1 // © 2018 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 // 4 // From the double-conversion library. Original license: 5 // 6 // Copyright 2012 the V8 project authors. All rights reserved. 7 // Redistribution and use in source and binary forms, with or without 8 // modification, are permitted provided that the following conditions are 9 // met: 10 // 11 // * Redistributions of source code must retain the above copyright 12 // notice, this list of conditions and the following disclaimer. 13 // * Redistributions in binary form must reproduce the above 14 // copyright notice, this list of conditions and the following 15 // disclaimer in the documentation and/or other materials provided 16 // with the distribution. 17 // * Neither the name of Google Inc. nor the names of its 18 // contributors may be used to endorse or promote products derived 19 // from this software without specific prior written permission. 20 // 21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING 34 #include "unicode/utypes.h" 35 #if !UCONFIG_NO_FORMATTING 36 37 #ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_ 38 #define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_ 39 40 // ICU PATCH: Customize header file paths for ICU. 41 42 #include "double-conversion-utils.h" 43 44 // ICU PATCH: Wrap in ICU namespace 45 U_NAMESPACE_BEGIN 46 47 namespace double_conversion { 48 49 class DoubleToStringConverter { 50 public: 51 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint 52 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the 53 // function returns false. 54 static const int kMaxFixedDigitsBeforePoint = 60; 55 static const int kMaxFixedDigitsAfterPoint = 100; 56 57 // When calling ToExponential with a requested_digits 58 // parameter > kMaxExponentialDigits then the function returns false. 59 static const int kMaxExponentialDigits = 120; 60 61 // When calling ToPrecision with a requested_digits 62 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits 63 // then the function returns false. 64 static const int kMinPrecisionDigits = 1; 65 static const int kMaxPrecisionDigits = 120; 66 67 // The maximal number of digits that are needed to emit a double in base 10. 68 // A higher precision can be achieved by using more digits, but the shortest 69 // accurate representation of any double will never use more digits than 70 // kBase10MaximalLength. 71 // Note that DoubleToAscii null-terminates its input. So the given buffer 72 // should be at least kBase10MaximalLength + 1 characters long. 73 static const int kBase10MaximalLength = 17; 74 75 // The maximal number of digits that are needed to emit a single in base 10. 76 // A higher precision can be achieved by using more digits, but the shortest 77 // accurate representation of any single will never use more digits than 78 // kBase10MaximalLengthSingle. 79 static const int kBase10MaximalLengthSingle = 9; 80 81 // The length of the longest string that 'ToShortest' can produce when the 82 // converter is instantiated with EcmaScript defaults (see 83 // 'EcmaScriptConverter') 84 // This value does not include the trailing '\0' character. 85 // This amount of characters is needed for negative values that hit the 86 // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333" 87 static const int kMaxCharsEcmaScriptShortest = 25; 88 89 #if 0 // not needed for ICU 90 enum Flags { 91 NO_FLAGS = 0, 92 EMIT_POSITIVE_EXPONENT_SIGN = 1, 93 EMIT_TRAILING_DECIMAL_POINT = 2, 94 EMIT_TRAILING_ZERO_AFTER_POINT = 4, 95 UNIQUE_ZERO = 8, 96 NO_TRAILING_ZERO = 16, 97 EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL = 32, 98 EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL = 64 99 }; 100 101 // Flags should be a bit-or combination of the possible Flags-enum. 102 // - NO_FLAGS: no special flags. 103 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent 104 // form, emits a '+' for positive exponents. Example: 1.2e+2. 105 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is 106 // converted into decimal format then a trailing decimal point is appended. 107 // Example: 2345.0 is converted to "2345.". 108 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point 109 // emits a trailing '0'-character. This flag requires the 110 // EMIT_TRAILING_DECIMAL_POINT flag. 111 // Example: 2345.0 is converted to "2345.0". 112 // - UNIQUE_ZERO: "-0.0" is converted to "0.0". 113 // - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion 114 // of the result in precision mode. Matches printf's %g. 115 // When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is 116 // preserved. 117 // - EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL: when the input number has 118 // exactly one significant digit and is converted into exponent form then a 119 // trailing decimal point is appended to the significand in shortest mode 120 // or in precision mode with one requested digit. 121 // - EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL: in addition to a trailing 122 // decimal point emits a trailing '0'-character. This flag requires the 123 // EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag. 124 // 125 // Infinity symbol and nan_symbol provide the string representation for these 126 // special values. If the string is nullptr and the special value is encountered 127 // then the conversion functions return false. 128 // 129 // The exponent_character is used in exponential representations. It is 130 // usually 'e' or 'E'. 131 // 132 // When converting to the shortest representation the converter will 133 // represent input numbers in decimal format if they are in the interval 134 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ 135 // (lower boundary included, greater boundary excluded). 136 // Example: with decimal_in_shortest_low = -6 and 137 // decimal_in_shortest_high = 21: 138 // ToShortest(0.000001) -> "0.000001" 139 // ToShortest(0.0000001) -> "1e-7" 140 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 141 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 142 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 143 // 144 // When converting to precision mode the converter may add 145 // max_leading_padding_zeroes before returning the number in exponential 146 // format. 147 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 148 // ToPrecision(0.0000012345, 2) -> "0.0000012" 149 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 150 // Similarly the converter may add up to 151 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 152 // returning an exponential representation. A zero added by the 153 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 154 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 155 // ToPrecision(230.0, 2) -> "230" 156 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 157 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 158 // 159 // When converting numbers with exactly one significant digit to exponent 160 // form in shortest mode or in precision mode with one requested digit, the 161 // EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT flags have 162 // no effect. Use the EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL flag to 163 // append a decimal point in this case and the 164 // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL flag to also append a 165 // '0'-character in this case. 166 // Example with decimal_in_shortest_low = 0: 167 // ToShortest(0.0009) -> "9e-4" 168 // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL deactivated. 169 // ToShortest(0.0009) -> "9.e-4" 170 // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated. 171 // ToShortest(0.0009) -> "9.0e-4" 172 // with EMIT_TRAILING_DECIMAL_POINT_IN_EXPONENTIAL activated and 173 // EMIT_TRAILING_ZERO_AFTER_POINT_IN_EXPONENTIAL activated. 174 // 175 // The min_exponent_width is used for exponential representations. 176 // The converter adds leading '0's to the exponent until the exponent 177 // is at least min_exponent_width digits long. 178 // The min_exponent_width is clamped to 5. 179 // As such, the exponent may never have more than 5 digits in total. 180 DoubleToStringConverter(int flags, 181 const char* infinity_symbol, 182 const char* nan_symbol, 183 char exponent_character, 184 int decimal_in_shortest_low, 185 int decimal_in_shortest_high, 186 int max_leading_padding_zeroes_in_precision_mode, 187 int max_trailing_padding_zeroes_in_precision_mode, 188 int min_exponent_width = 0) 189 : flags_(flags), 190 infinity_symbol_(infinity_symbol), 191 nan_symbol_(nan_symbol), 192 exponent_character_(exponent_character), 193 decimal_in_shortest_low_(decimal_in_shortest_low), 194 decimal_in_shortest_high_(decimal_in_shortest_high), 195 max_leading_padding_zeroes_in_precision_mode_( 196 max_leading_padding_zeroes_in_precision_mode), 197 max_trailing_padding_zeroes_in_precision_mode_( 198 max_trailing_padding_zeroes_in_precision_mode), 199 min_exponent_width_(min_exponent_width) { 200 // When 'trailing zero after the point' is set, then 'trailing point' 201 // must be set too. 202 DOUBLE_CONVERSION_ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || 203 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); 204 } 205 206 // Returns a converter following the EcmaScript specification. 207 // 208 // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN. 209 // Special values: "Infinity" and "NaN". 210 // Lower case 'e' for exponential values. 211 // decimal_in_shortest_low: -6 212 // decimal_in_shortest_high: 21 213 // max_leading_padding_zeroes_in_precision_mode: 6 214 // max_trailing_padding_zeroes_in_precision_mode: 0 215 static const DoubleToStringConverter& EcmaScriptConverter(); 216 217 // Computes the shortest string of digits that correctly represent the input 218 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high 219 // (see constructor) it then either returns a decimal representation, or an 220 // exponential representation. 221 // Example with decimal_in_shortest_low = -6, 222 // decimal_in_shortest_high = 21, 223 // EMIT_POSITIVE_EXPONENT_SIGN activated, and 224 // EMIT_TRAILING_DECIMAL_POINT deactivated: 225 // ToShortest(0.000001) -> "0.000001" 226 // ToShortest(0.0000001) -> "1e-7" 227 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 228 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 229 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 230 // 231 // Note: the conversion may round the output if the returned string 232 // is accurate enough to uniquely identify the input-number. 233 // For example the most precise representation of the double 9e59 equals 234 // "899999999999999918767229449717619953810131273674690656206848", but 235 // the converter will return the shorter (but still correct) "9e59". 236 // 237 // Returns true if the conversion succeeds. The conversion always succeeds 238 // except when the input value is special and no infinity_symbol or 239 // nan_symbol has been given to the constructor. 240 // 241 // The length of the longest result is the maximum of the length of the 242 // following string representations (each with possible examples): 243 // - NaN and negative infinity: "NaN", "-Infinity", "-inf". 244 // - -10^(decimal_in_shortest_high - 1): 245 // "-100000000000000000000", "-1000000000000000.0" 246 // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally, 247 // this string is 3 + kBase10MaximalLength - decimal_in_shortest_low. 248 // (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low, 249 // and the significant digits). 250 // "-0.0000033333333333333333", "-0.0012345678901234567" 251 // - the longest exponential representation. (A negative number with 252 // kBase10MaximalLength significant digits). 253 // "-1.7976931348623157e+308", "-1.7976931348623157E308" 254 // In addition, the buffer must be able to hold the trailing '\0' character. 255 bool ToShortest(double value, StringBuilder* result_builder) const { 256 return ToShortestIeeeNumber(value, result_builder, SHORTEST); 257 } 258 259 // Same as ToShortest, but for single-precision floats. 260 bool ToShortestSingle(float value, StringBuilder* result_builder) const { 261 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); 262 } 263 264 265 // Computes a decimal representation with a fixed number of digits after the 266 // decimal point. The last emitted digit is rounded. 267 // 268 // Examples: 269 // ToFixed(3.12, 1) -> "3.1" 270 // ToFixed(3.1415, 3) -> "3.142" 271 // ToFixed(1234.56789, 4) -> "1234.5679" 272 // ToFixed(1.23, 5) -> "1.23000" 273 // ToFixed(0.1, 4) -> "0.1000" 274 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" 275 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" 276 // ToFixed(0.1, 17) -> "0.10000000000000001" 277 // 278 // If requested_digits equals 0, then the tail of the result depends on 279 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. 280 // Examples, for requested_digits == 0, 281 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be 282 // - false and false: then 123.45 -> 123 283 // 0.678 -> 1 284 // - true and false: then 123.45 -> 123. 285 // 0.678 -> 1. 286 // - true and true: then 123.45 -> 123.0 287 // 0.678 -> 1.0 288 // 289 // Returns true if the conversion succeeds. The conversion always succeeds 290 // except for the following cases: 291 // - the input value is special and no infinity_symbol or nan_symbol has 292 // been provided to the constructor, 293 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or 294 // - 'requested_digits' > kMaxFixedDigitsAfterPoint. 295 // The last two conditions imply that the result for non-special values never 296 // contains more than 297 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters 298 // (one additional character for the sign, and one for the decimal point). 299 // In addition, the buffer must be able to hold the trailing '\0' character. 300 bool ToFixed(double value, 301 int requested_digits, 302 StringBuilder* result_builder) const; 303 304 // Computes a representation in exponential format with requested_digits 305 // after the decimal point. The last emitted digit is rounded. 306 // If requested_digits equals -1, then the shortest exponential representation 307 // is computed. 308 // 309 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and 310 // exponent_character set to 'e'. 311 // ToExponential(3.12, 1) -> "3.1e0" 312 // ToExponential(5.0, 3) -> "5.000e0" 313 // ToExponential(0.001, 2) -> "1.00e-3" 314 // ToExponential(3.1415, -1) -> "3.1415e0" 315 // ToExponential(3.1415, 4) -> "3.1415e0" 316 // ToExponential(3.1415, 3) -> "3.142e0" 317 // ToExponential(123456789000000, 3) -> "1.235e14" 318 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" 319 // ToExponential(1000000000000000019884624838656.0, 32) -> 320 // "1.00000000000000001988462483865600e30" 321 // ToExponential(1234, 0) -> "1e3" 322 // 323 // Returns true if the conversion succeeds. The conversion always succeeds 324 // except for the following cases: 325 // - the input value is special and no infinity_symbol or nan_symbol has 326 // been provided to the constructor, 327 // - 'requested_digits' > kMaxExponentialDigits. 328 // 329 // The last condition implies that the result never contains more than 330 // kMaxExponentialDigits + 8 characters (the sign, the digit before the 331 // decimal point, the decimal point, the exponent character, the 332 // exponent's sign, and at most 3 exponent digits). 333 // In addition, the buffer must be able to hold the trailing '\0' character. 334 bool ToExponential(double value, 335 int requested_digits, 336 StringBuilder* result_builder) const; 337 338 339 // Computes 'precision' leading digits of the given 'value' and returns them 340 // either in exponential or decimal format, depending on 341 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the 342 // constructor). 343 // The last computed digit is rounded. 344 // 345 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 346 // ToPrecision(0.0000012345, 2) -> "0.0000012" 347 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 348 // Similarly the converter may add up to 349 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 350 // returning an exponential representation. A zero added by the 351 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 352 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 353 // ToPrecision(230.0, 2) -> "230" 354 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 355 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 356 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no 357 // EMIT_TRAILING_ZERO_AFTER_POINT: 358 // ToPrecision(123450.0, 6) -> "123450" 359 // ToPrecision(123450.0, 5) -> "123450" 360 // ToPrecision(123450.0, 4) -> "123500" 361 // ToPrecision(123450.0, 3) -> "123000" 362 // ToPrecision(123450.0, 2) -> "1.2e5" 363 // 364 // Returns true if the conversion succeeds. The conversion always succeeds 365 // except for the following cases: 366 // - the input value is special and no infinity_symbol or nan_symbol has 367 // been provided to the constructor, 368 // - precision < kMinPericisionDigits 369 // - precision > kMaxPrecisionDigits 370 // 371 // The last condition implies that the result never contains more than 372 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the 373 // exponent character, the exponent's sign, and at most 3 exponent digits). 374 // In addition, the buffer must be able to hold the trailing '\0' character. 375 bool ToPrecision(double value, 376 int precision, 377 StringBuilder* result_builder) const; 378 #endif // not needed for ICU 379 380 enum DtoaMode { 381 // Produce the shortest correct representation. 382 // For example the output of 0.299999999999999988897 is (the less accurate 383 // but correct) 0.3. 384 SHORTEST, 385 // Same as SHORTEST, but for single-precision floats. 386 SHORTEST_SINGLE, 387 // Produce a fixed number of digits after the decimal point. 388 // For instance fixed(0.1, 4) becomes 0.1000 389 // If the input number is big, the output will be big. 390 FIXED, 391 // Fixed number of digits (independent of the decimal point). 392 PRECISION 393 }; 394 395 // Converts the given double 'v' to digit characters. 'v' must not be NaN, 396 // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also 397 // applies to 'v' after it has been casted to a single-precision float. That 398 // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or 399 // -Infinity. 400 // 401 // The result should be interpreted as buffer * 10^(point-length). 402 // 403 // The digits are written to the buffer in the platform's charset, which is 404 // often UTF-8 (with ASCII-range digits) but may be another charset, such 405 // as EBCDIC. 406 // 407 // The output depends on the given mode: 408 // - SHORTEST: produce the least amount of digits for which the internal 409 // identity requirement is still satisfied. If the digits are printed 410 // (together with the correct exponent) then reading this number will give 411 // 'v' again. The buffer will choose the representation that is closest to 412 // 'v'. If there are two at the same distance, than the one farther away 413 // from 0 is chosen (halfway cases - ending with 5 - are rounded up). 414 // In this mode the 'requested_digits' parameter is ignored. 415 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. 416 // - FIXED: produces digits necessary to print a given number with 417 // 'requested_digits' digits after the decimal point. The produced digits 418 // might be too short in which case the caller has to fill the remainder 419 // with '0's. 420 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. 421 // Halfway cases are rounded towards +/-Infinity (away from 0). The call 422 // toFixed(0.15, 2) thus returns buffer="2", point=0. 423 // The returned buffer may contain digits that would be truncated from the 424 // shortest representation of the input. 425 // - PRECISION: produces 'requested_digits' where the first digit is not '0'. 426 // Even though the length of produced digits usually equals 427 // 'requested_digits', the function is allowed to return fewer digits, in 428 // which case the caller has to fill the missing digits with '0's. 429 // Halfway cases are again rounded away from 0. 430 // DoubleToAscii expects the given buffer to be big enough to hold all 431 // digits and a terminating null-character. In SHORTEST-mode it expects a 432 // buffer of at least kBase10MaximalLength + 1. In all other modes the 433 // requested_digits parameter and the padding-zeroes limit the size of the 434 // output. Don't forget the decimal point, the exponent character and the 435 // terminating null-character when computing the maximal output size. 436 // The given length is only used in debug mode to ensure the buffer is big 437 // enough. 438 // ICU PATCH: Export this as U_I18N_API for unit tests. 439 static void U_I18N_API DoubleToAscii(double v, 440 DtoaMode mode, 441 int requested_digits, 442 char* buffer, 443 int buffer_length, 444 bool* sign, 445 int* length, 446 int* point); 447 448 #if 0 // not needed for ICU 449 private: 450 // Implementation for ToShortest and ToShortestSingle. 451 bool ToShortestIeeeNumber(double value, 452 StringBuilder* result_builder, 453 DtoaMode mode) const; 454 455 // If the value is a special value (NaN or Infinity) constructs the 456 // corresponding string using the configured infinity/nan-symbol. 457 // If either of them is nullptr or the value is not special then the 458 // function returns false. 459 bool HandleSpecialValues(double value, StringBuilder* result_builder) const; 460 // Constructs an exponential representation (i.e. 1.234e56). 461 // The given exponent assumes a decimal point after the first decimal digit. 462 void CreateExponentialRepresentation(const char* decimal_digits, 463 int length, 464 int exponent, 465 StringBuilder* result_builder) const; 466 // Creates a decimal representation (i.e 1234.5678). 467 void CreateDecimalRepresentation(const char* decimal_digits, 468 int length, 469 int decimal_point, 470 int digits_after_point, 471 StringBuilder* result_builder) const; 472 473 const int flags_; 474 const char* const infinity_symbol_; 475 const char* const nan_symbol_; 476 const char exponent_character_; 477 const int decimal_in_shortest_low_; 478 const int decimal_in_shortest_high_; 479 const int max_leading_padding_zeroes_in_precision_mode_; 480 const int max_trailing_padding_zeroes_in_precision_mode_; 481 const int min_exponent_width_; 482 #endif // not needed for ICU 483 484 DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); 485 }; 486 487 } // namespace double_conversion 488 489 // ICU PATCH: Close ICU namespace 490 U_NAMESPACE_END 491 492 #endif // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_ 493 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING 494