• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_CODEGEN_MIPS_ASSEMBLER_MIPS_H_
36 #define V8_CODEGEN_MIPS_ASSEMBLER_MIPS_H_
37 
38 #include <stdio.h>
39 #include <memory>
40 
41 #include <set>
42 
43 #include "src/codegen/assembler.h"
44 #include "src/codegen/external-reference.h"
45 #include "src/codegen/label.h"
46 #include "src/codegen/mips/constants-mips.h"
47 #include "src/codegen/mips/register-mips.h"
48 #include "src/objects/smi.h"
49 
50 namespace v8 {
51 namespace internal {
52 
53 class SafepointTableBuilder;
54 
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT };
57 
58 // -----------------------------------------------------------------------------
59 // Machine instruction Operands.
60 
61 // Class Operand represents a shifter operand in data processing instructions.
62 class Operand {
63  public:
64   // Immediate.
65   V8_INLINE explicit Operand(int32_t immediate,
66                              RelocInfo::Mode rmode = RelocInfo::NO_INFO)
rm_(no_reg)67       : rm_(no_reg), rmode_(rmode) {
68     value_.immediate = immediate;
69   }
Operand(const ExternalReference & f)70   V8_INLINE explicit Operand(const ExternalReference& f)
71       : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) {
72     value_.immediate = static_cast<int32_t>(f.address());
73   }
74   V8_INLINE explicit Operand(const char* s);
75   explicit Operand(Handle<HeapObject> handle);
Operand(Smi value)76   V8_INLINE explicit Operand(Smi value)
77       : rm_(no_reg), rmode_(RelocInfo::NO_INFO) {
78     value_.immediate = static_cast<intptr_t>(value.ptr());
79   }
80 
81   static Operand EmbeddedNumber(double number);  // Smi or HeapNumber.
82   static Operand EmbeddedStringConstant(const StringConstantBase* str);
83 
84   // Register.
Operand(Register rm)85   V8_INLINE explicit Operand(Register rm) : rm_(rm) {}
86 
87   // Return true if this is a register operand.
88   V8_INLINE bool is_reg() const;
89 
90   inline int32_t immediate() const;
91 
IsImmediate()92   bool IsImmediate() const { return !rm_.is_valid(); }
93 
heap_object_request()94   HeapObjectRequest heap_object_request() const {
95     DCHECK(IsHeapObjectRequest());
96     return value_.heap_object_request;
97   }
98 
IsHeapObjectRequest()99   bool IsHeapObjectRequest() const {
100     DCHECK_IMPLIES(is_heap_object_request_, IsImmediate());
101     DCHECK_IMPLIES(is_heap_object_request_,
102                    rmode_ == RelocInfo::FULL_EMBEDDED_OBJECT ||
103                        rmode_ == RelocInfo::CODE_TARGET);
104     return is_heap_object_request_;
105   }
106 
rm()107   Register rm() const { return rm_; }
108 
rmode()109   RelocInfo::Mode rmode() const { return rmode_; }
110 
111  private:
112   Register rm_;
113   union Value {
Value()114     Value() {}
115     HeapObjectRequest heap_object_request;  // if is_heap_object_request_
116     int32_t immediate;                      // otherwise
117   } value_;                                 // valid if rm_ == no_reg
118   bool is_heap_object_request_ = false;
119   RelocInfo::Mode rmode_;
120 
121   friend class Assembler;
122   // friend class MacroAssembler;
123 };
124 
125 // On MIPS we have only one addressing mode with base_reg + offset.
126 // Class MemOperand represents a memory operand in load and store instructions.
127 class V8_EXPORT_PRIVATE MemOperand : public Operand {
128  public:
129   // Immediate value attached to offset.
130   enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 };
131 
132   explicit MemOperand(Register rn, int32_t offset = 0);
133   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
134                       OffsetAddend offset_addend = offset_zero);
offset()135   int32_t offset() const { return offset_; }
136 
OffsetIsInt16Encodable()137   bool OffsetIsInt16Encodable() const { return is_int16(offset_); }
138 
139  private:
140   int32_t offset_;
141 
142   friend class Assembler;
143 };
144 
145 class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
146  public:
147   // Create an assembler. Instructions and relocation information are emitted
148   // into a buffer, with the instructions starting from the beginning and the
149   // relocation information starting from the end of the buffer. See CodeDesc
150   // for a detailed comment on the layout (globals.h).
151   //
152   // If the provided buffer is nullptr, the assembler allocates and grows its
153   // own buffer. Otherwise it takes ownership of the provided buffer.
154   explicit Assembler(const AssemblerOptions&,
155                      std::unique_ptr<AssemblerBuffer> = {});
156 
~Assembler()157   virtual ~Assembler() {}
158 
159   // GetCode emits any pending (non-emitted) code and fills the descriptor desc.
160   static constexpr int kNoHandlerTable = 0;
161   static constexpr SafepointTableBuilder* kNoSafepointTable = nullptr;
162   void GetCode(Isolate* isolate, CodeDesc* desc,
163                SafepointTableBuilder* safepoint_table_builder,
164                int handler_table_offset);
165 
166   // Convenience wrapper for code without safepoint or handler tables.
GetCode(Isolate * isolate,CodeDesc * desc)167   void GetCode(Isolate* isolate, CodeDesc* desc) {
168     GetCode(isolate, desc, kNoSafepointTable, kNoHandlerTable);
169   }
170 
171   // Unused on this architecture.
MaybeEmitOutOfLineConstantPool()172   void MaybeEmitOutOfLineConstantPool() {}
173 
174   // Mips uses BlockTrampolinePool to prevent generating trampoline inside a
175   // continuous instruction block. For Call instrution, it prevents generating
176   // trampoline between jalr and delay slot instruction. In the destructor of
177   // BlockTrampolinePool, it must check if it needs to generate trampoline
178   // immediately, if it does not do this, the branch range will go beyond the
179   // max branch offset, that means the pc_offset after call CheckTrampolinePool
180   // may have changed. So we use pc_for_safepoint_ here for safepoint record.
pc_offset_for_safepoint()181   int pc_offset_for_safepoint() {
182     return static_cast<int>(pc_for_safepoint_ - buffer_start_);
183   }
184 
185   // Label operations & relative jumps (PPUM Appendix D).
186   //
187   // Takes a branch opcode (cc) and a label (L) and generates
188   // either a backward branch or a forward branch and links it
189   // to the label fixup chain. Usage:
190   //
191   // Label L;    // unbound label
192   // j(cc, &L);  // forward branch to unbound label
193   // bind(&L);   // bind label to the current pc
194   // j(cc, &L);  // backward branch to bound label
195   // bind(&L);   // illegal: a label may be bound only once
196   //
197   // Note: The same Label can be used for forward and backward branches
198   // but it may be bound only once.
199   void bind(Label* L);  // Binds an unbound label L to current code position.
200 
201   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
202 
203   // Determines if Label is bound and near enough so that branch instruction
204   // can be used to reach it, instead of jump instruction.
205   bool is_near(Label* L);
206   bool is_near(Label* L, OffsetSize bits);
207   bool is_near_branch(Label* L);
is_near_pre_r6(Label * L)208   inline bool is_near_pre_r6(Label* L) {
209     DCHECK(!IsMipsArchVariant(kMips32r6));
210     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
211   }
is_near_r6(Label * L)212   inline bool is_near_r6(Label* L) {
213     DCHECK(IsMipsArchVariant(kMips32r6));
214     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
215   }
216 
217   int BranchOffset(Instr instr);
218 
219   // Returns the branch offset to the given label from the current code
220   // position. Links the label to the current position if it is still unbound.
221   // Manages the jump elimination optimization if the second parameter is true.
222   int32_t branch_offset_helper(Label* L, OffsetSize bits);
branch_offset(Label * L)223   inline int32_t branch_offset(Label* L) {
224     return branch_offset_helper(L, OffsetSize::kOffset16);
225   }
branch_offset21(Label * L)226   inline int32_t branch_offset21(Label* L) {
227     return branch_offset_helper(L, OffsetSize::kOffset21);
228   }
branch_offset26(Label * L)229   inline int32_t branch_offset26(Label* L) {
230     return branch_offset_helper(L, OffsetSize::kOffset26);
231   }
shifted_branch_offset(Label * L)232   inline int32_t shifted_branch_offset(Label* L) {
233     return branch_offset(L) >> 2;
234   }
shifted_branch_offset21(Label * L)235   inline int32_t shifted_branch_offset21(Label* L) {
236     return branch_offset21(L) >> 2;
237   }
shifted_branch_offset26(Label * L)238   inline int32_t shifted_branch_offset26(Label* L) {
239     return branch_offset26(L) >> 2;
240   }
241   uint32_t jump_address(Label* L);
242   uint32_t branch_long_offset(Label* L);
243 
244   // Puts a labels target address at the given position.
245   // The high 8 bits are set to zero.
246   void label_at_put(Label* L, int at_offset);
247 
248   // Read/Modify the code target address in the branch/call instruction at pc.
249   // The isolate argument is unused (and may be nullptr) when skipping flushing.
250   static Address target_address_at(Address pc);
251   V8_INLINE static void set_target_address_at(
252       Address pc, Address target,
253       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
254     set_target_value_at(pc, static_cast<uint32_t>(target), icache_flush_mode);
255   }
256   // On MIPS there is no Constant Pool so we skip that parameter.
target_address_at(Address pc,Address constant_pool)257   V8_INLINE static Address target_address_at(Address pc,
258                                              Address constant_pool) {
259     return target_address_at(pc);
260   }
261   V8_INLINE static void set_target_address_at(
262       Address pc, Address constant_pool, Address target,
263       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
264     set_target_address_at(pc, target, icache_flush_mode);
265   }
266 
267   static void set_target_value_at(
268       Address pc, uint32_t target,
269       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
270 
271   // This sets the branch destination (which gets loaded at the call address).
272   // This is for calls and branches within generated code.  The serializer
273   // has already deserialized the lui/ori instructions etc.
274   inline static void deserialization_set_special_target_at(
275       Address instruction_payload, Code code, Address target);
276 
277   // Get the size of the special target encoded at 'instruction_payload'.
278   inline static int deserialization_special_target_size(
279       Address instruction_payload);
280 
281   // This sets the internal reference at the pc.
282   inline static void deserialization_set_target_internal_reference_at(
283       Address pc, Address target,
284       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
285 
286   // Difference between address of current opcode and target address offset.
287   static constexpr int kBranchPCOffset = kInstrSize;
288 
289   // Difference between address of current opcode and target address offset,
290   // when we are generatinga sequence of instructions for long relative PC
291   // branches. It is distance between address of the first instruction in
292   // the jump sequence, and the value that ra gets after calling nal().
293   static constexpr int kLongBranchPCOffset = 3 * kInstrSize;
294 
295   // Adjust ra register in branch delay slot of bal instruction in order to skip
296   // instructions not needed after optimization of PIC in
297   // TurboAssembler::BranchAndLink method.
298   static constexpr int kOptimizedBranchAndLinkLongReturnOffset = 3 * kInstrSize;
299 
300   // Offset of target relative address in calls/jumps for builtins. It is
301   // distance between instruction that is placed just after calling
302   // RecordRelocInfo, and the value that ra gets aftr calling nal().
303   static constexpr int kRelativeJumpForBuiltinsOffset = 1 * kInstrSize;
304   // Relative target address of jumps for builtins when we use lui, ori, dsll,
305   // ori sequence when loading address that cannot fit into 32 bits.
306   static constexpr int kRelativeCallForBuiltinsOffset = 3 * kInstrSize;
307 
308   // Here we are patching the address in the LUI/ORI instruction pair.
309   // These values are used in the serialization process and must be zero for
310   // MIPS platform, as Code, Embedded Object or External-reference pointers
311   // are split across two consecutive instructions and don't exist separately
312   // in the code, so the serializer should not step forwards in memory after
313   // a target is resolved and written.
314 
315   static constexpr int kSpecialTargetSize = 0;
316 
317   // Number of consecutive instructions used to store 32bit constant. This
318   // constant is used in RelocInfo::target_address_address() function to tell
319   // serializer address of the instruction that follows LUI/ORI instruction
320   // pair.
321   static constexpr int kInstructionsFor32BitConstant = 2;
322 
323   // Max offset for instructions with 16-bit offset field
324   static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1;
325 
326   // Max offset for compact branch instructions with 26-bit offset field
327   static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
328 
329   static constexpr int kTrampolineSlotsSize =
330       IsMipsArchVariant(kMips32r6) ? 2 * kInstrSize : 7 * kInstrSize;
331 
GetScratchRegisterList()332   RegList* GetScratchRegisterList() { return &scratch_register_list_; }
333 
334   // ---------------------------------------------------------------------------
335   // Code generation.
336 
337   // Insert the smallest number of nop instructions
338   // possible to align the pc offset to a multiple
339   // of m. m must be a power of 2 (>= 4).
340   void Align(int m);
341   // Insert the smallest number of zero bytes possible to align the pc offset
342   // to a mulitple of m. m must be a power of 2 (>= 2).
343   void DataAlign(int m);
344   // Aligns code to something that's optimal for a jump target for the platform.
345   void CodeTargetAlign();
LoopHeaderAlign()346   void LoopHeaderAlign() { CodeTargetAlign(); }
347 
348   // Different nop operations are used by the code generator to detect certain
349   // states of the generated code.
350   enum NopMarkerTypes {
351     NON_MARKING_NOP = 0,
352     DEBUG_BREAK_NOP,
353     // IC markers.
354     PROPERTY_ACCESS_INLINED,
355     PROPERTY_ACCESS_INLINED_CONTEXT,
356     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
357     // Helper values.
358     LAST_CODE_MARKER,
359     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
360   };
361 
362   // Type == 0 is the default non-marking nop. For mips this is a
363   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
364   // marking, to avoid conflict with ssnop and ehb instructions.
365   void nop(unsigned int type = 0) {
366     DCHECK_LT(type, 32);
367     Register nop_rt_reg = (type == 0) ? zero_reg : at;
368     sll(zero_reg, nop_rt_reg, type, true);
369   }
370 
371   // --------Branch-and-jump-instructions----------
372   // We don't use likely variant of instructions.
373   void b(int16_t offset);
b(Label * L)374   inline void b(Label* L) { b(shifted_branch_offset(L)); }
375   void bal(int16_t offset);
bal(Label * L)376   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
377   void bc(int32_t offset);
bc(Label * L)378   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
379   void balc(int32_t offset);
balc(Label * L)380   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
381 
382   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)383   inline void beq(Register rs, Register rt, Label* L) {
384     beq(rs, rt, shifted_branch_offset(L));
385   }
386   void bgez(Register rs, int16_t offset);
387   void bgezc(Register rt, int16_t offset);
bgezc(Register rt,Label * L)388   inline void bgezc(Register rt, Label* L) {
389     bgezc(rt, shifted_branch_offset(L));
390   }
391   void bgeuc(Register rs, Register rt, int16_t offset);
bgeuc(Register rs,Register rt,Label * L)392   inline void bgeuc(Register rs, Register rt, Label* L) {
393     bgeuc(rs, rt, shifted_branch_offset(L));
394   }
395   void bgec(Register rs, Register rt, int16_t offset);
bgec(Register rs,Register rt,Label * L)396   inline void bgec(Register rs, Register rt, Label* L) {
397     bgec(rs, rt, shifted_branch_offset(L));
398   }
399   void bgezal(Register rs, int16_t offset);
400   void bgezalc(Register rt, int16_t offset);
bgezalc(Register rt,Label * L)401   inline void bgezalc(Register rt, Label* L) {
402     bgezalc(rt, shifted_branch_offset(L));
403   }
404   void bgezall(Register rs, int16_t offset);
bgezall(Register rs,Label * L)405   inline void bgezall(Register rs, Label* L) {
406     bgezall(rs, branch_offset(L) >> 2);
407   }
408   void bgtz(Register rs, int16_t offset);
409   void bgtzc(Register rt, int16_t offset);
bgtzc(Register rt,Label * L)410   inline void bgtzc(Register rt, Label* L) {
411     bgtzc(rt, shifted_branch_offset(L));
412   }
413   void blez(Register rs, int16_t offset);
414   void blezc(Register rt, int16_t offset);
blezc(Register rt,Label * L)415   inline void blezc(Register rt, Label* L) {
416     blezc(rt, shifted_branch_offset(L));
417   }
418   void bltz(Register rs, int16_t offset);
419   void bltzc(Register rt, int16_t offset);
bltzc(Register rt,Label * L)420   inline void bltzc(Register rt, Label* L) {
421     bltzc(rt, shifted_branch_offset(L));
422   }
423   void bltuc(Register rs, Register rt, int16_t offset);
bltuc(Register rs,Register rt,Label * L)424   inline void bltuc(Register rs, Register rt, Label* L) {
425     bltuc(rs, rt, shifted_branch_offset(L));
426   }
427   void bltc(Register rs, Register rt, int16_t offset);
bltc(Register rs,Register rt,Label * L)428   inline void bltc(Register rs, Register rt, Label* L) {
429     bltc(rs, rt, shifted_branch_offset(L));
430   }
431   void bltzal(Register rs, int16_t offset);
nal()432   void nal() { bltzal(zero_reg, 0); }
433   void blezalc(Register rt, int16_t offset);
blezalc(Register rt,Label * L)434   inline void blezalc(Register rt, Label* L) {
435     blezalc(rt, shifted_branch_offset(L));
436   }
437   void bltzalc(Register rt, int16_t offset);
bltzalc(Register rt,Label * L)438   inline void bltzalc(Register rt, Label* L) {
439     bltzalc(rt, shifted_branch_offset(L));
440   }
441   void bgtzalc(Register rt, int16_t offset);
bgtzalc(Register rt,Label * L)442   inline void bgtzalc(Register rt, Label* L) {
443     bgtzalc(rt, shifted_branch_offset(L));
444   }
445   void beqzalc(Register rt, int16_t offset);
beqzalc(Register rt,Label * L)446   inline void beqzalc(Register rt, Label* L) {
447     beqzalc(rt, shifted_branch_offset(L));
448   }
449   void beqc(Register rs, Register rt, int16_t offset);
beqc(Register rs,Register rt,Label * L)450   inline void beqc(Register rs, Register rt, Label* L) {
451     beqc(rs, rt, shifted_branch_offset(L));
452   }
453   void beqzc(Register rs, int32_t offset);
beqzc(Register rs,Label * L)454   inline void beqzc(Register rs, Label* L) {
455     beqzc(rs, shifted_branch_offset21(L));
456   }
457   void bnezalc(Register rt, int16_t offset);
bnezalc(Register rt,Label * L)458   inline void bnezalc(Register rt, Label* L) {
459     bnezalc(rt, shifted_branch_offset(L));
460   }
461   void bnec(Register rs, Register rt, int16_t offset);
bnec(Register rs,Register rt,Label * L)462   inline void bnec(Register rs, Register rt, Label* L) {
463     bnec(rs, rt, shifted_branch_offset(L));
464   }
465   void bnezc(Register rt, int32_t offset);
bnezc(Register rt,Label * L)466   inline void bnezc(Register rt, Label* L) {
467     bnezc(rt, shifted_branch_offset21(L));
468   }
469   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)470   inline void bne(Register rs, Register rt, Label* L) {
471     bne(rs, rt, shifted_branch_offset(L));
472   }
473   void bovc(Register rs, Register rt, int16_t offset);
bovc(Register rs,Register rt,Label * L)474   inline void bovc(Register rs, Register rt, Label* L) {
475     bovc(rs, rt, shifted_branch_offset(L));
476   }
477   void bnvc(Register rs, Register rt, int16_t offset);
bnvc(Register rs,Register rt,Label * L)478   inline void bnvc(Register rs, Register rt, Label* L) {
479     bnvc(rs, rt, shifted_branch_offset(L));
480   }
481 
482   // Never use the int16_t b(l)cond version with a branch offset
483   // instead of using the Label* version.
484 
485   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
486   void j(int32_t target);
487   void jal(int32_t target);
488   void jalr(Register rs, Register rd = ra);
489   void jr(Register target);
490   void jic(Register rt, int16_t offset);
491   void jialc(Register rt, int16_t offset);
492 
493   // -------Data-processing-instructions---------
494 
495   // Arithmetic.
496   void addu(Register rd, Register rs, Register rt);
497   void subu(Register rd, Register rs, Register rt);
498   void mult(Register rs, Register rt);
499   void multu(Register rs, Register rt);
500   void div(Register rs, Register rt);
501   void divu(Register rs, Register rt);
502   void div(Register rd, Register rs, Register rt);
503   void divu(Register rd, Register rs, Register rt);
504   void mod(Register rd, Register rs, Register rt);
505   void modu(Register rd, Register rs, Register rt);
506   void mul(Register rd, Register rs, Register rt);
507   void muh(Register rd, Register rs, Register rt);
508   void mulu(Register rd, Register rs, Register rt);
509   void muhu(Register rd, Register rs, Register rt);
510 
511   void addiu(Register rd, Register rs, int32_t j);
512 
513   // Logical.
514   void and_(Register rd, Register rs, Register rt);
515   void or_(Register rd, Register rs, Register rt);
516   void xor_(Register rd, Register rs, Register rt);
517   void nor(Register rd, Register rs, Register rt);
518 
519   void andi(Register rd, Register rs, int32_t j);
520   void ori(Register rd, Register rs, int32_t j);
521   void xori(Register rd, Register rs, int32_t j);
522   void lui(Register rd, int32_t j);
523   void aui(Register rs, Register rt, int32_t j);
524 
525   // Shifts.
526   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
527   // and may cause problems in normal code. coming_from_nop makes sure this
528   // doesn't happen.
529   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
530   void sllv(Register rd, Register rt, Register rs);
531   void srl(Register rd, Register rt, uint16_t sa);
532   void srlv(Register rd, Register rt, Register rs);
533   void sra(Register rt, Register rd, uint16_t sa);
534   void srav(Register rt, Register rd, Register rs);
535   void rotr(Register rd, Register rt, uint16_t sa);
536   void rotrv(Register rd, Register rt, Register rs);
537 
538   // ------------Memory-instructions-------------
539 
540   void lb(Register rd, const MemOperand& rs);
541   void lbu(Register rd, const MemOperand& rs);
542   void lh(Register rd, const MemOperand& rs);
543   void lhu(Register rd, const MemOperand& rs);
544   void lw(Register rd, const MemOperand& rs);
545   void lwl(Register rd, const MemOperand& rs);
546   void lwr(Register rd, const MemOperand& rs);
547   void sb(Register rd, const MemOperand& rs);
548   void sh(Register rd, const MemOperand& rs);
549   void sw(Register rd, const MemOperand& rs);
550   void swl(Register rd, const MemOperand& rs);
551   void swr(Register rd, const MemOperand& rs);
552 
553   // ----------Atomic instructions--------------
554 
555   void ll(Register rd, const MemOperand& rs);
556   void sc(Register rd, const MemOperand& rs);
557   void llx(Register rd, const MemOperand& rs);
558   void scx(Register rd, const MemOperand& rs);
559 
560   // ---------PC-Relative-instructions-----------
561 
562   void addiupc(Register rs, int32_t imm19);
563   void lwpc(Register rs, int32_t offset19);
564   void auipc(Register rs, int16_t imm16);
565   void aluipc(Register rs, int16_t imm16);
566 
567   // ----------------Prefetch--------------------
568 
569   void pref(int32_t hint, const MemOperand& rs);
570 
571   // -------------Misc-instructions--------------
572 
573   // Break / Trap instructions.
574   void break_(uint32_t code, bool break_as_stop = false);
575   void stop(uint32_t code = kMaxStopCode);
576   void tge(Register rs, Register rt, uint16_t code);
577   void tgeu(Register rs, Register rt, uint16_t code);
578   void tlt(Register rs, Register rt, uint16_t code);
579   void tltu(Register rs, Register rt, uint16_t code);
580   void teq(Register rs, Register rt, uint16_t code);
581   void tne(Register rs, Register rt, uint16_t code);
582 
583   // Memory barrier instruction.
584   void sync();
585 
586   // Move from HI/LO register.
587   void mfhi(Register rd);
588   void mflo(Register rd);
589 
590   // Set on less than.
591   void slt(Register rd, Register rs, Register rt);
592   void sltu(Register rd, Register rs, Register rt);
593   void slti(Register rd, Register rs, int32_t j);
594   void sltiu(Register rd, Register rs, int32_t j);
595 
596   // Conditional move.
597   void movz(Register rd, Register rs, Register rt);
598   void movn(Register rd, Register rs, Register rt);
599   void movt(Register rd, Register rs, uint16_t cc = 0);
600   void movf(Register rd, Register rs, uint16_t cc = 0);
601 
602   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
603   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
604   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
605   void seleqz(Register rd, Register rs, Register rt);
606   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
607               FPURegister ft);
608   void selnez(Register rd, Register rs, Register rt);
609   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
610               FPURegister ft);
611   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
612   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
613   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
614   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
615 
616   void movz_s(FPURegister fd, FPURegister fs, Register rt);
617   void movz_d(FPURegister fd, FPURegister fs, Register rt);
618   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
619   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
620   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
621   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
622   void movn_s(FPURegister fd, FPURegister fs, Register rt);
623   void movn_d(FPURegister fd, FPURegister fs, Register rt);
624   // Bit twiddling.
625   void clz(Register rd, Register rs);
626   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
627   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
628   void bitswap(Register rd, Register rt);
629   void align(Register rd, Register rs, Register rt, uint8_t bp);
630 
631   void wsbh(Register rd, Register rt);
632   void seh(Register rd, Register rt);
633   void seb(Register rd, Register rt);
634 
635   // --------Coprocessor-instructions----------------
636 
637   // Load, store, and move.
638   void lwc1(FPURegister fd, const MemOperand& src);
639   void swc1(FPURegister fs, const MemOperand& dst);
640 
641   void mtc1(Register rt, FPURegister fs);
642   void mthc1(Register rt, FPURegister fs);
643 
644   void mfc1(Register rt, FPURegister fs);
645   void mfhc1(Register rt, FPURegister fs);
646 
647   void ctc1(Register rt, FPUControlRegister fs);
648   void cfc1(Register rt, FPUControlRegister fs);
649 
650   // Arithmetic.
651   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
652   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
653   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
654   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
655   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
656   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
657   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
658   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
659   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
660   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
661   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
662   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
663   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
664   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
665   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
666   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
667   void abs_s(FPURegister fd, FPURegister fs);
668   void abs_d(FPURegister fd, FPURegister fs);
669   void mov_d(FPURegister fd, FPURegister fs);
670   void mov_s(FPURegister fd, FPURegister fs);
671   void neg_s(FPURegister fd, FPURegister fs);
672   void neg_d(FPURegister fd, FPURegister fs);
673   void sqrt_s(FPURegister fd, FPURegister fs);
674   void sqrt_d(FPURegister fd, FPURegister fs);
675   void rsqrt_s(FPURegister fd, FPURegister fs);
676   void rsqrt_d(FPURegister fd, FPURegister fs);
677   void recip_d(FPURegister fd, FPURegister fs);
678   void recip_s(FPURegister fd, FPURegister fs);
679 
680   // Conversion.
681   void cvt_w_s(FPURegister fd, FPURegister fs);
682   void cvt_w_d(FPURegister fd, FPURegister fs);
683   void trunc_w_s(FPURegister fd, FPURegister fs);
684   void trunc_w_d(FPURegister fd, FPURegister fs);
685   void round_w_s(FPURegister fd, FPURegister fs);
686   void round_w_d(FPURegister fd, FPURegister fs);
687   void floor_w_s(FPURegister fd, FPURegister fs);
688   void floor_w_d(FPURegister fd, FPURegister fs);
689   void ceil_w_s(FPURegister fd, FPURegister fs);
690   void ceil_w_d(FPURegister fd, FPURegister fs);
691   void rint_s(FPURegister fd, FPURegister fs);
692   void rint_d(FPURegister fd, FPURegister fs);
693   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
694 
695   void cvt_l_s(FPURegister fd, FPURegister fs);
696   void cvt_l_d(FPURegister fd, FPURegister fs);
697   void trunc_l_s(FPURegister fd, FPURegister fs);
698   void trunc_l_d(FPURegister fd, FPURegister fs);
699   void round_l_s(FPURegister fd, FPURegister fs);
700   void round_l_d(FPURegister fd, FPURegister fs);
701   void floor_l_s(FPURegister fd, FPURegister fs);
702   void floor_l_d(FPURegister fd, FPURegister fs);
703   void ceil_l_s(FPURegister fd, FPURegister fs);
704   void ceil_l_d(FPURegister fd, FPURegister fs);
705 
706   void class_s(FPURegister fd, FPURegister fs);
707   void class_d(FPURegister fd, FPURegister fs);
708 
709   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
710   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
711   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
712   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
713   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
714   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
715   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
716   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
717   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
718   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
719   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
720   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
721 
722   void cvt_s_w(FPURegister fd, FPURegister fs);
723   void cvt_s_l(FPURegister fd, FPURegister fs);
724   void cvt_s_d(FPURegister fd, FPURegister fs);
725 
726   void cvt_d_w(FPURegister fd, FPURegister fs);
727   void cvt_d_l(FPURegister fd, FPURegister fs);
728   void cvt_d_s(FPURegister fd, FPURegister fs);
729 
730   // Conditions and branches for MIPSr6.
731   void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
732            FPURegister ft, FPURegister fs);
733   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
734   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
735 
736   void bc1eqz(int16_t offset, FPURegister ft);
bc1eqz(Label * L,FPURegister ft)737   inline void bc1eqz(Label* L, FPURegister ft) {
738     bc1eqz(shifted_branch_offset(L), ft);
739   }
740   void bc1nez(int16_t offset, FPURegister ft);
bc1nez(Label * L,FPURegister ft)741   inline void bc1nez(Label* L, FPURegister ft) {
742     bc1nez(shifted_branch_offset(L), ft);
743   }
744 
745   // Conditions and branches for non MIPSr6.
746   void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs,
747          uint16_t cc = 0);
748   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
749   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
750 
751   void bc1f(int16_t offset, uint16_t cc = 0);
752   inline void bc1f(Label* L, uint16_t cc = 0) {
753     bc1f(shifted_branch_offset(L), cc);
754   }
755   void bc1t(int16_t offset, uint16_t cc = 0);
756   inline void bc1t(Label* L, uint16_t cc = 0) {
757     bc1t(shifted_branch_offset(L), cc);
758   }
759   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
760 
761   // MSA instructions
762   void bz_v(MSARegister wt, int16_t offset);
bz_v(MSARegister wt,Label * L)763   inline void bz_v(MSARegister wt, Label* L) {
764     bz_v(wt, shifted_branch_offset(L));
765   }
766   void bz_b(MSARegister wt, int16_t offset);
bz_b(MSARegister wt,Label * L)767   inline void bz_b(MSARegister wt, Label* L) {
768     bz_b(wt, shifted_branch_offset(L));
769   }
770   void bz_h(MSARegister wt, int16_t offset);
bz_h(MSARegister wt,Label * L)771   inline void bz_h(MSARegister wt, Label* L) {
772     bz_h(wt, shifted_branch_offset(L));
773   }
774   void bz_w(MSARegister wt, int16_t offset);
bz_w(MSARegister wt,Label * L)775   inline void bz_w(MSARegister wt, Label* L) {
776     bz_w(wt, shifted_branch_offset(L));
777   }
778   void bz_d(MSARegister wt, int16_t offset);
bz_d(MSARegister wt,Label * L)779   inline void bz_d(MSARegister wt, Label* L) {
780     bz_d(wt, shifted_branch_offset(L));
781   }
782   void bnz_v(MSARegister wt, int16_t offset);
bnz_v(MSARegister wt,Label * L)783   inline void bnz_v(MSARegister wt, Label* L) {
784     bnz_v(wt, shifted_branch_offset(L));
785   }
786   void bnz_b(MSARegister wt, int16_t offset);
bnz_b(MSARegister wt,Label * L)787   inline void bnz_b(MSARegister wt, Label* L) {
788     bnz_b(wt, shifted_branch_offset(L));
789   }
790   void bnz_h(MSARegister wt, int16_t offset);
bnz_h(MSARegister wt,Label * L)791   inline void bnz_h(MSARegister wt, Label* L) {
792     bnz_h(wt, shifted_branch_offset(L));
793   }
794   void bnz_w(MSARegister wt, int16_t offset);
bnz_w(MSARegister wt,Label * L)795   inline void bnz_w(MSARegister wt, Label* L) {
796     bnz_w(wt, shifted_branch_offset(L));
797   }
798   void bnz_d(MSARegister wt, int16_t offset);
bnz_d(MSARegister wt,Label * L)799   inline void bnz_d(MSARegister wt, Label* L) {
800     bnz_d(wt, shifted_branch_offset(L));
801   }
802 
803   void ld_b(MSARegister wd, const MemOperand& rs);
804   void ld_h(MSARegister wd, const MemOperand& rs);
805   void ld_w(MSARegister wd, const MemOperand& rs);
806   void ld_d(MSARegister wd, const MemOperand& rs);
807   void st_b(MSARegister wd, const MemOperand& rs);
808   void st_h(MSARegister wd, const MemOperand& rs);
809   void st_w(MSARegister wd, const MemOperand& rs);
810   void st_d(MSARegister wd, const MemOperand& rs);
811 
812   void ldi_b(MSARegister wd, int32_t imm10);
813   void ldi_h(MSARegister wd, int32_t imm10);
814   void ldi_w(MSARegister wd, int32_t imm10);
815   void ldi_d(MSARegister wd, int32_t imm10);
816 
817   void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
818   void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
819   void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
820   void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
821   void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
822   void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
823   void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
824   void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
825   void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
826   void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
827   void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
828   void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
829   void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
830   void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
831   void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
832   void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
833   void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
834   void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
835   void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
836   void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
837   void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
838   void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
839   void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
840   void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
841   void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5);
842   void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5);
843   void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5);
844   void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5);
845   void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
846   void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
847   void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
848   void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
849   void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
850   void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
851   void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
852   void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
853   void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5);
854   void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5);
855   void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5);
856   void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5);
857   void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5);
858   void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5);
859   void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5);
860   void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5);
861 
862   void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
863   void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
864   void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
865   void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8);
866   void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
867   void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8);
868   void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8);
869   void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8);
870   void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8);
871   void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8);
872 
873   void and_v(MSARegister wd, MSARegister ws, MSARegister wt);
874   void or_v(MSARegister wd, MSARegister ws, MSARegister wt);
875   void nor_v(MSARegister wd, MSARegister ws, MSARegister wt);
876   void xor_v(MSARegister wd, MSARegister ws, MSARegister wt);
877   void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt);
878   void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt);
879   void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt);
880 
881   void fill_b(MSARegister wd, Register rs);
882   void fill_h(MSARegister wd, Register rs);
883   void fill_w(MSARegister wd, Register rs);
884   void pcnt_b(MSARegister wd, MSARegister ws);
885   void pcnt_h(MSARegister wd, MSARegister ws);
886   void pcnt_w(MSARegister wd, MSARegister ws);
887   void pcnt_d(MSARegister wd, MSARegister ws);
888   void nloc_b(MSARegister wd, MSARegister ws);
889   void nloc_h(MSARegister wd, MSARegister ws);
890   void nloc_w(MSARegister wd, MSARegister ws);
891   void nloc_d(MSARegister wd, MSARegister ws);
892   void nlzc_b(MSARegister wd, MSARegister ws);
893   void nlzc_h(MSARegister wd, MSARegister ws);
894   void nlzc_w(MSARegister wd, MSARegister ws);
895   void nlzc_d(MSARegister wd, MSARegister ws);
896 
897   void fclass_w(MSARegister wd, MSARegister ws);
898   void fclass_d(MSARegister wd, MSARegister ws);
899   void ftrunc_s_w(MSARegister wd, MSARegister ws);
900   void ftrunc_s_d(MSARegister wd, MSARegister ws);
901   void ftrunc_u_w(MSARegister wd, MSARegister ws);
902   void ftrunc_u_d(MSARegister wd, MSARegister ws);
903   void fsqrt_w(MSARegister wd, MSARegister ws);
904   void fsqrt_d(MSARegister wd, MSARegister ws);
905   void frsqrt_w(MSARegister wd, MSARegister ws);
906   void frsqrt_d(MSARegister wd, MSARegister ws);
907   void frcp_w(MSARegister wd, MSARegister ws);
908   void frcp_d(MSARegister wd, MSARegister ws);
909   void frint_w(MSARegister wd, MSARegister ws);
910   void frint_d(MSARegister wd, MSARegister ws);
911   void flog2_w(MSARegister wd, MSARegister ws);
912   void flog2_d(MSARegister wd, MSARegister ws);
913   void fexupl_w(MSARegister wd, MSARegister ws);
914   void fexupl_d(MSARegister wd, MSARegister ws);
915   void fexupr_w(MSARegister wd, MSARegister ws);
916   void fexupr_d(MSARegister wd, MSARegister ws);
917   void ffql_w(MSARegister wd, MSARegister ws);
918   void ffql_d(MSARegister wd, MSARegister ws);
919   void ffqr_w(MSARegister wd, MSARegister ws);
920   void ffqr_d(MSARegister wd, MSARegister ws);
921   void ftint_s_w(MSARegister wd, MSARegister ws);
922   void ftint_s_d(MSARegister wd, MSARegister ws);
923   void ftint_u_w(MSARegister wd, MSARegister ws);
924   void ftint_u_d(MSARegister wd, MSARegister ws);
925   void ffint_s_w(MSARegister wd, MSARegister ws);
926   void ffint_s_d(MSARegister wd, MSARegister ws);
927   void ffint_u_w(MSARegister wd, MSARegister ws);
928   void ffint_u_d(MSARegister wd, MSARegister ws);
929 
930   void sll_b(MSARegister wd, MSARegister ws, MSARegister wt);
931   void sll_h(MSARegister wd, MSARegister ws, MSARegister wt);
932   void sll_w(MSARegister wd, MSARegister ws, MSARegister wt);
933   void sll_d(MSARegister wd, MSARegister ws, MSARegister wt);
934   void sra_b(MSARegister wd, MSARegister ws, MSARegister wt);
935   void sra_h(MSARegister wd, MSARegister ws, MSARegister wt);
936   void sra_w(MSARegister wd, MSARegister ws, MSARegister wt);
937   void sra_d(MSARegister wd, MSARegister ws, MSARegister wt);
938   void srl_b(MSARegister wd, MSARegister ws, MSARegister wt);
939   void srl_h(MSARegister wd, MSARegister ws, MSARegister wt);
940   void srl_w(MSARegister wd, MSARegister ws, MSARegister wt);
941   void srl_d(MSARegister wd, MSARegister ws, MSARegister wt);
942   void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt);
943   void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt);
944   void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt);
945   void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt);
946   void bset_b(MSARegister wd, MSARegister ws, MSARegister wt);
947   void bset_h(MSARegister wd, MSARegister ws, MSARegister wt);
948   void bset_w(MSARegister wd, MSARegister ws, MSARegister wt);
949   void bset_d(MSARegister wd, MSARegister ws, MSARegister wt);
950   void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt);
951   void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt);
952   void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt);
953   void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt);
954   void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt);
955   void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt);
956   void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt);
957   void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt);
958   void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt);
959   void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt);
960   void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt);
961   void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt);
962   void addv_b(MSARegister wd, MSARegister ws, MSARegister wt);
963   void addv_h(MSARegister wd, MSARegister ws, MSARegister wt);
964   void addv_w(MSARegister wd, MSARegister ws, MSARegister wt);
965   void addv_d(MSARegister wd, MSARegister ws, MSARegister wt);
966   void subv_b(MSARegister wd, MSARegister ws, MSARegister wt);
967   void subv_h(MSARegister wd, MSARegister ws, MSARegister wt);
968   void subv_w(MSARegister wd, MSARegister ws, MSARegister wt);
969   void subv_d(MSARegister wd, MSARegister ws, MSARegister wt);
970   void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
971   void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
972   void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
973   void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
974   void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
975   void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
976   void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
977   void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
978   void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
979   void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
980   void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
981   void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
982   void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
983   void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
984   void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
985   void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
986   void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
987   void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
988   void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
989   void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
990   void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
991   void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
992   void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
993   void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
994   void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt);
995   void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt);
996   void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
997   void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
998   void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
999   void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1000   void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1001   void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1002   void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1003   void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1004   void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1005   void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1006   void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1007   void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1008   void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1009   void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1010   void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1011   void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1012   void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1013   void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1014   void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1015   void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1016   void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1017   void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1018   void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt);
1019   void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt);
1020   void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1021   void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1022   void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1023   void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1024   void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1025   void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1026   void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1027   void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1028   void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1029   void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1030   void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1031   void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1032   void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1033   void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1034   void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1035   void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1036   void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1037   void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1038   void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1039   void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1040   void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1041   void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1042   void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1043   void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1044   void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1045   void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1046   void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1047   void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1048   void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1049   void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1050   void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1051   void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1052   void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1053   void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1054   void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1055   void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1056   void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1057   void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1058   void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1059   void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1060   void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1061   void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1062   void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1063   void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1064   void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1065   void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1066   void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1067   void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1068   void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1069   void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1070   void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1071   void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1072   void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1073   void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1074   void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1075   void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1076   void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1077   void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1078   void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1079   void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1080   void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1081   void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1082   void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1083   void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1084   void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1085   void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1086   void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt);
1087   void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt);
1088   void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1089   void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1090   void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1091   void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1092   void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1093   void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1094   void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1095   void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1096   void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1097   void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1098   void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1099   void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1100   void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1101   void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1102   void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1103   void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1104   void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1105   void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1106   void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1107   void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1108   void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1109   void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1110   void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1111   void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1112   void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1113   void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1114   void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1115   void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1116   void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1117   void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1118   void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1119   void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1120   void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1121   void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1122   void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1123   void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1124   void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1125   void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1126   void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1127   void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1128   void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1129   void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1130   void sld_b(MSARegister wd, MSARegister ws, Register rt);
1131   void sld_h(MSARegister wd, MSARegister ws, Register rt);
1132   void sld_w(MSARegister wd, MSARegister ws, Register rt);
1133   void sld_d(MSARegister wd, MSARegister ws, Register rt);
1134   void splat_b(MSARegister wd, MSARegister ws, Register rt);
1135   void splat_h(MSARegister wd, MSARegister ws, Register rt);
1136   void splat_w(MSARegister wd, MSARegister ws, Register rt);
1137   void splat_d(MSARegister wd, MSARegister ws, Register rt);
1138   void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1139   void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1140   void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1141   void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1142   void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1143   void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1144   void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1145   void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1146   void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt);
1147   void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt);
1148   void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt);
1149   void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt);
1150   void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1151   void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1152   void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1153   void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1154   void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt);
1155   void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt);
1156   void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt);
1157   void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt);
1158   void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt);
1159   void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt);
1160   void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt);
1161   void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt);
1162   void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt);
1163   void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt);
1164   void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1165   void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1166   void srar_b(MSARegister wd, MSARegister ws, MSARegister wt);
1167   void srar_h(MSARegister wd, MSARegister ws, MSARegister wt);
1168   void srar_w(MSARegister wd, MSARegister ws, MSARegister wt);
1169   void srar_d(MSARegister wd, MSARegister ws, MSARegister wt);
1170   void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt);
1171   void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt);
1172   void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt);
1173   void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt);
1174   void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1175   void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1176   void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1177   void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1178   void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1179   void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1180   void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1181   void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1182   void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt);
1183   void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt);
1184   void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt);
1185   void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt);
1186   void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt);
1187   void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt);
1188   void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt);
1189   void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt);
1190 
1191   void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1192   void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1193   void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1194   void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1195   void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1196   void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1197   void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1198   void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1199   void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1200   void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1201   void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1202   void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1203   void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1204   void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1205   void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1206   void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1207   void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt);
1208   void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt);
1209   void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt);
1210   void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt);
1211   void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1212   void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1213   void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1214   void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt);
1215   void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt);
1216   void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt);
1217   void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt);
1218   void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt);
1219   void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt);
1220   void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt);
1221   void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt);
1222   void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt);
1223   void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1224   void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1225   void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1226   void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1227   void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt);
1228   void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt);
1229   void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt);
1230   void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt);
1231   void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt);
1232   void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt);
1233   void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt);
1234   void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt);
1235   void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt);
1236   void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt);
1237   void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt);
1238   void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt);
1239   void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt);
1240   void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt);
1241   void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt);
1242   void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt);
1243   void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1244   void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1245   void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt);
1246   void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt);
1247   void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt);
1248   void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt);
1249   void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1250   void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1251   void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1252   void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1253   void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1254   void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1255   void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1256   void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1257   void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1258   void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1259   void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1260   void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1261   void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt);
1262   void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt);
1263   void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt);
1264   void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt);
1265   void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt);
1266   void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt);
1267   void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1268   void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1269   void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1270   void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1271   void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt);
1272   void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt);
1273 
1274   void sldi_b(MSARegister wd, MSARegister ws, uint32_t n);
1275   void sldi_h(MSARegister wd, MSARegister ws, uint32_t n);
1276   void sldi_w(MSARegister wd, MSARegister ws, uint32_t n);
1277   void sldi_d(MSARegister wd, MSARegister ws, uint32_t n);
1278   void splati_b(MSARegister wd, MSARegister ws, uint32_t n);
1279   void splati_h(MSARegister wd, MSARegister ws, uint32_t n);
1280   void splati_w(MSARegister wd, MSARegister ws, uint32_t n);
1281   void splati_d(MSARegister wd, MSARegister ws, uint32_t n);
1282   void copy_s_b(Register rd, MSARegister ws, uint32_t n);
1283   void copy_s_h(Register rd, MSARegister ws, uint32_t n);
1284   void copy_s_w(Register rd, MSARegister ws, uint32_t n);
1285   void copy_u_b(Register rd, MSARegister ws, uint32_t n);
1286   void copy_u_h(Register rd, MSARegister ws, uint32_t n);
1287   void copy_u_w(Register rd, MSARegister ws, uint32_t n);
1288   void insert_b(MSARegister wd, uint32_t n, Register rs);
1289   void insert_h(MSARegister wd, uint32_t n, Register rs);
1290   void insert_w(MSARegister wd, uint32_t n, Register rs);
1291   void insve_b(MSARegister wd, uint32_t n, MSARegister ws);
1292   void insve_h(MSARegister wd, uint32_t n, MSARegister ws);
1293   void insve_w(MSARegister wd, uint32_t n, MSARegister ws);
1294   void insve_d(MSARegister wd, uint32_t n, MSARegister ws);
1295   void move_v(MSARegister wd, MSARegister ws);
1296   void ctcmsa(MSAControlRegister cd, Register rs);
1297   void cfcmsa(Register rd, MSAControlRegister cs);
1298 
1299   void slli_b(MSARegister wd, MSARegister ws, uint32_t m);
1300   void slli_h(MSARegister wd, MSARegister ws, uint32_t m);
1301   void slli_w(MSARegister wd, MSARegister ws, uint32_t m);
1302   void slli_d(MSARegister wd, MSARegister ws, uint32_t m);
1303   void srai_b(MSARegister wd, MSARegister ws, uint32_t m);
1304   void srai_h(MSARegister wd, MSARegister ws, uint32_t m);
1305   void srai_w(MSARegister wd, MSARegister ws, uint32_t m);
1306   void srai_d(MSARegister wd, MSARegister ws, uint32_t m);
1307   void srli_b(MSARegister wd, MSARegister ws, uint32_t m);
1308   void srli_h(MSARegister wd, MSARegister ws, uint32_t m);
1309   void srli_w(MSARegister wd, MSARegister ws, uint32_t m);
1310   void srli_d(MSARegister wd, MSARegister ws, uint32_t m);
1311   void bclri_b(MSARegister wd, MSARegister ws, uint32_t m);
1312   void bclri_h(MSARegister wd, MSARegister ws, uint32_t m);
1313   void bclri_w(MSARegister wd, MSARegister ws, uint32_t m);
1314   void bclri_d(MSARegister wd, MSARegister ws, uint32_t m);
1315   void bseti_b(MSARegister wd, MSARegister ws, uint32_t m);
1316   void bseti_h(MSARegister wd, MSARegister ws, uint32_t m);
1317   void bseti_w(MSARegister wd, MSARegister ws, uint32_t m);
1318   void bseti_d(MSARegister wd, MSARegister ws, uint32_t m);
1319   void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m);
1320   void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m);
1321   void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m);
1322   void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m);
1323   void binsli_b(MSARegister wd, MSARegister ws, uint32_t m);
1324   void binsli_h(MSARegister wd, MSARegister ws, uint32_t m);
1325   void binsli_w(MSARegister wd, MSARegister ws, uint32_t m);
1326   void binsli_d(MSARegister wd, MSARegister ws, uint32_t m);
1327   void binsri_b(MSARegister wd, MSARegister ws, uint32_t m);
1328   void binsri_h(MSARegister wd, MSARegister ws, uint32_t m);
1329   void binsri_w(MSARegister wd, MSARegister ws, uint32_t m);
1330   void binsri_d(MSARegister wd, MSARegister ws, uint32_t m);
1331   void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m);
1332   void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m);
1333   void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m);
1334   void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m);
1335   void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m);
1336   void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m);
1337   void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m);
1338   void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m);
1339   void srari_b(MSARegister wd, MSARegister ws, uint32_t m);
1340   void srari_h(MSARegister wd, MSARegister ws, uint32_t m);
1341   void srari_w(MSARegister wd, MSARegister ws, uint32_t m);
1342   void srari_d(MSARegister wd, MSARegister ws, uint32_t m);
1343   void srlri_b(MSARegister wd, MSARegister ws, uint32_t m);
1344   void srlri_h(MSARegister wd, MSARegister ws, uint32_t m);
1345   void srlri_w(MSARegister wd, MSARegister ws, uint32_t m);
1346   void srlri_d(MSARegister wd, MSARegister ws, uint32_t m);
1347 
1348   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1349   int SizeOfCodeGeneratedSince(Label* label) {
1350     return pc_offset() - label->pos();
1351   }
1352 
1353   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)1354   int InstructionsGeneratedSince(Label* label) {
1355     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1356   }
1357 
1358   // Class for scoping postponing the trampoline pool generation.
1359   class V8_NODISCARD BlockTrampolinePoolScope {
1360    public:
BlockTrampolinePoolScope(Assembler * assem)1361     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1362       assem_->StartBlockTrampolinePool();
1363     }
~BlockTrampolinePoolScope()1364     ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); }
1365 
1366    private:
1367     Assembler* assem_;
1368 
1369     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1370   };
1371 
1372   // Class for postponing the assembly buffer growth. Typically used for
1373   // sequences of instructions that must be emitted as a unit, before
1374   // buffer growth (and relocation) can occur.
1375   // This blocking scope is not nestable.
1376   class V8_NODISCARD BlockGrowBufferScope {
1377    public:
BlockGrowBufferScope(Assembler * assem)1378     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1379       assem_->StartBlockGrowBuffer();
1380     }
~BlockGrowBufferScope()1381     ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); }
1382 
1383    private:
1384     Assembler* assem_;
1385 
1386     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1387   };
1388 
1389   // Record a deoptimization reason that can be used by a log or cpu profiler.
1390   // Use --trace-deopt to enable.
1391   void RecordDeoptReason(DeoptimizeReason reason, uint32_t node_id,
1392                          SourcePosition position, int id);
1393 
1394   static int RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
1395                                        intptr_t pc_delta);
1396 
1397   static void RelocateRelativeReference(RelocInfo::Mode rmode, Address pc,
1398                                         intptr_t pc_delta);
1399 
1400   // Writes a single byte or word of data in the code stream.  Used for
1401   // inline tables, e.g., jump-tables.
1402   void db(uint8_t data);
1403   void dd(uint32_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO);
1404   void dq(uint64_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO);
1405   void dp(uintptr_t data, RelocInfo::Mode rmode = RelocInfo::NO_INFO) {
1406     dd(data, rmode);
1407   }
1408   void dd(Label* label);
1409 
1410   // Postpone the generation of the trampoline pool for the specified number of
1411   // instructions.
1412   void BlockTrampolinePoolFor(int instructions);
1413 
1414   // Check if there is less than kGap bytes available in the buffer.
1415   // If this is the case, we need to grow the buffer before emitting
1416   // an instruction or relocation information.
overflow()1417   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1418 
1419   // Get the number of bytes available in the buffer.
available_space()1420   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1421 
1422   // Read/patch instructions.
instr_at(Address pc)1423   static Instr instr_at(Address pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(Address pc,Instr instr)1424   static void instr_at_put(Address pc, Instr instr) {
1425     *reinterpret_cast<Instr*>(pc) = instr;
1426   }
instr_at(int pos)1427   Instr instr_at(int pos) {
1428     return *reinterpret_cast<Instr*>(buffer_start_ + pos);
1429   }
instr_at_put(int pos,Instr instr)1430   void instr_at_put(int pos, Instr instr) {
1431     *reinterpret_cast<Instr*>(buffer_start_ + pos) = instr;
1432   }
1433 
1434   // Check if an instruction is a branch of some kind.
1435   static bool IsBranch(Instr instr);
1436   static bool IsMsaBranch(Instr instr);
1437   static bool IsBc(Instr instr);
1438   static bool IsNal(Instr instr);
1439   static bool IsBzc(Instr instr);
1440   static bool IsBeq(Instr instr);
1441   static bool IsBne(Instr instr);
1442   static bool IsBeqzc(Instr instr);
1443   static bool IsBnezc(Instr instr);
1444   static bool IsBeqc(Instr instr);
1445   static bool IsBnec(Instr instr);
1446   static bool IsJicOrJialc(Instr instr);
1447   static bool IsMov(Instr instr, Register rd, Register rs);
1448 
1449   static bool IsJump(Instr instr);
1450   static bool IsJ(Instr instr);
1451   static bool IsLui(Instr instr);
1452   static bool IsOri(Instr instr);
1453   static bool IsAddu(Instr instr, Register rd, Register rs, Register rt);
1454 
1455   static bool IsJal(Instr instr);
1456   static bool IsJr(Instr instr);
1457   static bool IsJalr(Instr instr);
1458 
1459   static bool IsNop(Instr instr, unsigned int type);
1460   static bool IsPop(Instr instr);
1461   static bool IsPush(Instr instr);
1462   static bool IsLwRegFpOffset(Instr instr);
1463   static bool IsSwRegFpOffset(Instr instr);
1464   static bool IsLwRegFpNegOffset(Instr instr);
1465   static bool IsSwRegFpNegOffset(Instr instr);
1466 
1467   static Register GetRtReg(Instr instr);
1468   static Register GetRsReg(Instr instr);
1469   static Register GetRdReg(Instr instr);
1470 
1471   static uint32_t GetRt(Instr instr);
1472   static uint32_t GetRtField(Instr instr);
1473   static uint32_t GetRs(Instr instr);
1474   static uint32_t GetRsField(Instr instr);
1475   static uint32_t GetRd(Instr instr);
1476   static uint32_t GetRdField(Instr instr);
1477   static uint32_t GetSa(Instr instr);
1478   static uint32_t GetSaField(Instr instr);
1479   static uint32_t GetOpcodeField(Instr instr);
1480   static uint32_t GetFunction(Instr instr);
1481   static uint32_t GetFunctionField(Instr instr);
1482   static uint32_t GetImmediate16(Instr instr);
1483   static uint32_t GetLabelConst(Instr instr);
1484 
1485   static int32_t GetBranchOffset(Instr instr);
1486   static bool IsLw(Instr instr);
1487   static int16_t GetLwOffset(Instr instr);
1488   static int16_t GetJicOrJialcOffset(Instr instr);
1489   static int16_t GetLuiOffset(Instr instr);
1490   static Instr SetLwOffset(Instr instr, int16_t offset);
1491 
1492   static bool IsSw(Instr instr);
1493   static Instr SetSwOffset(Instr instr, int16_t offset);
1494   static bool IsAddImmediate(Instr instr);
1495   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1496   static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic);
1497   static void UnpackTargetAddress(uint32_t address, int16_t* lui_offset,
1498                                   int16_t* jic_offset);
1499   static void UnpackTargetAddressUnsigned(uint32_t address,
1500                                           uint32_t* lui_offset,
1501                                           uint32_t* jic_offset);
1502 
1503   static bool IsAndImmediate(Instr instr);
1504   static bool IsEmittedConstant(Instr instr);
1505 
1506   void CheckTrampolinePool();
1507 
IsPrevInstrCompactBranch()1508   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
IsCompactBranchSupported()1509   static bool IsCompactBranchSupported() {
1510     return IsMipsArchVariant(kMips32r6);
1511   }
1512 
1513   // Get the code target object for a pc-relative call or jump.
1514   V8_INLINE Handle<Code> relative_code_target_object_handle_at(
1515       Address pc_) const;
1516 
UnboundLabelsCount()1517   inline int UnboundLabelsCount() { return unbound_labels_count_; }
1518 
is_trampoline_emitted()1519   bool is_trampoline_emitted() const { return trampoline_emitted_; }
1520 
1521  protected:
1522   // Load Scaled Address instruction.
1523   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
1524 
1525   // Readable constants for base and offset adjustment helper, these indicate if
1526   // aside from offset, another value like offset + 4 should fit into int16.
1527   enum class OffsetAccessType : bool {
1528     SINGLE_ACCESS = false,
1529     TWO_ACCESSES = true
1530   };
1531 
1532   // Helper function for memory load/store using base register and offset.
1533   void AdjustBaseAndOffset(
1534       MemOperand* src,
1535       OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS,
1536       int second_access_add_to_offset = 4);
1537 
buffer_space()1538   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1539 
1540   // Decode branch instruction at pos and return branch target pos.
1541   int target_at(int pos, bool is_internal);
1542 
1543   // Patch branch instruction at pos to branch to given branch target pos.
1544   void target_at_put(int pos, int target_pos, bool is_internal);
1545 
1546   // Say if we need to relocate with this mode.
1547   bool MustUseReg(RelocInfo::Mode rmode);
1548 
1549   // Record reloc info for current pc_.
1550   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1551 
1552   // Read 32-bit immediate from lui, ori pair that is used to load immediate.
1553   static int32_t GetLuiOriImmediate(Instr instr1, Instr instr2);
1554 
1555   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)1556   void BlockTrampolinePoolBefore(int pc_offset) {
1557     if (no_trampoline_pool_before_ < pc_offset)
1558       no_trampoline_pool_before_ = pc_offset;
1559   }
1560 
StartBlockTrampolinePool()1561   void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; }
1562 
EndBlockTrampolinePool()1563   void EndBlockTrampolinePool() {
1564     trampoline_pool_blocked_nesting_--;
1565     if (trampoline_pool_blocked_nesting_ == 0) {
1566       CheckTrampolinePoolQuick(1);
1567     }
1568   }
1569 
is_trampoline_pool_blocked()1570   bool is_trampoline_pool_blocked() const {
1571     return trampoline_pool_blocked_nesting_ > 0;
1572   }
1573 
has_exception()1574   bool has_exception() const { return internal_trampoline_exception_; }
1575 
1576   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1577   void StartBlockGrowBuffer() {
1578     DCHECK(!block_buffer_growth_);
1579     block_buffer_growth_ = true;
1580   }
1581 
EndBlockGrowBuffer()1582   void EndBlockGrowBuffer() {
1583     DCHECK(block_buffer_growth_);
1584     block_buffer_growth_ = false;
1585   }
1586 
is_buffer_growth_blocked()1587   bool is_buffer_growth_blocked() const { return block_buffer_growth_; }
1588 
EmitForbiddenSlotInstruction()1589   void EmitForbiddenSlotInstruction() {
1590     if (IsPrevInstrCompactBranch()) {
1591       nop();
1592     }
1593   }
1594 
1595   inline void CheckTrampolinePoolQuick(int extra_instructions = 0) {
1596     if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
1597       CheckTrampolinePool();
1598     }
1599   }
1600 
1601   inline void CheckBuffer();
1602 
1603   RegList scratch_register_list_;
1604 
1605   // Generate common instruction sequence.
1606   void GenPCRelativeJump(Register tf, Register ts, int32_t imm32,
1607                          RelocInfo::Mode rmode, BranchDelaySlot bdslot);
1608   void GenPCRelativeJumpAndLink(Register t, int32_t imm32,
1609                                 RelocInfo::Mode rmode, BranchDelaySlot bdslot);
1610 
set_pc_for_safepoint()1611   void set_pc_for_safepoint() { pc_for_safepoint_ = pc_; }
1612 
1613  private:
1614   // Avoid overflows for displacements etc.
1615   static const int kMaximalBufferSize = 512 * MB;
1616 
1617   inline static void set_target_internal_reference_encoded_at(Address pc,
1618                                                               Address target);
1619 
1620   // Buffer size and constant pool distance are checked together at regular
1621   // intervals of kBufferCheckInterval emitted bytes.
1622   static constexpr int kBufferCheckInterval = 1 * KB / 2;
1623 
1624   // Code generation.
1625   // The relocation writer's position is at least kGap bytes below the end of
1626   // the generated instructions. This is so that multi-instruction sequences do
1627   // not have to check for overflow. The same is true for writes of large
1628   // relocation info entries.
1629   static constexpr int kGap = 32;
1630   STATIC_ASSERT(AssemblerBase::kMinimalBufferSize >= 2 * kGap);
1631 
1632   // Repeated checking whether the trampoline pool should be emitted is rather
1633   // expensive. By default we only check again once a number of instructions
1634   // has been generated.
1635   static constexpr int kCheckConstIntervalInst = 32;
1636   static constexpr int kCheckConstInterval =
1637       kCheckConstIntervalInst * kInstrSize;
1638 
1639   int next_buffer_check_;  // pc offset of next buffer check.
1640 
1641   // Emission of the trampoline pool may be blocked in some code sequences.
1642   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1643   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1644 
1645   // Keep track of the last emitted pool to guarantee a maximal distance.
1646   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1647 
1648   // Automatic growth of the assembly buffer may be blocked for some sequences.
1649   bool block_buffer_growth_;  // Block growth when true.
1650 
1651   // Relocation information generation.
1652   // Each relocation is encoded as a variable size value.
1653   static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1654   RelocInfoWriter reloc_info_writer;
1655 
1656   // The bound position, before this we cannot do instruction elimination.
1657   int last_bound_pos_;
1658 
1659   // Readable constants for compact branch handling in emit()
1660   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
1661 
1662   // Code emission.
1663   void GrowBuffer();
1664   inline void emit(Instr x,
1665                    CompactBranchType is_compact_branch = CompactBranchType::NO);
1666   inline void emit(uint64_t x);
1667   inline void CheckForEmitInForbiddenSlot();
1668   template <typename T>
1669   inline void EmitHelper(T x);
1670   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
1671 
1672   // Instruction generation.
1673   // We have 3 different kind of encoding layout on MIPS.
1674   // However due to many different types of objects encoded in the same fields
1675   // we have quite a few aliases for each mode.
1676   // Using the same structure to refer to Register and FPURegister would spare a
1677   // few aliases, but mixing both does not look clean to me.
1678   // Anyway we could surely implement this differently.
1679 
1680   void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd,
1681                         uint16_t sa = 0, SecondaryField func = nullptrSF);
1682 
1683   void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb,
1684                         uint16_t lsb, SecondaryField func);
1685 
1686   void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft,
1687                         FPURegister fs, FPURegister fd,
1688                         SecondaryField func = nullptrSF);
1689 
1690   void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1691                         FPURegister fs, FPURegister fd,
1692                         SecondaryField func = nullptrSF);
1693 
1694   void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1695                         FPURegister fs, FPURegister fd,
1696                         SecondaryField func = nullptrSF);
1697 
1698   void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1699                         FPUControlRegister fs, SecondaryField func = nullptrSF);
1700 
1701   void GenInstrImmediate(
1702       Opcode opcode, Register rs, Register rt, int32_t j,
1703       CompactBranchType is_compact_branch = CompactBranchType::NO);
1704   void GenInstrImmediate(
1705       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
1706       CompactBranchType is_compact_branch = CompactBranchType::NO);
1707   void GenInstrImmediate(
1708       Opcode opcode, Register r1, FPURegister r2, int32_t j,
1709       CompactBranchType is_compact_branch = CompactBranchType::NO);
1710   void GenInstrImmediate(Opcode opcode, Register base, Register rt,
1711                          int32_t offset9, int bit6, SecondaryField func);
1712   void GenInstrImmediate(
1713       Opcode opcode, Register rs, int32_t offset21,
1714       CompactBranchType is_compact_branch = CompactBranchType::NO);
1715   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
1716   void GenInstrImmediate(
1717       Opcode opcode, int32_t offset26,
1718       CompactBranchType is_compact_branch = CompactBranchType::NO);
1719 
1720   void GenInstrJump(Opcode opcode, uint32_t address);
1721 
1722   // MSA
1723   void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws,
1724                      MSARegister wd);
1725 
1726   void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5,
1727                      MSARegister ws, MSARegister wd);
1728 
1729   void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m,
1730                       MSARegister ws, MSARegister wd);
1731 
1732   void GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1733                       int32_t imm10, MSARegister wd);
1734 
1735   template <typename RegType>
1736   void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t,
1737                      MSARegister ws, MSARegister wd);
1738 
1739   template <typename DstType, typename SrcType>
1740   void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n,
1741                       SrcType src, DstType dst);
1742 
1743   void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt,
1744                       MSARegister ws, MSARegister wd);
1745 
1746   void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws,
1747                       MSARegister wd);
1748 
1749   void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs,
1750                        MSARegister wd);
1751 
1752   void GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1753                      MSARegister ws, MSARegister wd);
1754 
1755   void GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1756                       MSARegister ws, MSARegister wd);
1757 
1758   void GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1759                          int32_t offset16);
1760 
is_valid_msa_df_m(SecondaryField bit_df,uint32_t m)1761   inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) {
1762     switch (bit_df) {
1763       case BIT_DF_b:
1764         return is_uint3(m);
1765       case BIT_DF_h:
1766         return is_uint4(m);
1767       case BIT_DF_w:
1768         return is_uint5(m);
1769       case BIT_DF_d:
1770         return is_uint6(m);
1771       default:
1772         return false;
1773     }
1774   }
1775 
is_valid_msa_df_n(SecondaryField elm_df,uint32_t n)1776   inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) {
1777     switch (elm_df) {
1778       case ELM_DF_B:
1779         return is_uint4(n);
1780       case ELM_DF_H:
1781         return is_uint3(n);
1782       case ELM_DF_W:
1783         return is_uint2(n);
1784       case ELM_DF_D:
1785         return is_uint1(n);
1786       default:
1787         return false;
1788     }
1789   }
1790 
1791   // Labels.
1792   void print(const Label* L);
1793   void bind_to(Label* L, int pos);
1794   void next(Label* L, bool is_internal);
1795 
1796   // Patching lui/ori pair which is commonly used for loading constants.
1797   static void PatchLuiOriImmediate(Address pc, int32_t imm, Instr instr1,
1798                                    Address offset_lui, Instr instr2,
1799                                    Address offset_ori);
1800   void PatchLuiOriImmediate(int pc, int32_t imm, Instr instr1,
1801                             Address offset_lui, Instr instr2,
1802                             Address offset_ori);
1803 
1804   // One trampoline consists of:
1805   // - space for trampoline slots,
1806   // - space for labels.
1807   //
1808   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1809   // Space for trampoline slots precedes space for labels. Each label is of one
1810   // instruction size, so total amount for labels is equal to
1811   // label_count *  kInstrSize.
1812   class Trampoline {
1813    public:
Trampoline()1814     Trampoline() {
1815       start_ = 0;
1816       next_slot_ = 0;
1817       free_slot_count_ = 0;
1818       end_ = 0;
1819     }
Trampoline(int start,int slot_count)1820     Trampoline(int start, int slot_count) {
1821       start_ = start;
1822       next_slot_ = start;
1823       free_slot_count_ = slot_count;
1824       end_ = start + slot_count * kTrampolineSlotsSize;
1825     }
start()1826     int start() { return start_; }
end()1827     int end() { return end_; }
take_slot()1828     int take_slot() {
1829       int trampoline_slot = kInvalidSlotPos;
1830       if (free_slot_count_ <= 0) {
1831         // We have run out of space on trampolines.
1832         // Make sure we fail in debug mode, so we become aware of each case
1833         // when this happens.
1834         DCHECK(0);
1835         // Internal exception will be caught.
1836       } else {
1837         trampoline_slot = next_slot_;
1838         free_slot_count_--;
1839         next_slot_ += kTrampolineSlotsSize;
1840       }
1841       return trampoline_slot;
1842     }
1843 
1844    private:
1845     int start_;
1846     int end_;
1847     int next_slot_;
1848     int free_slot_count_;
1849   };
1850 
1851   int32_t get_trampoline_entry(int32_t pos);
1852   int unbound_labels_count_;
1853   // If trampoline is emitted, generated code is becoming large. As this is
1854   // already a slow case which can possibly break our code generation for the
1855   // extreme case, we use this information to trigger different mode of
1856   // branch instruction generation, where we use jump instructions rather
1857   // than regular branch instructions.
1858   bool trampoline_emitted_;
1859   static constexpr int kInvalidSlotPos = -1;
1860 
1861   // Internal reference positions, required for unbounded internal reference
1862   // labels.
1863   std::set<int> internal_reference_positions_;
is_internal_reference(Label * L)1864   bool is_internal_reference(Label* L) {
1865     return internal_reference_positions_.find(L->pos()) !=
1866            internal_reference_positions_.end();
1867   }
1868 
EmittedCompactBranchInstruction()1869   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
ClearCompactBranchState()1870   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
1871   bool prev_instr_compact_branch_ = false;
1872 
1873   Trampoline trampoline_;
1874   bool internal_trampoline_exception_;
1875 
1876   // Keep track of the last Call's position to ensure that safepoint can get the
1877   // correct information even if there is a trampoline immediately after the
1878   // Call.
1879   byte* pc_for_safepoint_;
1880 
1881  private:
1882   void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);
1883 
1884   int WriteCodeComments();
1885 
1886   friend class RegExpMacroAssemblerMIPS;
1887   friend class RelocInfo;
1888   friend class BlockTrampolinePoolScope;
1889   friend class EnsureSpace;
1890 };
1891 
1892 class EnsureSpace {
1893  public:
1894   explicit V8_INLINE EnsureSpace(Assembler* assembler);
1895 };
1896 
1897 class V8_EXPORT_PRIVATE V8_NODISCARD UseScratchRegisterScope {
1898  public:
1899   explicit UseScratchRegisterScope(Assembler* assembler);
1900   ~UseScratchRegisterScope();
1901 
1902   Register Acquire();
1903   bool hasAvailable() const;
1904 
Include(const RegList & list)1905   void Include(const RegList& list) { *available_ |= list; }
Exclude(const RegList & list)1906   void Exclude(const RegList& list) { available_->clear(list); }
1907   void Include(const Register& reg1, const Register& reg2 = no_reg) {
1908     RegList list({reg1, reg2});
1909     Include(list);
1910   }
1911   void Exclude(const Register& reg1, const Register& reg2 = no_reg) {
1912     RegList list({reg1, reg2});
1913     Exclude(list);
1914   }
1915 
1916  private:
1917   RegList* available_;
1918   RegList old_available_;
1919 };
1920 
1921 }  // namespace internal
1922 }  // namespace v8
1923 
1924 #endif  // V8_CODEGEN_MIPS_ASSEMBLER_MIPS_H_
1925