row increments, and each of our MRFs is half
396 * of one of those, since we're doing interleaved writes.
397 */
398 int urb_offset = slot / 2;
399
400 for (; slot < prog_data->vue_map.num_slots; ++slot) {
401 int varying = prog_data->vue_map.slot_to_varying[slot];
402 current_annotation = output_reg_annotation[varying];
403
404 /* Compute offset of this slot for the current vertex
405 * in vertex_output
406 */
407 src_reg data(this->vertex_output);
408 data.reladdr = ralloc(mem_ctx, src_reg);
409 memcpy(data.reladdr, &this->vertex_output_offset,
410 sizeof(src_reg));
411
412 /* Copy this slot to the appropriate message register */
413 dst_reg reg = dst_reg(MRF, mrf);
414 reg.type = output_reg[varying][0].type;
415 data.type = reg.type;
416 inst = emit(MOV(reg, data));
417 inst->force_writemask_all = true;
418
419 mrf++;
420 emit(ADD(dst_reg(this->vertex_output_offset),
421 this->vertex_output_offset, brw_imm_ud(1u)));
422
423 /* If this was max_usable_mrf, we can't fit anything more into
424 * this URB WRITE. Same if we reached the max. message length.
425 */
426 if (mrf > max_usable_mrf ||
427 align_interleaved_urb_mlen(mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
428 slot++;
429 break;
430 }
431 }
432
433 complete = slot >= prog_data->vue_map.num_slots;
434 emit_snb_gs_urb_write_opcode(complete, base_mrf, mrf, urb_offset);
435 } while (!complete);
436
437 /* Skip over the flags data item so that vertex_output_offset points
438 * to the first data item of the next vertex, so that we can start
439 * writing the next vertex.
440 */
441 emit(ADD(dst_reg(this->vertex_output_offset),
442 this->vertex_output_offset, brw_imm_ud(1u)));
443
444 emit(ADD(dst_reg(vertex), vertex, brw_imm_ud(1u)));
445 }
446 emit(BRW_OPCODE_WHILE);
447
448 if (gs_prog_data->num_transform_feedback_bindings)
449 xfb_write();
450 }
451 emit(BRW_OPCODE_ENDIF);
452
453 /* Finally, emit EOT message.
454 *
455 * In gfx6 we need to end the thread differently depending on whether we have
456 * emitted at least one vertex or not. In case we did, the EOT message must
457 * always include the COMPLETE flag or else the GPU hangs. If we have not
458 * produced any output we can't use the COMPLETE flag.
459 *
460 * However, this would lead us to end the program with an ENDIF opcode,
461 * which we want to avoid, so what we do is that we always request a new
462 * VUE handle every time, even if GS produces no output.
463 * With this we make sure that whether we have emitted at least one vertex
464 * or none at all, we have to finish the thread without writing to the URB,
465 * which works for both cases by setting the COMPLETE and UNUSED flags in
466 * the EOT message.
467 */
468 this->current_annotation = "gfx6 thread end: EOT";
469
470 if (gs_prog_data->num_transform_feedback_bindings) {
471 /* When emitting EOT, set SONumPrimsWritten Increment Value. */
472 src_reg data(this, glsl_type::uint_type);
473 emit(AND(dst_reg(data), this->sol_prim_written, brw_imm_ud(0xffffu)));
474 emit(SHL(dst_reg(data), data, brw_imm_ud(16u)));
475 emit(GS_OPCODE_SET_DWORD_2, dst_reg(MRF, base_mrf), data);
476 }
477
478 inst = emit(GS_OPCODE_THREAD_END);
479 inst->urb_write_flags = BRW_URB_WRITE_COMPLETE | BRW_URB_WRITE_UNUSED;
480 inst->base_mrf = base_mrf;
481 inst->mlen = 1;
482 }
483
484 void
setup_payload()485 gfx6_gs_visitor::setup_payload()
486 {
487 int attribute_map[BRW_VARYING_SLOT_COUNT * MAX_GS_INPUT_VERTICES];
488
489 /* Attributes are going to be interleaved, so one register contains two
490 * attribute slots.
491 */
492 int attributes_per_reg = 2;
493
494 /* If a geometry shader tries to read from an input that wasn't written by
495 * the vertex shader, that produces undefined results, but it shouldn't
496 * crash anything. So initialize attribute_map to zeros--that ensures that
497 * these undefined results are read from r0.
498 */
499 memset(attribute_map, 0, sizeof(attribute_map));
500
501 int reg = 0;
502
503 /* The payload always contains important data in r0. */
504 reg++;
505
506 /* r1 is always part of the payload and it holds information relevant
507 * for transform feedback when we set the GFX6_GS_SVBI_PAYLOAD_ENABLE bit in
508 * the 3DSTATE_GS packet. We will overwrite it with the PrimitiveID
509 * information (and move the original value to a virtual register if
510 * necessary).
511 */
512 if (gs_prog_data->include_primitive_id)
513 attribute_map[VARYING_SLOT_PRIMITIVE_ID] = attributes_per_reg * reg;
514 reg++;
515
516 reg = setup_uniforms(reg);
517
518 reg = setup_varying_inputs(reg, attributes_per_reg);
519
520 this->first_non_payload_grf = reg;
521 }
522
523 void
xfb_write()524 gfx6_gs_visitor::xfb_write()
525 {
526 unsigned num_verts;
527
528 switch (gs_prog_data->output_topology) {
529 case _3DPRIM_POINTLIST:
530 num_verts = 1;
531 break;
532 case _3DPRIM_LINELIST:
533 case _3DPRIM_LINESTRIP:
534 case _3DPRIM_LINELOOP:
535 num_verts = 2;
536 break;
537 case _3DPRIM_TRILIST:
538 case _3DPRIM_TRIFAN:
539 case _3DPRIM_TRISTRIP:
540 case _3DPRIM_RECTLIST:
541 num_verts = 3;
542 break;
543 case _3DPRIM_QUADLIST:
544 case _3DPRIM_QUADSTRIP:
545 case _3DPRIM_POLYGON:
546 num_verts = 3;
547 break;
548 default:
549 unreachable("Unexpected primitive type in Gfx6 SOL program.");
550 }
551
552 this->current_annotation = "gfx6 thread end: svb writes init";
553
554 emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_ud(0u)));
555 emit(MOV(dst_reg(this->sol_prim_written), brw_imm_ud(0u)));
556
557 /* Check that at least one primitive can be written
558 *
559 * Note: since we use the binding table to keep track of buffer offsets
560 * and stride, the GS doesn't need to keep track of a separate pointer
561 * into each buffer; it uses a single pointer which increments by 1 for
562 * each vertex. So we use SVBI0 for this pointer, regardless of whether
563 * transform feedback is in interleaved or separate attribs mode.
564 */
565 src_reg sol_temp(this, glsl_type::uvec4_type);
566 emit(ADD(dst_reg(sol_temp), this->svbi, brw_imm_ud(num_verts)));
567
568 /* Compare SVBI calculated number with the maximum value, which is
569 * in R1.4 (previously saved in this->max_svbi) for gfx6.
570 */
571 emit(CMP(dst_null_d(), sol_temp, this->max_svbi, BRW_CONDITIONAL_LE));
572 emit(IF(BRW_PREDICATE_NORMAL));
573 {
574 vec4_instruction *inst = emit(MOV(dst_reg(destination_indices),
575 brw_imm_vf4(brw_float_to_vf(0.0),
576 brw_float_to_vf(1.0),
577 brw_float_to_vf(2.0),
578 brw_float_to_vf(0.0))));
579 inst->force_writemask_all = true;
580
581 emit(ADD(dst_reg(this->destination_indices),
582 this->destination_indices,
583 this->svbi));
584 }
585 emit(BRW_OPCODE_ENDIF);
586
587 /* Write transform feedback data for all processed vertices. */
588 for (int i = 0; i < (int)nir->info.gs.vertices_out; i++) {
589 emit(MOV(dst_reg(sol_temp), brw_imm_d(i)));
590 emit(CMP(dst_null_d(), sol_temp, this->vertex_count,
591 BRW_CONDITIONAL_L));
592 emit(IF(BRW_PREDICATE_NORMAL));
593 {
594 xfb_program(i, num_verts);
595 }
596 emit(BRW_OPCODE_ENDIF);
597 }
598 }
599
600 void
xfb_program(unsigned vertex,unsigned num_verts)601 gfx6_gs_visitor::xfb_program(unsigned vertex, unsigned num_verts)
602 {
603 unsigned binding;
604 unsigned num_bindings = gs_prog_data->num_transform_feedback_bindings;
605 src_reg sol_temp(this, glsl_type::uvec4_type);
606
607 /* Check for buffer overflow: we need room to write the complete primitive
608 * (all vertices). Otherwise, avoid writing any vertices for it
609 */
610 emit(ADD(dst_reg(sol_temp), this->sol_prim_written, brw_imm_ud(1u)));
611 emit(MUL(dst_reg(sol_temp), sol_temp, brw_imm_ud(num_verts)));
612 emit(ADD(dst_reg(sol_temp), sol_temp, this->svbi));
613 emit(CMP(dst_null_d(), sol_temp, this->max_svbi, BRW_CONDITIONAL_LE));
614 emit(IF(BRW_PREDICATE_NORMAL));
615 {
616 /* Avoid overwriting MRF 1 as it is used as URB write message header */
617 dst_reg mrf_reg(MRF, 2);
618
619 this->current_annotation = "gfx6: emit SOL vertex data";
620 /* For each vertex, generate code to output each varying using the
621 * appropriate binding table entry.
622 */
623 for (binding = 0; binding < num_bindings; ++binding) {
624 unsigned char varying =
625 gs_prog_data->transform_feedback_bindings[binding];
626
627 /* Set up the correct destination index for this vertex */
628 vec4_instruction *inst = emit(GS_OPCODE_SVB_SET_DST_INDEX,
629 mrf_reg,
630 this->destination_indices);
631 inst->sol_vertex = vertex % num_verts;
632
633 /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
634 *
635 * "Prior to End of Thread with a URB_WRITE, the kernel must
636 * ensure that all writes are complete by sending the final
637 * write as a committed write."
638 */
639 bool final_write = binding == (unsigned) num_bindings - 1 &&
640 inst->sol_vertex == num_verts - 1;
641
642 /* Compute offset of this varying for the current vertex
643 * in vertex_output
644 */
645 this->current_annotation = output_reg_annotation[varying];
646 src_reg data(this->vertex_output);
647 data.reladdr = ralloc(mem_ctx, src_reg);
648 int offset = get_vertex_output_offset_for_varying(vertex, varying);
649 emit(MOV(dst_reg(this->vertex_output_offset), brw_imm_d(offset)));
650 memcpy(data.reladdr, &this->vertex_output_offset, sizeof(src_reg));
651 data.type = output_reg[varying][0].type;
652 data.swizzle = gs_prog_data->transform_feedback_swizzles[binding];
653
654 /* Write data */
655 inst = emit(GS_OPCODE_SVB_WRITE, mrf_reg, data, sol_temp);
656 inst->sol_binding = binding;
657 inst->sol_final_write = final_write;
658
659 if (final_write) {
660 /* This is the last vertex of the primitive, then increment
661 * SO num primitive counter and destination indices.
662 */
663 emit(ADD(dst_reg(this->destination_indices),
664 this->destination_indices,
665 brw_imm_ud(num_verts)));
666 emit(ADD(dst_reg(this->sol_prim_written),
667 this->sol_prim_written, brw_imm_ud(1u)));
668 }
669
670 }
671 this->current_annotation = NULL;
672 }
673 emit(BRW_OPCODE_ENDIF);
674 }
675
676 int
get_vertex_output_offset_for_varying(int vertex,int varying)677 gfx6_gs_visitor::get_vertex_output_offset_for_varying(int vertex, int varying)
678 {
679 /* Find the output slot assigned to this varying.
680 *
681 * VARYING_SLOT_LAYER and VARYING_SLOT_VIEWPORT are packed in the same slot
682 * as VARYING_SLOT_PSIZ.
683 */
684 if (varying == VARYING_SLOT_LAYER || varying == VARYING_SLOT_VIEWPORT)
685 varying = VARYING_SLOT_PSIZ;
686 int slot = prog_data->vue_map.varying_to_slot[varying];
687
688 if (slot < 0) {
689 /* This varying does not exist in the VUE so we are not writing to it
690 * and its value is undefined. We still want to return a valid offset
691 * into vertex_output though, to prevent any out-of-bound accesses into
692 * the vertex_output array. Since the value for this varying is undefined
693 * we don't really care for the value we assign to it, so any offset
694 * within the limits of vertex_output will do.
695 */
696 slot = 0;
697 }
698
699 return vertex * (prog_data->vue_map.num_slots + 1) + slot;
700 }
701
702 } /* namespace brw */
703