• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 #ifndef __NUMBER_DECIMALQUANTITY_H__
8 #define __NUMBER_DECIMALQUANTITY_H__
9 
10 #include <cstdint>
11 #include "unicode/umachine.h"
12 #include "standardplural.h"
13 #include "plurrule_impl.h"
14 #include "number_types.h"
15 
16 U_NAMESPACE_BEGIN namespace number {
17 namespace impl {
18 
19 // Forward-declare (maybe don't want number_utils.h included here):
20 class DecNum;
21 
22 /**
23  * A class for representing a number to be processed by the decimal formatting pipeline. Includes
24  * methods for rounding, plural rules, and decimal digit extraction.
25  *
26  * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27  * object holding state during a pass through the decimal formatting pipeline.
28  *
29  * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30  *
31  * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32  */
33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34   public:
35     /** Copy constructor. */
36     DecimalQuantity(const DecimalQuantity &other);
37 
38     /** Move constructor. */
39     DecimalQuantity(DecimalQuantity &&src) noexcept;
40 
41     DecimalQuantity();
42 
43     ~DecimalQuantity() override;
44 
45     /**
46      * Sets this instance to be equal to another instance.
47      *
48      * @param other The instance to copy from.
49      */
50     DecimalQuantity &operator=(const DecimalQuantity &other);
51 
52     /** Move assignment */
53     DecimalQuantity &operator=(DecimalQuantity&& src) noexcept;
54 
55     /**
56      * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
57      * This method does not perform rounding.
58      *
59      * @param minInt The minimum number of integer digits.
60      */
61     void setMinInteger(int32_t minInt);
62 
63     /**
64      * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
65      * This method does not perform rounding.
66      *
67      * @param minFrac The minimum number of fraction digits.
68      */
69     void setMinFraction(int32_t minFrac);
70 
71     /**
72      * Truncates digits from the upper magnitude of the number in order to satisfy the
73      * specified maximum number of integer digits.
74      *
75      * @param maxInt The maximum number of integer digits.
76      */
77     void applyMaxInteger(int32_t maxInt);
78 
79     /**
80      * Rounds the number to a specified interval, such as 0.05.
81      *
82      * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
83      *
84      * @param increment The increment to which to round.
85      * @param magnitude The power of 10 to which to round.
86      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
87      */
88     void roundToIncrement(
89         uint64_t increment,
90         digits_t magnitude,
91         RoundingMode roundingMode,
92         UErrorCode& status);
93 
94     /** Removes all fraction digits. */
95     void truncate();
96 
97     /**
98      * Rounds the number to the nearest multiple of 5 at the specified magnitude.
99      * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
100      *
101      * @param magnitude The magnitude at which the digit should become either 0 or 5.
102      * @param roundingMode Rounding strategy.
103      */
104     void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
105 
106     /**
107      * Rounds the number to a specified magnitude (power of ten).
108      *
109      * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
110      *     round to 2 decimal places.
111      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
112      */
113     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
114 
115     /**
116      * Rounds the number to an infinite number of decimal points. This has no effect except for
117      * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
118      */
119     void roundToInfinity();
120 
121     /**
122      * Multiply the internal value. Uses decNumber.
123      *
124      * @param multiplicand The value by which to multiply.
125      */
126     void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
127 
128     /**
129      * Divide the internal value. Uses decNumber.
130      *
131      * @param multiplicand The value by which to multiply.
132      */
133     void divideBy(const DecNum& divisor, UErrorCode& status);
134 
135     /** Flips the sign from positive to negative and back. */
136     void negate();
137 
138     /**
139      * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
140      * this method with delta=-3 will change the value to "1.23456".
141      *
142      * @param delta The number of magnitudes of ten to change by.
143      * @return true if integer overflow occurred; false otherwise.
144      */
145     bool adjustMagnitude(int32_t delta);
146 
147     /**
148      * Scales the number such that the least significant nonzero digit is at magnitude 0.
149      *
150      * @return The previous magnitude of the least significant digit.
151      */
152     int32_t adjustToZeroScale();
153 
154     /**
155      * @return The power of ten corresponding to the most significant nonzero digit.
156      * The number must not be zero.
157      */
158     int32_t getMagnitude() const;
159 
160     /**
161      * @return The value of the (suppressed) exponent after the number has been
162      * put into a notation with exponents (ex: compact, scientific).  Ex: given
163      * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
164      */
165     int32_t getExponent() const;
166 
167     /**
168      * Adjusts the value for the (suppressed) exponent stored when using
169      * notation with exponents (ex: compact, scientific).
170      *
171      * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
172      * order to allow flexibility for {@link StandardPlural} to be selected in
173      * formatting (ex: for compact notation) either with or without the exponent
174      * applied in the value of the number.
175      * @param delta
176      *             The value to adjust the exponent by.
177      */
178     void adjustExponent(int32_t delta);
179 
180     /**
181      * Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent.
182      */
183     void resetExponent();
184 
185     /**
186      * @return Whether the value represented by this {@link DecimalQuantity} is
187      * zero, infinity, or NaN.
188      */
189     bool isZeroish() const;
190 
191     /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
192     bool isNegative() const;
193 
194     /** @return The appropriate value from the Signum enum. */
195     Signum signum() const;
196 
197     /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
198     bool isInfinite() const override;
199 
200     /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
201     bool isNaN() const override;
202 
203     /**
204      * Note: this method incorporates the value of {@code exponent}
205      * (for cases such as compact notation) to return the proper long value
206      * represented by the result.
207      * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
208      */
209     int64_t toLong(bool truncateIfOverflow = false) const;
210 
211     /**
212      * Note: this method incorporates the value of {@code exponent}
213      * (for cases such as compact notation) to return the proper long value
214      * represented by the result.
215      */
216     uint64_t toFractionLong(bool includeTrailingZeros) const;
217 
218     /**
219      * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
220      * @param ignoreFraction if true, silently ignore digits after the decimal place.
221      */
222     bool fitsInLong(bool ignoreFraction = false) const;
223 
224     /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
225     double toDouble() const;
226 
227     /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
228     DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
229 
230     DecimalQuantity &setToInt(int32_t n);
231 
232     DecimalQuantity &setToLong(int64_t n);
233 
234     DecimalQuantity &setToDouble(double n);
235 
236     /**
237      * Produces a DecimalQuantity that was parsed from a string by the decNumber
238      * C Library.
239      *
240      * decNumber is similar to BigDecimal in Java, and supports parsing strings
241      * such as "123.456621E+40".
242      */
243     DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
244 
245     /** Internal method if the caller already has a DecNum. */
246     DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
247 
248     /** Returns a DecimalQuantity after parsing the input string. */
249     static DecimalQuantity fromExponentString(UnicodeString n, UErrorCode& status);
250 
251     /**
252      * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
253      * by this DecimalQuantity.
254      *
255      * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
256      * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
257      *
258      * @param value The digit to append.
259      * @param leadingZeros The number of zeros to append before the digit. For example, if the value
260      *     in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
261      *     12.304.
262      * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
263      *     new digit. If false, append to the end like a fraction digit. If true, there must not be
264      *     any fraction digits already in the number.
265      * @internal
266      * @deprecated This API is ICU internal only.
267      */
268     void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
269 
270     double getPluralOperand(PluralOperand operand) const override;
271 
272     bool hasIntegerValue() const override;
273 
274     /**
275      * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
276      * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
277      *
278      * @param magnitude The magnitude of the digit.
279      * @return The digit at the specified magnitude.
280      */
281     int8_t getDigit(int32_t magnitude) const;
282 
283     /**
284      * Gets the largest power of ten that needs to be displayed. The value returned by this function
285      * will be bounded between minInt and maxInt.
286      *
287      * @return The highest-magnitude digit to be displayed.
288      */
289     int32_t getUpperDisplayMagnitude() const;
290 
291     /**
292      * Gets the smallest power of ten that needs to be displayed. The value returned by this function
293      * will be bounded between -minFrac and -maxFrac.
294      *
295      * @return The lowest-magnitude digit to be displayed.
296      */
297     int32_t getLowerDisplayMagnitude() const;
298 
299     int32_t fractionCount() const;
300 
301     int32_t fractionCountWithoutTrailingZeros() const;
302 
303     void clear();
304 
305     /** This method is for internal testing only. */
306     uint64_t getPositionFingerprint() const;
307 
308 //    /**
309 //     * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
310 //     * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
311 //     * happens.
312 //     *
313 //     * @param fp The {@link UFieldPosition} to populate.
314 //     */
315 //    void populateUFieldPosition(FieldPosition fp);
316 
317     /**
318      * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
319      *
320      * @return An error message if this instance is invalid, or null if this instance is healthy.
321      */
322     const char16_t* checkHealth() const;
323 
324     UnicodeString toString() const;
325 
326     /** Returns the string in standard exponential notation. */
327     UnicodeString toScientificString() const;
328 
329     /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
330     UnicodeString toPlainString() const;
331 
332     /** Returns the string using ASCII digits and using exponential notation for non-zero
333     exponents, following the UTS 35 specification for plural rule samples. */
334     UnicodeString toExponentString() const;
335 
336     /** Visible for testing */
isUsingBytes()337     inline bool isUsingBytes() { return usingBytes; }
338 
339     /** Visible for testing */
isExplicitExactDouble()340     inline bool isExplicitExactDouble() { return explicitExactDouble; }
341 
342     bool operator==(const DecimalQuantity& other) const;
343 
344     inline bool operator!=(const DecimalQuantity& other) const {
345         return !(*this == other);
346     }
347 
348     /**
349      * Bogus flag for when a DecimalQuantity is stored on the stack.
350      */
351     bool bogus = false;
352 
353   private:
354     /**
355      * The power of ten corresponding to the least significant digit in the BCD. For example, if this
356      * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
357      *
358      * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
359      * digits after the decimal place, which is the negative of our definition of scale.
360      */
361     int32_t scale;
362 
363     /**
364      * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
365      * maximum precision is 16 since a long can hold only 16 digits.
366      *
367      * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
368      * #computePrecisionAndCompact()}.
369      */
370     int32_t precision;
371 
372     /**
373      * A bitmask of properties relating to the number represented by this object.
374      *
375      * @see #NEGATIVE_FLAG
376      * @see #INFINITY_FLAG
377      * @see #NAN_FLAG
378      */
379     int8_t flags;
380 
381     // The following three fields relate to the double-to-ascii fast path algorithm.
382     // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
383     // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
384     // of rounding the number ensures that the converted digits are correct, falling back to a slow-
385     // path algorithm if required.  Therefore, if a DecimalQuantity is constructed from a double, it
386     // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
387     // you don't round, assertions will fail in certain other methods if you try calling them.
388 
389     /**
390      * Whether the value in the BCD comes from the double fast path without having been rounded to
391      * ensure correctness
392      */
393     UBool isApproximate;
394 
395     /**
396      * The original number provided by the user and which is represented in BCD. Used when we need to
397      * re-compute the BCD for an exact double representation.
398      */
399     double origDouble;
400 
401     /**
402      * The change in magnitude relative to the original double. Used when we need to re-compute the
403      * BCD for an exact double representation.
404      */
405     int32_t origDelta;
406 
407     // Positions to keep track of leading and trailing zeros.
408     // lReqPos is the magnitude of the first required leading zero.
409     // rReqPos is the magnitude of the last required trailing zero.
410     int32_t lReqPos = 0;
411     int32_t rReqPos = 0;
412 
413     // The value of the (suppressed) exponent after the number has been put into
414     // a notation with exponents (ex: compact, scientific).
415     int32_t exponent = 0;
416 
417     /**
418      * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
419      * to one digit. For example, the number "12345" in BCD is "0x12345".
420      *
421      * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
422      * like setting the digit to zero.
423      */
424     union {
425         struct {
426             int8_t *ptr;
427             int32_t len;
428         } bcdBytes;
429         uint64_t bcdLong;
430     } fBCD;
431 
432     bool usingBytes = false;
433 
434     /**
435      * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
436      * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
437      * Used for testing.
438      */
439     bool explicitExactDouble = false;
440 
441     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
442 
443     /**
444      * Returns a single digit from the BCD list. No internal state is changed by calling this method.
445      *
446      * @param position The position of the digit to pop, counted in BCD units from the least
447      *     significant digit. If outside the range supported by the implementation, zero is returned.
448      * @return The digit at the specified location.
449      */
450     int8_t getDigitPos(int32_t position) const;
451 
452     /**
453      * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
454      * responsibility to call {@link #compact} after setting the digit, and to ensure
455      * that the precision field is updated to reflect the correct number of digits if a
456      * nonzero digit is added to the decimal.
457      *
458      * @param position The position of the digit to pop, counted in BCD units from the least
459      *     significant digit. If outside the range supported by the implementation, an AssertionError
460      *     is thrown.
461      * @param value The digit to set at the specified location.
462      */
463     void setDigitPos(int32_t position, int8_t value);
464 
465     /**
466      * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
467      * the caller's responsibility to do further manipulation and then call {@link #compact}.
468      *
469      * @param numDigits The number of zeros to add.
470      */
471     void shiftLeft(int32_t numDigits);
472 
473     /**
474      * Directly removes digits from the end of the BCD list.
475      * Updates the scale and precision.
476      *
477      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
478      */
479     void shiftRight(int32_t numDigits);
480 
481     /**
482      * Directly removes digits from the front of the BCD list.
483      * Updates precision.
484      *
485      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
486      */
487     void popFromLeft(int32_t numDigits);
488 
489     /**
490      * Sets the internal representation to zero. Clears any values stored in scale, precision,
491      * hasDouble, origDouble, origDelta, exponent, and BCD data.
492      */
493     void setBcdToZero();
494 
495     /**
496      * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
497      * be either positive. The internal state is guaranteed to be empty when this method is called.
498      *
499      * @param n The value to consume.
500      */
501     void readIntToBcd(int32_t n);
502 
503     /**
504      * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
505      * be either positive. The internal state is guaranteed to be empty when this method is called.
506      *
507      * @param n The value to consume.
508      */
509     void readLongToBcd(int64_t n);
510 
511     void readDecNumberToBcd(const DecNum& dn);
512 
513     void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
514 
515     void copyFieldsFrom(const DecimalQuantity& other);
516 
517     void copyBcdFrom(const DecimalQuantity &other);
518 
519     void moveBcdFrom(DecimalQuantity& src);
520 
521     /**
522      * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
523      * precision. The precision is the number of digits in the number up through the greatest nonzero
524      * digit.
525      *
526      * <p>This method must always be called when bcd changes in order for assumptions to be correct in
527      * methods like {@link #fractionCount()}.
528      */
529     void compact();
530 
531     void _setToInt(int32_t n);
532 
533     void _setToLong(int64_t n);
534 
535     void _setToDoubleFast(double n);
536 
537     void _setToDecNum(const DecNum& dn, UErrorCode& status);
538 
539     static int32_t getVisibleFractionCount(UnicodeString value);
540 
541     void convertToAccurateDouble();
542 
543     /** Ensure that a byte array of at least 40 digits is allocated. */
544     void ensureCapacity();
545 
546     void ensureCapacity(int32_t capacity);
547 
548     /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
549     void switchStorage();
550 };
551 
552 } // namespace impl
553 } // namespace number
554 U_NAMESPACE_END
555 
556 
557 #endif //__NUMBER_DECIMALQUANTITY_H__
558 
559 #endif /* #if !UCONFIG_NO_FORMATTING */
560