• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/numbers/fixed-dtoa.h"
6 
7 #include <stdint.h>
8 
9 #include <cmath>
10 
11 #include "src/base/logging.h"
12 #include "src/base/numbers/double.h"
13 
14 namespace v8 {
15 namespace base {
16 
17 // Represents a 128bit type. This class should be replaced by a native type on
18 // platforms that support 128bit integers.
19 class UInt128 {
20  public:
UInt128()21   UInt128() : high_bits_(0), low_bits_(0) {}
UInt128(uint64_t high,uint64_t low)22   UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) {}
23 
Multiply(uint32_t multiplicand)24   void Multiply(uint32_t multiplicand) {
25     uint64_t accumulator;
26 
27     accumulator = (low_bits_ & kMask32) * multiplicand;
28     uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
29     accumulator >>= 32;
30     accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
31     low_bits_ = (accumulator << 32) + part;
32     accumulator >>= 32;
33     accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
34     part = static_cast<uint32_t>(accumulator & kMask32);
35     accumulator >>= 32;
36     accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
37     high_bits_ = (accumulator << 32) + part;
38     DCHECK_EQ(accumulator >> 32, 0);
39   }
40 
Shift(int shift_amount)41   void Shift(int shift_amount) {
42     DCHECK(-64 <= shift_amount && shift_amount <= 64);
43     if (shift_amount == 0) {
44       return;
45     } else if (shift_amount == -64) {
46       high_bits_ = low_bits_;
47       low_bits_ = 0;
48     } else if (shift_amount == 64) {
49       low_bits_ = high_bits_;
50       high_bits_ = 0;
51     } else if (shift_amount <= 0) {
52       high_bits_ <<= -shift_amount;
53       high_bits_ += low_bits_ >> (64 + shift_amount);
54       low_bits_ <<= -shift_amount;
55     } else {
56       low_bits_ >>= shift_amount;
57       low_bits_ += high_bits_ << (64 - shift_amount);
58       high_bits_ >>= shift_amount;
59     }
60   }
61 
62   // Modifies *this to *this MOD (2^power).
63   // Returns *this DIV (2^power).
DivModPowerOf2(int power)64   int DivModPowerOf2(int power) {
65     if (power >= 64) {
66       int result = static_cast<int>(high_bits_ >> (power - 64));
67       high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
68       return result;
69     } else {
70       uint64_t part_low = low_bits_ >> power;
71       uint64_t part_high = high_bits_ << (64 - power);
72       int result = static_cast<int>(part_low + part_high);
73       high_bits_ = 0;
74       low_bits_ -= part_low << power;
75       return result;
76     }
77   }
78 
IsZero() const79   bool IsZero() const { return high_bits_ == 0 && low_bits_ == 0; }
80 
BitAt(int position)81   int BitAt(int position) {
82     if (position >= 64) {
83       return static_cast<int>(high_bits_ >> (position - 64)) & 1;
84     } else {
85       return static_cast<int>(low_bits_ >> position) & 1;
86     }
87   }
88 
89  private:
90   static const uint64_t kMask32 = 0xFFFFFFFF;
91   // Value == (high_bits_ << 64) + low_bits_
92   uint64_t high_bits_;
93   uint64_t low_bits_;
94 };
95 
96 static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
97 
FillDigits32FixedLength(uint32_t number,int requested_length,Vector<char> buffer,int * length)98 static void FillDigits32FixedLength(uint32_t number, int requested_length,
99                                     Vector<char> buffer, int* length) {
100   for (int i = requested_length - 1; i >= 0; --i) {
101     buffer[(*length) + i] = '0' + number % 10;
102     number /= 10;
103   }
104   *length += requested_length;
105 }
106 
FillDigits32(uint32_t number,Vector<char> buffer,int * length)107 static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
108   int number_length = 0;
109   // We fill the digits in reverse order and exchange them afterwards.
110   while (number != 0) {
111     int digit = number % 10;
112     number /= 10;
113     buffer[(*length) + number_length] = '0' + digit;
114     number_length++;
115   }
116   // Exchange the digits.
117   int i = *length;
118   int j = *length + number_length - 1;
119   while (i < j) {
120     char tmp = buffer[i];
121     buffer[i] = buffer[j];
122     buffer[j] = tmp;
123     i++;
124     j--;
125   }
126   *length += number_length;
127 }
128 
FillDigits64FixedLength(uint64_t number,int requested_length,Vector<char> buffer,int * length)129 static void FillDigits64FixedLength(uint64_t number, int requested_length,
130                                     Vector<char> buffer, int* length) {
131   const uint32_t kTen7 = 10000000;
132   // For efficiency cut the number into 3 uint32_t parts, and print those.
133   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
134   number /= kTen7;
135   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
136   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
137 
138   FillDigits32FixedLength(part0, 3, buffer, length);
139   FillDigits32FixedLength(part1, 7, buffer, length);
140   FillDigits32FixedLength(part2, 7, buffer, length);
141 }
142 
FillDigits64(uint64_t number,Vector<char> buffer,int * length)143 static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
144   const uint32_t kTen7 = 10000000;
145   // For efficiency cut the number into 3 uint32_t parts, and print those.
146   uint32_t part2 = static_cast<uint32_t>(number % kTen7);
147   number /= kTen7;
148   uint32_t part1 = static_cast<uint32_t>(number % kTen7);
149   uint32_t part0 = static_cast<uint32_t>(number / kTen7);
150 
151   if (part0 != 0) {
152     FillDigits32(part0, buffer, length);
153     FillDigits32FixedLength(part1, 7, buffer, length);
154     FillDigits32FixedLength(part2, 7, buffer, length);
155   } else if (part1 != 0) {
156     FillDigits32(part1, buffer, length);
157     FillDigits32FixedLength(part2, 7, buffer, length);
158   } else {
159     FillDigits32(part2, buffer, length);
160   }
161 }
162 
DtoaRoundUp(Vector<char> buffer,int * length,int * decimal_point)163 static void DtoaRoundUp(Vector<char> buffer, int* length, int* decimal_point) {
164   // An empty buffer represents 0.
165   if (*length == 0) {
166     buffer[0] = '1';
167     *decimal_point = 1;
168     *length = 1;
169     return;
170   }
171   // Round the last digit until we either have a digit that was not '9' or until
172   // we reached the first digit.
173   buffer[(*length) - 1]++;
174   for (int i = (*length) - 1; i > 0; --i) {
175     if (buffer[i] != '0' + 10) {
176       return;
177     }
178     buffer[i] = '0';
179     buffer[i - 1]++;
180   }
181   // If the first digit is now '0' + 10, we would need to set it to '0' and add
182   // a '1' in front. However we reach the first digit only if all following
183   // digits had been '9' before rounding up. Now all trailing digits are '0' and
184   // we simply switch the first digit to '1' and update the decimal-point
185   // (indicating that the point is now one digit to the right).
186   if (buffer[0] == '0' + 10) {
187     buffer[0] = '1';
188     (*decimal_point)++;
189   }
190 }
191 
192 // The given fractionals number represents a fixed-point number with binary
193 // point at bit (-exponent).
194 // Preconditions:
195 //   -128 <= exponent <= 0.
196 //   0 <= fractionals * 2^exponent < 1
197 //   The buffer holds the result.
198 // The function will round its result. During the rounding-process digits not
199 // generated by this function might be updated, and the decimal-point variable
200 // might be updated. If this function generates the digits 99 and the buffer
201 // already contained "199" (thus yielding a buffer of "19999") then a
202 // rounding-up will change the contents of the buffer to "20000".
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)203 static void FillFractionals(uint64_t fractionals, int exponent,
204                             int fractional_count, Vector<char> buffer,
205                             int* length, int* decimal_point) {
206   DCHECK(-128 <= exponent && exponent <= 0);
207   // 'fractionals' is a fixed-point number, with binary point at bit
208   // (-exponent). Inside the function the non-converted remainder of fractionals
209   // is a fixed-point number, with binary point at bit 'point'.
210   if (-exponent <= 64) {
211     // One 64 bit number is sufficient.
212     DCHECK_EQ(fractionals >> 56, 0);
213     int point = -exponent;
214     for (int i = 0; i < fractional_count; ++i) {
215       if (fractionals == 0) break;
216       // Instead of multiplying by 10 we multiply by 5 and adjust the point
217       // location. This way the fractionals variable will not overflow.
218       // Invariant at the beginning of the loop: fractionals < 2^point.
219       // Initially we have: point <= 64 and fractionals < 2^56
220       // After each iteration the point is decremented by one.
221       // Note that 5^3 = 125 < 128 = 2^7.
222       // Therefore three iterations of this loop will not overflow fractionals
223       // (even without the subtraction at the end of the loop body). At this
224       // time point will satisfy point <= 61 and therefore fractionals < 2^point
225       // and any further multiplication of fractionals by 5 will not overflow.
226       fractionals *= 5;
227       point--;
228       int digit = static_cast<int>(fractionals >> point);
229       buffer[*length] = '0' + digit;
230       (*length)++;
231       fractionals -= static_cast<uint64_t>(digit) << point;
232     }
233     // If the first bit after the point is set we have to round up.
234     if (point > 0 && ((fractionals >> (point - 1)) & 1) == 1) {
235       DtoaRoundUp(buffer, length, decimal_point);
236     }
237   } else {  // We need 128 bits.
238     DCHECK(64 < -exponent && -exponent <= 128);
239     UInt128 fractionals128 = UInt128(fractionals, 0);
240     fractionals128.Shift(-exponent - 64);
241     int point = 128;
242     for (int i = 0; i < fractional_count; ++i) {
243       if (fractionals128.IsZero()) break;
244       // As before: instead of multiplying by 10 we multiply by 5 and adjust the
245       // point location.
246       // This multiplication will not overflow for the same reasons as before.
247       fractionals128.Multiply(5);
248       point--;
249       int digit = fractionals128.DivModPowerOf2(point);
250       buffer[*length] = '0' + digit;
251       (*length)++;
252     }
253     if (fractionals128.BitAt(point - 1) == 1) {
254       DtoaRoundUp(buffer, length, decimal_point);
255     }
256   }
257 }
258 
259 // Removes leading and trailing zeros.
260 // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(Vector<char> buffer,int * length,int * decimal_point)261 static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
262   while (*length > 0 && buffer[(*length) - 1] == '0') {
263     (*length)--;
264   }
265   int first_non_zero = 0;
266   while (first_non_zero < *length && buffer[first_non_zero] == '0') {
267     first_non_zero++;
268   }
269   if (first_non_zero != 0) {
270     for (int i = first_non_zero; i < *length; ++i) {
271       buffer[i - first_non_zero] = buffer[i];
272     }
273     *length -= first_non_zero;
274     *decimal_point -= first_non_zero;
275   }
276 }
277 
FastFixedDtoa(double v,int fractional_count,Vector<char> buffer,int * length,int * decimal_point)278 bool FastFixedDtoa(double v, int fractional_count, Vector<char> buffer,
279                    int* length, int* decimal_point) {
280   const uint32_t kMaxUInt32 = 0xFFFFFFFF;
281   uint64_t significand = Double(v).Significand();
282   int exponent = Double(v).Exponent();
283   // v = significand * 2^exponent (with significand a 53bit integer).
284   // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
285   // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
286   // If necessary this limit could probably be increased, but we don't need
287   // more.
288   if (exponent > 20) return false;
289   if (fractional_count > 20) return false;
290   *length = 0;
291   // At most kDoubleSignificandSize bits of the significand are non-zero.
292   // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
293   // bits:  0..11*..0xxx..53*..xx
294   if (exponent + kDoubleSignificandSize > 64) {
295     // The exponent must be > 11.
296     //
297     // We know that v = significand * 2^exponent.
298     // And the exponent > 11.
299     // We simplify the task by dividing v by 10^17.
300     // The quotient delivers the first digits, and the remainder fits into a 64
301     // bit number.
302     // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
303     const uint64_t kFive17 = 0xB1'A2BC'2EC5;  // 5^17
304     uint64_t divisor = kFive17;
305     int divisor_power = 17;
306     uint64_t dividend = significand;
307     uint32_t quotient;
308     uint64_t remainder;
309     // Let v = f * 2^e with f == significand and e == exponent.
310     // Then need q (quotient) and r (remainder) as follows:
311     //   v            = q * 10^17       + r
312     //   f * 2^e      = q * 10^17       + r
313     //   f * 2^e      = q * 5^17 * 2^17 + r
314     // If e > 17 then
315     //   f * 2^(e-17) = q * 5^17        + r/2^17
316     // else
317     //   f  = q * 5^17 * 2^(17-e) + r/2^e
318     if (exponent > divisor_power) {
319       // We only allow exponents of up to 20 and therefore (17 - e) <= 3
320       dividend <<= exponent - divisor_power;
321       quotient = static_cast<uint32_t>(dividend / divisor);
322       remainder = (dividend % divisor) << divisor_power;
323     } else {
324       divisor <<= divisor_power - exponent;
325       quotient = static_cast<uint32_t>(dividend / divisor);
326       remainder = (dividend % divisor) << exponent;
327     }
328     FillDigits32(quotient, buffer, length);
329     FillDigits64FixedLength(remainder, divisor_power, buffer, length);
330     *decimal_point = *length;
331   } else if (exponent >= 0) {
332     // 0 <= exponent <= 11
333     significand <<= exponent;
334     FillDigits64(significand, buffer, length);
335     *decimal_point = *length;
336   } else if (exponent > -kDoubleSignificandSize) {
337     // We have to cut the number.
338     uint64_t integrals = significand >> -exponent;
339     uint64_t fractionals = significand - (integrals << -exponent);
340     if (integrals > kMaxUInt32) {
341       FillDigits64(integrals, buffer, length);
342     } else {
343       FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
344     }
345     *decimal_point = *length;
346     FillFractionals(fractionals, exponent, fractional_count, buffer, length,
347                     decimal_point);
348   } else if (exponent < -128) {
349     // This configuration (with at most 20 digits) means that all digits must be
350     // 0.
351     DCHECK_LE(fractional_count, 20);
352     buffer[0] = '\0';
353     *length = 0;
354     *decimal_point = -fractional_count;
355   } else {
356     *decimal_point = 0;
357     FillFractionals(significand, exponent, fractional_count, buffer, length,
358                     decimal_point);
359   }
360   TrimZeros(buffer, length, decimal_point);
361   buffer[*length] = '\0';
362   if ((*length) == 0) {
363     // The string is empty and the decimal_point thus has no importance. Mimick
364     // Gay's dtoa and and set it to -fractional_count.
365     *decimal_point = -fractional_count;
366   }
367   return true;
368 }
369 
370 }  // namespace base
371 }  // namespace v8
372