• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Test - The Google C++ Testing and Mocking Framework
31 //
32 // This file implements a universal value printer that can print a
33 // value of any type T:
34 //
35 //   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
36 //
37 // A user can teach this function how to print a class type T by
38 // defining either operator<<() or PrintTo() in the namespace that
39 // defines T.  More specifically, the FIRST defined function in the
40 // following list will be used (assuming T is defined in namespace
41 // foo):
42 //
43 //   1. foo::PrintTo(const T&, ostream*)
44 //   2. operator<<(ostream&, const T&) defined in either foo or the
45 //      global namespace.
46 // * Prefer AbslStringify(..) to operator<<(..), per https://abseil.io/tips/215.
47 // * Define foo::PrintTo(..) if the type already has AbslStringify(..), but an
48 //   alternative presentation in test results is of interest.
49 //
50 // However if T is an STL-style container then it is printed element-wise
51 // unless foo::PrintTo(const T&, ostream*) is defined. Note that
52 // operator<<() is ignored for container types.
53 //
54 // If none of the above is defined, it will print the debug string of
55 // the value if it is a protocol buffer, or print the raw bytes in the
56 // value otherwise.
57 //
58 // To aid debugging: when T is a reference type, the address of the
59 // value is also printed; when T is a (const) char pointer, both the
60 // pointer value and the NUL-terminated string it points to are
61 // printed.
62 //
63 // We also provide some convenient wrappers:
64 //
65 //   // Prints a value to a string.  For a (const or not) char
66 //   // pointer, the NUL-terminated string (but not the pointer) is
67 //   // printed.
68 //   std::string ::testing::PrintToString(const T& value);
69 //
70 //   // Prints a value tersely: for a reference type, the referenced
71 //   // value (but not the address) is printed; for a (const or not) char
72 //   // pointer, the NUL-terminated string (but not the pointer) is
73 //   // printed.
74 //   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
75 //
76 //   // Prints value using the type inferred by the compiler.  The difference
77 //   // from UniversalTersePrint() is that this function prints both the
78 //   // pointer and the NUL-terminated string for a (const or not) char pointer.
79 //   void ::testing::internal::UniversalPrint(const T& value, ostream*);
80 //
81 //   // Prints the fields of a tuple tersely to a string vector, one
82 //   // element for each field. Tuple support must be enabled in
83 //   // gtest-port.h.
84 //   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
85 //       const Tuple& value);
86 //
87 // Known limitation:
88 //
89 // The print primitives print the elements of an STL-style container
90 // using the compiler-inferred type of *iter where iter is a
91 // const_iterator of the container.  When const_iterator is an input
92 // iterator but not a forward iterator, this inferred type may not
93 // match value_type, and the print output may be incorrect.  In
94 // practice, this is rarely a problem as for most containers
95 // const_iterator is a forward iterator.  We'll fix this if there's an
96 // actual need for it.  Note that this fix cannot rely on value_type
97 // being defined as many user-defined container types don't have
98 // value_type.
99 
100 // IWYU pragma: private, include "gtest/gtest.h"
101 // IWYU pragma: friend gtest/.*
102 // IWYU pragma: friend gmock/.*
103 
104 #ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
105 #define GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
106 
107 #include <functional>
108 #include <memory>
109 #include <ostream>  // NOLINT
110 #include <sstream>
111 #include <string>
112 #include <tuple>
113 #include <type_traits>
114 #include <typeinfo>
115 #include <utility>
116 #include <vector>
117 
118 #ifdef GTEST_HAS_ABSL
119 #include "absl/strings/has_absl_stringify.h"
120 #include "absl/strings/str_cat.h"
121 #endif  // GTEST_HAS_ABSL
122 #include "gtest/internal/gtest-internal.h"
123 #include "gtest/internal/gtest-port.h"
124 
125 #if GTEST_INTERNAL_HAS_STD_SPAN
126 #include <span>  // NOLINT
127 #endif  // GTEST_INTERNAL_HAS_STD_SPAN
128 
129 namespace testing {
130 
131 // Definitions in the internal* namespaces are subject to change without notice.
132 // DO NOT USE THEM IN USER CODE!
133 namespace internal {
134 
135 template <typename T>
136 void UniversalPrint(const T& value, ::std::ostream* os);
137 
138 template <typename T>
139 struct IsStdSpan {
140   static constexpr bool value = false;
141 };
142 
143 #if GTEST_INTERNAL_HAS_STD_SPAN
144 template <typename E>
145 struct IsStdSpan<std::span<E>> {
146   static constexpr bool value = true;
147 };
148 #endif  // GTEST_INTERNAL_HAS_STD_SPAN
149 
150 // Used to print an STL-style container when the user doesn't define
151 // a PrintTo() for it.
152 //
153 // NOTE: Since std::span does not have const_iterator until C++23, it would
154 // fail IsContainerTest before C++23. However, IsContainerTest only uses
155 // the presence of const_iterator to avoid treating iterators as containers
156 // because of iterator::iterator. Which means std::span satisfies the *intended*
157 // condition of IsContainerTest.
158 struct ContainerPrinter {
159   template <typename T,
160             typename = typename std::enable_if<
161                 ((sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) &&
162                  !IsRecursiveContainer<T>::value) ||
163                 IsStdSpan<T>::value>::type>
164   static void PrintValue(const T& container, std::ostream* os) {
165     const size_t kMaxCount = 32;  // The maximum number of elements to print.
166     *os << '{';
167     size_t count = 0;
168     for (auto&& elem : container) {
169       if (count > 0) {
170         *os << ',';
171         if (count == kMaxCount) {  // Enough has been printed.
172           *os << " ...";
173           break;
174         }
175       }
176       *os << ' ';
177       // We cannot call PrintTo(elem, os) here as PrintTo() doesn't
178       // handle `elem` being a native array.
179       internal::UniversalPrint(elem, os);
180       ++count;
181     }
182 
183     if (count > 0) {
184       *os << ' ';
185     }
186     *os << '}';
187   }
188 };
189 
190 // Used to print a pointer that is neither a char pointer nor a member
191 // pointer, when the user doesn't define PrintTo() for it.  (A member
192 // variable pointer or member function pointer doesn't really point to
193 // a location in the address space.  Their representation is
194 // implementation-defined.  Therefore they will be printed as raw
195 // bytes.)
196 struct FunctionPointerPrinter {
197   template <typename T, typename = typename std::enable_if<
198                             std::is_function<T>::value>::type>
199   static void PrintValue(T* p, ::std::ostream* os) {
200     if (p == nullptr) {
201       *os << "NULL";
202     } else {
203       // T is a function type, so '*os << p' doesn't do what we want
204       // (it just prints p as bool).  We want to print p as a const
205       // void*.
206       *os << reinterpret_cast<const void*>(p);
207     }
208   }
209 };
210 
211 struct PointerPrinter {
212   template <typename T>
213   static void PrintValue(T* p, ::std::ostream* os) {
214     if (p == nullptr) {
215       *os << "NULL";
216     } else {
217       // T is not a function type.  We just call << to print p,
218       // relying on ADL to pick up user-defined << for their pointer
219       // types, if any.
220       *os << p;
221     }
222   }
223 };
224 
225 namespace internal_stream_operator_without_lexical_name_lookup {
226 
227 // The presence of an operator<< here will terminate lexical scope lookup
228 // straight away (even though it cannot be a match because of its argument
229 // types). Thus, the two operator<< calls in StreamPrinter will find only ADL
230 // candidates.
231 struct LookupBlocker {};
232 void operator<<(LookupBlocker, LookupBlocker);
233 
234 struct StreamPrinter {
235   template <typename T,
236             // Don't accept member pointers here. We'd print them via implicit
237             // conversion to bool, which isn't useful.
238             typename = typename std::enable_if<
239                 !std::is_member_pointer<T>::value>::type>
240   // Only accept types for which we can find a streaming operator via
241   // ADL (possibly involving implicit conversions).
242   // (Use SFINAE via return type, because it seems GCC < 12 doesn't handle name
243   // lookup properly when we do it in the template parameter list.)
244   static auto PrintValue(const T& value, ::std::ostream* os)
245       -> decltype((void)(*os << value)) {
246     // Call streaming operator found by ADL, possibly with implicit conversions
247     // of the arguments.
248     *os << value;
249   }
250 };
251 
252 }  // namespace internal_stream_operator_without_lexical_name_lookup
253 
254 struct ProtobufPrinter {
255   // We print a protobuf using its ShortDebugString() when the string
256   // doesn't exceed this many characters; otherwise we print it using
257   // DebugString() for better readability.
258   static const size_t kProtobufOneLinerMaxLength = 50;
259 
260   template <typename T,
261             typename = typename std::enable_if<
262                 internal::HasDebugStringAndShortDebugString<T>::value>::type>
263   static void PrintValue(const T& value, ::std::ostream* os) {
264     std::string pretty_str = value.ShortDebugString();
265     if (pretty_str.length() > kProtobufOneLinerMaxLength) {
266       pretty_str = "\n" + value.DebugString();
267     }
268     *os << ("<" + pretty_str + ">");
269   }
270 };
271 
272 struct ConvertibleToIntegerPrinter {
273   // Since T has no << operator or PrintTo() but can be implicitly
274   // converted to BiggestInt, we print it as a BiggestInt.
275   //
276   // Most likely T is an enum type (either named or unnamed), in which
277   // case printing it as an integer is the desired behavior.  In case
278   // T is not an enum, printing it as an integer is the best we can do
279   // given that it has no user-defined printer.
280   static void PrintValue(internal::BiggestInt value, ::std::ostream* os) {
281     *os << value;
282   }
283 };
284 
285 struct ConvertibleToStringViewPrinter {
286 #if GTEST_INTERNAL_HAS_STRING_VIEW
287   static void PrintValue(internal::StringView value, ::std::ostream* os) {
288     internal::UniversalPrint(value, os);
289   }
290 #endif
291 };
292 
293 #ifdef GTEST_HAS_ABSL
294 struct ConvertibleToAbslStringifyPrinter {
295   template <typename T,
296             typename = typename std::enable_if<
297                 absl::HasAbslStringify<T>::value>::type>  // NOLINT
298   static void PrintValue(const T& value, ::std::ostream* os) {
299     *os << absl::StrCat(value);
300   }
301 };
302 #endif  // GTEST_HAS_ABSL
303 
304 // Prints the given number of bytes in the given object to the given
305 // ostream.
306 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
307                                      size_t count, ::std::ostream* os);
308 struct RawBytesPrinter {
309   // SFINAE on `sizeof` to make sure we have a complete type.
310   template <typename T, size_t = sizeof(T)>
311   static void PrintValue(const T& value, ::std::ostream* os) {
312     PrintBytesInObjectTo(
313         static_cast<const unsigned char*>(
314             // Load bearing cast to void* to support iOS
315             reinterpret_cast<const void*>(std::addressof(value))),
316         sizeof(value), os);
317   }
318 };
319 
320 struct FallbackPrinter {
321   template <typename T>
322   static void PrintValue(const T&, ::std::ostream* os) {
323     *os << "(incomplete type)";
324   }
325 };
326 
327 // Try every printer in order and return the first one that works.
328 template <typename T, typename E, typename Printer, typename... Printers>
329 struct FindFirstPrinter : FindFirstPrinter<T, E, Printers...> {};
330 
331 template <typename T, typename Printer, typename... Printers>
332 struct FindFirstPrinter<
333     T, decltype(Printer::PrintValue(std::declval<const T&>(), nullptr)),
334     Printer, Printers...> {
335   using type = Printer;
336 };
337 
338 // Select the best printer in the following order:
339 //  - Print containers (they have begin/end/etc).
340 //  - Print function pointers.
341 //  - Print object pointers.
342 //  - Print protocol buffers.
343 //  - Use the stream operator, if available.
344 //  - Print types convertible to BiggestInt.
345 //  - Print types convertible to StringView, if available.
346 //  - Fallback to printing the raw bytes of the object.
347 template <typename T>
348 void PrintWithFallback(const T& value, ::std::ostream* os) {
349   using Printer = typename FindFirstPrinter<
350       T, void, ContainerPrinter, FunctionPointerPrinter, PointerPrinter,
351       ProtobufPrinter,
352 #ifdef GTEST_HAS_ABSL
353       ConvertibleToAbslStringifyPrinter,
354 #endif  // GTEST_HAS_ABSL
355       internal_stream_operator_without_lexical_name_lookup::StreamPrinter,
356       ConvertibleToIntegerPrinter, ConvertibleToStringViewPrinter,
357       RawBytesPrinter, FallbackPrinter>::type;
358   Printer::PrintValue(value, os);
359 }
360 
361 // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
362 // value of type ToPrint that is an operand of a comparison assertion
363 // (e.g. ASSERT_EQ).  OtherOperand is the type of the other operand in
364 // the comparison, and is used to help determine the best way to
365 // format the value.  In particular, when the value is a C string
366 // (char pointer) and the other operand is an STL string object, we
367 // want to format the C string as a string, since we know it is
368 // compared by value with the string object.  If the value is a char
369 // pointer but the other operand is not an STL string object, we don't
370 // know whether the pointer is supposed to point to a NUL-terminated
371 // string, and thus want to print it as a pointer to be safe.
372 //
373 // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
374 
375 // The default case.
376 template <typename ToPrint, typename OtherOperand>
377 class FormatForComparison {
378  public:
379   static ::std::string Format(const ToPrint& value) {
380     return ::testing::PrintToString(value);
381   }
382 };
383 
384 // Array.
385 template <typename ToPrint, size_t N, typename OtherOperand>
386 class FormatForComparison<ToPrint[N], OtherOperand> {
387  public:
388   static ::std::string Format(const ToPrint* value) {
389     return FormatForComparison<const ToPrint*, OtherOperand>::Format(value);
390   }
391 };
392 
393 // By default, print C string as pointers to be safe, as we don't know
394 // whether they actually point to a NUL-terminated string.
395 
396 #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType)                \
397   template <typename OtherOperand>                                      \
398   class FormatForComparison<CharType*, OtherOperand> {                  \
399    public:                                                              \
400     static ::std::string Format(CharType* value) {                      \
401       return ::testing::PrintToString(static_cast<const void*>(value)); \
402     }                                                                   \
403   }
404 
405 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char);
406 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char);
407 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t);
408 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t);
409 #ifdef __cpp_lib_char8_t
410 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char8_t);
411 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char8_t);
412 #endif
413 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char16_t);
414 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char16_t);
415 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char32_t);
416 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char32_t);
417 
418 #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
419 
420 // If a C string is compared with an STL string object, we know it's meant
421 // to point to a NUL-terminated string, and thus can print it as a string.
422 
423 #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
424   template <>                                                            \
425   class FormatForComparison<CharType*, OtherStringType> {                \
426    public:                                                               \
427     static ::std::string Format(CharType* value) {                       \
428       return ::testing::PrintToString(value);                            \
429     }                                                                    \
430   }
431 
432 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string);
433 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string);
434 #ifdef __cpp_lib_char8_t
435 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char8_t, ::std::u8string);
436 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char8_t, ::std::u8string);
437 #endif
438 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char16_t, ::std::u16string);
439 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char16_t, ::std::u16string);
440 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char32_t, ::std::u32string);
441 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char32_t, ::std::u32string);
442 
443 #if GTEST_HAS_STD_WSTRING
444 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring);
445 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring);
446 #endif
447 
448 #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
449 
450 // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
451 // operand to be used in a failure message.  The type (but not value)
452 // of the other operand may affect the format.  This allows us to
453 // print a char* as a raw pointer when it is compared against another
454 // char* or void*, and print it as a C string when it is compared
455 // against an std::string object, for example.
456 //
457 // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
458 template <typename T1, typename T2>
459 std::string FormatForComparisonFailureMessage(const T1& value,
460                                               const T2& /* other_operand */) {
461   return FormatForComparison<T1, T2>::Format(value);
462 }
463 
464 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
465 // value to the given ostream.  The caller must ensure that
466 // 'ostream_ptr' is not NULL, or the behavior is undefined.
467 //
468 // We define UniversalPrinter as a class template (as opposed to a
469 // function template), as we need to partially specialize it for
470 // reference types, which cannot be done with function templates.
471 template <typename T>
472 class UniversalPrinter;
473 
474 // Prints the given value using the << operator if it has one;
475 // otherwise prints the bytes in it.  This is what
476 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized
477 // or overloaded for type T.
478 //
479 // A user can override this behavior for a class type Foo by defining
480 // an overload of PrintTo() in the namespace where Foo is defined.  We
481 // give the user this option as sometimes defining a << operator for
482 // Foo is not desirable (e.g. the coding style may prevent doing it,
483 // or there is already a << operator but it doesn't do what the user
484 // wants).
485 template <typename T>
486 void PrintTo(const T& value, ::std::ostream* os) {
487   internal::PrintWithFallback(value, os);
488 }
489 
490 // The following list of PrintTo() overloads tells
491 // UniversalPrinter<T>::Print() how to print standard types (built-in
492 // types, strings, plain arrays, and pointers).
493 
494 // Overloads for various char types.
495 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
496 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
497 inline void PrintTo(char c, ::std::ostream* os) {
498   // When printing a plain char, we always treat it as unsigned.  This
499   // way, the output won't be affected by whether the compiler thinks
500   // char is signed or not.
501   PrintTo(static_cast<unsigned char>(c), os);
502 }
503 
504 // Overloads for other simple built-in types.
505 inline void PrintTo(bool x, ::std::ostream* os) {
506   *os << (x ? "true" : "false");
507 }
508 
509 // Overload for wchar_t type.
510 // Prints a wchar_t as a symbol if it is printable or as its internal
511 // code otherwise and also as its decimal code (except for L'\0').
512 // The L'\0' char is printed as "L'\\0'". The decimal code is printed
513 // as signed integer when wchar_t is implemented by the compiler
514 // as a signed type and is printed as an unsigned integer when wchar_t
515 // is implemented as an unsigned type.
516 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
517 
518 GTEST_API_ void PrintTo(char32_t c, ::std::ostream* os);
519 inline void PrintTo(char16_t c, ::std::ostream* os) {
520   PrintTo(ImplicitCast_<char32_t>(c), os);
521 }
522 #ifdef __cpp_lib_char8_t
523 inline void PrintTo(char8_t c, ::std::ostream* os) {
524   PrintTo(ImplicitCast_<char32_t>(c), os);
525 }
526 #endif
527 
528 // gcc/clang __{u,}int128_t
529 #if defined(__SIZEOF_INT128__)
530 GTEST_API_ void PrintTo(__uint128_t v, ::std::ostream* os);
531 GTEST_API_ void PrintTo(__int128_t v, ::std::ostream* os);
532 #endif  // __SIZEOF_INT128__
533 
534 // The default resolution used to print floating-point values uses only
535 // 6 digits, which can be confusing if a test compares two values whose
536 // difference lies in the 7th digit.  So we'd like to print out numbers
537 // in full precision.
538 // However if the value is something simple like 1.1, full will print a
539 // long string like 1.100000001 due to floating-point numbers not using
540 // a base of 10.  This routiune returns an appropriate resolution for a
541 // given floating-point number, that is, 6 if it will be accurate, or a
542 // max_digits10 value (full precision) if it won't,  for values between
543 // 0.0001 and one million.
544 // It does this by computing what those digits would be (by multiplying
545 // by an appropriate power of 10), then dividing by that power again to
546 // see if gets the original value back.
547 // A similar algorithm applies for values larger than one million; note
548 // that for those values, we must divide to get a six-digit number, and
549 // then multiply to possibly get the original value again.
550 template <typename FloatType>
551 int AppropriateResolution(FloatType val) {
552   int full = std::numeric_limits<FloatType>::max_digits10;
553   if (val < 0) val = -val;
554 
555   if (val < 1000000) {
556     FloatType mulfor6 = 1e10;
557     if (val >= 100000.0) {  // 100,000 to 999,999
558       mulfor6 = 1.0;
559     } else if (val >= 10000.0) {
560       mulfor6 = 1e1;
561     } else if (val >= 1000.0) {
562       mulfor6 = 1e2;
563     } else if (val >= 100.0) {
564       mulfor6 = 1e3;
565     } else if (val >= 10.0) {
566       mulfor6 = 1e4;
567     } else if (val >= 1.0) {
568       mulfor6 = 1e5;
569     } else if (val >= 0.1) {
570       mulfor6 = 1e6;
571     } else if (val >= 0.01) {
572       mulfor6 = 1e7;
573     } else if (val >= 0.001) {
574       mulfor6 = 1e8;
575     } else if (val >= 0.0001) {
576       mulfor6 = 1e9;
577     }
578     if (static_cast<FloatType>(static_cast<int32_t>(val * mulfor6 + 0.5)) /
579             mulfor6 ==
580         val)
581       return 6;
582   } else if (val < 1e10) {
583     FloatType divfor6 = 1.0;
584     if (val >= 1e9) {  // 1,000,000,000 to 9,999,999,999
585       divfor6 = 10000;
586     } else if (val >= 1e8) {  // 100,000,000 to 999,999,999
587       divfor6 = 1000;
588     } else if (val >= 1e7) {  // 10,000,000 to 99,999,999
589       divfor6 = 100;
590     } else if (val >= 1e6) {  // 1,000,000 to 9,999,999
591       divfor6 = 10;
592     }
593     if (static_cast<FloatType>(static_cast<int32_t>(val / divfor6 + 0.5)) *
594             divfor6 ==
595         val)
596       return 6;
597   }
598   return full;
599 }
600 
601 inline void PrintTo(float f, ::std::ostream* os) {
602   auto old_precision = os->precision();
603   os->precision(AppropriateResolution(f));
604   *os << f;
605   os->precision(old_precision);
606 }
607 
608 inline void PrintTo(double d, ::std::ostream* os) {
609   auto old_precision = os->precision();
610   os->precision(AppropriateResolution(d));
611   *os << d;
612   os->precision(old_precision);
613 }
614 
615 // Overloads for C strings.
616 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
617 inline void PrintTo(char* s, ::std::ostream* os) {
618   PrintTo(ImplicitCast_<const char*>(s), os);
619 }
620 
621 // signed/unsigned char is often used for representing binary data, so
622 // we print pointers to it as void* to be safe.
623 inline void PrintTo(const signed char* s, ::std::ostream* os) {
624   PrintTo(ImplicitCast_<const void*>(s), os);
625 }
626 inline void PrintTo(signed char* s, ::std::ostream* os) {
627   PrintTo(ImplicitCast_<const void*>(s), os);
628 }
629 inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
630   PrintTo(ImplicitCast_<const void*>(s), os);
631 }
632 inline void PrintTo(unsigned char* s, ::std::ostream* os) {
633   PrintTo(ImplicitCast_<const void*>(s), os);
634 }
635 #ifdef __cpp_lib_char8_t
636 // Overloads for u8 strings.
637 GTEST_API_ void PrintTo(const char8_t* s, ::std::ostream* os);
638 inline void PrintTo(char8_t* s, ::std::ostream* os) {
639   PrintTo(ImplicitCast_<const char8_t*>(s), os);
640 }
641 #endif
642 // Overloads for u16 strings.
643 GTEST_API_ void PrintTo(const char16_t* s, ::std::ostream* os);
644 inline void PrintTo(char16_t* s, ::std::ostream* os) {
645   PrintTo(ImplicitCast_<const char16_t*>(s), os);
646 }
647 // Overloads for u32 strings.
648 GTEST_API_ void PrintTo(const char32_t* s, ::std::ostream* os);
649 inline void PrintTo(char32_t* s, ::std::ostream* os) {
650   PrintTo(ImplicitCast_<const char32_t*>(s), os);
651 }
652 
653 // MSVC can be configured to define wchar_t as a typedef of unsigned
654 // short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
655 // type.  When wchar_t is a typedef, defining an overload for const
656 // wchar_t* would cause unsigned short* be printed as a wide string,
657 // possibly causing invalid memory accesses.
658 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
659 // Overloads for wide C strings
660 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
661 inline void PrintTo(wchar_t* s, ::std::ostream* os) {
662   PrintTo(ImplicitCast_<const wchar_t*>(s), os);
663 }
664 #endif
665 
666 // Overload for C arrays.  Multi-dimensional arrays are printed
667 // properly.
668 
669 // Prints the given number of elements in an array, without printing
670 // the curly braces.
671 template <typename T>
672 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
673   UniversalPrint(a[0], os);
674   for (size_t i = 1; i != count; i++) {
675     *os << ", ";
676     UniversalPrint(a[i], os);
677   }
678 }
679 
680 // Overloads for ::std::string.
681 GTEST_API_ void PrintStringTo(const ::std::string& s, ::std::ostream* os);
682 inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
683   PrintStringTo(s, os);
684 }
685 
686 // Overloads for ::std::u8string
687 #ifdef __cpp_lib_char8_t
688 GTEST_API_ void PrintU8StringTo(const ::std::u8string& s, ::std::ostream* os);
689 inline void PrintTo(const ::std::u8string& s, ::std::ostream* os) {
690   PrintU8StringTo(s, os);
691 }
692 #endif
693 
694 // Overloads for ::std::u16string
695 GTEST_API_ void PrintU16StringTo(const ::std::u16string& s, ::std::ostream* os);
696 inline void PrintTo(const ::std::u16string& s, ::std::ostream* os) {
697   PrintU16StringTo(s, os);
698 }
699 
700 // Overloads for ::std::u32string
701 GTEST_API_ void PrintU32StringTo(const ::std::u32string& s, ::std::ostream* os);
702 inline void PrintTo(const ::std::u32string& s, ::std::ostream* os) {
703   PrintU32StringTo(s, os);
704 }
705 
706 // Overloads for ::std::wstring.
707 #if GTEST_HAS_STD_WSTRING
708 GTEST_API_ void PrintWideStringTo(const ::std::wstring& s, ::std::ostream* os);
709 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
710   PrintWideStringTo(s, os);
711 }
712 #endif  // GTEST_HAS_STD_WSTRING
713 
714 #if GTEST_INTERNAL_HAS_STRING_VIEW
715 // Overload for internal::StringView.
716 inline void PrintTo(internal::StringView sp, ::std::ostream* os) {
717   PrintTo(::std::string(sp), os);
718 }
719 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
720 
721 inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; }
722 
723 #if GTEST_HAS_RTTI
724 inline void PrintTo(const std::type_info& info, std::ostream* os) {
725   *os << internal::GetTypeName(info);
726 }
727 #endif  // GTEST_HAS_RTTI
728 
729 template <typename T>
730 void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) {
731   UniversalPrinter<T&>::Print(ref.get(), os);
732 }
733 
734 inline const void* VoidifyPointer(const void* p) { return p; }
735 inline const void* VoidifyPointer(volatile const void* p) {
736   return const_cast<const void*>(p);
737 }
738 
739 template <typename T, typename Ptr>
740 void PrintSmartPointer(const Ptr& ptr, std::ostream* os, char) {
741   if (ptr == nullptr) {
742     *os << "(nullptr)";
743   } else {
744     // We can't print the value. Just print the pointer..
745     *os << "(" << (VoidifyPointer)(ptr.get()) << ")";
746   }
747 }
748 template <typename T, typename Ptr,
749           typename = typename std::enable_if<!std::is_void<T>::value &&
750                                              !std::is_array<T>::value>::type>
751 void PrintSmartPointer(const Ptr& ptr, std::ostream* os, int) {
752   if (ptr == nullptr) {
753     *os << "(nullptr)";
754   } else {
755     *os << "(ptr = " << (VoidifyPointer)(ptr.get()) << ", value = ";
756     UniversalPrinter<T>::Print(*ptr, os);
757     *os << ")";
758   }
759 }
760 
761 template <typename T, typename D>
762 void PrintTo(const std::unique_ptr<T, D>& ptr, std::ostream* os) {
763   (PrintSmartPointer<T>)(ptr, os, 0);
764 }
765 
766 template <typename T>
767 void PrintTo(const std::shared_ptr<T>& ptr, std::ostream* os) {
768   (PrintSmartPointer<T>)(ptr, os, 0);
769 }
770 
771 // Helper function for printing a tuple.  T must be instantiated with
772 // a tuple type.
773 template <typename T>
774 void PrintTupleTo(const T&, std::integral_constant<size_t, 0>,
775                   ::std::ostream*) {}
776 
777 template <typename T, size_t I>
778 void PrintTupleTo(const T& t, std::integral_constant<size_t, I>,
779                   ::std::ostream* os) {
780   PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os);
781   GTEST_INTENTIONAL_CONST_COND_PUSH_()
782   if (I > 1) {
783     GTEST_INTENTIONAL_CONST_COND_POP_()
784     *os << ", ";
785   }
786   UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print(
787       std::get<I - 1>(t), os);
788 }
789 
790 template <typename... Types>
791 void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
792   *os << "(";
793   PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os);
794   *os << ")";
795 }
796 
797 // Overload for std::pair.
798 template <typename T1, typename T2>
799 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
800   *os << '(';
801   // We cannot use UniversalPrint(value.first, os) here, as T1 may be
802   // a reference type.  The same for printing value.second.
803   UniversalPrinter<T1>::Print(value.first, os);
804   *os << ", ";
805   UniversalPrinter<T2>::Print(value.second, os);
806   *os << ')';
807 }
808 
809 // Implements printing a non-reference type T by letting the compiler
810 // pick the right overload of PrintTo() for T.
811 template <typename T>
812 class UniversalPrinter {
813  public:
814   // MSVC warns about adding const to a function type, so we want to
815   // disable the warning.
816   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
817 
818   // Note: we deliberately don't call this PrintTo(), as that name
819   // conflicts with ::testing::internal::PrintTo in the body of the
820   // function.
821   static void Print(const T& value, ::std::ostream* os) {
822     // By default, ::testing::internal::PrintTo() is used for printing
823     // the value.
824     //
825     // Thanks to Koenig look-up, if T is a class and has its own
826     // PrintTo() function defined in its namespace, that function will
827     // be visible here.  Since it is more specific than the generic ones
828     // in ::testing::internal, it will be picked by the compiler in the
829     // following statement - exactly what we want.
830     PrintTo(value, os);
831   }
832 
833   GTEST_DISABLE_MSC_WARNINGS_POP_()
834 };
835 
836 // Remove any const-qualifiers before passing a type to UniversalPrinter.
837 template <typename T>
838 class UniversalPrinter<const T> : public UniversalPrinter<T> {};
839 
840 #if GTEST_INTERNAL_HAS_ANY
841 
842 // Printer for std::any / absl::any
843 
844 template <>
845 class UniversalPrinter<Any> {
846  public:
847   static void Print(const Any& value, ::std::ostream* os) {
848     if (value.has_value()) {
849       *os << "value of type " << GetTypeName(value);
850     } else {
851       *os << "no value";
852     }
853   }
854 
855  private:
856   static std::string GetTypeName(const Any& value) {
857 #if GTEST_HAS_RTTI
858     return internal::GetTypeName(value.type());
859 #else
860     static_cast<void>(value);  // possibly unused
861     return "<unknown_type>";
862 #endif  // GTEST_HAS_RTTI
863   }
864 };
865 
866 #endif  // GTEST_INTERNAL_HAS_ANY
867 
868 #if GTEST_INTERNAL_HAS_OPTIONAL
869 
870 // Printer for std::optional / absl::optional
871 
872 template <typename T>
873 class UniversalPrinter<Optional<T>> {
874  public:
875   static void Print(const Optional<T>& value, ::std::ostream* os) {
876     *os << '(';
877     if (!value) {
878       *os << "nullopt";
879     } else {
880       UniversalPrint(*value, os);
881     }
882     *os << ')';
883   }
884 };
885 
886 template <>
887 class UniversalPrinter<decltype(Nullopt())> {
888  public:
889   static void Print(decltype(Nullopt()), ::std::ostream* os) {
890     *os << "(nullopt)";
891   }
892 };
893 
894 #endif  // GTEST_INTERNAL_HAS_OPTIONAL
895 
896 #if GTEST_INTERNAL_HAS_VARIANT
897 
898 // Printer for std::variant / absl::variant
899 
900 template <typename... T>
901 class UniversalPrinter<Variant<T...>> {
902  public:
903   static void Print(const Variant<T...>& value, ::std::ostream* os) {
904     *os << '(';
905 #ifdef GTEST_HAS_ABSL
906     absl::visit(Visitor{os, value.index()}, value);
907 #else
908     std::visit(Visitor{os, value.index()}, value);
909 #endif  // GTEST_HAS_ABSL
910     *os << ')';
911   }
912 
913  private:
914   struct Visitor {
915     template <typename U>
916     void operator()(const U& u) const {
917       *os << "'" << GetTypeName<U>() << "(index = " << index
918           << ")' with value ";
919       UniversalPrint(u, os);
920     }
921     ::std::ostream* os;
922     std::size_t index;
923   };
924 };
925 
926 #endif  // GTEST_INTERNAL_HAS_VARIANT
927 
928 // UniversalPrintArray(begin, len, os) prints an array of 'len'
929 // elements, starting at address 'begin'.
930 template <typename T>
931 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
932   if (len == 0) {
933     *os << "{}";
934   } else {
935     *os << "{ ";
936     const size_t kThreshold = 18;
937     const size_t kChunkSize = 8;
938     // If the array has more than kThreshold elements, we'll have to
939     // omit some details by printing only the first and the last
940     // kChunkSize elements.
941     if (len <= kThreshold) {
942       PrintRawArrayTo(begin, len, os);
943     } else {
944       PrintRawArrayTo(begin, kChunkSize, os);
945       *os << ", ..., ";
946       PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
947     }
948     *os << " }";
949   }
950 }
951 // This overload prints a (const) char array compactly.
952 GTEST_API_ void UniversalPrintArray(const char* begin, size_t len,
953                                     ::std::ostream* os);
954 
955 #ifdef __cpp_lib_char8_t
956 // This overload prints a (const) char8_t array compactly.
957 GTEST_API_ void UniversalPrintArray(const char8_t* begin, size_t len,
958                                     ::std::ostream* os);
959 #endif
960 
961 // This overload prints a (const) char16_t array compactly.
962 GTEST_API_ void UniversalPrintArray(const char16_t* begin, size_t len,
963                                     ::std::ostream* os);
964 
965 // This overload prints a (const) char32_t array compactly.
966 GTEST_API_ void UniversalPrintArray(const char32_t* begin, size_t len,
967                                     ::std::ostream* os);
968 
969 // This overload prints a (const) wchar_t array compactly.
970 GTEST_API_ void UniversalPrintArray(const wchar_t* begin, size_t len,
971                                     ::std::ostream* os);
972 
973 // Implements printing an array type T[N].
974 template <typename T, size_t N>
975 class UniversalPrinter<T[N]> {
976  public:
977   // Prints the given array, omitting some elements when there are too
978   // many.
979   static void Print(const T (&a)[N], ::std::ostream* os) {
980     UniversalPrintArray(a, N, os);
981   }
982 };
983 
984 // Implements printing a reference type T&.
985 template <typename T>
986 class UniversalPrinter<T&> {
987  public:
988   // MSVC warns about adding const to a function type, so we want to
989   // disable the warning.
990   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
991 
992   static void Print(const T& value, ::std::ostream* os) {
993     // Prints the address of the value.  We use reinterpret_cast here
994     // as static_cast doesn't compile when T is a function type.
995     *os << "@" << reinterpret_cast<const void*>(&value) << " ";
996 
997     // Then prints the value itself.
998     UniversalPrint(value, os);
999   }
1000 
1001   GTEST_DISABLE_MSC_WARNINGS_POP_()
1002 };
1003 
1004 // Prints a value tersely: for a reference type, the referenced value
1005 // (but not the address) is printed; for a (const) char pointer, the
1006 // NUL-terminated string (but not the pointer) is printed.
1007 
1008 template <typename T>
1009 class UniversalTersePrinter {
1010  public:
1011   static void Print(const T& value, ::std::ostream* os) {
1012     UniversalPrint(value, os);
1013   }
1014 };
1015 template <typename T>
1016 class UniversalTersePrinter<T&> {
1017  public:
1018   static void Print(const T& value, ::std::ostream* os) {
1019     UniversalPrint(value, os);
1020   }
1021 };
1022 template <typename T>
1023 class UniversalTersePrinter<std::reference_wrapper<T>> {
1024  public:
1025   static void Print(std::reference_wrapper<T> value, ::std::ostream* os) {
1026     UniversalTersePrinter<T>::Print(value.get(), os);
1027   }
1028 };
1029 template <typename T, size_t N>
1030 class UniversalTersePrinter<T[N]> {
1031  public:
1032   static void Print(const T (&value)[N], ::std::ostream* os) {
1033     UniversalPrinter<T[N]>::Print(value, os);
1034   }
1035 };
1036 template <>
1037 class UniversalTersePrinter<const char*> {
1038  public:
1039   static void Print(const char* str, ::std::ostream* os) {
1040     if (str == nullptr) {
1041       *os << "NULL";
1042     } else {
1043       UniversalPrint(std::string(str), os);
1044     }
1045   }
1046 };
1047 template <>
1048 class UniversalTersePrinter<char*> : public UniversalTersePrinter<const char*> {
1049 };
1050 
1051 #ifdef __cpp_lib_char8_t
1052 template <>
1053 class UniversalTersePrinter<const char8_t*> {
1054  public:
1055   static void Print(const char8_t* str, ::std::ostream* os) {
1056     if (str == nullptr) {
1057       *os << "NULL";
1058     } else {
1059       UniversalPrint(::std::u8string(str), os);
1060     }
1061   }
1062 };
1063 template <>
1064 class UniversalTersePrinter<char8_t*>
1065     : public UniversalTersePrinter<const char8_t*> {};
1066 #endif
1067 
1068 template <>
1069 class UniversalTersePrinter<const char16_t*> {
1070  public:
1071   static void Print(const char16_t* str, ::std::ostream* os) {
1072     if (str == nullptr) {
1073       *os << "NULL";
1074     } else {
1075       UniversalPrint(::std::u16string(str), os);
1076     }
1077   }
1078 };
1079 template <>
1080 class UniversalTersePrinter<char16_t*>
1081     : public UniversalTersePrinter<const char16_t*> {};
1082 
1083 template <>
1084 class UniversalTersePrinter<const char32_t*> {
1085  public:
1086   static void Print(const char32_t* str, ::std::ostream* os) {
1087     if (str == nullptr) {
1088       *os << "NULL";
1089     } else {
1090       UniversalPrint(::std::u32string(str), os);
1091     }
1092   }
1093 };
1094 template <>
1095 class UniversalTersePrinter<char32_t*>
1096     : public UniversalTersePrinter<const char32_t*> {};
1097 
1098 #if GTEST_HAS_STD_WSTRING
1099 template <>
1100 class UniversalTersePrinter<const wchar_t*> {
1101  public:
1102   static void Print(const wchar_t* str, ::std::ostream* os) {
1103     if (str == nullptr) {
1104       *os << "NULL";
1105     } else {
1106       UniversalPrint(::std::wstring(str), os);
1107     }
1108   }
1109 };
1110 #endif
1111 
1112 template <>
1113 class UniversalTersePrinter<wchar_t*> {
1114  public:
1115   static void Print(wchar_t* str, ::std::ostream* os) {
1116     UniversalTersePrinter<const wchar_t*>::Print(str, os);
1117   }
1118 };
1119 
1120 template <typename T>
1121 void UniversalTersePrint(const T& value, ::std::ostream* os) {
1122   UniversalTersePrinter<T>::Print(value, os);
1123 }
1124 
1125 // Prints a value using the type inferred by the compiler.  The
1126 // difference between this and UniversalTersePrint() is that for a
1127 // (const) char pointer, this prints both the pointer and the
1128 // NUL-terminated string.
1129 template <typename T>
1130 void UniversalPrint(const T& value, ::std::ostream* os) {
1131   // A workarond for the bug in VC++ 7.1 that prevents us from instantiating
1132   // UniversalPrinter with T directly.
1133   typedef T T1;
1134   UniversalPrinter<T1>::Print(value, os);
1135 }
1136 
1137 typedef ::std::vector<::std::string> Strings;
1138 
1139 // Tersely prints the first N fields of a tuple to a string vector,
1140 // one element for each field.
1141 template <typename Tuple>
1142 void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>,
1143                                Strings*) {}
1144 template <typename Tuple, size_t I>
1145 void TersePrintPrefixToStrings(const Tuple& t,
1146                                std::integral_constant<size_t, I>,
1147                                Strings* strings) {
1148   TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(),
1149                             strings);
1150   ::std::stringstream ss;
1151   UniversalTersePrint(std::get<I - 1>(t), &ss);
1152   strings->push_back(ss.str());
1153 }
1154 
1155 // Prints the fields of a tuple tersely to a string vector, one
1156 // element for each field.  See the comment before
1157 // UniversalTersePrint() for how we define "tersely".
1158 template <typename Tuple>
1159 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
1160   Strings result;
1161   TersePrintPrefixToStrings(
1162       value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(),
1163       &result);
1164   return result;
1165 }
1166 
1167 }  // namespace internal
1168 
1169 template <typename T>
1170 ::std::string PrintToString(const T& value) {
1171   ::std::stringstream ss;
1172   internal::UniversalTersePrinter<T>::Print(value, &ss);
1173   return ss.str();
1174 }
1175 
1176 }  // namespace testing
1177 
1178 // Include any custom printer added by the local installation.
1179 // We must include this header at the end to make sure it can use the
1180 // declarations from this file.
1181 #include "gtest/internal/custom/gtest-printers.h"
1182 
1183 #endif  // GOOGLETEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
1184