• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_logl.c */
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 /*
18  *      Natural logarithm, long double precision
19  *
20  *
21  * SYNOPSIS:
22  *
23  * long double x, y, logl();
24  *
25  * y = logl( x );
26  *
27  *
28  * DESCRIPTION:
29  *
30  * Returns the base e (2.718...) logarithm of x.
31  *
32  * The argument is separated into its exponent and fractional
33  * parts.  If the exponent is between -1 and +1, the logarithm
34  * of the fraction is approximated by
35  *
36  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
37  *
38  * Otherwise, setting  z = 2(x-1)/(x+1),
39  *
40  *     log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z).
41  *
42  *
43  * ACCURACY:
44  *
45  *                      Relative error:
46  * arithmetic   domain     # trials      peak         rms
47  *    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
48  *    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
49  *
50  * In the tests over the interval exp(+-10000), the logarithms
51  * of the random arguments were uniformly distributed over
52  * [-10000, +10000].
53  */
54 
55 #include "libm.h"
56 
57 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
logl(long double x)58 long double logl(long double x)
59 {
60 	return log(x);
61 }
62 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
63 /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
64  * 1/sqrt(2) <= x < sqrt(2)
65  * Theoretical peak relative error = 2.32e-20
66  */
67 static const long double P[] = {
68  4.5270000862445199635215E-5L,
69  4.9854102823193375972212E-1L,
70  6.5787325942061044846969E0L,
71  2.9911919328553073277375E1L,
72  6.0949667980987787057556E1L,
73  5.7112963590585538103336E1L,
74  2.0039553499201281259648E1L,
75 };
76 static const long double Q[] = {
77 /* 1.0000000000000000000000E0,*/
78  1.5062909083469192043167E1L,
79  8.3047565967967209469434E1L,
80  2.2176239823732856465394E2L,
81  3.0909872225312059774938E2L,
82  2.1642788614495947685003E2L,
83  6.0118660497603843919306E1L,
84 };
85 
86 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
87  * where z = 2(x-1)/(x+1)
88  * 1/sqrt(2) <= x < sqrt(2)
89  * Theoretical peak relative error = 6.16e-22
90  */
91 static const long double R[4] = {
92  1.9757429581415468984296E-3L,
93 -7.1990767473014147232598E-1L,
94  1.0777257190312272158094E1L,
95 -3.5717684488096787370998E1L,
96 };
97 static const long double S[4] = {
98 /* 1.00000000000000000000E0L,*/
99 -2.6201045551331104417768E1L,
100  1.9361891836232102174846E2L,
101 -4.2861221385716144629696E2L,
102 };
103 static const long double C1 = 6.9314575195312500000000E-1L;
104 static const long double C2 = 1.4286068203094172321215E-6L;
105 
106 #define SQRTH 0.70710678118654752440L
107 
logl(long double x)108 long double logl(long double x)
109 {
110 	long double y, z;
111 	int e;
112 
113 	if (isnan(x))
114 		return x;
115 	if (x == INFINITY)
116 		return x;
117 	if (x <= 0.0) {
118 		if (x == 0.0)
119 			return -1/(x*x); /* -inf with divbyzero */
120 		return 0/0.0f; /* nan with invalid */
121 	}
122 
123 	/* separate mantissa from exponent */
124 	/* Note, frexp is used so that denormal numbers
125 	 * will be handled properly.
126 	 */
127 	x = frexpl(x, &e);
128 
129 	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
130 	 * where z = 2(x-1)/(x+1)
131 	 */
132 	if (e > 2 || e < -2) {
133 		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
134 			e -= 1;
135 			z = x - 0.5;
136 			y = 0.5 * z + 0.5;
137 		} else {  /*  2 (x-1)/(x+1)   */
138 			z = x - 0.5;
139 			z -= 0.5;
140 			y = 0.5 * x  + 0.5;
141 		}
142 		x = z / y;
143 		z = x*x;
144 		z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
145 		z = z + e * C2;
146 		z = z + x;
147 		z = z + e * C1;
148 		return z;
149 	}
150 
151 	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
152 	if (x < SQRTH) {
153 		e -= 1;
154 		x = 2.0*x - 1.0;
155 	} else {
156 		x = x - 1.0;
157 	}
158 	z = x*x;
159 	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
160 	y = y + e * C2;
161 	z = y - 0.5*z;
162 	/* Note, the sum of above terms does not exceed x/4,
163 	 * so it contributes at most about 1/4 lsb to the error.
164 	 */
165 	z = z + x;
166 	z = z + e * C1; /* This sum has an error of 1/2 lsb. */
167 	return z;
168 }
169 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
170 // TODO: broken implementation to make things compile
logl(long double x)171 long double logl(long double x)
172 {
173 	return log(x);
174 }
175 #endif
176