1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 2013-2014, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
8 * collationbuilder.cpp
9 *
10 * (replaced the former ucol_bld.cpp)
11 *
12 * created on: 2013may06
13 * created by: Markus W. Scherer
14 */
15
16 #ifdef DEBUG_COLLATION_BUILDER
17 #include <stdio.h>
18 #endif
19
20 #include "unicode/utypes.h"
21
22 #if !UCONFIG_NO_COLLATION
23
24 #include "unicode/caniter.h"
25 #include "unicode/normalizer2.h"
26 #include "unicode/tblcoll.h"
27 #include "unicode/parseerr.h"
28 #include "unicode/uchar.h"
29 #include "unicode/ucol.h"
30 #include "unicode/unistr.h"
31 #include "unicode/usetiter.h"
32 #include "unicode/utf16.h"
33 #include "unicode/uversion.h"
34 #include "cmemory.h"
35 #include "collation.h"
36 #include "collationbuilder.h"
37 #include "collationdata.h"
38 #include "collationdatabuilder.h"
39 #include "collationfastlatin.h"
40 #include "collationroot.h"
41 #include "collationrootelements.h"
42 #include "collationruleparser.h"
43 #include "collationsettings.h"
44 #include "collationtailoring.h"
45 #include "collationweights.h"
46 #include "normalizer2impl.h"
47 #include "uassert.h"
48 #include "ucol_imp.h"
49 #include "utf16collationiterator.h"
50
51 U_NAMESPACE_BEGIN
52
53 namespace {
54
55 class BundleImporter : public CollationRuleParser::Importer {
56 public:
BundleImporter()57 BundleImporter() {}
58 virtual ~BundleImporter();
59 virtual void getRules(
60 const char *localeID, const char *collationType,
61 UnicodeString &rules,
62 const char *&errorReason, UErrorCode &errorCode) override;
63 };
64
~BundleImporter()65 BundleImporter::~BundleImporter() {}
66
67 void
getRules(const char * localeID,const char * collationType,UnicodeString & rules,const char * &,UErrorCode & errorCode)68 BundleImporter::getRules(
69 const char *localeID, const char *collationType,
70 UnicodeString &rules,
71 const char *& /*errorReason*/, UErrorCode &errorCode) {
72 CollationLoader::loadRules(localeID, collationType, rules, errorCode);
73 }
74
75 } // namespace
76
77 // RuleBasedCollator implementation ---------------------------------------- ***
78
79 // These methods are here, rather than in rulebasedcollator.cpp,
80 // for modularization:
81 // Most code using Collator does not need to build a Collator from rules.
82 // By moving these constructors and helper methods to a separate file,
83 // most code will not have a static dependency on the builder code.
84
RuleBasedCollator()85 RuleBasedCollator::RuleBasedCollator()
86 : data(nullptr),
87 settings(nullptr),
88 tailoring(nullptr),
89 cacheEntry(nullptr),
90 validLocale(""),
91 explicitlySetAttributes(0),
92 actualLocaleIsSameAsValid(false) {
93 }
94
RuleBasedCollator(const UnicodeString & rules,UErrorCode & errorCode)95 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
96 : data(nullptr),
97 settings(nullptr),
98 tailoring(nullptr),
99 cacheEntry(nullptr),
100 validLocale(""),
101 explicitlySetAttributes(0),
102 actualLocaleIsSameAsValid(false) {
103 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, nullptr, nullptr, errorCode);
104 }
105
RuleBasedCollator(const UnicodeString & rules,ECollationStrength strength,UErrorCode & errorCode)106 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
107 UErrorCode &errorCode)
108 : data(nullptr),
109 settings(nullptr),
110 tailoring(nullptr),
111 cacheEntry(nullptr),
112 validLocale(""),
113 explicitlySetAttributes(0),
114 actualLocaleIsSameAsValid(false) {
115 internalBuildTailoring(rules, strength, UCOL_DEFAULT, nullptr, nullptr, errorCode);
116 }
117
RuleBasedCollator(const UnicodeString & rules,UColAttributeValue decompositionMode,UErrorCode & errorCode)118 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
119 UColAttributeValue decompositionMode,
120 UErrorCode &errorCode)
121 : data(nullptr),
122 settings(nullptr),
123 tailoring(nullptr),
124 cacheEntry(nullptr),
125 validLocale(""),
126 explicitlySetAttributes(0),
127 actualLocaleIsSameAsValid(false) {
128 internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, nullptr, nullptr, errorCode);
129 }
130
RuleBasedCollator(const UnicodeString & rules,ECollationStrength strength,UColAttributeValue decompositionMode,UErrorCode & errorCode)131 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
132 ECollationStrength strength,
133 UColAttributeValue decompositionMode,
134 UErrorCode &errorCode)
135 : data(nullptr),
136 settings(nullptr),
137 tailoring(nullptr),
138 cacheEntry(nullptr),
139 validLocale(""),
140 explicitlySetAttributes(0),
141 actualLocaleIsSameAsValid(false) {
142 internalBuildTailoring(rules, strength, decompositionMode, nullptr, nullptr, errorCode);
143 }
144
RuleBasedCollator(const UnicodeString & rules,UParseError & parseError,UnicodeString & reason,UErrorCode & errorCode)145 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
146 UParseError &parseError, UnicodeString &reason,
147 UErrorCode &errorCode)
148 : data(nullptr),
149 settings(nullptr),
150 tailoring(nullptr),
151 cacheEntry(nullptr),
152 validLocale(""),
153 explicitlySetAttributes(0),
154 actualLocaleIsSameAsValid(false) {
155 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
156 }
157
158 void
internalBuildTailoring(const UnicodeString & rules,int32_t strength,UColAttributeValue decompositionMode,UParseError * outParseError,UnicodeString * outReason,UErrorCode & errorCode)159 RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
160 int32_t strength,
161 UColAttributeValue decompositionMode,
162 UParseError *outParseError, UnicodeString *outReason,
163 UErrorCode &errorCode) {
164 const CollationTailoring *base = CollationRoot::getRoot(errorCode);
165 if(U_FAILURE(errorCode)) { return; }
166 if(outReason != nullptr) { outReason->remove(); }
167 CollationBuilder builder(base, errorCode);
168 UVersionInfo noVersion = { 0, 0, 0, 0 };
169 BundleImporter importer;
170 LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
171 &importer,
172 outParseError, errorCode));
173 if(U_FAILURE(errorCode)) {
174 const char *reason = builder.getErrorReason();
175 if(reason != nullptr && outReason != nullptr) {
176 *outReason = UnicodeString(reason, -1, US_INV);
177 }
178 return;
179 }
180 t->actualLocale.setToBogus();
181 adoptTailoring(t.orphan(), errorCode);
182 // Set attributes after building the collator,
183 // to keep the default settings consistent with the rule string.
184 if(strength != UCOL_DEFAULT) {
185 setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
186 }
187 if(decompositionMode != UCOL_DEFAULT) {
188 setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
189 }
190 }
191
192 // CollationBuilder implementation ----------------------------------------- ***
193
CollationBuilder(const CollationTailoring * b,UBool icu4xMode,UErrorCode & errorCode)194 CollationBuilder::CollationBuilder(const CollationTailoring *b, UBool icu4xMode, UErrorCode &errorCode)
195 : nfd(*Normalizer2::getNFDInstance(errorCode)),
196 fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
197 nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
198 base(b),
199 baseData(b->data),
200 rootElements(b->data->rootElements, b->data->rootElementsLength),
201 variableTop(0),
202 dataBuilder(new CollationDataBuilder(icu4xMode, errorCode)), fastLatinEnabled(true),
203 icu4xMode(icu4xMode),
204 errorReason(nullptr),
205 cesLength(0),
206 rootPrimaryIndexes(errorCode), nodes(errorCode) {
207 nfcImpl.ensureCanonIterData(errorCode);
208 if(U_FAILURE(errorCode)) {
209 errorReason = "CollationBuilder fields initialization failed";
210 return;
211 }
212 if(dataBuilder == nullptr) {
213 errorCode = U_MEMORY_ALLOCATION_ERROR;
214 return;
215 }
216 dataBuilder->initForTailoring(baseData, errorCode);
217 if(U_FAILURE(errorCode)) {
218 errorReason = "CollationBuilder initialization failed";
219 }
220 }
221
CollationBuilder(const CollationTailoring * b,UErrorCode & errorCode)222 CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
223 : CollationBuilder(b, false, errorCode)
224 {}
225
~CollationBuilder()226 CollationBuilder::~CollationBuilder() {
227 delete dataBuilder;
228 }
229
230 CollationTailoring *
parseAndBuild(const UnicodeString & ruleString,const UVersionInfo rulesVersion,CollationRuleParser::Importer * importer,UParseError * outParseError,UErrorCode & errorCode)231 CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
232 const UVersionInfo rulesVersion,
233 CollationRuleParser::Importer *importer,
234 UParseError *outParseError,
235 UErrorCode &errorCode) {
236 if(U_FAILURE(errorCode)) { return nullptr; }
237 if(baseData->rootElements == nullptr) {
238 errorCode = U_MISSING_RESOURCE_ERROR;
239 errorReason = "missing root elements data, tailoring not supported";
240 return nullptr;
241 }
242 LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
243 if(tailoring.isNull() || tailoring->isBogus()) {
244 errorCode = U_MEMORY_ALLOCATION_ERROR;
245 return nullptr;
246 }
247 CollationRuleParser parser(baseData, errorCode);
248 if(U_FAILURE(errorCode)) { return nullptr; }
249 // Note: This always bases &[last variable] and &[first regular]
250 // on the root collator's maxVariable/variableTop.
251 // If we wanted this to change after [maxVariable x], then we would keep
252 // the tailoring.settings pointer here and read its variableTop when we need it.
253 // See http://unicode.org/cldr/trac/ticket/6070
254 variableTop = base->settings->variableTop;
255 parser.setSink(this);
256 parser.setImporter(importer);
257 CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
258 parser.parse(ruleString, ownedSettings, outParseError, errorCode);
259 errorReason = parser.getErrorReason();
260 if(U_FAILURE(errorCode)) { return nullptr; }
261 if(dataBuilder->hasMappings()) {
262 makeTailoredCEs(errorCode);
263 if (!icu4xMode) {
264 closeOverComposites(errorCode);
265 }
266 finalizeCEs(errorCode);
267 if (!icu4xMode) {
268 // Copy all of ASCII, and Latin-1 letters, into each tailoring.
269 optimizeSet.add(0, 0x7f);
270 optimizeSet.add(0xc0, 0xff);
271 // Hangul is decomposed on the fly during collation,
272 // and the tailoring data is always built with HANGUL_TAG specials.
273 optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
274 dataBuilder->optimize(optimizeSet, errorCode);
275 }
276 tailoring->ensureOwnedData(errorCode);
277 if(U_FAILURE(errorCode)) { return nullptr; }
278 if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
279 dataBuilder->build(*tailoring->ownedData, errorCode);
280 tailoring->builder = dataBuilder;
281 dataBuilder = nullptr;
282 } else {
283 tailoring->data = baseData;
284 }
285 if(U_FAILURE(errorCode)) { return nullptr; }
286 ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
287 tailoring->data, ownedSettings,
288 ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
289 tailoring->rules = ruleString;
290 tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
291 tailoring->setVersion(base->version, rulesVersion);
292 return tailoring.orphan();
293 }
294
295 void
addReset(int32_t strength,const UnicodeString & str,const char * & parserErrorReason,UErrorCode & errorCode)296 CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
297 const char *&parserErrorReason, UErrorCode &errorCode) {
298 if(U_FAILURE(errorCode)) { return; }
299 U_ASSERT(!str.isEmpty());
300 if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
301 ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
302 cesLength = 1;
303 if(U_FAILURE(errorCode)) { return; }
304 U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
305 } else {
306 // normal reset to a character or string
307 UnicodeString nfdString = nfd.normalize(str, errorCode);
308 if(U_FAILURE(errorCode)) {
309 parserErrorReason = "normalizing the reset position";
310 return;
311 }
312 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
313 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
314 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
315 parserErrorReason = "reset position maps to too many collation elements (more than 31)";
316 return;
317 }
318 }
319 if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
320
321 // &[before strength]position
322 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
323 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
324 if(U_FAILURE(errorCode)) { return; }
325
326 int64_t node = nodes.elementAti(index);
327 // If the index is for a "weaker" node,
328 // then skip backwards over this and further "weaker" nodes.
329 while(strengthFromNode(node) > strength) {
330 index = previousIndexFromNode(node);
331 node = nodes.elementAti(index);
332 }
333
334 // Find or insert a node whose index we will put into a temporary CE.
335 if(strengthFromNode(node) == strength && isTailoredNode(node)) {
336 // Reset to just before this same-strength tailored node.
337 index = previousIndexFromNode(node);
338 } else if(strength == UCOL_PRIMARY) {
339 // root primary node (has no previous index)
340 uint32_t p = weight32FromNode(node);
341 if(p == 0) {
342 errorCode = U_UNSUPPORTED_ERROR;
343 parserErrorReason = "reset primary-before ignorable not possible";
344 return;
345 }
346 if(p <= rootElements.getFirstPrimary()) {
347 // There is no primary gap between ignorables and the space-first-primary.
348 errorCode = U_UNSUPPORTED_ERROR;
349 parserErrorReason = "reset primary-before first non-ignorable not supported";
350 return;
351 }
352 if(p == Collation::FIRST_TRAILING_PRIMARY) {
353 // We do not support tailoring to an unassigned-implicit CE.
354 errorCode = U_UNSUPPORTED_ERROR;
355 parserErrorReason = "reset primary-before [first trailing] not supported";
356 return;
357 }
358 p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
359 index = findOrInsertNodeForPrimary(p, errorCode);
360 // Go to the last node in this list:
361 // Tailor after the last node between adjacent root nodes.
362 for(;;) {
363 node = nodes.elementAti(index);
364 int32_t nextIndex = nextIndexFromNode(node);
365 if(nextIndex == 0) { break; }
366 index = nextIndex;
367 }
368 } else {
369 // &[before 2] or &[before 3]
370 index = findCommonNode(index, UCOL_SECONDARY);
371 if(strength >= UCOL_TERTIARY) {
372 index = findCommonNode(index, UCOL_TERTIARY);
373 }
374 // findCommonNode() stayed on the stronger node or moved to
375 // an explicit common-weight node of the reset-before strength.
376 node = nodes.elementAti(index);
377 if(strengthFromNode(node) == strength) {
378 // Found a same-strength node with an explicit weight.
379 uint32_t weight16 = weight16FromNode(node);
380 if(weight16 == 0) {
381 errorCode = U_UNSUPPORTED_ERROR;
382 if(strength == UCOL_SECONDARY) {
383 parserErrorReason = "reset secondary-before secondary ignorable not possible";
384 } else {
385 parserErrorReason = "reset tertiary-before completely ignorable not possible";
386 }
387 return;
388 }
389 U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16);
390 // Reset to just before this node.
391 // Insert the preceding same-level explicit weight if it is not there already.
392 // Which explicit weight immediately precedes this one?
393 weight16 = getWeight16Before(index, node, strength);
394 // Does this preceding weight have a node?
395 uint32_t previousWeight16;
396 int32_t previousIndex = previousIndexFromNode(node);
397 for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) {
398 node = nodes.elementAti(i);
399 int32_t previousStrength = strengthFromNode(node);
400 if(previousStrength < strength) {
401 U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex);
402 // Either the reset element has an above-common weight and
403 // the parent node provides the implied common weight,
404 // or the reset element has a weight<=common in the node
405 // right after the parent, and we need to insert the preceding weight.
406 previousWeight16 = Collation::COMMON_WEIGHT16;
407 break;
408 } else if(previousStrength == strength && !isTailoredNode(node)) {
409 previousWeight16 = weight16FromNode(node);
410 break;
411 }
412 // Skip weaker nodes and same-level tailored nodes.
413 }
414 if(previousWeight16 == weight16) {
415 // The preceding weight has a node,
416 // maybe with following weaker or tailored nodes.
417 // Reset to the last of them.
418 index = previousIndex;
419 } else {
420 // Insert a node with the preceding weight, reset to that.
421 node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
422 index = insertNodeBetween(previousIndex, index, node, errorCode);
423 }
424 } else {
425 // Found a stronger node with implied strength-common weight.
426 uint32_t weight16 = getWeight16Before(index, node, strength);
427 index = findOrInsertWeakNode(index, weight16, strength, errorCode);
428 }
429 // Strength of the temporary CE = strength of its reset position.
430 // Code above raises an error if the before-strength is stronger.
431 strength = ceStrength(ces[cesLength - 1]);
432 }
433 if(U_FAILURE(errorCode)) {
434 parserErrorReason = "inserting reset position for &[before n]";
435 return;
436 }
437 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
438 }
439
440 uint32_t
getWeight16Before(int32_t index,int64_t node,int32_t level)441 CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) {
442 U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node));
443 // Collect the root CE weights if this node is for a root CE.
444 // If it is not, then return the low non-primary boundary for a tailored CE.
445 uint32_t t;
446 if(strengthFromNode(node) == UCOL_TERTIARY) {
447 t = weight16FromNode(node);
448 } else {
449 t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
450 }
451 while(strengthFromNode(node) > UCOL_SECONDARY) {
452 index = previousIndexFromNode(node);
453 node = nodes.elementAti(index);
454 }
455 if(isTailoredNode(node)) {
456 return Collation::BEFORE_WEIGHT16;
457 }
458 uint32_t s;
459 if(strengthFromNode(node) == UCOL_SECONDARY) {
460 s = weight16FromNode(node);
461 } else {
462 s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
463 }
464 while(strengthFromNode(node) > UCOL_PRIMARY) {
465 index = previousIndexFromNode(node);
466 node = nodes.elementAti(index);
467 }
468 if(isTailoredNode(node)) {
469 return Collation::BEFORE_WEIGHT16;
470 }
471 // [p, s, t] is a root CE. Return the preceding weight for the requested level.
472 uint32_t p = weight32FromNode(node);
473 uint32_t weight16;
474 if(level == UCOL_SECONDARY) {
475 weight16 = rootElements.getSecondaryBefore(p, s);
476 } else {
477 weight16 = rootElements.getTertiaryBefore(p, s, t);
478 U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
479 }
480 return weight16;
481 }
482
483 int64_t
getSpecialResetPosition(const UnicodeString & str,const char * & parserErrorReason,UErrorCode & errorCode)484 CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
485 const char *&parserErrorReason, UErrorCode &errorCode) {
486 U_ASSERT(str.length() == 2);
487 int64_t ce;
488 int32_t strength = UCOL_PRIMARY;
489 UBool isBoundary = false;
490 UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
491 U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
492 switch(pos) {
493 case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
494 // Quaternary CEs are not supported.
495 // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
496 return 0;
497 case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
498 return 0;
499 case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
500 // Look for a tailored tertiary node after [0, 0, 0].
501 int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
502 if(U_FAILURE(errorCode)) { return 0; }
503 int64_t node = nodes.elementAti(index);
504 if((index = nextIndexFromNode(node)) != 0) {
505 node = nodes.elementAti(index);
506 U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
507 if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
508 return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
509 }
510 }
511 return rootElements.getFirstTertiaryCE();
512 // No need to look for nodeHasAnyBefore() on a tertiary node.
513 }
514 case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
515 ce = rootElements.getLastTertiaryCE();
516 strength = UCOL_TERTIARY;
517 break;
518 case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
519 // Look for a tailored secondary node after [0, 0, *].
520 int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
521 if(U_FAILURE(errorCode)) { return 0; }
522 int64_t node = nodes.elementAti(index);
523 while((index = nextIndexFromNode(node)) != 0) {
524 node = nodes.elementAti(index);
525 strength = strengthFromNode(node);
526 if(strength < UCOL_SECONDARY) { break; }
527 if(strength == UCOL_SECONDARY) {
528 if(isTailoredNode(node)) {
529 if(nodeHasBefore3(node)) {
530 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
531 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
532 }
533 return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
534 } else {
535 break;
536 }
537 }
538 }
539 ce = rootElements.getFirstSecondaryCE();
540 strength = UCOL_SECONDARY;
541 break;
542 }
543 case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
544 ce = rootElements.getLastSecondaryCE();
545 strength = UCOL_SECONDARY;
546 break;
547 case CollationRuleParser::FIRST_VARIABLE:
548 ce = rootElements.getFirstPrimaryCE();
549 isBoundary = true; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
550 break;
551 case CollationRuleParser::LAST_VARIABLE:
552 ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
553 break;
554 case CollationRuleParser::FIRST_REGULAR:
555 ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
556 isBoundary = true; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
557 break;
558 case CollationRuleParser::LAST_REGULAR:
559 // Use the Hani-first-primary rather than the actual last "regular" CE before it,
560 // for backward compatibility with behavior before the introduction of
561 // script-first-primary CEs in the root collator.
562 ce = rootElements.firstCEWithPrimaryAtLeast(
563 baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
564 break;
565 case CollationRuleParser::FIRST_IMPLICIT:
566 ce = baseData->getSingleCE(0x4e00, errorCode);
567 break;
568 case CollationRuleParser::LAST_IMPLICIT:
569 // We do not support tailoring to an unassigned-implicit CE.
570 errorCode = U_UNSUPPORTED_ERROR;
571 parserErrorReason = "reset to [last implicit] not supported";
572 return 0;
573 case CollationRuleParser::FIRST_TRAILING:
574 ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
575 isBoundary = true; // trailing first primary (there is no mapping for it)
576 break;
577 case CollationRuleParser::LAST_TRAILING:
578 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
579 parserErrorReason = "LDML forbids tailoring to U+FFFF";
580 return 0;
581 default:
582 UPRV_UNREACHABLE_EXIT;
583 }
584
585 int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
586 if(U_FAILURE(errorCode)) { return 0; }
587 int64_t node = nodes.elementAti(index);
588 if((pos & 1) == 0) {
589 // even pos = [first xyz]
590 if(!nodeHasAnyBefore(node) && isBoundary) {
591 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
592 // It is reachable via its special contraction, but is not normally used.
593 // Find the first character tailored after the boundary CE,
594 // or the first real root CE after it.
595 if((index = nextIndexFromNode(node)) != 0) {
596 // If there is a following node, then it must be tailored
597 // because there are no root CEs with a boundary primary
598 // and non-common secondary/tertiary weights.
599 node = nodes.elementAti(index);
600 U_ASSERT(isTailoredNode(node));
601 ce = tempCEFromIndexAndStrength(index, strength);
602 } else {
603 U_ASSERT(strength == UCOL_PRIMARY);
604 uint32_t p = (uint32_t)(ce >> 32);
605 int32_t pIndex = rootElements.findPrimary(p);
606 UBool isCompressible = baseData->isCompressiblePrimary(p);
607 p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
608 ce = Collation::makeCE(p);
609 index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
610 if(U_FAILURE(errorCode)) { return 0; }
611 node = nodes.elementAti(index);
612 }
613 }
614 if(nodeHasAnyBefore(node)) {
615 // Get the first node that was tailored before this one at a weaker strength.
616 if(nodeHasBefore2(node)) {
617 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
618 node = nodes.elementAti(index);
619 }
620 if(nodeHasBefore3(node)) {
621 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
622 }
623 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
624 ce = tempCEFromIndexAndStrength(index, strength);
625 }
626 } else {
627 // odd pos = [last xyz]
628 // Find the last node that was tailored after the [last xyz]
629 // at a strength no greater than the position's strength.
630 for(;;) {
631 int32_t nextIndex = nextIndexFromNode(node);
632 if(nextIndex == 0) { break; }
633 int64_t nextNode = nodes.elementAti(nextIndex);
634 if(strengthFromNode(nextNode) < strength) { break; }
635 index = nextIndex;
636 node = nextNode;
637 }
638 // Do not make a temporary CE for a root node.
639 // This last node might be the node for the root CE itself,
640 // or a node with a common secondary or tertiary weight.
641 if(isTailoredNode(node)) {
642 ce = tempCEFromIndexAndStrength(index, strength);
643 }
644 }
645 return ce;
646 }
647
648 void
addRelation(int32_t strength,const UnicodeString & prefix,const UnicodeString & str,const UnicodeString & extension,const char * & parserErrorReason,UErrorCode & errorCode)649 CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
650 const UnicodeString &str, const UnicodeString &extension,
651 const char *&parserErrorReason, UErrorCode &errorCode) {
652 if(U_FAILURE(errorCode)) { return; }
653 UnicodeString nfdPrefix;
654 if(!prefix.isEmpty()) {
655 nfd.normalize(prefix, nfdPrefix, errorCode);
656 if(U_FAILURE(errorCode)) {
657 parserErrorReason = "normalizing the relation prefix";
658 return;
659 }
660 }
661 UnicodeString nfdString = nfd.normalize(str, errorCode);
662 if(U_FAILURE(errorCode)) {
663 parserErrorReason = "normalizing the relation string";
664 return;
665 }
666
667 // The runtime code decomposes Hangul syllables on the fly,
668 // with recursive processing but without making the Jamo pieces visible for matching.
669 // It does not work with certain types of contextual mappings.
670 int32_t nfdLength = nfdString.length();
671 if(nfdLength >= 2) {
672 char16_t c = nfdString.charAt(0);
673 if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
674 // While handling a Hangul syllable, contractions starting with Jamo L or V
675 // would not see the following Jamo of that syllable.
676 errorCode = U_UNSUPPORTED_ERROR;
677 parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
678 return;
679 }
680 c = nfdString.charAt(nfdLength - 1);
681 if(Hangul::isJamoL(c) ||
682 (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
683 // A contraction ending with Jamo L or L+V would require
684 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
685 // or decomposing a following Hangul syllable on the fly, during contraction matching.
686 errorCode = U_UNSUPPORTED_ERROR;
687 parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
688 return;
689 }
690 // A Hangul syllable completely inside a contraction is ok.
691 }
692 // Note: If there is a prefix, then the parser checked that
693 // both the prefix and the string begin with NFC boundaries (not Jamo V or T).
694 // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
695 // (While handling a Hangul syllable, prefixes on Jamo V or T
696 // would not see the previous Jamo of that syllable.)
697
698 if(strength != UCOL_IDENTICAL) {
699 // Find the node index after which we insert the new tailored node.
700 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
701 U_ASSERT(cesLength > 0);
702 int64_t ce = ces[cesLength - 1];
703 if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
704 // There is no primary gap between ignorables and the space-first-primary.
705 errorCode = U_UNSUPPORTED_ERROR;
706 parserErrorReason = "tailoring primary after ignorables not supported";
707 return;
708 }
709 if(strength == UCOL_QUATERNARY && ce == 0) {
710 // The CE data structure does not support non-zero quaternary weights
711 // on tertiary ignorables.
712 errorCode = U_UNSUPPORTED_ERROR;
713 parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
714 return;
715 }
716 // Insert the new tailored node.
717 index = insertTailoredNodeAfter(index, strength, errorCode);
718 if(U_FAILURE(errorCode)) {
719 parserErrorReason = "modifying collation elements";
720 return;
721 }
722 // Strength of the temporary CE:
723 // The new relation may yield a stronger CE but not a weaker one.
724 int32_t tempStrength = ceStrength(ce);
725 if(strength < tempStrength) { tempStrength = strength; }
726 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
727 }
728
729 setCaseBits(nfdString, parserErrorReason, errorCode);
730 if(U_FAILURE(errorCode)) { return; }
731
732 int32_t cesLengthBeforeExtension = cesLength;
733 if(!extension.isEmpty()) {
734 UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
735 if(U_FAILURE(errorCode)) {
736 parserErrorReason = "normalizing the relation extension";
737 return;
738 }
739 cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
740 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
741 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
742 parserErrorReason =
743 "extension string adds too many collation elements (more than 31 total)";
744 return;
745 }
746 }
747 uint32_t ce32 = Collation::UNASSIGNED_CE32;
748 if(!icu4xMode && (prefix != nfdPrefix || str != nfdString) &&
749 !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
750 // Map from the original input to the CEs.
751 // We do this in case the canonical closure is incomplete,
752 // so that it is possible to explicitly provide the missing mappings.
753 ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
754 }
755 if (!icu4xMode) {
756 addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
757 } else {
758 addIfDifferent(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
759 }
760 if(U_FAILURE(errorCode)) {
761 parserErrorReason = "writing collation elements";
762 return;
763 }
764 cesLength = cesLengthBeforeExtension;
765 }
766
767 int32_t
findOrInsertNodeForCEs(int32_t strength,const char * & parserErrorReason,UErrorCode & errorCode)768 CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
769 UErrorCode &errorCode) {
770 if(U_FAILURE(errorCode)) { return 0; }
771 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
772
773 // Find the last CE that is at least as "strong" as the requested difference.
774 // Note: Stronger is smaller (UCOL_PRIMARY=0).
775 int64_t ce;
776 for(;; --cesLength) {
777 if(cesLength == 0) {
778 ce = ces[0] = 0;
779 cesLength = 1;
780 break;
781 } else {
782 ce = ces[cesLength - 1];
783 }
784 if(ceStrength(ce) <= strength) { break; }
785 }
786
787 if(isTempCE(ce)) {
788 // No need to findCommonNode() here for lower levels
789 // because insertTailoredNodeAfter() will do that anyway.
790 return indexFromTempCE(ce);
791 }
792
793 // root CE
794 if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
795 errorCode = U_UNSUPPORTED_ERROR;
796 parserErrorReason = "tailoring relative to an unassigned code point not supported";
797 return 0;
798 }
799 return findOrInsertNodeForRootCE(ce, strength, errorCode);
800 }
801
802 int32_t
findOrInsertNodeForRootCE(int64_t ce,int32_t strength,UErrorCode & errorCode)803 CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
804 if(U_FAILURE(errorCode)) { return 0; }
805 U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
806
807 // Find or insert the node for each of the root CE's weights,
808 // down to the requested level/strength.
809 // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
810 U_ASSERT((ce & 0xc0) == 0);
811 int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode);
812 if(strength >= UCOL_SECONDARY) {
813 uint32_t lower32 = (uint32_t)ce;
814 index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
815 if(strength >= UCOL_TERTIARY) {
816 index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
817 UCOL_TERTIARY, errorCode);
818 }
819 }
820 return index;
821 }
822
823 namespace {
824
825 /**
826 * Like Java Collections.binarySearch(List, key, Comparator).
827 *
828 * @return the index>=0 where the item was found,
829 * or the index<0 for inserting the string at ~index in sorted order
830 * (index into rootPrimaryIndexes)
831 */
832 int32_t
binarySearchForRootPrimaryNode(const int32_t * rootPrimaryIndexes,int32_t length,const int64_t * nodes,uint32_t p)833 binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
834 const int64_t *nodes, uint32_t p) {
835 if(length == 0) { return ~0; }
836 int32_t start = 0;
837 int32_t limit = length;
838 for (;;) {
839 int32_t i = (start + limit) / 2;
840 int64_t node = nodes[rootPrimaryIndexes[i]];
841 uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
842 if (p == nodePrimary) {
843 return i;
844 } else if (p < nodePrimary) {
845 if (i == start) {
846 return ~start; // insert s before i
847 }
848 limit = i;
849 } else {
850 if (i == start) {
851 return ~(start + 1); // insert s after i
852 }
853 start = i;
854 }
855 }
856 }
857
858 } // namespace
859
860 int32_t
findOrInsertNodeForPrimary(uint32_t p,UErrorCode & errorCode)861 CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
862 if(U_FAILURE(errorCode)) { return 0; }
863
864 int32_t rootIndex = binarySearchForRootPrimaryNode(
865 rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
866 if(rootIndex >= 0) {
867 return rootPrimaryIndexes.elementAti(rootIndex);
868 } else {
869 // Start a new list of nodes with this primary.
870 int32_t index = nodes.size();
871 nodes.addElement(nodeFromWeight32(p), errorCode);
872 rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
873 return index;
874 }
875 }
876
877 int32_t
findOrInsertWeakNode(int32_t index,uint32_t weight16,int32_t level,UErrorCode & errorCode)878 CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
879 if(U_FAILURE(errorCode)) { return 0; }
880 U_ASSERT(0 <= index && index < nodes.size());
881 U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY);
882
883 if(weight16 == Collation::COMMON_WEIGHT16) {
884 return findCommonNode(index, level);
885 }
886
887 // If this will be the first below-common weight for the parent node,
888 // then we will also need to insert a common weight after it.
889 int64_t node = nodes.elementAti(index);
890 U_ASSERT(strengthFromNode(node) < level); // parent node is stronger
891 if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) {
892 int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
893 if((node & hasThisLevelBefore) == 0) {
894 // The parent node has an implied level-common weight.
895 int64_t commonNode =
896 nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level);
897 if(level == UCOL_SECONDARY) {
898 // Move the HAS_BEFORE3 flag from the parent node
899 // to the new secondary common node.
900 commonNode |= node & HAS_BEFORE3;
901 node &= ~(int64_t)HAS_BEFORE3;
902 }
903 nodes.setElementAt(node | hasThisLevelBefore, index);
904 // Insert below-common-weight node.
905 int32_t nextIndex = nextIndexFromNode(node);
906 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
907 index = insertNodeBetween(index, nextIndex, node, errorCode);
908 // Insert common-weight node.
909 insertNodeBetween(index, nextIndex, commonNode, errorCode);
910 // Return index of below-common-weight node.
911 return index;
912 }
913 }
914
915 // Find the root CE's weight for this level.
916 // Postpone insertion if not found:
917 // Insert the new root node before the next stronger node,
918 // or before the next root node with the same strength and a larger weight.
919 int32_t nextIndex;
920 while((nextIndex = nextIndexFromNode(node)) != 0) {
921 node = nodes.elementAti(nextIndex);
922 int32_t nextStrength = strengthFromNode(node);
923 if(nextStrength <= level) {
924 // Insert before a stronger node.
925 if(nextStrength < level) { break; }
926 // nextStrength == level
927 if(!isTailoredNode(node)) {
928 uint32_t nextWeight16 = weight16FromNode(node);
929 if(nextWeight16 == weight16) {
930 // Found the node for the root CE up to this level.
931 return nextIndex;
932 }
933 // Insert before a node with a larger same-strength weight.
934 if(nextWeight16 > weight16) { break; }
935 }
936 }
937 // Skip the next node.
938 index = nextIndex;
939 }
940 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
941 return insertNodeBetween(index, nextIndex, node, errorCode);
942 }
943
944 int32_t
insertTailoredNodeAfter(int32_t index,int32_t strength,UErrorCode & errorCode)945 CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
946 if(U_FAILURE(errorCode)) { return 0; }
947 U_ASSERT(0 <= index && index < nodes.size());
948 if(strength >= UCOL_SECONDARY) {
949 index = findCommonNode(index, UCOL_SECONDARY);
950 if(strength >= UCOL_TERTIARY) {
951 index = findCommonNode(index, UCOL_TERTIARY);
952 }
953 }
954 // Postpone insertion:
955 // Insert the new node before the next one with a strength at least as strong.
956 int64_t node = nodes.elementAti(index);
957 int32_t nextIndex;
958 while((nextIndex = nextIndexFromNode(node)) != 0) {
959 node = nodes.elementAti(nextIndex);
960 if(strengthFromNode(node) <= strength) { break; }
961 // Skip the next node which has a weaker (larger) strength than the new one.
962 index = nextIndex;
963 }
964 node = IS_TAILORED | nodeFromStrength(strength);
965 return insertNodeBetween(index, nextIndex, node, errorCode);
966 }
967
968 int32_t
insertNodeBetween(int32_t index,int32_t nextIndex,int64_t node,UErrorCode & errorCode)969 CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
970 UErrorCode &errorCode) {
971 if(U_FAILURE(errorCode)) { return 0; }
972 U_ASSERT(previousIndexFromNode(node) == 0);
973 U_ASSERT(nextIndexFromNode(node) == 0);
974 U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
975 // Append the new node and link it to the existing nodes.
976 int32_t newIndex = nodes.size();
977 node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
978 nodes.addElement(node, errorCode);
979 if(U_FAILURE(errorCode)) { return 0; }
980 // nodes[index].nextIndex = newIndex
981 node = nodes.elementAti(index);
982 nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
983 // nodes[nextIndex].previousIndex = newIndex
984 if(nextIndex != 0) {
985 node = nodes.elementAti(nextIndex);
986 nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
987 }
988 return newIndex;
989 }
990
991 int32_t
findCommonNode(int32_t index,int32_t strength) const992 CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
993 U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
994 int64_t node = nodes.elementAti(index);
995 if(strengthFromNode(node) >= strength) {
996 // The current node is no stronger.
997 return index;
998 }
999 if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
1000 // The current node implies the strength-common weight.
1001 return index;
1002 }
1003 index = nextIndexFromNode(node);
1004 node = nodes.elementAti(index);
1005 U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
1006 weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1007 // Skip to the explicit common node.
1008 do {
1009 index = nextIndexFromNode(node);
1010 node = nodes.elementAti(index);
1011 U_ASSERT(strengthFromNode(node) >= strength);
1012 } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
1013 weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1014 U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
1015 return index;
1016 }
1017
1018 void
setCaseBits(const UnicodeString & nfdString,const char * & parserErrorReason,UErrorCode & errorCode)1019 CollationBuilder::setCaseBits(const UnicodeString &nfdString,
1020 const char *&parserErrorReason, UErrorCode &errorCode) {
1021 if(U_FAILURE(errorCode)) { return; }
1022 int32_t numTailoredPrimaries = 0;
1023 for(int32_t i = 0; i < cesLength; ++i) {
1024 if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
1025 }
1026 // We should not be able to get too many case bits because
1027 // cesLength<=31==MAX_EXPANSION_LENGTH.
1028 // 31 pairs of case bits fit into an int64_t without setting its sign bit.
1029 U_ASSERT(numTailoredPrimaries <= 31);
1030
1031 int64_t cases = 0;
1032 if(numTailoredPrimaries > 0) {
1033 const char16_t *s = nfdString.getBuffer();
1034 UTF16CollationIterator baseCEs(baseData, false, s, s, s + nfdString.length());
1035 int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
1036 if(U_FAILURE(errorCode)) {
1037 parserErrorReason = "fetching root CEs for tailored string";
1038 return;
1039 }
1040 U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1041
1042 uint32_t lastCase = 0;
1043 int32_t numBasePrimaries = 0;
1044 for(int32_t i = 0; i < baseCEsLength; ++i) {
1045 int64_t ce = baseCEs.getCE(i);
1046 if((ce >> 32) != 0) {
1047 ++numBasePrimaries;
1048 uint32_t c = ((uint32_t)ce >> 14) & 3;
1049 U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
1050 if(numBasePrimaries < numTailoredPrimaries) {
1051 cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1052 } else if(numBasePrimaries == numTailoredPrimaries) {
1053 lastCase = c;
1054 } else if(c != lastCase) {
1055 // There are more base primary CEs than tailored primaries.
1056 // Set mixed case if the case bits of the remainder differ.
1057 lastCase = 1;
1058 // Nothing more can change.
1059 break;
1060 }
1061 }
1062 }
1063 if(numBasePrimaries >= numTailoredPrimaries) {
1064 cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1065 }
1066 }
1067
1068 for(int32_t i = 0; i < cesLength; ++i) {
1069 int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
1070 int32_t strength = ceStrength(ce);
1071 if(strength == UCOL_PRIMARY) {
1072 ce |= (cases & 3) << 14;
1073 cases >>= 2;
1074 } else if(strength == UCOL_TERTIARY) {
1075 // Tertiary CEs must have uppercase bits.
1076 // See the LDML spec, and comments in class CollationCompare.
1077 ce |= 0x8000;
1078 }
1079 // Tertiary ignorable CEs must have 0 case bits.
1080 // We set 0 case bits for secondary CEs too
1081 // since currently only U+0345 is cased and maps to a secondary CE,
1082 // and it is lowercase. Other secondaries are uncased.
1083 // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1084 ces[i] = ce;
1085 }
1086 }
1087
1088 void
suppressContractions(const UnicodeSet & set,const char * & parserErrorReason,UErrorCode & errorCode)1089 CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1090 UErrorCode &errorCode) {
1091 if(U_FAILURE(errorCode)) { return; }
1092 dataBuilder->suppressContractions(set, errorCode);
1093 if(U_FAILURE(errorCode)) {
1094 parserErrorReason = "application of [suppressContractions [set]] failed";
1095 }
1096 }
1097
1098 void
optimize(const UnicodeSet & set,const char * &,UErrorCode & errorCode)1099 CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1100 UErrorCode &errorCode) {
1101 if(U_FAILURE(errorCode)) { return; }
1102 optimizeSet.addAll(set);
1103 }
1104
1105 uint32_t
addWithClosure(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1106 CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1107 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1108 UErrorCode &errorCode) {
1109 // Map from the NFD input to the CEs.
1110 ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1111 ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1112 addTailComposites(nfdPrefix, nfdString, errorCode);
1113 return ce32;
1114 }
1115
1116 // ICU-22517
1117 // This constant defines a limit for the addOnlyClosure to return
1118 // error, to avoid taking a long time for canonical closure expansion.
1119 // Please let us know if you have a reasonable use case that needed
1120 // for a practical Collation rule that needs to increase this limit.
1121 // This value is needed for compiling a rule with eight Hangul syllables such as
1122 // "&a=b쫊쫊쫊쫊쫊쫊쫊쫊" without error, which should be more than realistic
1123 // usage.
1124 static constexpr int32_t kClosureLoopLimit = 6560;
1125
1126 uint32_t
addOnlyClosure(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1127 CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1128 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1129 UErrorCode &errorCode) {
1130 if(U_FAILURE(errorCode)) { return ce32; }
1131
1132 int32_t loop = 0;
1133 // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1134 if(nfdPrefix.isEmpty()) {
1135 CanonicalIterator stringIter(nfdString, errorCode);
1136 if(U_FAILURE(errorCode)) { return ce32; }
1137 UnicodeString prefix;
1138 for(;;) {
1139 UnicodeString str = stringIter.next();
1140 if(str.isBogus()) { break; }
1141 if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1142 if (loop++ > kClosureLoopLimit) {
1143 // To avoid hang as in ICU-22517, return with error.
1144 errorCode = U_INPUT_TOO_LONG_ERROR;
1145 return ce32;
1146 }
1147 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1148 if(U_FAILURE(errorCode)) { return ce32; }
1149 }
1150 } else {
1151 CanonicalIterator prefixIter(nfdPrefix, errorCode);
1152 CanonicalIterator stringIter(nfdString, errorCode);
1153 if(U_FAILURE(errorCode)) { return ce32; }
1154 for(;;) {
1155 UnicodeString prefix = prefixIter.next();
1156 if(prefix.isBogus()) { break; }
1157 if(ignorePrefix(prefix, errorCode)) { continue; }
1158 UBool samePrefix = prefix == nfdPrefix;
1159 for(;;) {
1160 UnicodeString str = stringIter.next();
1161 if(str.isBogus()) { break; }
1162 if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1163 if (loop++ > kClosureLoopLimit) {
1164 // To avoid hang as in ICU-22517, return with error.
1165 errorCode = U_INPUT_TOO_LONG_ERROR;
1166 return ce32;
1167 }
1168 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1169 if(U_FAILURE(errorCode)) { return ce32; }
1170 }
1171 stringIter.reset();
1172 }
1173 }
1174 return ce32;
1175 }
1176
1177 void
addTailComposites(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,UErrorCode & errorCode)1178 CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1179 UErrorCode &errorCode) {
1180 if(U_FAILURE(errorCode)) { return; }
1181
1182 // Look for the last starter in the NFD string.
1183 UChar32 lastStarter;
1184 int32_t indexAfterLastStarter = nfdString.length();
1185 for(;;) {
1186 if(indexAfterLastStarter == 0) { return; } // no starter at all
1187 lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1188 if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1189 indexAfterLastStarter -= U16_LENGTH(lastStarter);
1190 }
1191 // No closure to Hangul syllables since we decompose them on the fly.
1192 if(Hangul::isJamoL(lastStarter)) { return; }
1193
1194 // Are there any composites whose decomposition starts with the lastStarter?
1195 // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1196 // We might find some more equivalent mappings here if it did.
1197 UnicodeSet composites;
1198 if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1199
1200 UnicodeString decomp;
1201 UnicodeString newNFDString, newString;
1202 int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1203 UnicodeSetIterator iter(composites);
1204 while(iter.next()) {
1205 U_ASSERT(!iter.isString());
1206 UChar32 composite = iter.getCodepoint();
1207 nfd.getDecomposition(composite, decomp);
1208 if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1209 newNFDString, newString, errorCode)) {
1210 continue;
1211 }
1212 int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1213 if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1214 // Ignore mappings that we cannot store.
1215 continue;
1216 }
1217 // Note: It is possible that the newCEs do not make use of the mapping
1218 // for which we are adding the tail composites, in which case we might be adding
1219 // unnecessary mappings.
1220 // For example, when we add tail composites for ae^ (^=combining circumflex),
1221 // UCA discontiguous-contraction matching does not find any matches
1222 // for ae_^ (_=any combining diacritic below) *unless* there is also
1223 // a contraction mapping for ae.
1224 // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1225 // while fetching the newCEs for ae_^.
1226 // TODO: Try to detect this effectively.
1227 // (Alternatively, print a warning when prefix contractions are missing.)
1228
1229 // We do not need an explicit mapping for the NFD strings.
1230 // It is fine if the NFD input collates like this via a sequence of mappings.
1231 // It also saves a little bit of space, and may reduce the set of characters with contractions.
1232 uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1233 newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1234 if(ce32 != Collation::UNASSIGNED_CE32) {
1235 // was different, was added
1236 addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1237 }
1238 }
1239 }
1240
1241 UBool
mergeCompositeIntoString(const UnicodeString & nfdString,int32_t indexAfterLastStarter,UChar32 composite,const UnicodeString & decomp,UnicodeString & newNFDString,UnicodeString & newString,UErrorCode & errorCode) const1242 CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1243 int32_t indexAfterLastStarter,
1244 UChar32 composite, const UnicodeString &decomp,
1245 UnicodeString &newNFDString, UnicodeString &newString,
1246 UErrorCode &errorCode) const {
1247 if(U_FAILURE(errorCode)) { return false; }
1248 U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1249 int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1250 if(lastStarterLength == decomp.length()) {
1251 // Singleton decompositions should be found by addWithClosure()
1252 // and the CanonicalIterator, so we can ignore them here.
1253 return false;
1254 }
1255 if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1256 decomp, lastStarterLength, 0x7fffffff) == 0) {
1257 // same strings, nothing new to be found here
1258 return false;
1259 }
1260
1261 // Make new FCD strings that combine a composite, or its decomposition,
1262 // into the nfdString's last starter and the combining marks following it.
1263 // Make an NFD version, and a version with the composite.
1264 newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1265 newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1266
1267 // The following is related to discontiguous contraction matching,
1268 // but builds only FCD strings (or else returns false).
1269 int32_t sourceIndex = indexAfterLastStarter;
1270 int32_t decompIndex = lastStarterLength;
1271 // Small optimization: We keep the source character across loop iterations
1272 // because we do not always consume it,
1273 // and then need not fetch it again nor look up its combining class again.
1274 UChar32 sourceChar = U_SENTINEL;
1275 // The cc variables need to be declared before the loop so that at the end
1276 // they are set to the last combining classes seen.
1277 uint8_t sourceCC = 0;
1278 uint8_t decompCC = 0;
1279 for(;;) {
1280 if(sourceChar < 0) {
1281 if(sourceIndex >= nfdString.length()) { break; }
1282 sourceChar = nfdString.char32At(sourceIndex);
1283 sourceCC = nfd.getCombiningClass(sourceChar);
1284 U_ASSERT(sourceCC != 0);
1285 }
1286 // We consume a decomposition character in each iteration.
1287 if(decompIndex >= decomp.length()) { break; }
1288 UChar32 decompChar = decomp.char32At(decompIndex);
1289 decompCC = nfd.getCombiningClass(decompChar);
1290 // Compare the two characters and their combining classes.
1291 if(decompCC == 0) {
1292 // Unable to merge because the source contains a non-zero combining mark
1293 // but the composite's decomposition contains another starter.
1294 // The strings would not be equivalent.
1295 return false;
1296 } else if(sourceCC < decompCC) {
1297 // Composite + sourceChar would not be FCD.
1298 return false;
1299 } else if(decompCC < sourceCC) {
1300 newNFDString.append(decompChar);
1301 decompIndex += U16_LENGTH(decompChar);
1302 } else if(decompChar != sourceChar) {
1303 // Blocked because same combining class.
1304 return false;
1305 } else { // match: decompChar == sourceChar
1306 newNFDString.append(decompChar);
1307 decompIndex += U16_LENGTH(decompChar);
1308 sourceIndex += U16_LENGTH(decompChar);
1309 sourceChar = U_SENTINEL;
1310 }
1311 }
1312 // We are at the end of at least one of the two inputs.
1313 if(sourceChar >= 0) { // more characters from nfdString but not from decomp
1314 if(sourceCC < decompCC) {
1315 // Appending the next source character to the composite would not be FCD.
1316 return false;
1317 }
1318 newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1319 newString.append(nfdString, sourceIndex, 0x7fffffff);
1320 } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
1321 newNFDString.append(decomp, decompIndex, 0x7fffffff);
1322 }
1323 U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1324 U_ASSERT(fcd.isNormalized(newString, errorCode));
1325 U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
1326 return true;
1327 }
1328
1329 UBool
ignorePrefix(const UnicodeString & s,UErrorCode & errorCode) const1330 CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1331 // Do not map non-FCD prefixes.
1332 return !isFCD(s, errorCode);
1333 }
1334
1335 UBool
ignoreString(const UnicodeString & s,UErrorCode & errorCode) const1336 CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1337 // Do not map non-FCD strings.
1338 // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1339 return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1340 }
1341
1342 UBool
isFCD(const UnicodeString & s,UErrorCode & errorCode) const1343 CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1344 return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1345 }
1346
1347 void
closeOverComposites(UErrorCode & errorCode)1348 CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1349 UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
1350 if(U_FAILURE(errorCode)) { return; }
1351 // Hangul is decomposed on the fly during collation.
1352 composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1353 UnicodeString prefix; // empty
1354 UnicodeString nfdString;
1355 UnicodeSetIterator iter(composites);
1356 while(iter.next()) {
1357 U_ASSERT(!iter.isString());
1358 nfd.getDecomposition(iter.getCodepoint(), nfdString);
1359 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1360 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1361 // Too many CEs from the decomposition (unusual), ignore this composite.
1362 // We could add a capacity parameter to getCEs() and reallocate if necessary.
1363 // However, this can only really happen in contrived cases.
1364 continue;
1365 }
1366 const UnicodeString &composite(iter.getString());
1367 addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1368 }
1369 }
1370
1371 uint32_t
addIfDifferent(const UnicodeString & prefix,const UnicodeString & str,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1372 CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1373 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1374 UErrorCode &errorCode) {
1375 if(U_FAILURE(errorCode)) { return ce32; }
1376 int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1377 int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1378 if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1379 if(ce32 == Collation::UNASSIGNED_CE32) {
1380 ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1381 }
1382 dataBuilder->addCE32(prefix, str, ce32, errorCode);
1383 }
1384 return ce32;
1385 }
1386
1387 UBool
sameCEs(const int64_t ces1[],int32_t ces1Length,const int64_t ces2[],int32_t ces2Length)1388 CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1389 const int64_t ces2[], int32_t ces2Length) {
1390 if(ces1Length != ces2Length) {
1391 return false;
1392 }
1393 U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1394 for(int32_t i = 0; i < ces1Length; ++i) {
1395 if(ces1[i] != ces2[i]) { return false; }
1396 }
1397 return true;
1398 }
1399
1400 #ifdef DEBUG_COLLATION_BUILDER
1401
1402 uint32_t
alignWeightRight(uint32_t w)1403 alignWeightRight(uint32_t w) {
1404 if(w != 0) {
1405 while((w & 0xff) == 0) { w >>= 8; }
1406 }
1407 return w;
1408 }
1409
1410 #endif
1411
1412 void
makeTailoredCEs(UErrorCode & errorCode)1413 CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1414 if(U_FAILURE(errorCode)) { return; }
1415
1416 CollationWeights primaries, secondaries, tertiaries;
1417 int64_t *nodesArray = nodes.getBuffer();
1418 #ifdef DEBUG_COLLATION_BUILDER
1419 puts("\nCollationBuilder::makeTailoredCEs()");
1420 #endif
1421
1422 for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1423 int32_t i = rootPrimaryIndexes.elementAti(rpi);
1424 int64_t node = nodesArray[i];
1425 uint32_t p = weight32FromNode(node);
1426 uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1427 uint32_t t = s;
1428 uint32_t q = 0;
1429 UBool pIsTailored = false;
1430 UBool sIsTailored = false;
1431 UBool tIsTailored = false;
1432 #ifdef DEBUG_COLLATION_BUILDER
1433 printf("\nprimary %lx\n", (long)alignWeightRight(p));
1434 #endif
1435 int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1436 int32_t nextIndex = nextIndexFromNode(node);
1437 while(nextIndex != 0) {
1438 i = nextIndex;
1439 node = nodesArray[i];
1440 nextIndex = nextIndexFromNode(node);
1441 int32_t strength = strengthFromNode(node);
1442 if(strength == UCOL_QUATERNARY) {
1443 U_ASSERT(isTailoredNode(node));
1444 #ifdef DEBUG_COLLATION_BUILDER
1445 printf(" quat+ ");
1446 #endif
1447 if(q == 3) {
1448 errorCode = U_BUFFER_OVERFLOW_ERROR;
1449 errorReason = "quaternary tailoring gap too small";
1450 return;
1451 }
1452 ++q;
1453 } else {
1454 if(strength == UCOL_TERTIARY) {
1455 if(isTailoredNode(node)) {
1456 #ifdef DEBUG_COLLATION_BUILDER
1457 printf(" ter+ ");
1458 #endif
1459 if(!tIsTailored) {
1460 // First tailored tertiary node for [p, s].
1461 int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1462 UCOL_TERTIARY) + 1;
1463 uint32_t tLimit;
1464 if(t == 0) {
1465 // Gap at the beginning of the tertiary CE range.
1466 t = rootElements.getTertiaryBoundary() - 0x100;
1467 tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1468 } else if(!pIsTailored && !sIsTailored) {
1469 // p and s are root weights.
1470 tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1471 } else if(t == Collation::BEFORE_WEIGHT16) {
1472 tLimit = Collation::COMMON_WEIGHT16;
1473 } else {
1474 // [p, s] is tailored.
1475 U_ASSERT(t == Collation::COMMON_WEIGHT16);
1476 tLimit = rootElements.getTertiaryBoundary();
1477 }
1478 U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1479 tertiaries.initForTertiary();
1480 if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1481 errorCode = U_BUFFER_OVERFLOW_ERROR;
1482 errorReason = "tertiary tailoring gap too small";
1483 return;
1484 }
1485 tIsTailored = true;
1486 }
1487 t = tertiaries.nextWeight();
1488 U_ASSERT(t != 0xffffffff);
1489 } else {
1490 t = weight16FromNode(node);
1491 tIsTailored = false;
1492 #ifdef DEBUG_COLLATION_BUILDER
1493 printf(" ter %lx\n", (long)alignWeightRight(t));
1494 #endif
1495 }
1496 } else {
1497 if(strength == UCOL_SECONDARY) {
1498 if(isTailoredNode(node)) {
1499 #ifdef DEBUG_COLLATION_BUILDER
1500 printf(" sec+ ");
1501 #endif
1502 if(!sIsTailored) {
1503 // First tailored secondary node for p.
1504 int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1505 UCOL_SECONDARY) + 1;
1506 uint32_t sLimit;
1507 if(s == 0) {
1508 // Gap at the beginning of the secondary CE range.
1509 s = rootElements.getSecondaryBoundary() - 0x100;
1510 sLimit = rootElements.getFirstSecondaryCE() >> 16;
1511 } else if(!pIsTailored) {
1512 // p is a root primary.
1513 sLimit = rootElements.getSecondaryAfter(pIndex, s);
1514 } else if(s == Collation::BEFORE_WEIGHT16) {
1515 sLimit = Collation::COMMON_WEIGHT16;
1516 } else {
1517 // p is a tailored primary.
1518 U_ASSERT(s == Collation::COMMON_WEIGHT16);
1519 sLimit = rootElements.getSecondaryBoundary();
1520 }
1521 if(s == Collation::COMMON_WEIGHT16) {
1522 // Do not tailor into the getSortKey() range of
1523 // compressed common secondaries.
1524 s = rootElements.getLastCommonSecondary();
1525 }
1526 secondaries.initForSecondary();
1527 if(!secondaries.allocWeights(s, sLimit, sCount)) {
1528 errorCode = U_BUFFER_OVERFLOW_ERROR;
1529 errorReason = "secondary tailoring gap too small";
1530 #ifdef DEBUG_COLLATION_BUILDER
1531 printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
1532 (long)alignWeightRight(s), (long)alignWeightRight(sLimit),
1533 (long)alignWeightRight(sCount));
1534 #endif
1535 return;
1536 }
1537 sIsTailored = true;
1538 }
1539 s = secondaries.nextWeight();
1540 U_ASSERT(s != 0xffffffff);
1541 } else {
1542 s = weight16FromNode(node);
1543 sIsTailored = false;
1544 #ifdef DEBUG_COLLATION_BUILDER
1545 printf(" sec %lx\n", (long)alignWeightRight(s));
1546 #endif
1547 }
1548 } else /* UCOL_PRIMARY */ {
1549 U_ASSERT(isTailoredNode(node));
1550 #ifdef DEBUG_COLLATION_BUILDER
1551 printf("pri+ ");
1552 #endif
1553 if(!pIsTailored) {
1554 // First tailored primary node in this list.
1555 int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1556 UCOL_PRIMARY) + 1;
1557 UBool isCompressible = baseData->isCompressiblePrimary(p);
1558 uint32_t pLimit =
1559 rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1560 primaries.initForPrimary(isCompressible);
1561 if(!primaries.allocWeights(p, pLimit, pCount)) {
1562 errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
1563 errorReason = "primary tailoring gap too small";
1564 return;
1565 }
1566 pIsTailored = true;
1567 }
1568 p = primaries.nextWeight();
1569 U_ASSERT(p != 0xffffffff);
1570 s = Collation::COMMON_WEIGHT16;
1571 sIsTailored = false;
1572 }
1573 t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1574 tIsTailored = false;
1575 }
1576 q = 0;
1577 }
1578 if(isTailoredNode(node)) {
1579 nodesArray[i] = Collation::makeCE(p, s, t, q);
1580 #ifdef DEBUG_COLLATION_BUILDER
1581 printf("%016llx\n", (long long)nodesArray[i]);
1582 #endif
1583 }
1584 }
1585 }
1586 }
1587
1588 int32_t
countTailoredNodes(const int64_t * nodesArray,int32_t i,int32_t strength)1589 CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1590 int32_t count = 0;
1591 for(;;) {
1592 if(i == 0) { break; }
1593 int64_t node = nodesArray[i];
1594 if(strengthFromNode(node) < strength) { break; }
1595 if(strengthFromNode(node) == strength) {
1596 if(isTailoredNode(node)) {
1597 ++count;
1598 } else {
1599 break;
1600 }
1601 }
1602 i = nextIndexFromNode(node);
1603 }
1604 return count;
1605 }
1606
1607 class CEFinalizer : public CollationDataBuilder::CEModifier {
1608 public:
CEFinalizer(const int64_t * ces)1609 CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1610 virtual ~CEFinalizer();
modifyCE32(uint32_t ce32) const1611 virtual int64_t modifyCE32(uint32_t ce32) const override {
1612 U_ASSERT(!Collation::isSpecialCE32(ce32));
1613 if(CollationBuilder::isTempCE32(ce32)) {
1614 // retain case bits
1615 return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1616 } else {
1617 return Collation::NO_CE;
1618 }
1619 }
modifyCE(int64_t ce) const1620 virtual int64_t modifyCE(int64_t ce) const override {
1621 if(CollationBuilder::isTempCE(ce)) {
1622 // retain case bits
1623 return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1624 } else {
1625 return Collation::NO_CE;
1626 }
1627 }
1628
1629 private:
1630 const int64_t *finalCEs;
1631 };
1632
~CEFinalizer()1633 CEFinalizer::~CEFinalizer() {}
1634
1635 void
finalizeCEs(UErrorCode & errorCode)1636 CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1637 if(U_FAILURE(errorCode)) { return; }
1638 LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(icu4xMode, errorCode), errorCode);
1639 if(U_FAILURE(errorCode)) {
1640 return;
1641 }
1642 newBuilder->initForTailoring(baseData, errorCode);
1643 CEFinalizer finalizer(nodes.getBuffer());
1644 newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1645 if(U_FAILURE(errorCode)) { return; }
1646 delete dataBuilder;
1647 dataBuilder = newBuilder.orphan();
1648 }
1649
1650 int32_t
ceStrength(int64_t ce)1651 CollationBuilder::ceStrength(int64_t ce) {
1652 return
1653 isTempCE(ce) ? strengthFromTempCE(ce) :
1654 (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1655 ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1656 ce != 0 ? UCOL_TERTIARY :
1657 UCOL_IDENTICAL;
1658 }
1659
1660 U_NAMESPACE_END
1661
1662 U_NAMESPACE_USE
1663
1664 U_CAPI UCollator * U_EXPORT2
ucol_openRules(const char16_t * rules,int32_t rulesLength,UColAttributeValue normalizationMode,UCollationStrength strength,UParseError * parseError,UErrorCode * pErrorCode)1665 ucol_openRules(const char16_t *rules, int32_t rulesLength,
1666 UColAttributeValue normalizationMode, UCollationStrength strength,
1667 UParseError *parseError, UErrorCode *pErrorCode) {
1668 if(U_FAILURE(*pErrorCode)) { return nullptr; }
1669 if(rules == nullptr && rulesLength != 0) {
1670 *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1671 return nullptr;
1672 }
1673 RuleBasedCollator *coll = new RuleBasedCollator();
1674 if(coll == nullptr) {
1675 *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1676 return nullptr;
1677 }
1678 UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1679 coll->internalBuildTailoring(r, strength, normalizationMode, parseError, nullptr, *pErrorCode);
1680 if(U_FAILURE(*pErrorCode)) {
1681 delete coll;
1682 return nullptr;
1683 }
1684 return coll->toUCollator();
1685 }
1686
1687 static const int32_t internalBufferSize = 512;
1688
1689 // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1690 // because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1691 // and the rest of the collation "runtime" code only depends on normalization.
1692 // This function is not related to the collation builder,
1693 // but it did not seem worth moving it into its own .cpp file,
1694 // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1695 U_CAPI int32_t U_EXPORT2
ucol_getUnsafeSet(const UCollator * coll,USet * unsafe,UErrorCode * status)1696 ucol_getUnsafeSet( const UCollator *coll,
1697 USet *unsafe,
1698 UErrorCode *status)
1699 {
1700 char16_t buffer[internalBufferSize];
1701 int32_t len = 0;
1702
1703 uset_clear(unsafe);
1704
1705 // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1706 static const char16_t cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1707 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1708
1709 // add chars that fail the fcd check
1710 uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1711
1712 // add lead/trail surrogates
1713 // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1714 // not when testing code *points*)
1715 uset_addRange(unsafe, 0xd800, 0xdfff);
1716
1717 USet *contractions = uset_open(0,0);
1718
1719 int32_t i = 0, j = 0;
1720 ucol_getContractionsAndExpansions(coll, contractions, nullptr, false, status);
1721 int32_t contsSize = uset_size(contractions);
1722 UChar32 c = 0;
1723 // Contraction set consists only of strings
1724 // to get unsafe code points, we need to
1725 // break the strings apart and add them to the unsafe set
1726 for(i = 0; i < contsSize; i++) {
1727 len = uset_getItem(contractions, i, nullptr, nullptr, buffer, internalBufferSize, status);
1728 if(len > 0) {
1729 j = 0;
1730 while(j < len) {
1731 U16_NEXT(buffer, j, len, c);
1732 if(j < len) {
1733 uset_add(unsafe, c);
1734 }
1735 }
1736 }
1737 }
1738
1739 uset_close(contractions);
1740
1741 return uset_size(unsafe);
1742 }
1743
1744 #endif // !UCONFIG_NO_COLLATION
1745